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Abstract

Spatial relations are a basic part of human cog-
nition. However, they are expressed in natural
language in a variety of ways, and previous
work has suggested that current vision-and-
language models (VLMs) struggle to capture
relational information. In this paper, we pres-
ent Visual Spatial Reasoning (VSR), a dataset
containing more than 10k natural text-image
pairs with 66 types of spatial relations in En-
glish (e.g., under, in front of, facing). While
using a seemingly simple annotation format,
we show how the dataset includes challenging
linguistic phenomena, such as varying refer-
ence frames. We demonstrate a large gap be-
tween human and model performance: The
human ceiling is above 95%, while state-of-
the-art models only achieve around 70%. We
observe that VLMs’ by-relation performances
have little correlation with the number of
training examples and the tested models are
in general incapable of recognising relations
concerning the orientations of objects.1

1 Introduction

Multimodal NLP research has developed rap-
idly in recent years, with substantial performance
gains on tasks such as visual question answering
(VQA) (Antol et al., 2015; Johnson et al., 2017;
Goyal et al., 2017; Hudson and Manning, 2019;
Zellers et al., 2019), vision-language reasoning
or entailment (Suhr et al., 2017, 2019; Xie et al.,
2019; Liu et al., 2021), and referring expression
comprehension (Yu et al., 2016; Liu et al., 2019).
Existing benchmarks, such as NLVR2 (Suhr et al.,
2019) and VQA (Goyal et al., 2017), define ge-
neric paradigms for testing vision-language mod-
els (VLMs). However, as we further discuss in
§ 2, these benchmarks are not ideal for prob-
ing VLMs as they typically conflate multiple
sources of error and do not allow controlled
analysis on specific linguistic or cognitive prop-
erties, making it difficult to categorize and fully

1Data and code: github.com/cambridgeltl/visual
-spatial-reasoning.

understand the model failures. In particular, spa-
tial reasoning has been found to be particularly
challenging for current models, and much more
challenging than capturing properties of individ-
ual entities (Kuhnle et al., 2018; Cirik et al.,
2018; Akula et al., 2020), even for state-of-the-
art models such as CLIP (Radford et al., 2021;
Subramanian et al., 2022).

Another line of work generates synthetic data-
sets in a controlled manner to target specific
relations and properties when testing VLMs,
e.g., CLEVR (Liu et al., 2019) and ShapeWorld
(Kuhnle and Copestake, 2018). However, syn-
thetic datasets may accidentally overlook chal-
lenges (such as orientations of objects which
we will discuss in § 5), and using natural images
allows us to explore a wider range of language
use.

To address the lack of probing evaluation
benchmarks in this field, we present VSR (Vi-
sual Spatial Reasoning), a controlled dataset that
explicitly tests VLMs for spatial reasoning. We
choose spatial reasoning as the focus because it
is one of the most fundamental capabilities for
both humans and VLMs. Such relations are cru-
cial to how humans organize their mental space
and make sense of the physical world, and there-
fore fundamental for a grounded semantic model
(Talmy, 1983).

The VSR dataset contains natural image-text
pairs in English, with the data collection process
explained in § 3. Each example in the dataset
consists of an image and a natural language de-
scription that states a spatial relation of two objects
presented in the image (two examples are shown
in Figure 1 and Figure 2). A VLM needs to classify
the image-caption pair as either true or false, indi-
cating whether the caption is correctly describing
the spatial relation. The dataset covers 66 spatial
relations and has >10k data points, using 6,940
images from MS COCO (Lin et al., 2014).

Situating one object in relation to another re-
quires a frame of reference: a system of coor-
dinates against which the objects can be placed.
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Figure 1: Caption: The potted plant is at the right
side of the bench. Label: True. Image source:
Antoine K. ‘‘Texting’’, uploaded November 5,
2010. https://www.flickr.com/photos/ktoine
/5149301465/ (CC BY-SA 2.0).

Figure 2: Caption: The cow is ahead of the
person. Label: False. Image source: ccarl-
stead. ‘‘Holy cow’’, uploaded March 24, 2023.
https://www.flickr.com/photos/cristic
/6863977248/ (CC BY-NC-ND 2.0).

Drawing on detailed studies of more than forty
typologically diverse languages, Levinson (2003)
concludes that the diversity can be reduced to
three major types: intrinsic, relative, and absolute.
An intrinsic frame is centered on an object, e.g.,
behind the chair, meaning at the side with the
backrest. A relative frame is centered on a viewer,
e.g., behind the chair, meaning further away
from someone’s perspective. An absolute frame
uses fixed coordinates, e.g., north of the chair,
using cardinal directions. In English, absolute
frames are rarely used when describing relations
on a small scale, and they do not appear in our
dataset. However, intrinsic and relative frames
are widely used, and present an important source

of variation. We discuss the impact on data col-
lection in § 3.2, and analyse the collected data
in § 4.

We test four popular VLMs, i.e., Visual-
BERT (Li et al., 2019), LXMERT (Tan and
Bansal, 2019), ViLT (Kim et al., 2021), and CLIP
(Radford et al., 2021) on VSR, with results
given in § 5. While the human ceiling is above
95%, all four models struggle to reach 70% ac-
curacy. We conduct comprehensive analysis on
the failures of the investigated VLMs and high-
light that (1) positional encodings are extremely
important for the VSR task; (2) models’ by-
relation performance barely correlates with the
number of training examples; (3) in fact, several
spatial relations that concern orientation of ob-
jects are especially challenging for current VLMs;
and (4) VLMs have extremely poor generalization
on unseen concepts.

2 Related Work

2.1 Comparison with Synthetic Datasets

Synthetic language-vision reasoning datasets,
e.g., SHAPES (Andreas et al., 2016), CLEVR
(Liu et al., 2019), NLVR (Suhr et al., 2017), and
ShapeWorld (Kuhnle and Copestake, 2018), en-
able full control of dataset generation and could
potentially benefit probing of spatial reasoning
capability of VLMs. They share a similar goal
to us, to diagnose and pinpoint weaknesses in
VLMs. However, synthetic datasets necessarily
simplify the problem as they have inherently
bounded expressivity. In CLEVR, objects can only
be spatially related via four relationships: ‘‘left’’,
‘‘right’’, ‘‘behind’’, and ‘‘in front of’’, while VSR
covers 66 relations.

Synthetic data does not always accurately re-
flect the challenges of reasoning in the real world.
For example, objects like spheres, which often
appear in synthetic datasets, do not have orien-
tations. In real images, orientations matter and
human language use depends on that. Further-
more, synthetic images do not take the scene as
a context into account. The interpretation of ob-
ject relations can depend on such scenes (e.g., the
degree of closeness can vary in open space and
indoor scenes).

Last but not least, the vast majority of spa-
tial relationships cannot be determined by rules.
Even for the seemingly simple relationships like
‘‘left/right of’’, the determination of two objects’
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spatial relationships can depend on the observer’s
viewpoint, whether the object has a front, if so,
what are their orientations, etc.

2.2 Spatial Relations in Existing
Vision-language Datasets

Several existing vision-language datasets with
natural images also contain spatial relations (e.g.,
NLVR2, COCO, and VQA datasets). Suhr et al.
(2019) summarize that there are 9 prevalent lin-
guistic phenomena/challenges in NLVR2 (Suhr
et al., 2019) such as coreference, existential
quantifiers, hard cardinality, spatial relations,
etc., and 4 in VQA datasets (Antol et al., 2015;
Hudson and Manning, 2019). However, the dif-
ferent challenges are entangled in these datasets.
Sentences contain complex lexical and syntac-
tic information and can thus conflate different
sources of error, making it hard to identify the ex-
act challenge and preventing categorised analysis.
Yatskar et al. (2016) extract 6 types of visual spa-
tial relations directly from MS COCO images with
annotated bounding boxes. But rule-based auto-
matic extraction can be restrictive as most relations
are complex and cannot be identified relying on
bounding boxes. Recently, Rösch and Libovický
(2022) extract captions that contain 28 positional
keywords from MS COCO and swap the keywords
with their antonyms to construct a challenging
probing dataset. However, the COCO captions
also have the error-conflation problem. Also, the
number of examples and types of relations are
restricted by COCO captions.

Visual Genome (Krishna et al., 2017) also con-
tains annotations of objects’ relations including
spatial relations. However, it is only a collection
of true statements and contains no negative ones,
so cannot be framed as a binary classification task.
It is non-trivial to automatically construct neg-
ative examples since multiple relations can be
plausible for a pair of object in a given image.
Relation classifiers are harder to learn than ob-
ject classifiers on this dataset (Liu and Emerson,
2022).

Parcalabescu et al. (2022) propose a bench-
mark called VALSE for testing VLMs’ capabil-
ities on various linguistic phenomena. VALSE
has a subset focusing on ‘‘relations’’ between
objects. It uses texts modified from COCO’s orig-
inal captions. However, it is a zero-shot bench-
mark without training set, containing just 535 data

points. So, it is not ideal for large-scale probing
on a wide spectrum of spatial relations.

2.3 Spatial Reasoning Without Grounding

There has also been interest in probing models’
spatial reasoning capability without visual input.
For example, Collell et al. (2018), Mirzaee et al.
(2021), and Liu et al. (2022) probe pretrained
text-only models or VLMs’ spatial reasoning ca-
pabilities with text-only questions. However, a
text-only dataset cannot evaluate how a model
relates language to grounded spatial information.
In contrast, VSR focuses on the joint understand-
ing of vision and language input.

2.4 Spatial Reasoning as a Sub-component

Last but not least, some vision-language tasks
and models require spatial reasoning as a sub-
component. For example, Lei et al. (2020) pro-
pose TVQA+, a spatio-temporal video QA dataset
containing bounding boxes for objects referred
in the questions. Models then need to simulta-
neously conduct QA while detecting the correct
object of interest. Christie et al. (2016) propose
a method for simultaneous image segmentation
and prepositional phrase attachment resolution.
Models have to reason about objects’ spatial rela-
tions in the visual scene to determine the assign-
ment of prepositional phrases. However, if spatial
reasoning is only a sub-component of a task, er-
ror analysis becomes more difficult. In contrast,
VSR provides a focused evaluation of spatial
relations, which are particularly challenging for
current models.

3 Dataset Creation

In this section we detail how VSR is constructed.
The data collection process can generally be split
into two phases: (1) contrastive caption gener-
ation (§ 3.1) and (2) second-round validation
(§ 3.2). We then discuss annotator hiring and
payment (§ 3.3), dataset splits (§ 3.4), and the
human ceiling and agreement of VSR (§ 3.5).

3.1 Contrastive Template-based Caption
Generation (Figure 3)

In order to highlight spatial relations and avoid
annotators frequently choosing trivial relations
(such as ‘‘near to’’), we use a contrastive caption
generation approach. Specifically, first, a pair of
images, each containing two concepts of interest,
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Category Spatial Relations

Adjacency Adjacent to, alongside, at the side of, at the right side of, at the left side of, attached to,
at the back of, ahead of, against, at the edge of

Directional Off, past, toward, down, deep down∗, up∗, away from, along, around, from∗, into, to∗,
across, across from, through, down from

Orientation Facing, facing away from, parallel to, perpendicular to
Projective On top of, beneath, beside, behind, left of, right of, under, in front of, below, above, over,

in the middle of
Proximity By, close to, near, far from, far away from
Topological Connected to, detached from, has as a part, part of, contains, within, at, on, in, with,

surrounding, among, consists of, out of, between, inside, outside, touching
Unallocated Beyond, next to, opposite to, after∗, among, enclosed by

Table 1: The 71 available spatial relations; 66 of them appear in our final dataset (∗ indicates not used).

Figure 3: An annotation example of concepts ‘‘cat’’ &
‘‘laptop’’ in contrastive caption generation. The ex-
ample generates two data points for our dataset: One
‘‘True’’ instance when the completed caption is paired
with image 2 (right) and one ‘‘False’’ instance when
paired with image 1 (left). Figure 3a source: Jeremy
Zawodny. ‘‘Thunder-Man’’, uploaded October16,2007.
https://www.flickr.com/photos/jzawodn
/1590039572/ (CC BY-NC 2.0). Figure 3b source:
Chris Jobling. ‘‘Day 42: Cat and mouse?’’, uploaded
September 30, 2008. https://www.flickr.com
/photos/51214457@N00/2901947727 (CC
BY-SA 2.0).

would be randomly sampled from MS COCO (we
use the train and validation sets of COCO 2017).
Second, an annotator would be given a template
containing the two concepts and is required to
choose a spatial relation from a pre-defined list
(Table 1) that makes the caption correct for one
image but incorrect for the other image. We will
detail these steps and explain the rationales in the
following.

Image Pair Sampling. MS COCO 2017 con-
tains 123,287 images and has labeled the

segmentation and classes of 886,284 instances
(individual objects). Leveraging the segmenta-
tion, we first randomly select two concepts (e.g.,
‘‘cat’’ and ‘‘laptop’’ in Figure 3), then retrieve
all images containing the two concepts in COCO
2017 (train and validation sets). Then, images that
contain multiple instances of any of the concept
are filtered out to avoid referencing ambiguity.
For the single-instance images, we also filter out
any of the images with instance pixel area size
< 30, 000, to prevent extremely small instances.
After these filtering steps, we randomly sample
a pair in the remaining images. We repeat such
a process to obtain a large number of individual
image pairs for caption generation.

Fill in the Blank: Template-based Caption
Generation. Given a pair of images, the an-
notator needs to come up with a valid caption
that makes it a correct description for one im-
age but incorrect for the other. In this way, the
annotator should focus on the key difference be-
tween the two images (which should be a spatial
relation between the two objects of interest) and
choose a caption that differentiates the two. Sim-
ilar paradigms are also used in the annotation
of previous vision-language reasoning datasets
such as NLVR(2) (Suhr et al., 2017, 2019) and
MaRVL (Liu et al., 2021). To regularize anno-
tators from writing modifiers and differentiating
the image pair with things beyond accurate spatial
relations, we opt for a template-based classifica-
tion task instead of free-form caption writing.2

Additionally, the template-generated dataset can

2Hendricks and Nematzadeh (2021) propose a zero-shot
probing benchmark of similar spirit for verb understanding.
All captions are simplified as subject-verb-object triplets.
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be easily categorized based on relations and their
categories. Specifically, the annotator would be
given instance pairs as shown in Figure 3.

The caption template has the format of ‘‘The
ENT1 (is) the ENT2.’’, and the annotators
are instructed to select a relation from a fixed set
to fill in the slot. The copula ‘‘is’’ can be omitted
for grammaticality. For example, for ‘‘contains’’
and ‘‘has as a part’’, ‘‘is’’ should be discarded in
the template when extracting the final caption.

The fixed set of spatial relations enable us to ob-
tain the full control of the generation process. The
full list of used relations are listed in Table 1. The
list contains 71 spatial relations and is adapted
from the summarized relation table of Marchi
Fagundes et al. (2021). We made minor changes
to filter out clearly unusable relations, made rela-
tion names grammatical under our template, and
reduced repeated relations. In our final dataset,
66 out of the 71 available relations are actually
included (the other 6 are either not selected by
annotators or are selected but the captions did not
pass the validation phase).

3.2 Second-round Human Validation

In the second-round validation, every annotated
data point is reviewed by at least 3 additional
human annotators (validators). Given a data point
(consisting of an image and a caption), the valida-
tor gives either a True or False label as shown
in Figure 4 (the original label is hidden). In our
final dataset, we exclude instances with fewer than
2 validators agreeing with the original label.

Design Choice on Reference Frames. During
validation, a validator needs to decide whether a
statement is true or false for an image. However,
as discussed in § 1, interpreting a spatial relation
requires choosing a frame of reference. For some
images, a statement can be both true and false,
depending on the choice. As a concrete example,
in Figure 1, while the potted plant is on the left side
from the viewer’s perspective (relative frame), the
potted plant is at the right side if the bench is used
to define the coordinate system (intrinsic frame).

In order to ensure that annotations are consistent
across the dataset, we communicated to the an-
notators that, for relations such as ‘‘left’’/‘‘right’’
and ‘‘in front of’’/‘‘behind’’, they should con-
sider both possible reference frames, and assign
the label True when a caption is true from either
the intrinsic or the relative frame. Only when a

Figure 4: A second-round validation example. Image
source: Marisa McClellan. ‘‘Becky’s grilled pizza’’,
uploaded May 31, 2011. https://www.flickr
.com/photos/marusula/5779127081/ (CC
BY-NC-ND 2.0).

caption is incorrect under both reference frames
(e.g., if the caption is ‘‘The potted plant is under
the bench.’’ for Figure 1) should a False label
be assigned.

On a practical level, this adds difficulty to
the task, since a model cannot naively rely on
pixel locations of the objects in the images, but
also needs to correctly identify orientations of
objects. However, the task is well-defined: A
model that can correctly simulate both reference
frames would be able to perfectly solve this task.

From a theoretical perspective, by involving
more diverse reference frames, we are also dem-
onstrating the complexity of human cognitive pro-
cesses when understanding a scene, since different
people approach a scene with different frames.
Attempting to enforce a specific reference frame
would be methodologically difficult and result in
an unnaturally restricted dataset.

3.3 Annotator Hiring and Organization

Annotators were hired from prolific.co. We
required them to (1) have at least a bachelor’s
degree, (2) be fluent in English, and (3) have a
>99% historical approval rate on the platform. All
annotators were paid 12 GBP per hour.

For caption generation, we released the task
with batches of 200 instances and the annotator
was required to finish a batch in 80 minutes. An
annotator could not take more than one batch per
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split train dev test total

random 7,680 1,097 2,195 10,972
zero-shot 4,713 231 616 5,560

Table 2: Statistics of the random and zero-shot
splits.

day. In this way we had a diverse set of annotators
and could also prevent annotators from becoming
fatigued. For second-round validation, we grouped
500 data points in one batch and an annotator was
asked to label each batch in 90 minutes.

In total, 24 annotators participated in caption
generation and 45 participated in validation. Four
people participated in both phases, which should
have minimally impacted the validation quality.
The annotators had diverse demographic back-
grounds: They were born in 15 countries, were
living in 13 countries, and had 12 nationalities.
Fifty annotators were born and living in the same
country while others had moved to different ones.
The vast majority of our annotators were resid-
ing in the UK (32), South Africa (9), and Ireland
(7). The ratio for holding a bachelor/master/PhD
as the highest degree was: 12.5%/76.6%/10.9%.
Only 7 annotators were non-native English speak-
ers while the other 58 were native speakers. In our
sample, 56.7% of the annotators self-identified as
female and 43.3% as male.

3.4 Dataset Splits

We split the 10,972 validated data points into
train/dev/test sets in two different ways. The stats
of the two splits are shown in Table 2. In the
following, we explain how they are created. Ran-
dom split: We split the dataset randomly into
train/dev/test with a ratio of 70/10/20. Concept
zero-shot split: We create another concept zero-
shot split where train/dev/test have no overlap-
ping concepts. That is, if ‘‘dog’’ appears in the
train set, then it does not appear in dev or test sets.
This is done by randomly grouping concepts into
three sets with a ratio of 50/20/30 of all concepts.
This reduces the dataset size, since data points
involving concepts from different parts of the
train/dev/test split must be filtered out. The con-
cept zero-shot split is a more challenging setup
since the model has to learn concepts and the re-
lations in a compositional way instead of remem-
bering the co-occurrence statistics of the two.

3.5 Human Ceiling and Agreement

We randomly sample 500 data points from the
final random split test set of the dataset for
computing human ceiling and inter-annotator
agreement. We hide the labels of the 500 ex-
amples and two additional annotators are asked
to label True/False for them. On average, the
two annotators achieve an accuracy of 95.4% on
the VSR task. We further compute the Fleiss’
kappa among the original annotation and the pre-
dictions of the two humans. The Fleiss’ kappa
score is 0.895, indicating near-perfect agreement
according to Landis and Koch (1977).

4 Dataset Analysis

In this section we compute some basic statis-
tics of our collected data (§ 4.1), analyze
where human annotators have agreed/disagreed
(§ 4.2), and present a case study on refer-
ence frames (§ 4.3).

4.1 Basic Statistics of VSR

After the first phase of contrastive template-
based caption generation (§ 3.1), we collected
12,809 raw data points. In the phase of the
second round validation (§ 3.2), we collected
39,507 validation labels. Every data point received
at least 3 validation labels. In 69.1% of the data
points, all validators agree with the original label.
We find that 85.6% of the data points have at least
2
3 annotators agreeing with the original label. We
use 2

3 as the threshold and exclude all instances
with lower validation agreement. After excluding
other instances, 10,972 data points remained and
are used as our final dataset.

Here we provide basic statistics of the two
components in the VSR captions: The concepts
and the relations. Figure 5 demonstrates the rela-
tion distribution. ‘‘touching’’ is most frequently
used by annotators. The relations that reflect the
most basic relative coordinates of objects are
also very frequent, e.g., ‘‘behind’’, ‘‘in front
of’’, ‘‘on’’, ‘‘under’’, ‘‘at the left/right side of’’.
Figure 6 shows the distribution of concepts in the
dataset. Note that the set of concepts is bounded
by MS COCO and the distribution also largely
follows MS COCO. Animals such as ‘‘cat’’,
‘‘dog’’, and ‘‘person’’ are the most frequent. In-
door objects such as ‘‘dining table’’ and ‘‘bed’’
are also very dominant. In Figure 6, we separate
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Figure 5: Relation distribution of the final dataset (sorted by frequency). Top 40 most frequent relations are
included. It is clear that the relations follow a long-tailed distribution.

Figure 6: Concept distribution. Only concepts with > 100 frequencies are included.

the concepts that appear at ENT1 and ENT2 po-
sitions of the sentence and their distributions are
generally similar.

4.2 Where Do Annotators Disagree?
While we propose using data points with high
validation agreement for model evaluation and
development, the unfiltered dataset is a valuable
resource for understanding cognitive and linguis-
tic phenomena. We sampled 100 examples where
annotators disagree, and found that around 30 of
them are caused by annotation errors but the rest
are genuinely ambiguous and can be interpreted
in different ways. This shows a level of intrinsic
ambiguity of the task and variation among people.

Along with the validated VSR dataset, we
also release the full unfiltered dataset, with an-
notators’ and validators’ metadata, as a second
version to facilitate linguistic studies. For exam-
ple, researchers could investigate questions such
as where disagreement is more likely to happen
and how people from different regions or cul-
tural backgrounds might perceive spatial relations
differently.

To illustrate this, the probability of two ran-
domly chosen annotators disagreeing with each

other is given for each relation in Figure 7. Some
of the relations with high disagreement can be
interpreted in the intrinsic reference frame, which
requires identifying the orientations of objects, for
example, ‘‘at the side of’’ and ‘‘in front of’’. Other
relations have a high level of vagueness, e.g., for
the notion of closeness: ‘‘near’’ and ‘‘close to’’.
By contrast, part-whole relations, such as ‘‘has as
a part’’, ‘‘part of’’, and in/out relations such as
‘‘within’’, ‘‘into’’, ‘‘outside’’, and ‘‘inside’’ have
the least disagreement.

4.3 Case Study: Reference Frames

It is known that the relative reference frame is
often preferred in English, at least in standard
varieties. For example, Edmonds-Wathen (2012)
compares Standard Australian English and Abo-
riginal English, as spoken by school children at a
school on Croker Island, investigating the use of
the relations ‘‘in front of’’ and ‘‘behind’’ when de-
scribing simple line drawings of a person and
a tree. Speakers of Standard Australian English
were found to prefer the relative frame, while
speakers of Aboriginal English were found to
prefer the intrinsic frame.
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Figure 7: Per-relation probability of having two randomly chosen annotator disagreeing with each other (sorted
from high to low). Only relations with > 20 data points are included in the figure.

Our methodology allows us to investigate ref-
erence frame usage across a wide variety of spa-
tial relations, using a wide selection of natural
images. To understand the frequency of annota-
tors using relative vs. intrinsic frames, we label
instances’ reference frames and study their distri-
butions. The majority of examples that can be
interpreted differently under different reference
frames are left/right-related relations (i.e., ‘‘left/
right of’’ and ‘‘at the left/right side of’’). We find
all left/right-related true3 statements and classify
them into three categories: (1) intrinsic, (2) rel-
ative, and (3) both (the caption is correct under
either intrinsic and relative frames of reference).
Among the 616 instances, 68 (11%) and 518
(84%) use intrinsic and relative frames respec-
tively, 30 (5%) can be interpreted with both
frames. Since the vast majority of our annotators
were native English speakers (91%), and all were
university-educated, our finding is consistent with
previous work suggesting that the relative frame
is the most common frame in standard varieties
of English.

Besides the overall trend, the use of reference
frames can vary with the circumstances. Related
patterns have been studied in cognitive science.
For example, Vukovic and Williams (2015) find
a three-way interaction between linguistic cues,
spatial configurations in an image, and a person’s
own preferences on reference frames.

We investigated whether reference to a per-
son in the image might influence how annotators
comprehend the scene. 198 out of the 616 in-
stances involve ‘‘person’’ in the caption. And out
of the 198 human-involved instances, 32 (16%)

3According to our guideline, false statements are inter-
preted as false under both frames.

use an intrinsic frame and 154 (78%) use a rela-
tive frame (12, i.e., 6%, can be interpreted with
both frames), while the proportions were 9%
and 87% for instances not involving ‘‘person’’.
This is a statistically significant difference (using
two-tailed Fisher’s exact test, p = 0.0054 if ignor-
ing both-frame cases, and p = 0.0045 if group-
ing both-frame and intrinsic cases). In other
words, this suggests that the involvement of a
human can more likely prompt the use of the in-
trinsic frame.

5 Experiments

In this section, we test VLMs on VSR. We first in-
troduce baselines and experimental configurations
in § 5.1, then experimental results and analysis in
§ 5.2. Then we discuss the role of frame of ref-
erence using experiments in § 5.3 and finally
conduct sample efficiency analysis in § 5.4.

5.1 Baselines and Experiment
Configurations

Baselines. For finetuning-based experiments,
we test three popular VLMs: VisualBERT (Li
et al., 2019),4 LXMERT (Tan and Bansal, 2019),5

and ViLT (Kim et al., 2021).6 All three models
are stacked Transformers (Vaswani et al., 2017)
that take image-text pairs as input. The difference
mainly lies in how or whether they encode the
position information of objects. We report only
finetuned results but not direct inferences from
off-the-shelf checkpoints since some of their
pretraining objectives are inconsistent with the

4huggingface.co/uclanlp/visualbert-nlvr2-coco
-pre.

5huggingface.co/unc-nlp/lxmert-base-uncased.
6huggingface.co/dandelin/vilt-b32-mlm.
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model lr batch size epoch token length

VisualBERT 2e-6 32 100 32
LXMERT 1e-5 32 100 32
ViLT 1e-5 12 30 max

Table 3: A listing of hyperparameters used for all
VLMs (‘‘lr’’: learning rate).

binary classification task of VSR, thus requiring
additional engineering.

We additionally test the alt text pretrained
dual-encoder CLIP (Radford et al., 2021) as an
off-the-shelf baseline model (no finetuning).7 We
follow Booth (2023) to construct negation or
antonym of each individual relation. For example,
‘‘facing’’→ ‘‘facing away from’’ and ‘‘ahead of’’
→ ‘‘not ahead of’’. For each sample, we compare
the embedding similarity of the image-caption
pair and that of the negated caption. If the orig-
inal pair has a higher probability then the model
prediction is True, otherwise False. We call
this method CLIP (w/ prompting). We only report
direct prompting results without finetuning since
CLIP finetuning is expensive.

Experimental Configurations. We save check-
points every 100 iterations and use the best-
performing checkpoint on dev set for testing. All
models are run three times using three random
seeds. All models are trained with the AdamW
optimizer (Loshchilov and Hutter, 2019). The
hyperparameters we used for training the three
VLMs are listed in Table 3.

5.2 Experimental Results

In this section, we provide both quantitative and
qualitative results of the four baselines. Through
analyzing the failure cases of the models, we also
highlight the key abilities needed to solve this
dataset.

As shown in Table 4, the best-performing mod-
els on the random split are LXMERT and ViLT,
reaching around 70% accuracy, while Visual-
BERT is just slightly better than the chance level.
On the zero-shot split, all models’ performance
decline substantially and the best model, ViLT,
only obtains 63.0% accuracy. The off-of-the-shelf
CLIP model obtains around 55% on both sets, in-
dicating its weaknesses in spatial reasoning echo-

7huggingface.co/laion/CLIP-ViT-H-14-laion2B
-s32B-b79K.

model↓ random split zero-shot split

human ceiling 95.4

CLIP (w/ prompting) 56.0 54.5

VisualBERT 55.2±1.4 51.0±1.9

ViLT 69.3±0.9 63.0±0.9

LXMERT 70.1±0.9 61.2±0.4

Table 4: Model performance on VSR test set. CLIP
is applied without finetuning but with carefully
engineered prompts while the other three smaller
models are finetuned on the training set.

ing Subramanian et al.’s (2022) findings. Overall,
these results lag behind the human ceiling by more
than 25% and highlight that there is substantial
room for improving current VLMs.

Explicit Positional Information Matters. Both
LXMERT and ViLT outperform VisualBERT by
large margins (>10%) on both splits. This is ex-
pected since LXMERT and ViLT encode explicit
positional information while VisualBERT does
not. LXMERT has position features as part of
the input which encode the relative coordinates of
objects within the image. ViLT slices an image
into patches (instead of object regions) and uses
positional encodings to signal the patches’ rela-
tive positions. VisualBERT, however, has no ex-
plicit position encoding. Bugliarello et al. (2021)
and Rösch and Libovický (2022) also highlight
the importance of positional encodings of VLMs,
which agrees with our observations.

Random Split vs. Zero-shot Split. It is worth
noting that the performance gap between the ran-
dom and zero-shot splits is large. As we will show
in § 5.4, the underlying cause is not likely to
be the number of training examples, but rather
that concept zero-shot learning is fundamentally
a challenging task. The gap suggests that disen-
tangling representations of concepts and relations
is challenging for current models.

Sensitiveness to Random Seeds. Model per-
formance varies by about one to two percentage
points. These fluctuations illustrate the impor-
tance of always reporting the average performance
of multiple runs to make sure the conclusion is
reliable.

Performance by Relation. We give perfor-
mance by relation for all three finetuned models
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Figure 8: Performance (accuracy) by relation on the random (a) and zero-shot (b) split test sets. Relation order
sorted by frequency (high to low from left to right). Only relations with more than 15 and 5 occurrences on the
random and zero-shot tests, respectively, are shown.

on both random and zero-shot splits in Figure 8.
The order from left to right is sorted by the fre-
quency of relations in the dataset (within each
split). Interestingly, there does not seem to be any
correlation between performance and frequency
of the relation, hinting that specific relations are
hard not due to an insufficient number of train-
ing examples but because they are fundamentally
challenging for current VLMs. Any relation that
requires recognising orientations of objects seems
to be hard, for example, ‘‘facing’’, ‘‘facing away
from’’, ‘‘parallel to’’, and ‘‘at the back of’’. As an
example, LXMERT failed on the two examples
in Figure 9 which require understanding the front
of a hair drier and a person respectively. In this
regard, left-right relations such as ‘‘at the left/right
side of’’ and ‘‘left/right of’’ are difficult because
the intrinsic reference frame requires understand-
ing the orientation of objects. As an example, in
Figure 1, all three models predicted False, but
in the intrinsic frame (i.e., from the bench’s point
of view), the potted plant is indeed at the right.

To get a more high-level understanding of
the relations’ performance, we group model per-
formance by the categories of Marchi Fagundes
et al. (2021): ‘‘Adjacency’’, ‘‘Directional’’, ‘‘Or-
ientation’’, ‘‘Projective’’, ‘‘Proximity’’, ‘‘Topo-
logical’’, and ‘‘Unallocated’’ (also shown in
Table 1). The results are shown in Figure 10.
‘‘Orientation’’ is the worst performing group on
the random split, and on average all models’
performance is close to the chance level. When
comparing random and zero-shot splits, perfor-
mance has declined to some extent for almost all
categories and models. The decrease in ‘‘Proxim-
ity’’ is particularly drastic across all models—it
declined from close to 75% accuracy in random
split to chance level in zero-shot split. ‘‘Prox-
imity’’ contains relations such as ‘‘close to’’,
‘‘near’’, and ‘‘far from’’. We believe it is due
to the fact that the notion of proximity is rela-
tive and very much dependent on the nature of
the concept and its frequent physical context. For
example, for a ‘‘person’’ to be ‘‘near’’ an indoor

644

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00566/2138360/tacl_a_00566.pdf by guest on 07 Septem
ber 2023



Figure 9: LXMERT failed on both examples.
Figure 9a source: Austin & Zak. ‘‘three min-
utes with dryer on high’’, uploaded February
23, 2008. https://www.flickr.com/photos
/zakh/2285744646/ (CC BY-NC-SA 2.0).
Figure 9b source: Carrick. ‘‘Elsa and Maia work-
ing hard sanding down the bench’’, uploaded April
17, 2012. https://www.flickr.com/photos
/carrickg/6941414780/ (CC BY-NC 2.0).

concept such as ‘‘oven’’ is very different from
a person being ‘‘near’’ a frequent outdoor object
such as ‘‘train’’ or ‘‘truck’’. Since the zero-shot
split prevents models from seeing test concepts
during training, the models have a poor grasp of
what counts as ‘‘close to’’ or ‘‘far from’’ for these
concepts, thus generalizing poorly.

Other Errors. While certain relations are in-
trinsically hard, we have observed other types of
errors that are not bounded to specific relations.
Here we give a few examples. Some instances re-
quire complex reasoning. In Figure 11, the model
needs to recognize that both the cow and the back
of the car are in the car’s side mirror and also infer
the relative position of the back of the car and the
cow. It is perhaps no surprise that two of the three

Figure 10: Performance by categories of relations, on
the random (a) and zero-shot (b) split test sets. For
legend information, see Figure 8.

models predicted wrongly. Some other examples
require common sense. For example, in Figure 2,
we can infer the person and the cow’s moving
direction and can then judge if the cow is ahead
of the person. LXMERT failed on this example.
In Figure 3 (right), the model needs to infer that
the main body of the cat is hidden behind the
laptop. Interestingly, all three models predicted
this example correctly.

5.3 Case Study on Reference Frames

As discussed in § 4.3, different frames of ref-
erence can be used in natural language and it
would be helpful to understand whether our mod-
els recognise them. We argue that the task of
identifying frame of reference itself is very hard
for current models. However, learning to recog-
nize frames of reference helps the task of visual
spatial reasoning.

Firstly, we conduct a case study on left/right-
related relations. We additionally label the ref-
erence frames of all true statements containing
any of the left/right-related relations. We exclude
all data points that can be interpreted in both in-
trinsic and relative frames to slightly reduce the
complexity of the task. Then we finetune a ViLT
checkpoint to predict the reference frame based
on the true statement and the image. The model’s
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Figure 11: Caption: The cow is at the back of the
car. Label: True. LXMERT and VisualBERT pre-
dicted False. Image source: shorty76. ‘‘Side Mirror
View’’, uploaded December 26, 2008. https://www
.flickr.com/photos/shorty 76/3136942358/
(CC BY-NC-ND 2.0).

performance on test set is shown in the upper half
of Table 5. We can see that reference frame pre-
diction is an extremely hard task for the model.
This is presumably because it requires taking into
account a 3D viewpoint and simulating transfor-
mations between different viewpoints.

Secondly, we use this model trained with refer-
ence frame labels to initialize the VSR task model
and further finetune it on the VSR task (only the
left/right relations). The test results are shown in
the lower part of Table 5.8 We see a clear posi-
tive transfer from reference frame prediction task
to the VSR task. This suggests that learning to re-
cognise reference frames can indeed help down-
stream visual spatial reasoning. This makes sense
since simulating the transformation of intrinsic/
relative frames could be an intermediate reasoning
step in detecting whether a statement is true/false.

5.4 Sample Efficiency
In order to understand the correlation between
model performance and the number of training
examples, we conduct sample efficiency analysis
on VSR. The results are plotted in Figure 12.
For the minimum resource scenario, we randomly
sample 100 shots from the training sets of each
split. Then we gradually increase the number of
training examples to be 25%, 50%, and 75% of
the whole training sets. Both LXMERT and ViLT

8Note that the reference frame train/dev/test sets are de-
rived from the VSR task split—so no data leakage is possible
from train to dev and test sets even after the intermediate
pretraining.

Reference frame prediction task

model↓ Precision Recall F1

ViLT 59.2±3.7 59.7±5.8 56.9±4.4

VSR task (left/right subset)

model↓ Accuracy

ViLT 54.2±0.6

ViLT + rf trained 59.2±1.8

Table 5: ViLT model performance on the refer-
ence frame prediction task (upper half; we report
macro-averaged Precision/Recall/F1 since the bi-
nary classification task is imbalanced); and VSR
task using original pretrained checkpoint or the
reference frame prediction task trained checkpoint
(accuracy reported).

have a reasonably good few-shot capability and
can be quite performant with 25% of training data.
LXMERT, in particular, reaches above 55% accu-
racy with 100 shots on both splits. The zero-shot
split is substantially harder and most models ap-
pear to have already plateaued at around 75% of
the training set. For the random split, all models
are increasing performance with more data points,
though improvement slows down substantially
for LXMERT and ViLT after 75% of training
data. The fact that LXMERT has the best over-
all few-shot capability may be suggesting that
LXMERT’s pretrained object detector has a strong
inductive bias for the VSR dataset as it does not
need to learn to recognise concept boundaries and
classes from scratch. However, this advantage
from LXMERT seems to fade away as the number
of training examples increases.

6 Conclusion and Future Directions

We have presented Visual Spatial Reasoning
(VSR), a controlled probing dataset for testing
the capability of vision-language models (VLMs)
of recognising and reasoning about spatial rela-
tions in natural image-text pairs. We made a series
of linguistic observations on the variability of
spatial language when collecting VSR. We high-
lighted the diverse use of reference frames among
annotators, and also the ambiguous nature of
certain spatial relations. We tested four popular
VLMs on VSR, and found they perform more than
25% below the human ceiling. On a more chal-
lenging concept zero-shot split, the tested VLMs
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Figure 12: Sample efficiency analysis: model performance under different amounts of training data (100-shot,
25%, 50%, 75%, and 100% of training set). Results on both the random and zero-shot split test sets are shown.
As training data increases, the performance plateaus on both sets but the flattening trend is more obvious on
the zero-shot split.

struggled to reach 60% accuracy and their per-
formance plateaued even with increased training
examples. Among the finetuning-based VLMs,
ViLT, and LXMERT outperformed VisualBERT,
and we noted out that the explicit positional in-
formation in the former two models is crucial in
the task. CLIP with prompt engineering achieved
slightly better than random performance, suggest-
ing poor capability in spatial reasoning. We also
performed a by-relation analysis and found that
the models’ performance on certain relations have
little correlation with the number of training ex-
amples, and certain relations are inherently more
challenging. We identified orientation as the most
difficult category of relations for VLMs. Prox-
imity is another challenging category, especially
in the zero-shot setup as this relation is highly
concept-dependent. We hope the task serves as a
useful tool for testing and probing future VLMs.

In future work, we plan to more extensively
investigate whether large-scale pretrained dual-
encoders such as CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and LiT (Zhai et al.,
2022) can properly recognize spatial relations,
especially in the finetuning setup. A compari-
son of dual- and cross-encoders’ performance on
each spatial relation might guide future model
design. Recently, Alayrac et al. (2022), Chen
et al. (2023), and Huang et al. (2023) proposed
ultra-large-scale VLMs. It would be interesting to
see if VLMs have better spatial reasoning ca-
pability when scaled up. Another direction is
extending VSR to cover more languages and cul-
tures (Liu et al., 2021; Bugliarello et al., 2022)
and test multilingual VLMs. Along the same line,
since we have also collected the metadata of

annotators, the VSR corpus can be used as a re-
source for investigating research questions such
as: How is ‘‘space’’ described among different
dialects of English? How is ‘‘space’’ perceived
among different populations? We hope that the
annotation process of VSR can also serve as a
basis for future cross-lingual and cross-cultural
sociolinguistic research.

Acknowledgments

We thank the TACL reviewers and the action
editor for their thoughtful comments. We thank
Qian Wang and Rongtian Ye for helping trial the
annotation scheme; Zihao Fu for helping set up
the annotation server. The project is funded by
Cambridge Language Sciences Incubator Fund.
FL is supported by Grace & Thomas C.H. Chan
Cambridge Scholarship.

References

Arjun Akula, Spandana Gella, Yaser Al-Onaizan,
Song-Chun Zhu, and Siva Reddy. 2020.
Words aren’t enough, their order matters: On
the robustness of grounding visual referring
expressions. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 6555–6565, Online. Associ-
ation for Computational Linguistics. https://
doi.org/10.18653/v1/2020.acl-main.586

Jean-Baptiste Alayrac, Jeff Donahue, Pauline
Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine
Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han,

647

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00566/2138360/tacl_a_00566.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.18653/v1/2020.acl-main.586
https://doi.org/10.18653/v1/2020.acl-main.586


Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud,
Andrew Brock, Aida Nematzadeh, Sahand
Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman,
and Karen Simonyan. 2022. Flamingo: A vi-
sual language model for few-shot learning.
In Advances in Neural Information Process-
ing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, Novem-
ber 28 – December 9, 2022, New Orleans,
LA, USA.

Jacob Andreas, Marcus Rohrbach, Trevor
Darrell, and Dan Klein. 2016. Neural module
networks. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27–30, 2016,
pages 39–48. IEEE Computer Society.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu,
Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. 2015. VQA: Visual
question answering. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7–13, 2015,
pages 2425–2433. IEEE Computer Society.
https://doi.org/10.1109/ICCV.2015.279

Joe Booth. 2023. CLIP visual spatial reasoning.
https://github.com/Sohojoe/CLIPvisual
-spatial-reasoning. GitHub repository.

Emanuele Bugliarello, Ryan Cotterell, Naoaki
Okazaki, and Desmond Elliott. 2021. Multi-
modal pretraining unmasked: A meta-analysis
and a unified framework of vision-and-language
BERTs. Transactions of the Association for
Computational Linguistics, 9:978–994.https://
doi.org/10.1162/tacl a00408

Emanuele Bugliarello, Fangyu Liu, Jonas Pfeiffer,
Siva Reddy, Desmond Elliott, Edoardo Maria
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