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Abstract

Artificial learners often behave differently
from human learners in the context of neu-
ral agent-based simulations of language emer-
gence and change. A common explanation is
the lack of appropriate cognitive biases in these
learners. However, it has also been proposed
that more naturalistic settings of language
learning and use could lead to more human-
like results. We investigate this latter account,
focusing on the word-order/case-marking
trade-off, a widely attested language universal
that has proven particularly hard to simulate.
We propose a new Neural-agent Language
Learning and Communication framework
(NeLLCom) where pairs of speaking and lis-
tening agents first learn a miniature language
via supervised learning, and then optimize it
for communication via reinforcement learn-
ing. Following closely the setup of earlier
human experiments, we succeed in replicating
the trade-off with the new framework with-
out hard-coding specific biases in the agents.
We see this as an essential step towards the
investigation of language universals with neu-
ral learners.

1 Introduction

The success of deep learning methods for natu-
ral language processing has triggered a renewed
interest in agent-based computational modeling
of language emergence and evolution processes
(Lazaridou and Baroni, 2020; Chaabouni et al.,
2022). An important challenge in this line of
work, however, is that such artificial learners of-
ten behave differently from human learners (Galke
et al., 2022; Rita et al., 2022; Chaabouni et al.,
2019a).

∗Shared senior authorship.

One of the proposed explanations for these
mismatches is the difference in cognitive biases
between human and neural network (NN) based
learners. For instance, the neural-agent iterated
learning simulations of Chaabouni et al. (2019b)
and Lian et al. (2021) did not succeed in repli-
cating the trade-off between word-order and case
marking, which is widely attested in human lan-
guages (Sinnemäki, 2008; Futrell et al., 2015)
and has also been observed in artificial language
learning experiments with humans (Fedzechkina
et al., 2017). Instead, those simulations resulted
in the preservation of languages with redundant
coding mechanisms, which the authors mainly at-
tributed to the lack of a human-like least-effort
bias in the neural agents. Besides human-like
cognitive biases, it has been proposed that more
natural settings of language learning and use could
lead to more human-like patterns of language
emergence and change (Mordatch and Abbeel,
2018; Lazaridou and Baroni, 2020; Kouwenhoven
et al., 2022; Galke et al., 2022). In this work, we
follow up on this second account and investigate
whether neural agents that strive to be understood
by other agents display more human-like lan-
guage preferences.

To achieve that, we design a Neural-agent Lan-
guage Learning and Communication (NeLLCom)
framework that combines Supervised Learning
(SL) with Reinforcement Learning (RL), inspired
by Lazaridou et al. (2020) and Lowe et al. (2020).
Specifically, we use SL to teach our agents pre-
defined languages characterized by different lev-
els of word order freedom and case marking.
Then, we employ RL to let pairs of speaking and
listening agents talk to each other while optimiz-
ing communication success (also known as self-
play in the emergent communication literature).
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We closely compare the results of our simula-
tion to those of an experiment with a very similar
setup and miniature languages involving human
learners (Fedzechkina et al., 2017), and show that
a human-like trade-off can indeed appear during
neural-agent communication. Although some of
our results differ from those of the human ex-
periments, we make an important contribution
towards developing a neural-agent framework
that can replicate language universals without the
need to hard-code any ad-hoc bias in the agents.
We release the NeLLCom framework1 to facil-
itate future work simulating the emergence of
different language universals.

2 Background

Word Order vs. Case Marking Trade-off A
research focus of linguistic typology is to iden-
tify language universals (Greenberg, 1963), i.e.,
patterns occurring systematically among the large
diversity of natural languages. The origins of such
universals are the object of long-standing de-
bates. The trade-off between word order and case
marking is an important and well-known example
of such a pattern that has been widely attested
(Comrie, 1989; Blake, 2001). Specifically, lan-
guages with more flexible constituent order tend
to have rich morphological case systems (e.g.,
Russian, Tamil, Turkish), while languages with
more fixed order tend to have little or no case
marking (e.g., English or Chinese). Additionally,
quantitative measures also revealed that the func-
tional use of word order has a statistically sig-
nificant inverse correlation with the presence of
morphological cases based on typological data
(Sinnemäki, 2008; Futrell et al., 2015).

Various experiments with human participants
(Fedzechkina et al., 2012, 2017; Tal and Arnon,
2022) were conducted to reveal the under-
lying cause of this correlation. In particular,
Fedzechkina et al. (2017), who highly inspired
this work, applied a miniature language learning
approach to study whether the trade-off could be
explained by a human learning bias to reduce
production effort while remaining informative.
In their experiment, two groups of 20 partici-
pants were asked to learn one of two predefined
miniature languages. Both languages contained

1All code and data are available at https://github
.com/Yuchen-Lian/NeLLCom.

optional markers but differed in terms of word
order (fixed vs. flexible). After three days of
training, both groups reproduced the initial word
order distribution, however the flexible-order lan-
guage learners used case marking significantly
more often than the fixed-order language learn-
ers. Moreover, an asymmetric marker-using strat-
egy was found in the flexible-order language
learners, whereby markers tended to be used more
often in combination with the less frequent lan-
guage. Thus, most participants displayed an in-
verse correlation between the use of constituent
order and case marking during language learn-
ing, which the authors attributed to a unifying
information-theoretic principle of balancing effort
with robust information transmission.

Agent-based Simulations of Language Evo-
lution Computational models have been used
widely to study the origins of language struc-
ture (Kirby, 2001; Steels, 2016; De Boer, 2006;
Van Everbroeck, 2003). In particular, Lupyan and
Christiansen (2002) were able to mimic the human
acquisition patterns of four languages with very
different word order and case marking properties,
using a simple recurrent network (Elman, 1990).

Modern deep learning methods have also been
used to simulate patterns of language emer-
gence and change (Chaabouni et al., 2019a,b,
2020, 2021; Lian et al., 2021; Lazaridou et al.,
2018; Ren et al., 2020). Despite several inter-
esting results, many report the emergence of
languages and patterns that significantly dif-
fer from human ones. For example, Chaabouni
et al. (2019a) found an anti-efficient encoding
scheme that surprisingly opposes Zipf’s Law,
a fundamental feature of human language. Rita
et al. (2020) obtained a more efficient encoding
by explicitly imposing a length penalty on speak-
ers and pushing listeners to guess the intended
meaning as early as possible. Focusing on the
order/marking trade-off, Chaabouni et al. (2019b)
implemented an iterated learning setup inspired
by Kirby et al. (2014) where agents acquire a lan-
guage through SL, and then transmit it to a new
learner, iterating over multiple generations. The
trade-off did not appear in their simulations. Lian
et al. (2021) extended the study by introducing
several crucial factors from the language evolu-
tion field (e.g., input variability, learning bottle-
neck), but no clear trade-off was found. To our
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Figure 1: Agent architectures and a high-level overview of the meaning reconstruction game.

knowledge, no study with neural agents has suc-
cessfully replicated the emergence of this trade-
off so far.

3 NeLLCom: Language Learning and
Communication Framework

This section introduces the Neural-agent Lan-
guage Learning and Communication (NeLLCom)
framework, which we make publicly available.
Our goal differs from that of most work in
emergent communication, where language-like
protocols are expected to arise from sets of
random symbols through interaction (Lazaridou
et al., 2018; Havrylov and Titov, 2017; Chaabouni
et al., 2019a; Chaabouni et al., 2022; Bouchacourt
and Baroni, 2018). We are instead interested in
observing how a given language with specific
properties changes as the result of learning and
use. Specifically, in this work, agents need to
learn miniature languages with varying word or-
der distributions and case marking rules. While
this can be achieved by a standard SL procedure,
we hypothesize that human-like regularization
patterns will only appear when our agents strive
to be understood by other agents. We simulate
such a need via RL, using a measure of commu-
nication success as the optimization objective.

Similar SL+RL paradigms have been used in
the context of communicative AI (Li et al., 2016;
Strub et al., 2017; Das et al., 2017). In particular,
Lazaridou et al. (2020) and Lowe et al. (2020)
explore different ways of combining SL and RL
to teach agents to communicate with humans in
natural language. A well-known problem in that
setup is that languages tend to drift away from

their original form as agents adapt to commu-
nication. In our context, we are specifically in-
terested in studying how this drift compares to
human experiments of artificial language learn-
ing. Our implementation is partly based on the
EGG toolkit2 (Kharitonov et al., 2019).

3.1 The Task

NeLLCom agents communicate about a simpli-
fied world using pre-defined artificial languages.
Speaking agents convey a meaning m by gener-
ating an utterance u, whereas listening agents try
to map an utterance u to its respective meaning
m. The meaning space includes agent-patient-
action triplets, such as dog-cat-follow, dog-mouse-
follow, defined as triplets m = {A, a, p}, where
A is an action, a the agent, and p the patient.
Utterances are variable-length sequences of sym-
bols taken from a fixed-size vocabulary: u =
[w1, . . . , wI ], wi ∈ V . Evaluation is conducted
on meanings unseen during training.

3.2 Agent Architectures

Both speaking and listening agents contain an
encoder and a decoder, however their architectures
are mirrored as the meanings and sentences are
represented differently (see Figure 1).

Speaker: Linear-to-sequence In a speaker net-
work (S), the encoder receives the hot-vector
representations of A, a, and p, and projects them
to latent representations or embeddings. The order
of these three elements is irrelevant. The concate-
nation of the embeddings followed by a linear

2https://github.com/facebookresearch/EGG.
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layer becomes the latent meaning representation,3

based on which the Recurrent Neural Network
(RNN) decoder generates a sequence of symbols.4

Listener: Sequence-to-linear The listener net-
work (L) works in the reverse way: Its RNN
encoder takes an utterance as input and sends its
encoded representation to the decoder, which tries
to predict the corresponding meaning. Specifi-
cally, the final RNN cell is fed to the decoder,
which passes it through three parallel linear layers,
for A, a, and p, respectively. Finally, each of the
three elements is generated by a softmax layer.

In Chaabouni et al. (2019b), the same net-
work was trained to be both speaker and listener,
which was made possible by the symmetric
sequence-to-sequence architecture used in their
setup. By contrast, our agents can only behave
as either speaker or listener.5 As another dif-
ference, we represent meanings as unordered
attribute-values instead of sequences, which we
find important to avoid any ordering bias in the
meaning representation. We note that the frame-
work is rather general: In future studies, it could
be adapted to different meaning spaces and differ-
ent artificial languages, as well as different types
of neural sequence encoders/decoders.

3.3 Supervised Language Learning
SL is a natural choice to teach agents a specific
language. This procedure requires a dataset D of
meaning-utterance pairs 〈m,u〉 where u is the
gold-standard generated for m by a predefined
grammar (see grammar details in Section 4.1).
The learning objectives differ between speaker
and listener agents.

Speaker Given D, the speaker’s parameters θS
are optimized by minimizing the cross-entropy
loss:

Losssup(S) = −
I∑

i=1

log pθS (w
i|w<i,m) (1)

3We opted for simple architectural choices whenever
possible. Adding a non-linearity to the meaning encoder did
not affect the results.

4We implement the speaker’s decoder and the listener’s
encoder as one-layer Gated Recurrent Units (GRUs) (Chung
et al., 2014) following previous work on language emer-
gence (Dessı̀ et al., 2019; Chaabouni et al., 2020). The latter
paper, in particular, reports slower convergence with LSTM
than GRU, and a lack of success at adapting Transformers to
their setup.

5We leave the possibility of tying listener input and
speaker output embeddings to future work.

where wi is the ith word of the gold-standard ut-
terance u. Notice that SL implies a teacher forcing
procedure (Goodfellow et al., 2016), meaning that
at each timestep the gold history w<i is used to
predict the next word wi and update the network
weights accordingly.

Listener Given D, the listener’s parameters θL
are optimized by minimizing the cross-entropy
loss:

Losssup(L) = −(log pθL(a|u)
+ log pθL(p|u) + log pθL(A|u)) (2)

3.4 Optimizing Communication Success
While SL may be sufficient to (perfectly) learn a
given meaning-to-signal mapping and vice versa,
we are interested in whether and how such lan-
guage changes as a result of repeated usage. Fol-
lowing a long-established practice of simulating
emergent communication with humans and com-
puter agents in language evolution (Steels, 1997,
2016; Selten and Warglien, 2007; Galantucci and
Garrod, 2011), and more recently also in the com-
putational linguistics literature (Bouchacourt and
Baroni, 2018; Lazaridou et al., 2018, 2020; Lowe
et al., 2020; Havrylov and Titov, 2017; Evtimova
et al., 2018), we simulate communication with
a meaning reconstruction game where a speaker
S learns to convey meanings m to a listener L
using utterances û in the language it has learned
by SL. The goal for both agents is to maximize
a shared reward evaluated by the listener’s pre-
diction. For this phase, we adopt the classical
policy-based algorithm REINFORCE (Williams,
1992). Specifically, we optimize:

Losscomm
(S,L) = −rL(m, û)∗

I∑

i=1

log pθS (w
i|w<i,m)

(3)
where rL(m, û) is defined as the cross-entropy
loss between input meaning m and listener’s
prediction:

rL(m, û) =
∑

e ∈ m={a,p,A}
log pθL(e|û) (4)

3.5 Combining Supervision
and Communication

We adopt the simplest possible way of combin-
ing SL and RL, which is to first train the agents
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language word order case marking m = {A, a, p} u

fix+op 100% SOV 66.7% on OBJ CHASE TOM JERRY Tom Jerry chase | Tom Jerry mk chase

flex+op
50% SOV,

66.7% on OBJ CHASE TOM JERRY
Tom Jerry chase | Tom Jerry mk chase |

50% OSV Jerry Tom chase | Jerry mk Tom chase

Table 1: The two miniature grammars used in this study, along with meaning-utterance 〈m,u〉 examples.

by SL until convergence and then continue train-
ing them by RL to maximize the communicative
reward.6 While more sophisticated combination
techniques were proposed recently (Lazaridou
et al., 2020; Lowe et al., 2020), we find this
simple SL+RL sequence to work well in our con-
text, and leave an exploration of other techniques
to future work.

Crucially, using communication success as task
reward rather than forcing agents to imitate given
training pairs 〈m,u〉 allows agents to depart from
the initially learned grammar, as long as the new
language remains understandable by other agents.
This principle is well studied in the framework
of Rational Speech Act (RSA) (Goodman and
Frank, 2016) which implemented utterance under-
standing from a social cognition aspect. If a lan-
guage is suboptimal for an agent, e.g., in terms
of efficiency or ambiguity, we expect it to change
throughout multiple communication rounds. Note
that the listener’s role can also be interpreted as
that of a speaker-internal monitoring system that
predicts the chance of a message to be understood
by a listener before uttering it (Ferreira, 2019).

4 Experimental Setup

We use NeLLCom to replicate the results of
Fedzechkina et al. (2017), who taught human
subjects miniature languages with varying order
distributions. Subjects watched short videos of two
actors performing simple transitive events (e.g.,
a chef hugging a referee) accompanied by spo-
ken descriptions in the novel language.7 We adopt
the same setup, with two notable differences: (i)
our agents do not take videos or images as in-
put, but triplets of symbols representing agent,
patient, and action, respectively (see Section 3);

6This procedure corresponds to reward fine-tuning in
Lazaridou et al. (2020) and to sup2sp in Lowe et al. (2020).

7Sentence learning was preceded by a noun learning
phase which we do not model in our experiments. For more
details on the human training process, see Fedzechkina et al.
(2017).

(ii) descriptions are not spoken but written, and
words are represented by dummy strings (such
as noun-1, verb-2, etc.) instead of English-like
sounding nonce words. Thus, we abstract away
from the problem of (i) mapping visual input to
structured meaning representations and (ii) map-
ping continuous audio signals to discrete word
representations, respectively. Dealing with these
interfaces is necessary when working with hu-
mans, but not with neural agents. Moreover, none
of them are a core aspect of our investigation.

4.1 Miniature Languages
Following Fedzechkina et al. (2017), we con-
sider two head-final languages: one with fixed
order and optional case markers (fix+op), and
one with flexible order and optional case markers
(flex+op). Optional marking means that 2/3 of
all objects are followed by a special mark (the
token mk), whereas subjects are never marked.
Possible constituent orders are SOV and OSV: the
fixed-order language uses always SOV, while the
flexible-order one uses both with a probability of
50%–50%. The two languages are illustrated in
Table 1.

In fix+op, order is informative and sufficient to
disambiguate grammatical functions. Case mark-
ing is therefore a redundant cue. In flex+op,
order is uninformative therefore marking—when
present—is important to recover the meaning. The
hypothesis that language learning and use create
biases towards efficient communication systems
(Gibson et al., 2019; Fedzechkina et al., 2012)
yields two predictions: fix+op is expected to
become less redundant (by a decrease of case
marking) whereas flex+op should become more
predictable (by an increase of marking or a more
consistent order).

4.2 Meaning Space
The meaning space used by Fedzechkina et al.
(2017) included 6 entities and 4 actions, resulting
in a total of 6×(6−1)×4 =120 possible mean-
ings (an entity cannot be agent and patient at the
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same time). While suitable for human learners,
such a space is too small to train neural agents
(Zhao et al., 2018; Chaabouni et al., 2020). In pre-
liminary experiments, we found that our learners
converge well with a meaning space size of 720
(10 performers and 8 actions in our languages).

To test the agents’ ability to convey new mean-
ings, we split our dataset into 66.7% training and
33.3% testing. We also ensure that each entity
and action of the meaning space appears at least
once in the training set. To prevent the agents
from memorizing spurious correlations between a
meaning and a particular order or marking choice,
we regenerate a new utterance per meaning (ac-
cording to the same grammar) after each epoch
of SL.

See Appendix A for details on the datasets
and training process.

5 Supervised Learning Results

We start by evaluating the agents’ ability to learn
to speak or listen in a fully supervised way, that
is, using the generated meaning-utterance pairs
from a specific language as labeled data.

5.1 Accuracy

During evaluation, both types of agents generate
their predictions by greedy decoding. Accuracy is
computed at the whole utterance or meaning level.
Specifically, listening accuracy is 1 if all of A,
a, and p are correct, otherwise it is 0. Speaking
accuracy is evaluated in two ways: (i) Regular
speaking accuracy is 1 only if the generated ut-
terance is identical to the one in the dataset. (ii)
‘Permissive’ speaking accuracy considers the
fact that our grammars admit multiple utterances
for the same meaning: for each test sample, we
generate all correct candidates (i.e., with or with-
out marker; OSV and SOV for the flexible-order
language). Permissive accuracy is 1 if the gener-
ated utterance matches any of the candidates. As
long as the utterance is acceptable, matching an
arbitrary choice of order or marking for a given
meaning does not matter. Hence, the discussion
in this section is based on permissive speaking
accuracy. Figure 2 shows accuracy results for
both agent types, each averaged over 20 random
initialization seeds.

We find that our agents learn to speak and un-
derstand the fixed-order language with extremely
high accuracies (Figure 2a, 2c). By contrast, the

Figure 2: Supervised learning results across training
epochs for the fixed- (left) and flexible-order (right)
language: accuracy of listening (a,b) and speaking (c,d)
agents; distribution of word order (e,f) and markers
(g,h) in speaker-generated utterances. All results are
averaged over 20 random seeds.

flexible-order language reaches only 38.7% lis-
tening accuracy (Figure 2b) and 84.5% permis-
sive speaking accuracy (Figure 2d) on average
for the unseen test. Note this does not reflect a
weakness of the learners, but the ambiguity of
the language itself: Namely, subject and object
are not distinguishable when the marker is absent,
which happens in a third of the utterances.8 These

8The ability of RNNs to learn fixed-order languages
equally well as their flexible-order/case-marking has been
demonstrated by previous studies (Lupyan and Christiansen,
2002; Chaabouni et al., 2019b; Bisazza et al., 2021), but only
when case marking is consistently present.
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results are consistent with the higher comprehen-
sion and production accuracy of human partic-
ipants learning the fix+op vs. flex+op language
in Fedzechkina et al. (2017). Specifically, their
flex+op group reached 96% comprehension accu-
racy with 6.2% grammatical mistakes, while the
fix+op group reached 99% accuracy with no gram-
matical mistakes (see Section 3.1 in Fedzechkina
et al. [2017]). Next, we inspect the properties of
the language generated by speaking agents during
the learning process.

5.2 Production Preferences

Figure 2e, 2f show the proportion of SOV vs. OSV
test utterances generated by the speaking agents
across training epochs (see Appendix B for details
on utterance categorization). For both languages,
learners show a clear probability-matching be-
havior: In a few epochs, the order distribution
becomes the same as in the input language and re-
mains unchanged throughout the whole training.
A similar pattern is visible for marking (Figure 2g,
2h). Looking closer at fix+op (Figure 2g), we no-
tice a slightly higher production of cases than the
initial 66.7%, which is even less efficient than
the input language.

Taken together, these results show that our
agents are good learners but do not regularize the
use of the two strategies in a human-like way after
SL, which is in line with the iterated supervised
learning results of Chaabouni et al. (2019b) and
Lian et al. (2021). This leads us to the next phase:
optimizing agents for communicative success.

6 Communication Learning Results

We study the effect of communication learning on
communication success and language properties.

6.1 Communication Success

Once a pair of agents is trained to speak/listen,
they start communicating with each other to
achieve a shared goal: The listener should un-
derstand the speaker, i.e., reconstruct the intended
meaning. Task success is evaluated by meaning
reconstruction accuracy, which corresponds to
the listening accuracy (Section 5.1) of a listener
receiving a speaker-generated utterance as input.9

The results in Figure 3a, 3b show that agents
understand each other better after several com-

9Greedy decoding is used for both speaker and listener
during the evaluation of communication success.

Figure 3: Communication learning results across train-
ing epochs for the fixed- (left) and flexible-order
(right) language: meaning reconstruction accuracy
(a,b); distribution of order (c,d) and markers (e,f) in
speaker-generated utterances; marking conditioned on
different orders (g,h). Dashed lines indicate marking in
the initial dataset (66.7%). All results averaged over 20
random seeds.

munication rounds. More specifically, the non-
ambiguous language (Figure 3a) suffers from an
initial drop but recovers the initial accuracy by
epoch 20. The ambiguous language (Figure 3b)
starts from a lower communication success rate
as expected but becomes more and more infor-
mative throughout communication. In particular,
around epoch 40, agents recover the communica-
tion success they had achieved at the end of SL on
known meanings (85.2%) while even exceeding
it for new meanings (61.5% vs. 38.7%). These re-
sults strongly suggest the language becomes less
ambiguous by interaction.
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Additionally, we report a noticeable drop in av-
erage performance towards the last epochs. The
individual seed results reveal that most agent pairs
suffer from a collapse of their communication
protocol in the final stages of RL. We attribute this
issue to a known limitation of the REINFORCE
algorithm related to its high gradient variance (Lu
et al., 2020). Having assessed that our NeLLCom
agents are able to learn a language and use it for
conveying meanings, we now inspect how their
language changes during communication.

6.2 Production Preferences

The proportions of word order and case mark-
ers generated by the speaking agents are shown,
respectively, in Figure 3c, 3d and Figure 3e, 3f
(see Appendix B for details on utterance cat-
egorization). We can see that these properties
change considerably during communication learn-
ing, which was not the case during SL. The in-
crease of communication success observed in both
languages already indicates that languages tend
to become more informative. The key question
is whether informativity is being balanced with
efficiency, in a similar way as observed in human
experiments (Fedzechkina et al., 2017).

Fix+op This language is redundant as it uses
both fixed order (SOV) and marking to convey
argument roles. As shown in Figure 3c, agents
keep using SOV throughout the communication
process.10 Similarly, human experiments of lan-
guage emergence have shown that participants
hardly ever create innovations in languages that
are already systematic (St. Clair et al., 2009; Tily
et al., 2011; Fedzechkina et al., 2017). Importantly,
Figure 3e reveals a clear preference towards drop-
ping markers, as evidenced by a steady increase
of no mk utterances (light color). This aligns with
the finding in Fedzechkina et al. (2017), whereby
human learners of the fixed-order language sig-
nificantly reduced the use of marking over three
days of training.11 The tendency to drop case
markers is often explained by a human pref-
erence for reducing redundancy and increasing
efficiency. Notably, the agents in our framework

10The slight drop of SOV in the last epochs is due to
the increase of non-classifiable (other) utterances, in turn
related to the final communication collapse mentioned in
Section 6.1.

11For detailed case marking results in human production,
see Section 3.3 and Figure 4 in Fedzechkina et al. (2017).

did not have any manually coded efficiency bias.
The maximum allowed message length was much
longer than the utterances needed to get the mes-
sage across and the agents were not incentivized
in any way to produce shorter sentences. Thus, we
explain the observed pattern as a tendency of the
neural agents to make the language more system-
atic as long as this does not harm communicative
success.

Flex+op Recall this language is originally as
efficient as fix+op (i.e., same average utterance
length) but less informative due to the presence
of ambiguous utterances. We can think of at
least two ways in which human or human-like
learners could improve it, namely: (i) keep us-
ing both orders interchangeably but use markers
more systematically, or (ii) choose one order as
dominant and keep using markers optionally (or
not at all). Note that different pairs of speaking/
listening agents may opt for different, though
equally optimal strategies.

We find that NeLLCom agents increasingly
produce OSV utterances (Figure 3d), reaching
a situation where OSV is twice as common as
SOV when communication success is at its high-
est (epoch ∼50). At the same time, marker use
fluctuates initially and then stabilizes around 55%,
which is still the majority of cases but less than
the initial rate (66.7%). This strongly suggests that
agents are making the language more informa-
tive while reducing effort, according to strategy
(ii). These results do not fully match those of
Fedzechkina et al. (2017), where most subjects
instead adopted strategy (i).12 Nonetheless, our
findings provide important evidence that the word
order/case marking trade-off can emerge in neural
learners without hard-coded biases.

Conditional Case Marking Besides how many
markers are used, it is important to understand
how they are used. As Fedzechkina et al. (2017)
point out, learners of a flexible-order language
could reduce uncertainty by conditioning their
marker use on word order (asymmetric case mark-
ing). For instance, using object marking only
in SOV utterances could minimize uncertainty
while maximizing efficiency. As discussed above,
NeLLCom agents using flex+op tend to prefer

12For detailed word order results in human production, see
Section 3.2 and Figure 3 in Fedzechkina et al. (2017).
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Figure 4: Individual production distributions (flex+op language). Utterances are categorized into 5 types, namely,
SOV without marker, SOV with marker, OSV without marker, OSV with marker, and uncategorized (other).
Color denotes word order (blue: SOV, red: OSV), shading denotes marking (dark: with marker, light: without).
Subplots are manually arranged to highlight clusters of similar trajectories.

one order over the other, however they are far from
using one exclusively. Could our agents also be us-
ing markers conditionally? Figure 3h shows the
proportion of OSV utterances having a marker
out of all OSV’s (OSVmk/OSVall) and the same
for SOV’s.13 Indeed, agents use marking de-
creasingly when producing SOV utterances but
maintain the marker percentage in OSV utter-
ances, which matches unexpectedly well the hu-
man tendency observed by Fedzechkina et al.
(2017), Section 3.4. Whether this is due to a co-
incidence or to a bias (e.g., towards marking the
first entity appearing in an utterance) remains
for now unexplained.

7 Individual Learners’ Trajectories

All results so far were averaged over multiple
randomly initialized agents. Here, we look at pos-
sible variations among pairs of speaking-listening
agents. We focus only on the flexible-order lan-
guage, as it is more likely to undergo different opti-
mization strategies. Figure 4 shows 20 production
distributions, each corresponding to a different
random seed. Most agents (no. 1 to 14) regularize
their productions towards the OSV order, as an-
ticipated by the average results in Figure 3. How-
ever, we also find two agent pairs that take the
opposite path and produce more SOV (no. 19 and
20). The remaining four agents show no clear order
preferences (no. 15, 16, 17, and 18). As for case

13For completeness, Figure 3g shows conditional case
marking results for fixed+op, however this is less interest-
ing as word order is a sufficient disambiguation cue in this
language.

marking, a clear preference to drop the marker
from SOV utterances can be found in 15/20
pairs (no. 4, 5, 9, 10, 16 are exceptions), which
reflects the average trend of conditional case
marking shown in Figure 3h. This high degree
of between-agents variability matches human re-
sults (Fedzechkina et al., 2012, 2017; Culbertson
et al., 2012; Hudson Kam and Newport, 2005)
where learners often adopt different strategies to
reach a common optimization objective.

Uncertainty/Efficiency Trade-off We explore
whether the observed trajectories can be explained
by a single principle: a trade-off between uncer-
tainty and efficiency. Following Fedzechkina et al.
(2017), we quantify production effort as the av-
erage number of words per generated utterance.14

To quantify uncertainty, we use their ‘‘condi-
tional entropy over grammatical function assign-
ment’’ (H), which captures the uncertainty over
the intended meaning experienced by a listener
with perfect knowledge of the initial grammar
(see detailed definition in Appendix C). Figure 5
presents uncertainty versus production effort at
three time points: the initial language defined by
the grammar, production after SL, and production
after communication. For comparison, the human
results of Fedzechkina et al. (2017) are reported
in Figure 5c.

In Figure 5a, the tight distribution of data points
(empty circles) around the initial state (diamonds)
reconfirms that SL alone does not lead to mean-
ingful regularization. In fact, the only noticeable

14Fedzechkina et al. (2017) used the number of syllables,
but that correlated perfectly with the number of words.
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Figure 5: Uncertainty (H) versus production effort: NellCom agents’ results after supervised (a) and communication
learning (b); human results on last day of training (c) (reproduced with permission from Fedzechkina et al., 2017).
Solid diamonds mark the initial uncertainty-effort value for each language. Empty circles represent the individual
20 agent pairs. Solid circles are the average of all agent pairs.

drift happens for fix+op in the counter-intuitive
direction of increasing effort in the absence of
uncertainty, as also anticipated by Figure 2g. Com-
munication results (Figure 5b) show a very dif-
ferent picture: For both languages, average effort
appears to decrease without noticeably increas-
ing uncertainty. Variability among agents is also
wide, as already noticed in the qualitative analy-
sis of Section 7. In fix+op, 17/20 agents produce
shorter sentences. Fedzechkina et al. (2017) report
effort reductions in 14/20 participants. In flex+op,
the average uncertainty/effort values do not devi-
ate much from the initial state, but individual data
points reveal an unmistakable pattern, namely, an
inverse linear correlation between effort and un-
certainty (empty blue circles in Figure 5b). We
closely inspect three instances: (i) The top-left data
point (H = 0.08, E = 3.91) corresponds to agent pair
no. 1 in Figure 4 whose language becomes fixed-
order (OSV) and fully marked, i.e., unambiguous
but inefficient. (ii) The bottom-right data point
(H = 0.77, E = 3.19) corresponds to no.19 in Figure 4
where most markers are dropped (5% for OSV and
24% for SOV) but no order strongly dominates,
resulting in high ambiguity. (iii) Finally, the data
point at (U = 0.09, E = 3.39) represents the
only clear outlier from the linear correlation. This
agent pair, corresponding to no. 20 in Figure 4,
succeeds at minimizing both effort and uncer-
tainty by using SOV predominantly (76%) and
reserving most markers to the less common order
OSV (highly asymmetric case marking). Interest-
ingly, no outliers are found on the other side of
the line: i.e., none of the 20 agents pairs appears
to increase both effort and uncertainty, just like in
the human results (Figure 5c).

8 Discussion and Conclusion

We studied the conditions in which the word or-
der/case marking trade-off, a well established lan-
guage universal example, could emerge in a small
population of neural-network learners. We hypo-
thesized that more naturalistic settings of language
learning and use could lead to more human-like
results, without the need to hard-code specific bi-
ases, such as least effort, into the agents. We then
proposed a new Neural-agent Language Learn-
ing and Communication framework (NeLLCom)
where pairs of speaking and listening agents learn
a given language through supervised learning,
and then use it to communicate with each other,
optimizing a shared reward via reinforcement
learning.

We used NeLLCom to replicate the experiments
of Fedzechkina et al. (2017), where two groups of
human participants were asked to learn a fixed-
and a flexible-order miniature language, respec-
tively, and to use it productively after training. Our
results with RNN-based meaning-to-sequence and
sequence-to-meaning networks confirm that SL is
sufficient for perfectly learning the languages,
but does not lead to any human-like regulariza-
tion, in line with recent simulations of iterated
learning (Chaabouni et al., 2019b; Lian et al.,
2021). By contrast, communication learning leads
agents to modify their production in interesting
ways: Firstly, optional markers are dropped more
frequently in the redundant fixed-order language
than in the ambiguous flexible-order language,
which matches human learning results. Moreover,
one of the two equally probable word orders
in the flexible-order language becomes clearly
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dominant and case marking starts to be used con-
sistently more often in combination with one or-
der than with the other. This conditional use of
marking also matches human results. Some in-
teresting differences were also observed: For in-
stance, NeLLCom agents showed, on average, a
slightly stronger tendency to reduce effort rather
than uncertainty. As another difference, several
human subjects managed to ‘break’ the linear
correlation by making the language more effi-
cient and less uncertain, whereas this happened
only in one of our agent pairs. Despite these dif-
ferences, agents’ productions show a clear cor-
relation between effort and uncertainty, which
strongly matches the core finding of Fedzechkina
et al. (2017). We conclude that the word order/
case marking trade-off as a specific realization of
the efficiency/informativity trade-off can, in fact,
emerge in neural network learners equipped with
a need to be understood.

We made an important step towards devel-
oping a neural-agent framework that replicates
patterns of human language change without the
need to hard-code ad-hoc biases. Future work
includes extending the current framework with
iterated learning, which might lead agents to
further optimize the ambiguous language and im-
prove communication success over generations.
We also plan to experiment with different neu-
ral network architectures to study the impact of
architecture-specific structural biases, and with
different word order universals.

We hope our framework will facilitate future
simulations of language evolution at different
timescales with the end goal of explaining why
human languages look the way they do.
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Stefan Lee, and Dhruv Batra. 2017. Learn-
ing cooperative visual dialog agents with deep
reinforcement learning. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV),
pages 2970–2979. IEEE Computer Society.
https://doi.org/10.1109/ICCV.2017.321

Bart De Boer. 2006. Computer modelling as a
tool for understanding language evolution. Evo-
lutionary Epistemology, Language and Culture:
A Non-Adaptationist, Systems Theoretical Ap-
proach, pages 381–406. https://doi.org
/10.1007/1-4020-3395-8 17

Roberto Dessı̀, Diane Bouchacourt, Davide
Crepaldi, and Marco Baroni. 2019. Focus
on what’s informative and ignore what’s not:
Communication strategies in a referential game.
In EmeCom Workshop at NeurIPS 2019.
https://doi.org/10.48550/arXiv.1911.01892

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211. https://
doi.org/10.1207/s15516709cog14021

Katrina Evtimova, Andrew Drozdov, Douwe
Kiela, and Kyunghyun Cho. 2018. Emergent
communication in a multi-modal, multi-step
referential game. In International Conference
on Learning Representations.

Maryia Fedzechkina, T. Florian Jaeger, and
Elissa L. Newport. 2012. Language learners
restructure their input to facilitate efficient
communication. Proceedings of the National
Academy of Sciences, 109(44):17897–17902.

https://doi.org/10.1073/pnas.1215776109,
PubMed: 23071337

Maryia Fedzechkina, Elissa L. Newport, and
T. Florian Jaeger. 2017. Balancing effort and
information transmission during language ac-
quisition: Evidence from word order and case
marking. Cognitive Science, 41(2):416–446.
https://doi.org/10.1111/cogs.12346,
PubMed: 26901374

Victor S. Ferreira. 2019. A mechanistic framework
for explaining audience design in language
production. Annual Review of Psychology,
70(1):29–51. https://doi.org/10.1146/annurev
-psych-122216-011653, PubMed: 30231000

Richard Futrell, Kyle Mahowald, and Edward
Gibson. 2015. Quantifying word order free-
dom in dependency corpora. In Proceed-
ings of the Third International Conference
on Dependency Linguistics (Depling 2015),
pages 91–100, Uppsala, Sweden. Uppsala
University, Uppsala, Sweden.

Bruno Galantucci and Simon Garrod. 2011.
Experimental semiotics: A review. Frontiers in
Human Neuroscience, 5, 11. https://doi
.org/10.3389/fnhum.2011.00011,
PubMed: 21369364

Lukas Galke, Yoav Ram, and Limor Raviv. 2022.
Emergent communication for understanding
human language evolution: What’s missing? In
Emergent Communication Workshop at ICLR
2022.

Edward Gibson, Richard Futrell, Steven P.
Piantadosi, Isabelle Dautriche, Kyle Mahowald,
Leon Bergen, and Roger Levy. 2019. How
efficiency shapes human language. Trends in
Cognitive Sciences, 23(5):389–407. https://
doi.org/10.1016/j.tics.2019.02.003,
PubMed: 31006626

Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. 2016. Deep Learning. MIT Press.

Noah D. Goodman and Michael C. Frank.
2016. Pragmatic language interpretation as
probabilistic inference. Trends in Cognitive
Sciences, 20(11):818–829. https://doi
.org/10.1016/j.tics.2016.08.005,
PubMed: 27692852

Joseph Harold Greenberg. 1963. Univer-
sals of Language. MIT Press, Cambridge,
Massachusetts.

1044

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00587/2154476/tacl_a_00587.pdf by guest on 09 Septem
ber 2023

https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1016/j.cognition.2011.10.017
https://doi.org/10.1016/j.cognition.2011.10.017
https://pubmed.ncbi.nlm.nih.gov/22208785
https://doi.org/10.1109/ICCV.2017.321
https://doi.org/10.1007/1-4020-3395-8_17
https://doi.org/10.1007/1-4020-3395-8_17
https://doi.org/10.48550/arXiv.1911.01892
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1073/pnas.1215776109
https://pubmed.ncbi.nlm.nih.gov/23071337
https://doi.org/10.1111/cogs.12346
https://pubmed.ncbi.nlm.nih.gov/26901374
https://doi.org/10.1146/annurev-psych-122216-011653
https://doi.org/10.1146/annurev-psych-122216-011653
https://pubmed.ncbi.nlm.nih.gov/30231000
https://doi.org/10.3389/fnhum.2011.00011
https://doi.org/10.3389/fnhum.2011.00011
https://pubmed.ncbi.nlm.nih.gov/21369364
https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.1016/j.tics.2019.02.003
https://pubmed.ncbi.nlm.nih.gov/31006626
https://doi.org/10.1016/j.tics.2016.08.005
https://doi.org/10.1016/j.tics.2016.08.005
https://pubmed.ncbi.nlm.nih.gov/27692852


Serhii Havrylov and Ivan Titov. 2017. Emergence
of language with multi-agent games: Learning
to communicate with sequences of symbols.
In Proceedings of the 31st International Con-
ference on Neural Information Processing
Systems, NIPS’17, pages 2146–2156. Curran
Associates Inc.

Carla L. Hudson Kam and Elissa L. Newport.
2005. Regularizing unpredictable variation:
The roles of adult and child learners in language
formation and change. Language Learning and
Development, 1(2):151–195. https://doi
.org/10.1080/15475441.2005.9684215

Eugene Kharitonov, Rahma Chaabouni, Diane
Bouchacourt, and Marco Baroni. 2019. EGG:
A toolkit for research on emergence of
lanGuage in games. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing and the 9th Interna-
tional Joint Conference on Natural Language
Processing (EMNLP-IJCNLP): System Demon-
strations, pages 55–60, Hong Kong, China.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/D19
-3010

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In 3rd
International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA,
May 7–9, 2015, Conference Track Proceedings.
https://doi.org/10.48550/arXiv.1412.6980

Simon Kirby. 2001. Spontaneous evolution of lin-
guistic structure-an iterated learning model of
the emergence of regularity and irregularity.
IEEE Transactions on Evolutionary Computa-
tion, 5(2):102–110. https://doi.org/10
.1109/4235.918430

Simon Kirby, Tom Griffiths, and Kenny Smith.
2014. Iterated learning and the evolution
of language. Current Opinion in Neurobiol-
ogy, 28:108–114. https://doi.org/10
.1016/j.conb.2014.07.014, PubMed:
25062470

Tom Kouwenhoven, Tessa Verhoef, Roy
De Kleijn, and Stephan Raaijmakers. 2022.
Emerging grounded shared vocabularies be-
tween human and machine, inspired by human
language evolution. Frontiers in Artificial Intel-
ligence, 5:886349. https://doi.org/10.3389
/frai.2022.886349, PubMed: 35558168

Angeliki Lazaridou and Marco Baroni. 2020.
Emergent multi-agent communication in the
deep learning era. arXiv preprint arXiv:2006
.02419v2. https://doi.org/10.48550/arXiv
.2006.02419

Angeliki Lazaridou, Karl Moritz Hermann, Karl
Tuyls, and Stephen Clark. 2018. Emergence
of linguistic communication from referen-
tial games with symbolic and pixel input.
In International Conference on Learning
Representations.

Angeliki Lazaridou, Anna Potapenko, and Olivier
Tieleman. 2020. Multi-agent communication
meets natural language: Synergies between
functional and structural language learning. In
Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 7663–7674, Online. Association for
Computational Linguistics. https://doi.org
/10.18653/v1/2020.acl-main.685

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep
reinforcement learning for dialogue genera-
tion. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language
Processing, pages 1192–1202, Austin, Texas.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/D16
-1127

Yuchen Lian, Arianna Bisazza, and Tessa
Verhoef. 2021. The effect of efficient messag-
ing and input variability on neural-agent iter-
ated language learning. In Proceedings of the
2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 10121–10129,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021
.emnlp-main.794

Ryan Lowe, Abhinav Gupta, Jakob Foerster,
Douwe Kiela, and Joelle Pineau. 2020. On the
interaction between supervision and self-play
in emergent communication. In International
Conference on Learning Representations.

Yuchen Lu, Soumye Singhal, Florian Strub,
Aaron Courville, and Olivier Pietquin. 2020.
Countering language drift with seeded iter-
ated learning. In International Conference on
Machine Learning, pages 6437–6447. PMLR.

1045

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00587/2154476/tacl_a_00587.pdf by guest on 09 Septem
ber 2023

https://doi.org/10.1080/15475441.2005.9684215
https://doi.org/10.1080/15475441.2005.9684215
https://doi.org/10.18653/v1/D19-3010
https://doi.org/10.18653/v1/D19-3010
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/4235.918430
https://doi.org/10.1109/4235.918430
https://doi.org/10.1016/j.conb.2014.07.014
https://doi.org/10.1016/j.conb.2014.07.014
https://pubmed.ncbi.nlm.nih.gov/25062470
https://doi.org/10.3389/frai.2022.886349
https://doi.org/10.3389/frai.2022.886349
https://pubmed.ncbi.nlm.nih.gov/35558168
https://doi.org/10.48550/arXiv.2006.02419
https://doi.org/10.48550/arXiv.2006.02419
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/2020.acl-main.685
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/2021.emnlp-main.794
https://doi.org/10.18653/v1/2021.emnlp-main.794


Gary Lupyan and Morten H. Christiansen. 2002.
Case, word order, and language learnabil-
ity: Insights from connectionist modeling. In
Proceedings of the Twenty-Fourth Annual
Conference of the Cognitive Science Society,
pages 596–601. Routledge. https://doi
.org/10.4324/9781315782379-138

Igor Mordatch and Pieter Abbeel. 2018. Emer-
gence of grounded compositional language in
multi-agent populations. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 32. https://doi.org/10.1609
/aaai.v32i1.11492

Adam Paszke, Sam Gross, Soumith Chintala,
Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. 2017. Automatic dif-
ferentiation in pytorch. In NIPS 2017 Autodiff
Workshop.

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B.
Cohen, and Simon Kirby. 2020. Compositional
languages emerge in a neural iterated learn-
ing model. In International Conference on
Learning Representations.

Mathieu Rita, Rahma Chaabouni, and Emmanuel
Dupoux. 2020. ‘‘LazImpa’’: Lazy and impa-
tient neural agents learn to communicate effi-
ciently. In Proceedings of the 24th Conference
on Computational Natural Language Learning,
pages 335–343, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2020.conll-1.26

Mathieu Rita, Corentin Tallec, Paul Michel,
Jean-Bastien Grill, Olivier Pietquin, Emmanuel
Dupoux, and Florian Strub. 2022. Emergent
communication: Generalization and overfit-
ting in lewis games. In Advances in Neural
Information Processing Systems.

Reinhard Selten and Massimo Warglien. 2007.
The emergence of simple languages in an
experimental coordination game. Proceed-
ings of the National Academy of Sciences,
104(18):7361–7366. https://doi.org
/10.1073/pnas.0702077104, PubMed:
17449635
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A Datasets and Model Training

Datasets Each word in a language corresponds
uniquely to an entity or an action in the meaning
space, leading to vocabulary size |V | = 8+10+1
(marker) = 19. After the train/test split, we check
that each entity and each action in the test set
appears at least once in the training. If that’s not
the case, we randomly swap the meaning-utterance
pairs containing unseen entities with random ones
from the training set. An end-of-sentence 〈EOS〉
token is appended to each utterance and padding
is used to deal with variable utterance lengths.

Model Training Hyper-parameters were set
in preliminary SL experiments: Speakers have
8-dim. embeddings and a 128-dim. GRU layer.
Listeners have 32-dim. embeddings and a 32-dim.
GRU layer. A default Adam optimizer (Kingma
and Ba, 2015) in PyTorch (Paszke et al., 2017)
is used for both SL and RL, with learning rate
0.01 and batch size 32. Each training phase lasts
60 epochs and we repeat each experiment with 20
different random seeds.

B Utterance Length and
Production Preferences

In principle, RNN can generate sequences of var-
iable length. In practice, this is achieved by fix-
ing a maximum message length (10 words in our
setup) and truncating the sequence when the first
symbol 〈EOS〉 is generated. We noticed, however,
that during communication our speaking agents
do not always end their message with 〈EOS〉,
but rather duplicate their final words to fill up
the maximum utterance length after generating a
well-formed initial message. As long as the first

part of the utterance perfectly matches one of the
structures admitted by the grammar, we truncate
the utterance at the last word before duplication.
On average, this affects 15% of the utterances by
epoch 60.

Speaker-generated utterances for the unseen
meanings (240 in total) are then classified into
five types: SOV without marker, SOV with
marker, OSV without marker, OSV with marker
and uncategorized (other). Properties are com-
puted as:

%SOV = (SOVmk + SOVno mk)/Total
%OSV = (OSVmk + OSVno mk)/Total
%with mk = (SOVmk + OSVmk)/Total
%no mk = (SOVno mk + OSVno mk)/Total

C Uncertainty Measure

This measure taken from Fedzechkina et al. (2017)
captures the uncertainty about the role of the
two entities expressed in an utterance, which is
experienced by a listener with perfect knowledge
of the grammar. It is formalized as the conditional
entropy of grammatical function assignment (GF)
given sentence form (s.form):

H(GF|s.form) = −
∑

GFs

∑

s.forms

p(s.form, GF) ∗ log2p(GF|s.form) (5)

According to the constraints of each grammar,
possible sentence forms are s.forms = {SOV,
OSV} and function assignments GFs = {N1N2V,
N1mkN2V, N1N2mkV}. Initial language uncer-
tainties are as in Fedzechkina et al. (2017): 0 for
fix+op and 0.33 for flex+op.
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