
OpenFact: Factuality Enhanced Open Knowledge Extraction

Linfeng Song∗, Ante Wang∗,†, Xiaoman Pan, Hongming Zhang, Dian Yu, Lifeng Jin,
Haitao Mi, Jinsong Su†, Yue Zhang‡ and Dong Yu

Tencent AI Lab, Bellevue, WA, USA
†School of Informatics, Xiamen University, China

‡School of Engineering, Westlake University, China
lfsong@global.tencent.com

Abstract

We focus on the factuality property during
the extraction of an OpenIE corpus named
OpenFact, which contains more than 12 mil-
lion high-quality knowledge triplets. We break
down the factuality property into two im-
portant aspects—expressiveness and ground-
edness—and we propose a comprehensive
framework to handle both aspects. To enhance
expressiveness, we formulate each knowledge
piece in OpenFact based on a semantic frame.
We also design templates, extra constraints,
and adopt human efforts so that most Open-
Fact triplets contain enough details. For ground-
edness, we require the main arguments of each
triplet to contain linked Wikidata1 entities. A
human evaluation suggests that the OpenFact
triplets are much more accurate and contain
denser information compared to OPIEC-
Linked (Gashteovski et al., 2019), one recent
high-quality OpenIE corpus grounded to Wiki-
data. Further experiments on knowledge base
completion and knowledge base question an-
swering show the effectiveness of OpenFact
over OPIEC-Linked as supplementary knowl-
edge to Wikidata as the major KG.

1 Introduction

Open information extraction (OIE, Etzioni et al.,
2008) aims to extract factual and informative
knowledge, which can further be used to enhance
major knowledge bases (Martinez-Rodriguez et al.,
2018) or on downstream tasks (Stanovsky et al.,
2015). Most current OIE systems (Fader et al., 2011;
Mausam et al., 2012; Del Corro and Gemulla,
2013; Angeli et al., 2015) organize knowledge
into subject-relation-object (SRO) triples, and they
use templates to extract such knowledge triples.

∗Equal contribution, work done during an internship of
Ante Wang at Tencent AI Lab.

1https://www.wikidata.org/.

Figure 1a and 1b show a Wikipedia2 fragment
and the corresponding SRO triple from OPIEC-
Linked (Gashteovski et al., 2019), a major OIE
corpus.

Previous OIE efforts (Fader et al., 2011;
Mausam et al., 2012; Del Corro and Gemulla,
2013; Angeli et al., 2015; Stanovsky et al., 2018;
Cui et al., 2018) mainly focus on extracting SRO
triples that are closer to human annotated out-
puts on benchmarks. However, they overlook the
factuality issue, where many extracted triples may
convey incomplete or even incorrect informa-
tion. This issue can be categorized into two main
aspects. The first aspect is the lack of expres-
siveness, where complex knowledge is poorly or-
ganized or critical information is dropped due to
the fixed SRO schema and the template-based ex-
traction system. Taking Figure 1b as an example,
the relation (‘‘surpassed Washington Monument
to become’’) is a long span containing multi-
ple events, and important temporal information
(‘‘during its construction’’) is not captured. The
second aspect regards groundedness that measures
the degree of a triplet being linked to known en-
tities. For instance, a standard OIE system can
extract ‘‘<the tower, has, three levels for visi-
tors>’’ from input sentence ‘‘The tower has three
levels for visitors.’’ The extracted triple lacks
groundedness particularly because it is unclear
what ‘‘the tower’’ refers to. Lacking factuality
diminishes the usability of the OIE triples as
supplementary knowledge to major KGs.

Later work proposes to use either nested SRO
triples (Bhutani et al., 2016) or n-ary triples
(Christensen et al., 2011; Akbik and Löser, 2012;
Gashteovski et al., 2017; Zhao et al., 2021) to
enrich SRO schema with properties such as po-
larity. A recent effort (Gashteovski et al., 2019)

2https://www.wikipedia.org/.

686

Transactions of the Association for Computational Linguistics, vol. 11, pp. 686–702, 2023. https://doi.org/10.1162/tacl a 00569
Action Editor: Doug Downey. Submission batch: 9/2022; Revision batch: 12/2022; Published 6/2023.

c© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

mailto:lfsong@global.tencent.com
https://www.wikidata.org/
https://www.wikipedia.org/
https://doi.org/10.1162/tacl_a_00569

Figure 1: (a) A Wikipedia fragment and (b) the cor-
responding OPIEC-Linked (Gashteovski et al., 2019)
triples. Throughout this paper, we use ‘‘[]’’ to indicate
the mentions of Wikidata entities. (c) Our Open-
Fact fragment, where orange, gray, and blue boxes
represent relations, arguments, and Wikidata entities,
respectively.

further extracts more substantial properties (e.g.,
space and time), and a refined3 OIE corpus
(OPIEC-Linked) of 5.8 millions triples is ex-
tracts from Wikipedia where both the subject
and the object contains linked Wikidata entities.
Although this effort can partially improve expres-
siveness and groundedness, the factuality issue is
not discussed and formally addressed. Besides,
simply keeping extra properties or linked entities
without a comprehensive solution may not en-
sure that most triples contain precise factual infor-
mation. For instance, though both subject and
object are grounded for the triple in Figure 1b, it
erroneously mixes two events (i.e., ‘‘surpass’’ and
‘‘become’’) and lacks critical information (e.g.,
time) to describe precise factual information.

In this paper, we propose a comprehensive so-
lution to address the factuality issue, which is
then used to construct a corpus of OIE knowl-
edge named OpenFact. The corpus contains more
than 12 million accurate factual knowledge triplets
extracted from Wikipedia, a reliable knowledge
source with broad coverage. Comparing with pre-
vious OIE corpora, factuality is thoroughly en-
hanced in OpenFact. Specifically, as shown in

3OPIEC-Linked is obtained by applying filtering rules on
the initial OPIEC corpus to enhance quality.

Figure 1c, OpenFact is based on semantic role
labeling (SRL, Palmer et al., 2005) for expres-
siveness.4 Here each OpenFact triplet contains
a predicate, which may mention a relation or
an event, and several core arguments from the
corresponding semantic frame. To further ensure
that each OpenFact knowledge triplet describes
detailed factual information, we require it to con-
tain a certain combination of semantic arguments
(e.g., (Arg0, Arg1, ArgM-Tmp)), and we manually
design multiple such combinations to ensure cov-
erage. We also resort to some affordable human
efforts to manually verify some extracted knowl-
edge triplets, which are then used to train a quality
checker to automatically filter low-quality triplets
from the remaining data.

To improve groundedness, we extend the core
arguments (Arg0, Arg1, Arg2, ArgM-Loc) with
associated Wikidata entities to ensure that the
knowledge triplet is not about some ambigu-
ous entity (e.g., ‘‘the tower’’). As the result, our
OpenFact triplets (e.g., ‘‘surpassed(Arg0:the [Eif-
fel Tower], Arg1:the [Washington Monument],
ArgM-Tmp:During its construction)’’) can pro-
vide more expressive and grounded information
than previous OIE triples (e.g., the example in
Figure 1b).

A human evaluation on 200 randomly sam-
pled triplets show that 86.5% of OpenFact triplets
convey precise factual information, while it is
only 54.0% for OPIEC-Linked. Further exper-
iments on knowledge base completion (KBC)
and knowledge base question answering (KBQA)
benchmarks (Safavi and Koutra, 2020; Yih et al.,
2016) over Wikidata show that OpenFact pro-
vides more useful complementary information
than OPIEC-Linked and significantly improves
highly competitive baseline systems.5

In summary, we make the following contri-
butions:

• We propose a comprehensive approach to ad-
dress the factuality issue of open informa-
tion extraction from two key aspects: expres-
siveness and groundedness.

4Though this shares a similar spirit to SRLIE (Christensen
et al., 2011), SRLIE converts the extracted semantic frames
back into traditional SRO or n-ary triples and loses some
critical information.

5Code and data are available at https://github
.com/Soistesimmer/OpenFact.

687

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

https://github.com/Soistesimmer/OpenFact
https://github.com/Soistesimmer/OpenFact

Figure 2: The pipeline for OpenFact construction with the corresponding outputs for the example in Figure 1a.
Numbers (e.g., ‘‘12M’’) indicates the number of extracted items. ‘‘P’’, ‘‘A0’’, ‘‘A1’’, ‘‘A2’’, and ‘‘Tmp’’ are
short for predicate, Arg0, Arg1, Arg2, and ArgM-Tmp, respectively.

• Using our approach, we construct OpenFact,
an OIE corpus containing 12 million accu-
rate factual knowledge triplets.

• Human evaluation and experiments on both
KBQA and KBC show superiority of Open-
Fact over OPIEC, a state-of-the-art OIE
corpus.

2 OpenFact Construction

We choose the Wikipedia dump of May 20, 2021,
to construct OpenFact, as Wikipedia has been
considered to be a reliable knowledge source
with broad coverage. Figure 2 shows the overall
pipeline, which includes Wiki dump preprocess-
ing (§2.1), triplet extraction (§2.2), and quality
control (§2.3). We also conduct an analysis on all
the extracted OpenFact triplets (§2.4).

2.1 Preprocessing

We conduct three preprocessing steps (Wikipedia
dump cleaning, text processing, and SRL pars-
ing) to obtain the input data for triplet extraction.

Wikipedia Dump Cleaning In a Wikipedia
dump, each page contains not only the main
content but also the special tokens and keywords
from a markup language. Therefore, the first step
is to clean the special markup tokens and refor-
mat each page into plain text. For example, the
markup{{convert|5464|km|mi||sp=us}}
should be reformatted into the plain text ‘‘5,464
kilometer (3,395 mile)’’. To this end, we adopt a

popular tool (Pan et al., 2017) to remove all un-
desired markups (e.g., text formatting notations,
HTML tags, citations, external links, templates)
and only keep the internal links that naturally
indicate the mentions of Wikidata entities.

Text Processing After obtaining the Wiki-
pedia dump in plain texts, we perform sentence
segmentation, tokenization, and entity mention
detection using SpaCy.6 Since there are plenty
of missing entity links in the original Wikipedia
pages (Adafre and de Rijke, 2005), we adopt a
dense retrieval based entity linker (Wu et al.,
2020) to link some extracted entity mentions to
Wikipedia. Note that we only keep the linking
results when the model probability of the top
candidate exceeds 0.5 to ensure quality. Finally,
we map all Wikipedia titles to Wikidata IDs.

SRL Parsing The last step in preprocessing
is to obtain the semantic frames from SRL pars-
ing. Specifically, we adopt the SRL parser from
AllenNLP,7 an implementation of Shi and Lin
(2019), to parse for all the sentences extracted
from Wikipedia by preprocessing. Since standard
SRL parsing omits the situations where the main
predicate can be a verbal phrase (e.g., ‘‘come up
with’’), we further extend those predicates into
phrasal predicates. To this end, we collect 390
frequent verbal phrases for matching.

6https://spacy.io/.
7https://demo.allennlp.org/semantic-role

-labeling.

688

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

https://spacy.io/
https://demo.allennlp.org/semantic-role-labeling
https://demo.allennlp.org/semantic-role-labeling

<linking verb:present, Arg1, Arg2>
is(Arg1=The [Eiffel Tower], Arg2=a [wrought-iron]
[lattice tower] on the [Champ de Mars] in [Paris],
[France])

<reg verb:past active, Arg0, Arg1, ArgM-
Tmp>
supassed(Arg1=the [Eiffel Tower], Arg2=the
[Washington Monument], ArgM-Tmp=during its
construction)

<reg verb:past passive, Arg1, ArgM-Tmp>
constructed(Arg1=The [Eiffel Tower], ArgM-
Tmp=from 1887 to 1889)

Table 1: Example templates and a representa-
tive OpenFact triplet. The requirements for the
main predicate is in ‘‘verb:tense voice’’ format
with the verb being either a linking verb or a
regular verb.

2.2 Triplet Extraction

In this stage, we design multiple templates to
obtain candidate OpenFact triplets from the ex-
tracted semantic frames in the previous stage.
Table 1 lists example templates and the corre-
sponding OpenFact triplets. Each template con-
tains the requirements on the main predicate and
a subset of six important semantic roles: Arg0
(agent), Arg1 (patient), Arg2 (beneficiary), ArgM-
Tmp (time), ArgM-Loc (location), and ArgM-Neg
(negation). Particularly, we make requirements
on predicates regarding the verb type (linking or
regular), tense (present or past), and voice (ac-
tive or passive) in order to ensure the quality of
the automatically extracted triplets. Besides, we
further impose the following restrictions when
designing and applying the templates:8

• Each template should take at least two argu-
ments, and their combination needs to cap-
ture meaningful factual information. We
manually design multiple combinations that
satisfy this requirement. For instance, (Arg1,
ArgM-Tmp, ArgM-Loc) can be used to ex-
tract ‘‘born(Arg1=Barack Obama, ArgM-
Tmp=1961, ArgM-Loc=Honolulu, Hawaii)’’.
On the other hand, (ArgM-Tmp, ArgM-Loc)
is not a meaningful combination, as it can
barely match a sound example.

8We release all templates for triplet extraction in the
Appendix.

• If a sentence matches multiple templates,
only the one with the highest number of
arguments is used for triplet extraction. For
each pair of templates, we guarantee that
the union of their arguments is also a valid
template, so that there is no ambiguity on
choosing templates.

• All extracted semantic arguments except for
ArgM-Tmp and ArgM-Neg need to contain
at least one linked Wikidata entity. This
ensures that the corresponding triplet can
be grounded to some well-known entity, in-
creasing the chance of the triplet describing
some factual information.

• Each triplet with a past-tense (or past-
participle) predicate needs to contain ArgM-
Tmp to alleviate time-related ambiguity. For
instance, ‘‘surpassed(Arg0=the Eiffel Tower,
Arg1=the Washington Monument)’’ becomes
ambiguous without the time property.

With these restriction rules, we extract around
15 million candidate triplets from 217 million
semantic frames. Though SpaCy-based text pro-
cessing and SRL parsing can introduce errors,
the imposed restrictions help limit further prop-
agation of these errors. Besides, we introduce a
neural quality controller (§2.3) to prune erroneous
triplets.

2.3 Quality Control

Despite the imposed restrictions during extrac-
tion, some obtained triplets can still contain too
much noise. Our observation reveals that lacking
enough details is the major reason. For example,
‘‘invented(Arg0=A German company, Arg1=the
first practical jet aircraft, ArgM-Tmp=in 1939)’’
is not precise, because its Arg0 (‘‘A German
company’’) misses essential details. To further
improve our data, we resort to human annotators
to examine the quality for some triplets, before
training a model to automatically examine the
quality of the remaining triplets. In particular, we
ask annotators to label whether a triplet contain
quality issues, and what semantic roles cause the
issue.9 We hire professional annotators and set
additional requirements on English proficiency
and a bachelor’s degree.

9Detailed guidelines will be provided in the Appendix
given more space.

689

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

Quality Checker With the annotated data, we
train a quality checker to automatically examine
all remaining triplets. Particularly, an input triplet
t is first serialized into a token sequence with
special BERT tokens [CLS] and [SEP]:

tserial = [[CLS], tp, [SEP], ta1
, . . . taN], (1)

where tp and tai represent the tokens of the main
predicate and an argument inside t, respectively,
and N indicates the number of arguments in t.
The arguments are linearized in the order of their
appearance in the original sentence. Next, the
quality checker adopts a BERT-base (Devlin et al.,
2019) encoder with multiple binary classification
heads for predicting the quality for the overall
triplet and each semantic role, respectively.

H = BERT(tserial), (2)
p(qx|t) = sigmoid(W x · h[CLS]), (3)

where x ∈ X = [whole, a0, a1, a2, loc, tmp],
which represents all aspects of each triplet t for
quality evaluation, W x and p(qx|t) are the linear
classifier and the quality score of the correspond-
ing item, respectively, and h[CLS] indicates the
BERT hidden state for the [CLS] token.

Training We adopt binary cross-entropy loss
to train the checker:

L = −
∑
x∈X

(
q̂x log p(qx|t)+

(1− q̂x)(1− log p(qx|t))
)
, (4)

where q̂x ∈ [0, 1] is the annotated quality for
aspect x. AdamW (Loshchilov and Hutter, 2018)
is used as the optimizer with learning rate and
number of epochs set to 10−5 and 10, respectively.

Inference During inference, we only use the
linear classifier for the whole aspect (Eq. 3 with
x = whole) to determine triplet quality, while the
quality classification results on the other aspects
(a0, a1, a2, loc, and tmp) only serve as auxiliary
losses during training. Following standard prac-
tice, we keep each triplet if the score of the whole
classifier exceeds 0.5.

2.4 Data Statistics
We obtain more than 12 million OpenFact triplets
after all the steps in Figure 2, where each triplet

Figure 3: Percentages for the most frequent predicates
except for ‘‘is’’.

takes 18.1 words on average (μ) with standard
deviation (σ) being 10.7 words. Here we conduct
more detailed analyses in the following aspects:

Predicates We find 14,641 distinct predicates
among all the extracted OpenFact triplets. Figure 3
shows the percentages of the most frequent pred-
icates. We exclude the most frequent predicate
‘‘is’’, which counts for 36% of all triplets for bet-
ter visualization. Predicate ‘‘is’’ usually involves
in definitions in Wikipedia, such as ‘‘The Eif-
fel Tower is a wrought-iron lattice tower on the
Champ de Mars in Paris, France’’. Our extraction
procedure favors those definition-based triplets,
as they usually give enough details. The remain-
ing top frequent predicates form a flat distribution
with the percentage ranging from 2.25% to 0.75%.
Many of them (e.g., ‘‘released’’, ‘‘announced’’,
‘‘held’’, and ‘‘established’’) do not have obvious
corresponding relations in Wikidata.

Entities Figure 4 shows the distribution of
OpenFact triplets over the number of contained
Wikidata entities, where more than 66% of the
triplets contain more than three entities. This in-
dicates that most of our triplets capture more
complex relations than standard Wikidata triples,
which only capture the relation between two en-
tities. On the other hand, 0.39% of triplets con-
tain only 1 entity, as they are obtained from the
templates with only one main argument. Typical
examples are ‘‘constructed(Arg1=The [Eiffel
Tower], ArgM-Tmp=from 1887 to 1889’’.

Arguments Figure 5 shows the distribution of
OpenFact triplets over the number of arguments.

690

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

Figure 4: Distribution of OpenFact triplets over the
number of entities.

Figure 5: Distribution of OpenFact triplets over the
number of arguments.

Most triplets (> 97.3%) contain either 2 or 3
arguments, indicating that most of the triplets con-
sist a moderate amount of information. The most
frequent argument combination are (Arg1, Arg2),
(Arg0, Arg1, ArgM-Tmp), (Arg1, ArgM-Tmp), and
(Arg0, Arg1) that count for 42.2%, 27.7%, 17.1%,
and 13.2%, respectively. The (Arg1, Arg2) combi-
nation accounts for the highest percent as it covers
all the triplets with a linking verb (e.g., ‘‘is’’).

Figure 6 further visualizes the average lengths
for all the argument types, where most types take
4.5 to 13 words except for ArgM-Neg. The reason
is that it only needs one word to represent nega-
tion in most cases, while it can requires a lot of
words for other components.

3 OpenFact for Downstream Tasks

We choose knowledge base completion (KBC)
and knowledge base question answering (KBQA)
to evaluate the usefulness of OpenFact.

3.1 Knowledge Base Completion
Automatic KBC aims to infer missing facts based
on existing information in a knowledge graph.
For example, given a knowledge triple (h, r, ?)
with a head h and relation r, the goal is to infer

Figure 6: The argument average lengths.

the tail entity, which is missing from the input
KG. This task is important due to the fact that
knowledge graphs are usually highly incomplete
(West et al., 2014).

Traditional efforts on KBC (Nickel et al.,
2011; Bordes et al., 2013; Trouillon et al., 2016;
Dettmers et al., 2018; Balažević et al., 2019) fo-
cus on learning the knowledge graph embedding
(KGE). On the other hand, adopting pretrained
language models (PLMs) to this task by lineariz-
ing each candidate KG triple into a sequence
has recently gained popularity (Yao et al., 2019;
Saxena et al., 2022).

Baseline: Combine KGE with PLM as a
Pipeline We first build our baseline system
by combining a major KGE system (ComplEx;
Trouillon et al., 2016) with a PLM model (KG-
BERT; Yao et al., 2019) into a pipeline to lever-
age the advantages of both approaches. Inside
the pipeline, the KGE system first produces a list
of k-best candidates, which are then ranked by
the PLM model to pick the final output. We
choose ComplEx and KG-BERT, which both
show highly competitive performances in several
major benchmarks.

Formally, given an input query (h, r, ?), we
first adopt ComplEx to infer the k-best tail entities
(e.g., ti) over all the entities in a knowledge graph
with defined scoring function:

φ(r, h, ti) = Re(〈wr, eh, eti〉), (5)

where eh, eti are the embeddings for h, ti, re-
spectively, and wr is the learned representation
vector for relation r. Re(x) denotes the real vector
component for vector x, and 〈·, ·, ·〉 represents the
Hermitian product.10

10For details are shown in §3 of Trouillon et al. (2016).

691

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

As the next step, given each hypothesis triple
(h, r, ti) with th i-th candidate tail entity ti, we
use the KG-BERT model to determine the like-
lihood of this triple being valid, before picking
the hypothesis triple with the highest likelihood
score as the final output. In particular, each tri-
ple (h, r, ti) is first linearized into a sequence of
tokens:

X =
[
[CLS]h[SEP]r[SEP]t[SEP]

]
, (6)

where [CLS] and [SEP] are BERT (Devlin
et al., 2019) special tokens. Then a BERT en-
coder with a linear layer (MLP) is adopted to
predict the likelihood p(ti|h, r) of ti being the
correct tail:

p(ti|h, r) =sigmoid
(
MLP(H[CLS])

)
,

H =BERT(X),
(7)

where H[CLS] is the output hidden state of [CLS]
from BERT.

ComplEx and KG-BERT are trained separately,
where we completely follow the previous work
(Safavi and Koutra, 2020) to prepare the Com-
plEx system. As high-quality negative samples are
essential to train a robust KG-BERT (Lv et al.,
2022) model, we collect the top-k link predic-
tion results from the pretrained ComplEx system
as the negative triples instead of randomly se-
lection from the overall KG as early practices.
KG-BERT is trained with binary cross-entropy
loss to determine the correctness of each input
triple:

LKG-BERT = −yi log(p(ti|h, r))−
(1− yi) log(1− p(ti|h, r)), (8)

where yi (yi ∈ {0, 1}) is the label on whether ti
is the valid tail for query (h, r, ?).

Finally, we calculate the ranking score for a
candidate triple considering both the scores from
both ComplEx and KG-BERT:

scoreRank = scoreComplEx + ω · scoreKG-BERT,
(9)

where ω is a scaling hyperparameter.

OpenFact for KBC We do not change the
model structure but propose to incorporate one
relevant OpenFact triplet to enhance the corre-
sponding candidate KG triple, so that the KG-
BERT model in the pipeline system can leverage

richer information to make more accurate rank-
ing decisions.

Particularly, given a KG triple (h, r, t), we first
gather the OpenFact triplets (e.g., P (Ah, At))
where h and t are contained by its arguments
(i.e., h ∈ Ah and t ∈ Ar) correspondingly. For
simplicity, we only keep the most similar Open-
Fact triplet if multiple ones are obtained, where
a similarity score is calculated by comparing a
linearized11 OpenFact triplet with the linearized
target KG triple using SentenceBERT (Reimers
and Gurevych, 2019). We then concatenate them
as a sequence of tokens:

X’ = [CLS]h[SEP]r[SEP]t

[SEP]h Ah P At t[SEP]. (10)

This is similar with Eq. 6, and the resulting token
sequence is then taken to the KG-BERT model to
pick the final tail entity as in Eq. 7.

3.2 Knowledge Base Question Answering
Knowledge Base Question Answering (KBQA)
aims to answer factoid questions based on a
knowledge base. It is an important task and such
systems have been integrated in popular web
search engines and conversational assistants. The
main challenge of this task is to properly map
each query in natural language to KG entities
and relations. Since knowledge graphs are often
sparse with many missing links, this poses addi-
tional challenges, especially increasing the need
for multi-hop reasoning (Saxena et al., 2020).
We further evaluate OpenFact on this task, as
OpenFact triplets are in a closer format to natu-
ral language than KG triples. Besides, the dense
knowledge provide by OpenFact may help bridge
many multi-hop situations.

Baseline: UniK-QA (Oguz et al., 2022) It has
been recently proposed to solve multiple QA
tasks as one unified process. The system consists
of a pretrained Dense Passage Retriever (DPR;
Karpukhin et al., 2020) and a Fusion-in-Decoder
(FiD; Izacard and Grave, 2021) model. We adopt
UniK-QA as our baseline due to its strong per-
formances over multiple KBQA benchmarks.

Given an input question q and the associated
KG triples obtained by entity linking and 2-hop
expansion on the target KG, UniK-QA first uses

11Each OpenFact triple is empirically linearized in the
order of ‘‘Arg0 Neg Prd Arg1 Arg2 Loc Tmp.’’

692

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

System
CoDEx-S CoDEx-M

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

ComplEx† 0.465 0.372 0.646 0.337 0.262 0.476

KG-BERT 0.263 0.183 0.429 0.209 0.155 0.307

Pipeline 0.522 0.420 0.724 0.392 0.300 0.567

+OPIEC 0.526 0.426 0.726 0.394 0.305 0.568

+OpenFact 0.535 0.430 0.736 0.403 0.313 0.578

Table 2: Main results on knowledge base completion. † denotes results from previous work.

the DPR module to rank the KG triples. Next,
the sorted KG triples are linearized and com-
bined into passages of at most 100 tokens, after
which top-n passages [p1, . . . , pn] are fed into
the FiD model for generating the final answer
autoregressively:

aj = FiD-Dec([H1, . . . ,Hn], a<j)

Hi = FiD-Enc([q, pi]),
(11)

where aj is the j-th token of the final answer.
We fix the pretrained DPR and train the FiD

model with standard cross-entropy loss:

LFiD = −
|a|∑
j=1

log p(aj |q, [p1, . . . , pn]), (12)

where the conditional probability is calculated
by the FiD model. |a| indicates the size of an-
swer a.

OpenFact for KBQA Similar to KBC tasks, we
do not change the baseline model structure and
only incorporate OpenFact as extra knowledge.
Since the UniK-QA baseline (Oguz et al., 2022)
consumes all related KG triples as passages in a
FiD manner (Izacard and Grave, 2021), we pro-
pose to incorporated the relevant OpenFact triples
as additional passages for UniK-QA. Particularly,
given an entity e linked to the input question
q and an expanded entity ê within two hops of
KG expansion, we obtain OpenFact triplets (e.g.,
P (Ae, Aê)) where e and ê are contained by their
arguments (i.e., e ∈ Ae and ê ∈ Aê). We then fol-
low UniK-QA to linearize each OpenFact triple
as a sequence of tokens before ranking and com-
bining them into multiple passages [p′1, . . . , p′m].
Finally, both [p1, . . . , pn] and [p′1, . . . , p

′
m] are

consumed by the FiD module to predict the final
answers as Eq. 11.

4 Experiments

We evaluate OpenFact regarding both the qual-
ity and its usefulness on two major downstream
tasks.

4.1 Human Evaluation on Knowledge
Quality

Binary Evaluation As mentioned in §2.3, we
ask humans to annotate 70,967 OpenFact triplets
regarding whether (yes or no) each triplet and
its arguments are accurate. Taking 60K annotated
triplets to train the quality checker, we leave the
remaining 10,967 for held-out testing. The percent
of qualified triplets in the whole test set is already
70.4% as determined by human annotators. This
indicates that the imposed restrictions and tem-
plates during automatic triplet extraction (§2.2)
are effective for achieving a descent quality level.

On the same hold-out test set, our quality
checker (§2.3) reports an F1 score of 85.1 for
detecting erroneous triplets, where the precision
and recall are 83.6 and 86.7, respectively. The
checker filters 30.7% test instances using the in-
ference method in §2.3. As the result, it yields
an accuracy of 94.3% for the remaining triplets.
This indicates that the combination of our restric-
tions, templates and automatic quality checking is
effective for generating high-quality knowledge.

Fine-grained Evaluation We further conduct a
more fine-grained human evaluation to directly
compare OpenFact with OPIEC-Linked by ran-
domly sampling 200 knowledge triplets from each
knowledge source. Particularly, for each triplet,
we want to evaluate to what level it conveys pre-
cise factual information. The levels are ‘‘Good’’,
meaning that the triplet is accurate; ‘‘Mixed’’,
meaning that some triplet arguments are mixed
(e.g., the time information is contained in Arg1)

693

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

OIE KN Good Mixed Missing Wrong

OPIEC 0.540 0.000 0.210 0.250
OpenFact 0.865 0.015 0.120 0.000

Table 3: Distribution over various quality levels.

but enough detailed information is present; ‘‘Miss-
ing’’, meaning that some essential information
(e.g., time or location) is missing; and ‘‘Wrong’’,
meaning that it conveys wrong information or
lacks critical information to be understandable.

Here for each knowledge triplet, we ask 3 an-
notators to judge its quality, and we use majority
voting to make the final judgement. For the rare
cases where there are 3 distinct decisions (actually
we find none), we ask the annotators to discuss
and converge their ratings. To avoid potential bias,
we hire new annotators instead of these who anno-
tated the OpenFact triplets for automatic quality
checking (§2.3). The annotators are encouraged to
search the internet to verify triplet correctness
whenever necessary. The inner-annotator agree-
ment is 0.787, indicating substantial agreement.

Table 3 shows the results, where a signifi-
cantly higher percent of OpenFact triplets are
rated as ‘‘Good’’ than OPIEC-Linked. Besides,
no OpenFact triplets are rated as ‘‘Wrong’’, while
the number is 25.0% for OPIEC-Linked. We
find that most OPIEC-Linked triplets (including
those rated as ‘‘Good’’ such as ‘‘<Caramboxin,
is, toxin>’’) are quite short, not consisting of
much useful knowledge. Many ‘‘Wrong’’ triplets
contain obvious errors, such as ‘‘<QUANT S 1
Turks, is, QUANT O 1 Italians>’’ and ‘‘<Lexus,
is, Acura>’’. All results suggest that OpenFact has
significantly higher quality and is much denser
than OPIEC-Linked.

We further analyze the erroneous triplets
of OpenFact and show representative cases in
Table 4, where the top and bottom groups corre-
spond to the ‘‘Mixed’’ and ‘‘Missing’’ categories,
respectively. For the ‘‘Mixed’’ category, we list
all the 3 instances rated as this type out of the
200 instances for human evaluation. From these
instances and other OpenFact data, we find that
most defects in this category are caused by SRL
parsing errors, like erroneous argument-type de-
tection (e.g., the first example where the Arg1
and Arg2 arguments are mistakenly swapped)
and erroneous argument-boundary detection (e.g.,
the second and third examples where the time

Mixed

linked(Arg1=with [Australia] and [New
Zealand], Arg2=Every important island
or group in [Oceania])
was(Arg1=[Cuba], Arg2=able to ex-
change one ton of sugar for 4.5 tons
of [Soviet] oil, ArgM-Tmp=in 1987)
helped(Arg0=the [Wiesbaden] lab’s
rapid reports, Arg1=to predict the
[Israeli] - [British] - [French] attack on
[Egypt] three days before it began on 29
October, Arg2=the [U.S.] government,
ArgM-tmp=as Detachment B took over
from A and flew over targets that remain
classified)

Missing

born(Arg1=a [Tajik], [Russian], and
[Soviet] composer, ArgM-Loc=in the
city of [Dushanbe], [Tajik SSR])
bear(Arg0=Her [passports], Arg1=the
stamps of two dozen countries, including
[Algeria] . . . and the [Union of Soviet
Socialist Republics])
reaches(Arg0=the [African] dust, Arg1 =
the [United States])
turned(Arg1=[Soros], Arg2=into a pariah
in [Hungary] and a number of other
countries)

Table 4: Error analysis on OpenFact.

information is mistakenly mixed into other
arguments).

For the ‘‘Missing’’ category, we observe two
prevalent types of defects, and we list two typical
examples for each type. As shown in the first
two examples of this category, one major type of
defect is caused by the absent of critical entity
information in the arguments. For instance, the
missing name of ‘‘the Soviet composer’’ in the
first example makes the whole instance too vague
to be factual. The second example suffers from a
similar situation as it fails to mention who ‘‘the
owner of the passports’’ is. Although we force
each argument to contain at least one entity during
the extraction process, it cannot guarantee that all
essential entities are included. The other major
type of defects are due to the missing of critical
time or location information, as it is nontrivial
to determine whether a OpenFact triplet requires
time or location to be factual. For the last two
cases of this category, both the time when ‘‘the
African dust reaches the United States’’ and the
time when ‘‘Soros is turned into a pariah in
Hungary ...’’ are missing.

694

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

OIE KN
CoDEx-S CoDEx-M

2-hop 3-hop 4-hop 2-hop 3-hop 4-hop

OPIEC 0.629 0.077 0.012 0.344 0.055 0.011

OpenFact 0.843 0.351 0.248 0.560 0.069 0.062

Table 5: The percent of devset KG triples where
head and tail can be connected by one OIE triplet.

4.2 Evaluation on KBC

Datasets We evaluate on CoDEx-S and
CoDEx-M (Safavi and Koutra, 2020) that are
extracted from Wikidata with CoDEx-M being
much more challenging than CoDEx-S. The entity
number and the distinct relation-type number
for CoDEx-S/CoDEx-M are 2,034/17,050 and
42/51, respectively. The number of train/dev
/test instances for CoDEx-S and CoDEx-M are
32,888/1,827/1,828 and 185,584/10,310/10,311,
respectively.

Systems In addition to ComplEx, KG-BERT,
and Pipeline (§3.1), we also compare our model
(+OpenFact) with (+OPIEC): They both add ex-
tra knowledge (OpenFact vs OPIEC-Linked) to
the Pipeline system. All three pipeline systems
share the same model architecture except for the
adopted knowledge (None vs OPIEC vs Open-
Fact), which helps validate the effectiveness of
OpenFact.

Settings For fair comparison, the KG-BERT for
both the baselines and our model are trained us-
ing Adam (Kingma and Ba, 2014) for 4 epochs
with linear scheduler and initial learning rate set
to 5 × 10−5. Their batch sizes on CoDEx-S and
CoDEx-M are 256 and 1024, respectively. We set
k as 25 to get a considerable amount of nega-
tive samples. Besides, to balance the positive and
negative sample numbers, we penalize negative
samples with their instance weights as 0.2.

We evaluate in the form of link prediction,
where a system is required to predict the missing
entities from inputs that are in the format of
(?, r, t) or (h, r, ?). The performance is evaluated
with mean reciprocal rank (MRR) and Hits@k.
We set ω as 2.5/5/5 on CoDEx-S and 2.5/5/7.5
on CoDEx-M for Pipeline/Pipeline+OPIEC/
Pipeline+OpenFact according to development
experiments.

Main Results Table 2 shows the main test re-
sults on CoDEx-S and CoDEx-M for link pre-

Figure 7: The MRR scores on the CoDEx-m test set
across different hops between head and tail entities.

diction, where we also compare with the reported
numbers of ComplEx. We can draw the follow-
ing conclusions. First, the Pipeline model shows
significantly better performances than using just a
single module (ComplEx and KG-BERT), as it can
enjoy the benefits from both knowledge graph
embedding and a large-scale PLM. Secondly,
enhancing the KG-BERT module of Pipeline
with the knowledge from either OPIEC-Linked or
OpenFact can further improve the performance.
Comparatively, using OpenFact gives larger per-
formance gains over OPIEC-Linked with the gaps
on CoDEx-S and CoDEx-M being 0.9 MRR
points (0.4 Hits@1 points) and 0.9 MRR points
(0.8 Hits@1 points), respectively. This indicates
that OpenFact is a better supplement than OPIEC-
Linked for major KGs like Wikidata.

Analysis We further analyze a few aspects to
pinpoint where the gains of OpenFact come from.
As listed in Table 5, we first compare OpenFact
with OPIEC-Linked regarding the coverage rates
on the devset KG triples across different num-
ber of hops. OpenFact consistently covers more
percents of KG triples than OPIEC-Linked across
all numbers of hops. For both OPIEC-Linked and
OpenFact, the coverage rate drops when increas-
ing the number of hops, while the advantages of
OpenFact become more significant. For instance,
OpenFact covers 20.6 (24.8% vs 1.2%) and 5.6
(6.2% vs 1.1%) times more than OPIEC-Linked on
the 4-hop instances of CoDEx-S and CoDEx-M,
respectively.

As shown in Figure 7, we also compare the
MRR score of OpenFact with OPIEC-Linked

695

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

regarding the number of hops from the head en-
tity to the tail entity on the known part of the
input knowledge graph. In particular, we choose
CoDEx-M (the more challenging dataset) and cat-
egorize its test instances into 3 groups according
to the number of hops. We observe consistent
performance gains from +OPIEC to +OpenFact
for all groups. The percent of relative gains along
the number of hops are 3.6% (0.656/0.639), 2.4%
(0.496/0.484), and 2.4% (0.329/0.321), indicating
that OpenFact can be helpful for a large variety
of situations instead of for certain cases.

4.3 Evaluation on KBQA

Dataset We evaluate on the WebQSP dataset
(Yih et al., 2016), which consists of 3,098/1,639
training/testing question-answer pairs. Since Web-
QSP uses Freebase (Bollacker et al., 2008) as
the knowledge source, we map each Freebase
entity id to the corresponding Wikidata id if there
is any,12 and we find the corresponding Wikidata
entities for nearly half of the Freebase entities.

Comparing Systems One system for compari-
son is the UniK-QA (Oguz et al., 2022) baseline,
which only accesses the associated KG triples of
each input question. In addition, we also compare
our model (+OpenFact) using extra OpenFact
knowledge with another baseline (+OPIEC) using
OPIEC-Linked (Gashteovski et al., 2019) knowl-
edge. For fair comparison, all three systems take
the same number of parameters.

Settings Following previous work (Oguz et al.,
2022), we split 10% training data as the develop-
ment set and take Hits@1 as the evaluation metric.
Following the setup of vanilla UniK-QA, we use
the pretrained DPR checkpoint from Karpukhin
et al. (2020) without further finetuning, and we
adopt the standard T5-base (Raffel et al., 2020)
checkpoint to initialize the FiD model, which is
then trained using the Adam optimizer (Kingma
and Ba, 2014) with batch size, learning rate,
and training steps set to 64, 10−4, and 1,000,
respectively.

Main Results Figure 8 visualizes the Hits@1
scores of UniK-QA with only associated KG
triples, +OPIEC with extra OPIEC-Linked knowl-
edge, and +OpenFact with extra OpenFact trip-

12We build the mapping from the ‘‘Freebase ID’’ property
(P646) of each Wikidata entity.

Figure 8: Main UniK-QA performance with the num-
ber of allowed extra passages from either OPIEC-
Linked or OpenFact. † denotes the score reported in
Oguz et al. (2022).

lets. For both +OPIEC and +OpenFact, we re-
port the scores with growing amounts of passages
(knowledge), as we usually obtain multiple pieces
of relevant triplets. Both +OPIEC and +Open-
Fact improve the final performance, while +Open-
Fact gives significantly more gains with 10 or
more extra passages. Particularly with at most 20
extra passages, +OpenFact outperforms UniK-
QA and +OPIEC by 1.4 and 1.2 Hits@1 points.
The reason can be that OpenFact provides richer
high-quality knowledge compared to OPIEC-
Linked. According to our statistics, the average
number of relevant passages by OPIEC-Linked
and OpenFact are 4.7 and 12.8, respectively.

5 Related Work

Though open information extraction has re-
ceived increasing attention, there are only a few
publicly available large-scale Open-IE databases,
such as TextRunner (Yates et al., 2007), ReVerb
(Fader et al., 2011), PATTY (Nakashole et al.,
2012), WiseNet 2.0 (Moro and Navigli, 2013),
DefIE (Bovi et al., 2015), and OPIEC (Gashteovski
et al., 2019). On the other hand, NELL (Carlson
et al., 2010; Mitchell et al., 2018) uses a prede-
fined seed ontology (including 123 categories and
55 relations) instead of extracting from scratch.
All these Open-IE corpora organize data into tra-
ditional SRO or n-ary triples. Some incorporate
either automatic entity linking results (Lin et al.,
2012; Nakashole et al., 2012; Bovi et al., 2015) or
the natural links retained from the source data
(Moro and Navigli, 2013; Gashteovski et al.,
2019) simply for alleviating the ambiguity of
extracted triples.

696

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

On the other hand, we focus on extracting
triplets that contain enough expressiveness and
groundedness to retain factuality. To do that, we
adopt a comprehensive framework that imposes
carefully designed restrictions and templates to
filter unqualified triplets. We also resort to hu-
man annotations in descent-scale to train a quality
checker for further data filtering. Previous studies
either rely on system confidence scores and lexi-
cal features for heuristics-based filtering (Kolluru
et al., 2020) or clean data to enable self-training
(Nayak et al., 2021). In addition, our triplets
adopt the format of semantic frames that contains
rich semantic roles. Thus, our triplets can be more
expressive than standard SRO or n-ary triples.

6 Conclusion

We have introduced OpenFact, an OIE corpus
of 12 million accurate factual knowledge triplets
extracted from Wikipedia. Different from exist-
ing OIE work, we focused on the factuality of
extracted triplets with a comprehensive approach
to enhance such property. Specifically, OpenFact
is based on frame semantics instead of the standard
SRO or n-ary schema, and we design automatic
restriction rules and multiple dedicated templates
to enhance expressiveness. Besides, we extended
the core arguments of each OpenFact triplet with
linked Wikidata-entity mentions for grounded-
ness. We also resorted to a quality checker trained
with descent-scale human annotations to further
improve our knowledge quality. A human study
revealed that 86.5% of OpenFact triplets are pre-
cise, while it is only 54.0% for OPIEC-Linked
(Gashteovski et al., 2019), a recent high-quality
OIE corpus closest to ours in spirit. Further ex-
periments on knowledge base completion and
knowledge base question answering show that
OpenFact provides more useful knowledge than
OPIEC-Linked, significantly improving very
strong baselines.

Future work includes designing dynamic tem-
plates where the combination of arguments is
based on both prior knowledge and the predicate
(Zeng et al., 2018).

References

Sisay Fissaha Adafre and Maarten de Rijke.
2005. Discovering missing links in Wikipedia.

In Proceedings of the 3rd International
Workshop on Link Discovery, pages 90–97.
https://doi.org/10.1145/1134271
.1134284

Alan Akbik and Alexander Löser. 2012. Kraken:
N-ary facts in open information extraction.
In Proceedings of the Joint Workshop on Auto-
matic Knowledge Base Construction and Web-
scale Knowledge Extraction (AKBC-WEKEX),
pages 52–56.

Gabor Angeli, Melvin Jose Johnson Premkumar,
and Christopher D. Manning. 2015. Leveraging
linguistic structure for open domain informa-
tion extraction. In Proceedings of the 53rd
Annual Meeting of the Association for Com-
putational Linguistics and the 7th International
Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 344–354.
https://doi.org/10.3115/v1/P15-1034

Ivana Balažević, Carl Allen, and Timothy
Hospedales. 2019. Tucker: Tensor factorization
for knowledge graph completion. In Proceed-
ings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP),
pages 5185–5194. https://doi.org/10
.18653/v1/D19-1522

Nikita Bhutani, H. V. Jagadish, and Dragomir
Radev. 2016. Nested propositions in open in-
formation extraction. In Proceedings of the
2016 Conference on Empirical Methods in
Natural Language Processing, pages 55–64.
https://doi.org/10.18653/v1/D16
-1006

Kurt Bollacker, Colin Evans, Praveen Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Free-
base: A collaboratively created graph database
for structuring human knowledge. In Pro-
ceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data,
pages 1247–1250. https://doi.org/10
.1145/1376616.1376746

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling
multi-relational data. Advances in Neural In-
formation Processing Systems, 26.

697

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1145/1134271.1134284
https://doi.org/10.1145/1134271.1134284
https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D16-1006
https://doi.org/10.18653/v1/D16-1006
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746

Claudio Delli Bovi, Luca Telesca, and Roberto
Navigli. 2015. Large-scale information ex-
traction from textual definitions through deep
syntactic and semantic analysis. Transactions of
the Association for Computational Linguistics,
3:529–543. https://doi.org/10.1162
/tacl_a_00156

Andrew Carlson, Justin Betteridge, Bryan Kisiel,
Burr Settles, Estevam R. Hruschka, and Tom
M. Mitchell. 2010. Toward an architecture
for never-ending language learning. In Twenty-
Fourth AAAI Conference on Artificial Intelli-
gence. https://doi.org/10.1609/aaai
.v24i1.7519

Janara Christensen, Stephen Soderland, and Oren
Etzioni. 2011. An analysis of open information
extraction based on semantic role labeling. In
Proceedings of the Sixth International Confer-
ence on Knowledge Capture, pages 113–120.
https://doi.org/10.1145/1999676
.1999697

Lei Cui, Furu Wei, and Ming Zhou. 2018. Neu-
ral open information extraction. In Proceedings
of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2:
Short Papers), pages 407–413.https://doi
.org/10.18653/v1/P18-2065

Luciano Del Corro and Rainer Gemulla. 2013.
Clausie: Clause-based open information ex-
traction. In Proceedings of the 22nd Inter-
national Conference on World Wide Web,
pages 355–366. https://doi.org/10
.1145/2488388.2488420

Tim Dettmers, Pasquale Minervini, Pontus
Stenetorp, and Sebastian Riedel. 2018. Con-
volutional 2d knowledge graph embeddings. In
Proceedings of the AAAI Conference on Ar-
tificial Intelligence. https://doi.org/10
.1609/aaai.v32i1.11573

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the
2019 Conference of the North American
Chapter of the Association for Computa-
tional Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Oren Etzioni, Michele Banko, Stephen Soderland,
and Daniel S. Weld. 2008. Open information
extraction from the web. Communications of
the ACM, 51(12):68–74.https://doi.org
/10.1145/1409360.1409378

Anthony Fader, Stephen Soderland, and Oren
Etzioni. 2011. Identifying relations for open
information extraction. In Proceedings of the
2011 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1535–1545.

Kiril Gashteovski, Rainer Gemulla, and Luciano
del Corro. 2017. Minie: Minimizing facts in
open information extraction. In Proceedings of
the 2017 Conference on Empirical Methods
in Natural Language Processing. https://
doi.org/10.18653/v1/D17-1278

Kiril Gashteovski, Sebastian Wanner, Sven
Hertling, Samuel Broscheit, and Rainer
Gemulla. 2019. {OPIEC}: An open informa-
tion extraction corpus. In Automated Knowl-
edge Base Construction (AKBC).

Gautier Izacard and Édouard Grave. 2021.
Leveraging passage retrieval with generative
models for open domain question answer-
ing. In Proceedings of the 16th Conference
of the European Chapter of the Association
for Computational Linguistics: Main Volume,
pages 874–880. https://doi.org/10
.18653/v1/2021.eacl-main.74

Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. 2020. Dense
passage retrieval for open-domain question
answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6769–6781.
https://doi.org/10.18653/v1/2020
.emnlp-main.550

Diederik P. Kingma and Jimmy Ba. 2014.
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Keshav Kolluru, Samarth Aggarwal, Vipul
Rathore, Mausam, and Soumen Chakrabarti.
2020. IMoJIE: Iterative memory-based joint
open information extraction. In Proceedings
of the ACL, pages 5871–5886.https://doi
.org/10.18653/v1/2020.acl-main
.521

698

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1162/tacl_a_00156
https://doi.org/10.1162/tacl_a_00156
https://doi.org/10.1609/aaai.v24i1.7519
https://doi.org/10.1609/aaai.v24i1.7519
https://doi.org/10.1145/1999676.1999697
https://doi.org/10.1145/1999676.1999697
https://doi.org/10.18653/v1/P18-2065
https://doi.org/10.18653/v1/P18-2065
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.1145/2488388.2488420
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1145/1409360.1409378
https://doi.org/10.1145/1409360.1409378
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.acl-main.521
https://doi.org/10.18653/v1/2020.acl-main.521
https://doi.org/10.18653/v1/2020.acl-main.521

Thomas Lin, Mausam, and Oren Etzioni. 2012.
Entity linking at web scale. In Proceedings of
the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge
Extraction (AKBC-WEKEX), pages 84–88.

Ilya Loshchilov and Frank Hutter. 2018.
Decoupled weight decay regularization. In
International Conference on Learning Repre-
sentations.

Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi
Li, Zhiyuan Liu, Peng Li, and Jie Zhou. 2022.
Do pre-trained models benefit knowledge graph
completion? A reliable evaluation and a rea-
sonable approach. In Findings of the Associa-
tion for Computational Linguistics: ACL 2022,
pages 3570–3581. https://doi.org/10
.18653/v1/2022.findings-acl.282

Jose L. Martinez-Rodriguez, Ivan López-Arévalo,
and Ana B. Rios-Alvarado. 2018. OpenIE-
based approach for knowledge graph construc-
tion from text. Expert Systems with Applications,
113:339–355. https://doi.org/10.1016
/j.eswa.2018.07.017

Mausam, Michael Schmitz, Stephen Soderland,
Robert Bart, and Oren Etzioni. 2012. Open lan-
guage learning for information extraction. In
Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language
Learning, pages 523–534.

Tom Mitchell, William Cohen, Estevam
Hruschka, Partha Talukdar, Bishan Yang,
Justin Betteridge, Andrew Carlson, Bhavana
Dalvi, Matt Gardner, Bryan Kisiel, et al. 2018.
Never-ending learning. Communications of the
ACM, 61(5):103–115. https://doi.org
/10.1145/3191513

Andrea Moro and Roberto Navigli. 2013. Inte-
grating syntactic and semantic analysis into
the open information extraction paradigm. In
Twenty-Third International Joint Conference
on Artificial Intelligence.

Ndapandula Nakashole, Gerhard Weikum, and
Fabian Suchanek. 2012. Patty: A taxonomy
of relational patterns with semantic types. In
Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language
Learning, pages 1135–1145.

Tapas Nayak, Navonil Majumder, and Soujanya
Poria. 2021. Improving distantly supervised
relation extraction with self-ensemble noise fil-
tering. In Proceedings of the RANLP 2021,
pages 1031–1039. https://doi.org/10
.26615/978-954-452-072-4_116

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collec-
tive learning on multi-relational data. In Pro-
ceedings of the 28th International Conference
on Machine Learning.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin,
Stan Peshterliev, Dmytro Okhonko, Michael
Schlichtkrull, Sonal Gupta, Yashar Mehdad,
and Scott Yih. 2022. UniK-QA: Unified rep-
resentations of structured and unstructured
knowledge for open-domain question answer-
ing. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022. https://
doi.org/10.18653/v1/2022.findings
-naacl.115

Martha Palmer, Daniel Gildea, and Paul
Kingsbury. 2005. The proposition bank: An
annotated corpus of semantic roles. Computa-
tional Linguistics, 31(1):71–106. https://
doi.org/10.1162/0891201053630264

Xiaoman Pan, Boliang Zhang, Jonathan May,
Joel Nothman, Kevin Knight, and Heng Ji.
2017. Cross-lingual name tagging and linking
for 282 languages. In Proceedings of the 55th
Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Pa-
pers), pages 1946–1958, Vancouver, Canada.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2020. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019.
Sentence-bert: Sentence embeddings using
Siamese BERT-networks. In Proceedings of
the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP),
pages 3982–3992. https://doi.org/10
.18653/v1/D19-1410

699

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.18653/v1/2022.findings-acl.282
https://doi.org/10.18653/v1/2022.findings-acl.282
https://doi.org/10.1016/j.eswa.2018.07.017
https://doi.org/10.1016/j.eswa.2018.07.017
https://doi.org/10.1145/3191513
https://doi.org/10.1145/3191513
https://doi.org/10.26615/978-954-452-072-4_116
https://doi.org/10.26615/978-954-452-072-4_116
https://doi.org/10.18653/v1/2022.findings-naacl.115
https://doi.org/10.18653/v1/2022.findings-naacl.115
https://doi.org/10.18653/v1/2022.findings-naacl.115
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

Tara Safavi and Danai Koutra. 2020. Codex: A
comprehensive knowledge graph completion
benchmark. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8328–8350.
https://doi.org/10.18653/v1/2020
.emnlp-main.669

Apoorv Saxena, Adrian Kochsiek, and Rainer
Gemulla. 2022. Sequence-to-sequence knowl-
edge graph completion and question answering.
In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2022.acl-long.201

Apoorv Saxena, Aditay Tripathi, and Partha
Talukdar. 2020. Improving multi-hop question
answering over knowledge graphs using knowl-
edge base embeddings. In Proceedings of the
58th Annual Meeting of the Association for
Computational Linguistics, pages 4498–4507.
https://doi.org/10.18653/v1/2020
.acl-main.412

Peng Shi and Jimmy Lin. 2019. Simple BERT
models for relation extraction and semantic
role labeling. arXiv preprint arXiv:1904.05255.

Gabriel Stanovsky, Ido Dagan, and Mausam.
2015. Open IE as an intermediate structure
for semantic tasks. In Proceedings of the 53rd
Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International
Joint Conference on Natural Language Process-
ing (Volume 2: Short Papers), pages 303–308.
https://doi.org/10.3115/v1/P15-2050

Gabriel Stanovsky, Julian Michael, Luke
Zettlemoyer, and Ido Dagan. 2018. Supervised
open information extraction. In Proceedings of
the 2018 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 885–895.
https://doi.org/10.18653/v1/N18
-1081

Théo Trouillon, Johannes Welbl, Sebastian
Riedel, Éric Gaussier, and Guillaume Bouchard.
2016. Complex embeddings for simple link
prediction. In International Conference on
Machine Learning, pages 2071–2080. PMLR.

Robert West, Evgeniy Gabrilovich, Kevin
Murphy, Shaohua Sun, Rahul Gupta, and

Dekang Lin. 2014. Knowledge base comple-
tion via search-based question answering. In
Proceedings of the 23rd International Con-
ference on World Wide Web, pages 515–526.
https://doi.org/10.1145/2566486
.2568032

Ledell Wu, Fabio Petroni, Martin Josifoski,
Sebastian Riedel, and Luke Zettlemoyer. 2020.
Scalable zero-shot entity linking with dense
entity retrieval. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6397–6407,
Online. Association for Computational Lin-
guistics. https://doi.org/10.18653/v1
/2020.emnlp-main.519

Liang Yao, Chengsheng Mao, and Yuan Luo.
2019. KG-BERT: Bert for knowledge graph
completion. arXiv preprint arXiv:1909.03193.

Alexander Yates, Michele Banko, Matthew
Broadhead, Michael J. Cafarella, Oren Etzioni,
and Stephen Soderland. 2007. Textrunner:
Open information extraction on the web. In Pro-
ceedings of Human Language Technologies:
The Annual Conference of the North Ameri-
can Chapter of the Association for Computa-
tional Linguistics (NAACL-HLT), pages 25–26.
https://doi.org/10.3115/1614164
.1614177

Wen-tau Yih, Matthew Richardson, Christopher
Meek, Ming-Wei Chang, and Jina Suh. 2016.
The value of semantic parse labeling for knowl-
edge base question answering. In Proceedings
of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 201–206.

Ying Zeng, Yansong Feng, Rong Ma, Zheng
Wang, Rui Yan, Chongde Shi, and Dongyan
Zhao. 2018. Scale up event extraction learn-
ing via automatic training data generation. In
Proceedings of the AAAI Conference on Arti-
ficial Intelligence. https://doi.org/10
.1609/aaai.v32i1.12030

Yang Zhao, Jiajun Zhang, Yu Zhou, and
Chengqing Zong. 2021. Knowledge graphs
enhanced neural machine translation. In Pro-
ceedings of the Twenty-Ninth International
Conference on International Joint Conferences
on Artificial Intelligence, pages 4039–4045.
https://doi.org/10.24963/ijcai.2020
/559

700

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.18653/v1/2020.emnlp-main.669
https://doi.org/10.18653/v1/2020.emnlp-main.669
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/2022.acl-long.201
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.18653/v1/2020.acl-main.412
https://doi.org/10.3115/v1/P15-2050
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.1145/2566486.2568032
https://doi.org/10.1145/2566486.2568032
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.3115/1614164.1614177
https://doi.org/10.3115/1614164.1614177
https://doi.org/10.1609/aaai.v32i1.12030
https://doi.org/10.1609/aaai.v32i1.12030
https://doi.org/10.24963/ijcai.2020/559
https://doi.org/10.24963/ijcai.2020/559

A The Data Annotation Guideline for
Quality Control (§2.3)

Task Definition Given a triplet that contains a
predicate, its arguments, and their contained en-
tity mentions, the goal is to detect whether the
triplet contains enough details to convey precise
factual information. If it does not, the annotator
needs to point out all arguments that cause the
issue. Table 6 lists a few examples to better visu-
alize the goal of this annotation. The top group
and bottom group contain positive and negative
examples with erroneous parts labeled in red.
There are generally two main types of triplets:
One type of triplets describe some constant sta-
tus, such as the first case in the upper group;
the other type of triplets describe an event,
such as the remaining two cases in the upper
group. Due to the time-sensitive nature of most
events, an event-type require usually requires
some specific time property to be precise.

Possible argument types are Arg0, Arg1,
Arg2, ArgM-Tmp (time), ArgM-Loc (location),
and ArgM-Neg (negation). Here Arg0 and Arg1
can be considered as the subject and object for
regular verbs, while Arg2 is called beneficiary.
Taking ‘‘John gave an apple to Tom’’ for exam-
ple, the predicate is ‘‘gave’’, ‘‘John’’ is Arg0
(the executor to perform ‘‘give’’), ‘‘an apple’’
is Arg1 (the thing being given), and ‘‘Tom’’ is
Arg2 (the beneficiary for this action). Note that
the meaning of beneficiary is not literal. For
instance, the beneficiary of ‘‘John threw a rock
to Tom’’ is also ‘‘Tom’’.

For the first example in the bottom group, we
should select both ‘‘Arg0’’ and ‘‘ArgM-Tmp’’
as erroneous arguments. ‘‘Arg0’’ is selected be-
cause the subject of event ‘‘visited’’ is required

contains(Arg0=[Upper Redwater Lake], Arg1=fish
populations of [walleye] , [smallmouth bass] and
[northern pike])

risen(Arg1=hazelnut production in Turkey, ArgM-
Tmp=since 1964, when a law on a Guarantee of Pur-
chase was introduced, after which a large part of the
peasants in the Black Sea region became hazelnut
cultivators)

undertaken(Arg1=the Velhas Conquistas, Arg0=by the
Portuguese, ArgM-Tmp=during the 16th and 17th
centuries)

visited (ArgM-Tmp=During his long service,
Arg1=Prince Charles ’ Gloucestershire home, High-
grove)

ruled(Arg0=Kettil Karlsson, Arg1=as Regent of
Sweden, ArgM-Tmp=for half a year in 1465 before
dying from bubonic plague)

graduated(Arg0=he, Arg1=Bachelor of Laws (LL.B.),
ArgM-Tmp=in 1930)

Table 6: Examples for annotation introduction.

to make the whole triplet precise. Since ‘‘Arg0’’
is missing, ‘‘ArgM-Tmp’’ becomes unclear be-
cause it is unclear what ‘‘his’’ refers. For the
second example in the bottom group, we need
to choose ‘‘Arg1’’, which should be the place
of being ‘‘ruled’’, not the title of the ruler. For
the third example in the bottom group, we need
to choose ‘‘Arg0’’, because ‘‘he’’ is not precise
without knowing what this pronoun refers to.

B All Templates for Triplet Extraction

As listed in Table 7. Note that we only select the
argument combination with the highest number
of arguments for each type of predicate (e.g.,
linking verb:present).

701

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

Requirements on Predicates Argument Combination

linking verb:present

<Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg1, Arg2, ArgM-Loc, ArgM-Neg>
<Arg1, Arg2, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg1, Arg2, ArgM-Loc>
<Arg1, Arg2, ArgM-Tmp>
<Arg1, Arg2>

linking verb:past

<Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg1, Arg2, ArgM-Tmp>

reg verb:present active

<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Neg>
<Arg0, Arg1, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, ArgM-Tmp, ArgM-Neg>
<Arg0, Arg1, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg0, Arg1, Arg2, ArgM-Tmp>
<Arg0, Arg1, Arg2, ArgM-Loc>
<Arg0, Arg1, Arg2>
<Arg0, Arg1, ArgM-Tmp, ArgM-Loc>
<Arg0, Arg1, ArgM-Tmp>
<Arg0, Arg1, ArgM-Loc>
<Arg0, Arg1>

reg verb:past active

<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg0, Arg1, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, ArgM-Tmp, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg0, Arg1, Arg2, ArgM-Tmp>
<Arg0, Arg1, ArgM-Tmp, ArgM-Loc>
<Arg0, Arg1, ArgM-Tmp>

reg verb : present passive

<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg1, Arg2, ArgM-Loc, ArgM-Neg>
<Arg1, Arg2, ArgM-Neg>
<Arg1, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg1, ArgM-Tmp, ArgM-Neg>
<Arg1, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg0, Arg1, Arg2, ArgM-Tmp>
<Arg0, Arg1, Arg2, ArgM-Loc>
<Arg0, Arg1, Arg2>
<Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg1, Arg2, ArgM-Tmp>
<Arg1, Arg2, ArgM-Loc>
<Arg1, Arg2>
<Arg1, ArgM-Tmp, ArgM-Loc>
<Arg1, ArgM-Tmp>
<Arg1, ArgM-Loc>

reg verb:past passive

<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg1, Arg2, ArgM-Tmp, ArgM-Neg>
<Arg1, ArgM-Tmp, ArgM-Loc, ArgM-Neg>
<Arg1, ArgM-Tmp, ArgM-Neg>
<Arg0, Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg0, Arg1, Arg2, ArgM-Tmp>
<Arg1, Arg2, ArgM-Tmp, ArgM-Loc>
<Arg1, Arg2, ArgM-Tmp>
<Arg1, ArgM-Tmp, ArgM-Loc>
<Arg1, ArgM-Tmp>

Table 7: All templates used in Triplet Extraction (§2.2).

702

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00569/2141030/tacl_a_00569.pdf by guest on 07 Septem
ber 2023

	Introduction
	OpenFact Construction
	Preprocessing
	Triplet Extraction
	Quality Control
	Data Statistics

	OpenFact for Downstream Tasks
	Knowledge Base Completion
	Knowledge Base Question Answering

	Experiments
	Human Evaluation on Knowledge Quality
	Evaluation on KBC
	Evaluation on KBQA

	Related Work
	Conclusion
	The Data Annotation Guideline for Quality Control (§2.3)
	All Templates for Triplet Extraction

