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Abstract

Neural sequence generation models are known
to ‘‘hallucinate’’, by producing outputs that are
unrelated to the source text. These hallucina-
tions are potentially harmful, yet it remains
unclear in what conditions they arise and how
to mitigate their impact. In this work, we
first identify internal model symptoms of hal-
lucinations by analyzing the relative token
contributions to the generation in contrastive
hallucinated vs. non-hallucinated outputs gen-
erated via source perturbations. We then show
that these symptoms are reliable indicators
of natural hallucinations, by using them to de-
sign a lightweight hallucination detector which
outperforms both model-free baselines and
strong classifiers based on quality estimation
or large pre-trained models on manually an-
notated English-Chinese and German-English
translation test beds.

1 Introduction

While neural language generation models can gen-
erate high quality text in many settings, they
also fail in counter-intuitive ways, for instance
by ‘‘hallucinating’’ (Wiseman et al., 2017; Lee
et al., 2018; Falke et al., 2019). In the most se-
vere case, known as ‘‘detached hallucinations’’
(Raunak et al., 2021), the output is completely
detached from the source, which not only reveals
fundamental limitations of current models, but
also risks misleading users and undermining trust
(Bender et al., 2021; Martindale and Carpuat,
2018). Yet, we lack a systematic understanding
of the conditions where hallucinations arise, as
hallucinations occur infrequently among transla-
tions of naturally occurring text. As a workaround,
prior work has largely focused on black-box de-
tection methods which train neural classifiers on
synthetic data constructed by heuristics (Falke

et al., 2019; Zhou et al., 2021), and on studying
hallucinations given artificially perturbed inputs
(Lee et al., 2018; Shi et al., 2022).

In this paper, we address the problem by first
identifying the internal model symptoms that
characterize hallucinations given artificial inputs
and then testing the discovered symptoms on
translations of natural texts. Specifically, we
study hallucinations in Neural Machine Trans-
lation (NMT) using two types of interpretability
techniques: saliency analysis and perturbations.
We use saliency analysis (Bach et al., 2015; Voita
et al., 2021) to compare the relative contributions
of various tokens to the hallucinated vs. non-
hallucinated outputs generated by diverse adver-
sarial perturbations in the inputs (Table 1) inspired
by Lee et al. (2018) and Raunak et al. (2021). Re-
sults surprisingly show that source contribution
patterns are stronger indicators of hallucinations
than the relative contributions of the source
and target, as had been previously hypothesized
(Voita et al., 2021). We discover two distinctive
source contribution patterns, including 1) con-
centrated contribution from a small subset of
source tokens, and 2) the staticity of the source
contribution distribution along the generation
steps (§ 3).

We further show that the symptoms identified
generalize to hallucinations on natural inputs by
using them to design a lightweight hallucination
classifier (§ 4) that we evaluate on manually an-
notated hallucinations from English-Chinese and
German-English NMT (Table 1). Our study shows
that our introspection-based detection model
largely outperforms model-free baselines and the
classifier based on quality estimation scores. Fur-
thermore, it is more accurate and robust to domain
shift than black-box detectors based on large pre-
trained models (§ 5).
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Counterfactual hallucination from perturbation
Source Republicans Abroad are not running a similar election, nor will they have delegates

at the convention. Recent elections have emphasized the value of each vote.

Good NMT

Perturbed
Source

Repulicans Abroad ar not runing a simila election, nor will they have delegates at
the convention. Recent elections have emphasized the value o each vote.

Hallucination
Gloss: The big ear comments that administrators have the right to retain or delete
any content in the comments under their jurisdiction.

Natural hallucination
Source DAS GRUNDRECHT JEDES EINZELNEN AUF FREIE WAHL DES

BERUFS, DER AUSBILDUNGSSTÄTTE SOWIE DES AUSBILDUNGS -
UND BESCHÄFTIGUNGSORTS MUSS GEWAHRT BLEIBEN.
Gloss: The fundamental right of every individual to freely choose their profession,
their training institution and their employment place must remain guaranteed.

Hallucination THE PRIVACY OF ANY OTHER CLAIM, EXTRAINING STANDARDS,
EXTRAINING OR EMPLOYMENT OR EMPLOYMENT WILL BE LIABLE.

Table 1: Contrasting counterfactual English-Chinese hallucinations derived from source perturba-
tions (top) with a natural hallucination produced by a German-English NMT model (bottom).

Before presenting these two studies, we review
current findings about the conditions in which hal-
lucinations arise and formulate three hypotheses
capturing potential hallucination symptoms.

2 Hallucinations: Definition
and Hypotheses

The term ‘‘hallucinations’’ has varying definitions
in MT and natural language generation. We adopt
the most widely used one, which refers to output
text that is unfaithful to the input (Maynez et al.,
2020; Zhou et al., 2021; Xiao and Wang, 2021;
Ji et al., 2022), while others include fluency cri-
teria as part of the definition (Wang and Sennrich,
2020; Martindale et al., 2019). Different from pre-
vious work that aims to detect partial hallucina-
tions at the token level (Zhou et al., 2021), we
focus on detached hallucinations where a major
part of the output is unfaithful to the input, as these
represent severe errors, as illustrated in Table 1.

Prior work on understanding the conditions
that lead to hallucinations has focused on training
conditions and data noise (Ji et al., 2022). For
MT, Raunak et al. (2021) show that hallucinations
under perturbed inputs are caused by training
samples in the long tail that tend to be memorized
by Transformer models, while natural hallucina-
tions given unperturbed inputs can be linked to

corpus-level noise. Briakou and Carpuat (2021)
show that models trained on samples where
the source and target side diverge semanti-
cally output degenerated text more frequently.
Wang and Sennrich (2020) establish a link
between MT hallucinations under domain shift and
exposure bias by showing that Minimum Risk
Training, a training objective which addresses
exposure bias, can reduce the frequency of halluci-
nations. However, these insights do not yet provide
practical strategies for handling MT hallucinations.

A complementary approach to diagnosing hal-
lucinations is to identify their symptoms via model
introspection at inference time. However, there
lacks a systematic study of hallucinations from
the model’s internal perspective. Previous work is
either limited to an interpretation method that is
tied to an outdated model architecture (Lee et al.,
2018) or to pseudo-hallucinations (Voita et al.,
2021). In this paper, we propose to shed light on
the decoding behavior of hallucinations on both
artificially perturbed and natural inputs through
model introspection based on Layerwise Rele-
vance Propagation (LRP) (Bach et al., 2015), which
is applicable to a wide range of neural model ar-
chitectures. We focus on MT tasks with the widely
used Transformer model (Vaswani et al., 2017),
and examine existing and new hypotheses for how
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hallucinations are produced. These hypotheses
share the intuition that anomalous patterns of
contributions from source tokens are indicative of
hallucinations, but operationalize it differently.

The Low Source Contribution Hypothesis
introduced by Voita et al. (2021) states that hal-
lucinations occur when NMT overly relies on the
target context over the source. They test the hy-
pothesis by inspecting the relative source and
target contributions to NMT predictions on Trans-
former models using LRP. However, their study
is limited to pseudo-hallucinations produced by
force decoding with random target prefixes. This
work will test this hypothesis on actual hallucina-
tions generated by NMT models.

The Local Source Contribution Hypothesis
introduced by Lee et al. (2018) states that hallu-
cinations occur when NMT model overly relies on
a small subset of source tokens across all gener-
ation steps. They test it by visualizing the dot-
product attention in RNN models, but it is unclear
whether these findings generalize to other model
architectures. In addition, they only study hallu-
cinations caused by random token insertion. This
work will test this hypothesis on hallucinations
under various types of source perturbations as
well as on natural inputs, and will rely on LRP to
quantify token contributions more precisely than
with attention.

Inspired by the previous observation on atten-
tion matrices that an NMT model attends repeat-
edly to the same source tokens throughout
inference when it hallucinates (Lee et al., 2018;
Berard et al., 2019b) or generates a low-quality
translation (Rikters and Fishel, 2017), we for-
malize this observation as the Static Source
Contribution Hypothesis—the distribution of
source contributions remains static along infer-
ence steps when an NMT model hallucinates.
While prior work (Lee et al., 2018; Berard et al.,
2019b; Rikters and Fishel, 2017) focuses on the
static attention to the EOS or full-stop tokens, this
hypothesis is agnostic about which source tokens
contribute. Unlike the Low Source Contribution
Hypothesis, this hypothesis exclusively relies on
the source and does not make any assumption
about relative source versus target contributions.
Unlike the Local Source Contribution Hypothe-
sis, this hypothesis is agnostic to the proportion of
source tokens contributing to a translation.

In this work, we evaluate in a controlled fash-
ion how well each hypothesis explains detached

hallucinations, first on artificially perturbed sam-
ples that let us contrast hallucinated vs. non-
hallucinated outputs in controlled settings (§ 3),
and second on natural source inputs that let us
test the generalizability of these hypotheses when
they are used to automatically detect hallucina-
tions in more realistic settings (§ 5).1

3 Study of Hallucinations under
Perturbations via Model Introspection

Hallucinations are typically rare and difficult to
identify in natural datasets. To test the aforemen-
tioned hypotheses at scale, we first exploit the fact
that source perturbations exacerbate NMT halluci-
nations (Lee et al., 2018; Raunak et al., 2021).
We construct a perturbation-based counterfac-
tual hallucination dataset on English→Chinese by
automatically identifying hallucinated NMT trans-
lations given perturbed source inputs and contrast
them with the NMT translations of the original
source (§ 3.1). This dataset lets us directly test
the three hypotheses by computing the relative to-
ken contributions to the model’s predictions using
LRP (§ 3.2), and conduct a controlled compari-
son of patterns on the original and hallucinated
samples (§ 3.4).

3.1 Perturbation-based Hallucination Data

To construct the dataset, we randomly select 50k
seed sentence pairs to perturb from the NMT train-
ing corpora, and then we apply the following
perturbations on the source sentences:2

• We randomly misspell words by deleting
characters with a probability of 0.1, as
Karpukhin et al. (2019) show that a few
misspellings can lead to egregious errors in
the output.

• We randomly title-case words with a proba-
bility of 0.1, as Berard et al. (2019a) find that
this often leads to severe output errors.

• We insert a random token at the beginning
of the source sentence, as Lee et al. (2018)
and Raunak et al. (2021) find it a reliable
trigger of hallucinations. The inserted token
is chosen from 100 most frequent, 100 least
frequent, mid-frequency tokens (randomly

1Code and data are released at https://github.com
/weijia-xu/hallucinations-in-nmt.

2For better contrastive analysis, we select samples with
source length ofn = 30 and clip the output length by T = 15.

548

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00563/2131193/tacl_a_00563.pdf by guest on 09 Septem
ber 2023

https://github.com/weijia-xu/hallucinations-in-nmt
https://github.com/weijia-xu/hallucinations-in-nmt


sampled 100 tokens from the remaining
tokens), and punctuations.

Inspired by Lee et al. (2018), we then iden-
tify hallucinations using heuristics that compare
the translations from the original and perturbed
sources. We select samples whose original NMT

translations y′ are of reasonable quality compared
to the reference y (i.e., bleu(y, y′) > 0.3). The
translation of a perturbed source sentence ỹ is
identified as a hallucination if it is very different
from the translation of the original source (i.e.,
bleu(y′, ỹ) < 0.03) and is not a copy of the per-
turbed source x̃ (i.e., bleu(x̃, ỹ) < 0.5).3 This
results in 623, 270, and 1307 contrastive pairs
of the original (non-hallucinated) and hallucinated
translations under misspelling, title-casing, and
insertion perturbations, respectively.

We further divide the contrastive pairs into
degenerated and non-degenerated hallucinations.
Degenerated hallucinations are ‘‘bland, incoher-
ent, or get stuck in repetitive loops’’ (Holtzman
et al., 2020), i.e., hallucinated translations that
contain 3 more repetitive n-grams than the source
are identified as degenerated hallucinations, while
the non-degenerated group contains relatively
fluent but hallucinated translations.

3.2 Measuring Relative Token Contributions

We test the three source contribution hypothe-
ses described in § 2 on the resulting dataset by
contrasting the contributions of relevant tokens
to the generation of a hallucinated versus a non-
hallucinated translation using LRP (Bach et al.,
2015). LRP decomposes the prediction of a neu-
ral model computed over an input instance into
relevance scores for input dimensions. Specifi-
cally, LRP decomposes a neural model into several
layers of computation and measures the relative
influence score R

(l)
i for input neuron i at layer

l. Different from other interpretation methods
that measure the absolute influence of each input
dimension (Alvarez-Melis and Jaakkola, 2017;
Ma et al., 2018; He et al., 2019), LRP adopts the
principal that the relative influence R

(l)
i from all

neurons at each layer should sum up to a constant:

∑

i

R
(1)
i =

∑

i

R
(2)
i = . . . =

∑

i

R
(L)
i = C (1)

3The BLEU thresholds are selected based on manual
inspection of the translation outputs.

To back-propagate the influence scores from
the last layer to the first layer (i.e., the input
layer), we need to decompose the relevance score
R

(l+1)
j of a neuron j at layer l + 1 into messages

R
(l,l+1)
i←j sent from the neuron j at layer l + 1 to

each input neuron i at layer l under the follow-
ing rules:

R
(l,l+1)
i←j = vijR

(l+1)
j ,

∑

i

vij = 1 (2)

There exist several versions of LRP, including
LRP-ε, LRP-αβ, and LRP-γ, which compute vij dif-
ferently (Bach et al., 2015; Binder et al., 2016;
Montavon et al., 2019). Following Voita et al.
(2021), we use LRP-αβ (Bach et al., 2015; Binder
et al., 2016), which defines vij such that the
relevance scores are positive at each step. Con-
sider first the simplest case of linear layers with
non-linear activation functions:

u
(l+1)
j = g(zj), zj =

∑

i

zij + bj , zij = wiju
(l)
i

(3)
where u

(l)
i is the i-th neuron at layer l, wij is the

weight connecting the neurons u
(l)
i and u

(l+1)
j , bj

is a bias term, and g is a non-linear activation
function. The αβ rule considers the positive and
negative contributions separately:

z+ij = max(zij , 0), b
+
j = max(bj , 0)

z−ij = min(zij , 0), b
−
j = min(bj , 0)

and defines vij by the following equation:

vij = α ·
z+ij∑

i z
+
ij + b+j

+ β ·
z−ij∑

i z
−
ij + b−j

(4)

Following Voita et al. (2021), we use α = 1,
β = 0. This rule is directly applicable to linear,
convolutional, maxpooling, and feed-forward lay-
ers. To back-propagate relevance scores through
attention layers in the Transformer encoder-
decoder model (Vaswani et al., 2017), we follow
the propagation rules in Voita et al. (2021), where
the weighting vij is obtained by performing a
first order Taylor expansion of each neuron u

(l+1)
j .

In the context of NMT, LRP ensures that, at
each generation step t, the sum of contributions
Rt(xi) and Rt(yj) from source tokens xi and
target prefix tokens yj remains equal:

∀t,
∑

i

Rt(xi) +
∑

j<t

Rt(yj) = 1 (5)
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We further define normalized source contribu-
tion R̄(xi) at source position i averaged over all
generation steps t as:

R̄(xi) =
1

T

T∑

t

n ·Rt(xi)∑n
i Rt(xi)

(6)

where n is the length of each source sequence
and T is the length of the output sequence.

We then test the aforementioned hypothe-
ses based on the distribution of relative token
contributions and compare it with the attention
matrix.

3.3 NMT Setup

We build strong Transformer models on two
high-resource language pairs: English→Chinese
(En-Zh) and German→English (De-En). They pro-
duce acceptable translation outputs overall, thus
making hallucinations particularly misleading.

Data For En-Zh, we use the 18M training
samples from WMT18 (Bojar et al., 2018) and
newsdev2017 as the validation set. For De-En, we
use all training corpora from WMT21 (Akhbardeh
et al., 2021) except for ParaCrawl, which yields
5M sentence pairs after cleaning as in Chen et al.
(2021).4 We use newstest2019 for validation. We
tokenize English and German sentences using the
Moses scripts (Koehn et al., 2007) and Chinese
sentences using the Jieba segmenter.5 For En-Zh,
we train separate BPE models for English and
Chinese using 32k merging operations for each
language. For De-En, we train a joint BPE model
using 32k merging operations.

Models All models are based on the base Trans-
former (Vaswani et al., 2017). We apply label
smoothing of 0.1. We train all models using the
Adam optimizer (Kingma and Ba, 2015) with ini-
tial learning rate of 4.0 and batch sizes of 4,000
tokens for maximum 800k steps. We decode with
beam search with a beam size of 4. The resulting
NMT models achieve close or higher BLEU scores
than comparable published results.6

4https://github.com/browsermt/students
/tree/master/train-student/clean.

5https://github.com/fxsjy/jieba.
6The En-Zh model achieves 33.5 BLEU on newstest2017,

which is close to the 34.5 achieved by the most comparable
model in Xu and Carpuat (2018). The De-En model achieves
35.0 BLEU on newstest2019, which is higher than the strong
baseline (29.6 BLEU) from Germann (2020).

Figure 1: Relative source contributions
∑

i Rt(xi) at
varying generation step t averaged over the origi-
nal or hallucinated samples under a mixture of the
misspelling, title-casing, and insertion perturbations.

3.4 Findings

We test the aforementioned hypotheses on the
perturbation-based counterfactual hallucination
dataset constructed on English→Chinese.

First, we test the Low Source Contribution
Hypothesis by computing the relative source con-
tributions

∑n
i=1 Rt(xi) at each generation step t,

where n is the length of each source sequence.7

We plot the average contributions over a set of
samples in Figure 1. It shows that hallucinations
under source perturbations have only slightly
higher source contributions (Δ ≈ 0.1) than the
original samples. This departs from previous ob-
servations on pseudo-hallucinations (Voita et al.,
2021), where the relative source contributions
were lower on pseudo-hallucinations than on ref-
erence translations, perhaps because actual model
outputs differ from pseudo-hallucinations created
by inserting random target prefixes. We show that
the hypothesis does not hold on actual halluci-
nations generated by the model itself.

To explain this phenomenon, we further
examine the source contribution from the end-of-
sequence (EOS) token. Previous work hypothe-
sizes that a translation is likely to be a hallucination
when the attention distribution is concentrated
on the source EOS token, which carries little in-
formation about the source (Berard et al., 2019b;
Raunak et al., 2021). However, this hypothesis

7Since LRP ensures that the sum of source and target
contributions at each generation step is a constant, we only
visualize the relative source contributions.
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Contrib Ratio Staticity
D N D N

Attention −1.03† +0.51† 1.92† −1.10†

LRP −1.05† −1.13† 3.16† 2.16†

Table 2: Standardized mean difference in High-
Contribution Ratio (Contrib Ratio) and Source
Contribution Staticity (Staticity) (computed on
attention and LRP-based contribution matrices)
between pairs of hallucinated and original sam-
ples. We show the score differences on degener-
ated (D) and non-degenerated (N) hallucinations
separately. † indicates that the difference is sta-
tistically significant with p < 0.05.

has only been supported by qualitative analysis
on individual samples. Our quantitative results
on the perturbation-based hallucination dataset do
not support it, and align instead with the recent
finding that the proportion of attention paid to
the EOS token is not indicative of hallucinations
(Guerreiro et al., 2022). Specifically, our results
show that the proportion of source contribution
from the EOS token is slightly higher on the
original samples (11.2%) than that on the halluci-
nated samples (10.8%). We will show in the next
part that the source contribution is more concen-
trated on the beginning than the end of the source
sentence when the model hallucinates.

Second, we test the Local Source Contri-
bution Hypothesis by computing the High-
Contribution Ratio r(λ0)—the ratio of source
tokens with normalized contribution R̄(xi) larger
than a threshold λ0:

r(λ0) =
n∑

i=1

I(R̄(xi) > λ0)/n (7)

The ratio will be lower on hallucinated samples
than on original samples if the hypothesis holds.
We compute the standardized mean difference
in High-Contribution Ratio between the halluci-
nated and original samples (Table 2).8 The nega-
tive score differences in LRP-based scores support
the hypothesis, which is consistent with the find-
ings of Lee et al. (2018) based on attention
weights. However, the attention-based score pat-
terns are not consistent on degenerated and non-
degenerated samples.

8λ0 is set to yield the largest score difference for each
measurement type.

Furthermore, we investigate whether there is
any positional bias for the local source con-
tribution. We visualize the normalized source
contribution R̄(xi) averaged over all samples
with a source length of 30 in Figure 2. The
source contribution of the hallucinated samples
is disproportionately high at the beginning of a
source sequence. By contrast, on the original sam-
ples, the normalized contribution is higher at the
end of the source sequence, which could be a
way for the model to decide when to finish gen-
eration. The positional bias exists not only on
hallucinations under insertions at the beginning
of the source, but also on hallucinations under
misspelling and title-casing perturbations that are
applied at random positions.

Third, we examine the Static Source Contri-
bution Hypothesis hypothesis by first visualiz-
ing the source contributions Rt(xi) at varying
source and generation positions on individual
pairs of original and hallucinated samples. The
heatmaps of source contributions for the example
from Table 1 are shown in Figure 3. On the orig-
inal outputs, the source contribution distribution
in each column changes dynamically when mov-
ing horizontally along target generation steps. By
contrast, when the model hallucinates, the source
contribution distribution remains roughly static.

To quantify this pattern, we introduce Source
Contribution Staticity, which measures how the
source contribution distribution shifts over gen-
eration steps. Specifically, given a window size
k, we first divide the target sequence into several
non-overlapping segments, each containing k to-
kens. Then, we compute the average vector over
the contribution vectorsRt = [Rt(x0) . . . Rt(xn)]
at steps twithin each segment. Finally, we measure
the cosine similarity between the average contri-
bution vectors of adjacent segments and average
over the cosine similarity scores at all positions
as the final score sk of window size k. Figure 4
illustrates this process for a window size of 2.

Table 2 shows the standardized mean differ-
ence in Source Contribution Staticity between
the hallucinated and original samples in the de-
generated and non-degenerated groups, taking
the maximum staticity score among window
sizes k ∈ [1, 3] for each sample. The pos-
itive differences in LRP-based scores supports
the Static Source Contribution Hypothesis—the
source contribution distribution is more static on
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Figure 2: Normalized source contribution R̄(xi) (Eq. 6) at each source token position averaged over the orig-
inal or hallucinated samples under (a) misspelling, (b) title-casing, and (c) insertion perturbations.

Figure 3: Heatmaps of relative contributions of source
tokens (y-axis) at each generation step (x-axis) com-
puted on the example of the original translation and the
counterfactual hallucination from the perturbed source
in Table 1. The source contribution distribution re-
mains static across almost all generation steps on the
hallucinated sample, unlike on the original sample.

the hallucinated samples than that on the original
samples. Furthermore, LRP distinguishes hallucina-
tions from non-hallucinations better than attention,
especially on non-degenerated samples where the
translation outputs contain no repetitive loops.

In summary, we find that, when generating a
hallucination under source perturbations, the NMT

model tends to rely on a small proportion of
the source tokens, especially the tokens at the
beginning of the source sentence. In addition, the
distribution of the source contributions is more
static on hallucinated translations than that on
non-hallucinated translations. We turn to applying
these insights on natural hallucinations next.

4 A Classifier to Detect Natural
Hallucinations

Based on these findings, we design features for a
lightweight hallucination detector trained on sam-
ples automatically constructed by perturbations.

Figure 4: Computing the Source Contribution Staticity
of window size k = 2 given the source contribution
vectors Rt = [Rt(x0) . . . Rt(xn)] at generation step t.

Classifier We build a small multi-layer percep-
tron (MLP) with a single hidden layer and the
following input features:

• Normalized Source Contribution of the
first K1 source tokens and the last K1 source
tokens: R̄(xi)|i = 1, . . . ,K1, n − K1 +
1, . . . , n (where n is the length of the source
sequence and K1 is a hyper-parameter), as
we showed in the Local Source Contribution
Hypothesis that the contributions of the be-
ginning and end tokens distribute differently
between hallucinated and non-hallucinated
samples.

• Source Contribution Staticity sk given the
source contributions Rt(xi) and a window
size k as defined in § 3.4. We include
the similarity scores of window sizes k =
{1, 2, . . . ,K2} as input features, where K2 is
a hyper-parameter.

This yields small classifiers with input dimension
of 9. For each language pair, we train 20 classifiers
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with different random seeds and select the model
with the highest validation F1 score.

Data Generation We construct the training
and validation data using the same approach to
constructing the perturbation-based hallucination
dataset (§ 3.1), but with longer seed pairs—we
randomly select seed sentence pairs with source
length between 20 and 60 from the training cor-
pora. We split the synthetic data randomly into
the training (around 1k samples) and validation
(around 200 samples) sets with roughly equal
number of positive and negative samples.

5 Detecting Natural Hallucinations

While the hallucination classifier is trained on
hallucinations from perturbations, we collect more
realistic data to evaluate it against a wide range of
relevant models.

5.1 Natural Hallucination Evaluation Set

We build a test bed for detached hallucination
detection for different language pairs and trans-
lation directions (En-Zh and De-En), and release
the data together with the underlying NMT models
(described in § 3.3).

Since hallucinations are rare, we collect sam-
ples from large pools of out-of-domain data for
our models to obtain enough positive examples
of hallucinations for a meaningful test set. We
use TED talk transcripts from the IWSLT15 train-
ing set (Cettolo et al., 2015) for En-Zh, and the
JRC-Acquis corpus (Steinberger et al., 2006) of
legislation from the European Union for De-En.
To increase the chance of finding hallucinations,
we select around 200, 50, and 50 translation out-
puts with low BLEU, low COMET (Rei et al., 2020a),
or low LASER similarity (Artetxe and Schwenk,
2019) scores, respectively. We further combine
them with 50 randomly selected samples.

Three bilingual annotators assess the faithful-
ness of the NMT output given each input. While
we ultimately need a binary annotation of outputs
as hallucinated or not, annotators were asked to
choose one of five labels to improve consistency:

• Detached hallucination: a translation with
large segments that are unrelated to the
source.

• Faithful translation: a translation that is
faithful to the source.

En-Zh De-En

Detached hallucination 111 189
Non hallucination, including:
Faithful translation 154 153
Incomplete translation 80 17
Locally unfaithful 58 31
Incomprehensible but aligned 5 33

Total 408 423

Table 3: Human annotation label distribution on
the En-Zh and De-En natural hallucination test sets
(with random tie breaking on fine-grained labels;
there are no ties on binary labels post-aggregation).

• Incomplete translation: a translation that is
partially correct but misses part(s) of the
source.

• Locally unfaithful: a translation that contains
a few unfaithful phrases but is otherwise
faithful.

• Incomprehensible but aligned: a translation
that is incomprehensible even though most
phrases can be aligned to the source.

All labels except for the ‘‘detached hallucina-
tion’’ are aggregated into the ‘‘non-hallucination’’
category. The inter-annotator agreement on aggre-
gated labels is substantial, with a Fleiss’s Kappa
(Fleiss, 1971) score of FK = 0.77 for De-En
and FK = 0.64 for En-Zh. Disagreements are
resolved by majority voting for De-En, and by
adjudication by a bilingual speaker for En-Zh.
This yields 27% of detached hallucinations on
En-Zh and 45% on De-En. The non-hallucinated
NMT outputs span all the fine-grained categories
above, as can be seen in Table 3. Hallucinations
are over-represented compared to what one might
expect in the wild, but this is necessary to provide
enough positive examples of hallucinations for
evaluation.

5.2 Experimental Conditions

5.2.1 Introspection-based Classifiers
We implement the LRP-based classifier described
in § 4. To lower the cost of computing source
contributions, we clip the source length at 40,
and only consider the influence back-propagated
through the most recent 10 target tokens—prior
work shows that nearby context is more influen-
tial than distant context (Khandelwal et al., 2018).
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We tune the hyper-parameters K1 and K2

within the space K1 ∈ {1, 3, 5, 7, 9}, K2 ∈
{4, 8, 12, 16} based on the average F1 accuracy
on the validation set over three runs. We compare
it with an attention-based classifier, which uses
the same features, but computes token contribu-
tions using attention weights averaged over all
attention heads.

5.2.2 Model-free Baselines

We use three simple baselines to characterize the
task. The random classifier that predicts halluci-
nation with a probability of 0.5. The degenera-
tion detector marks as hallucinations degenerated
outputs that contain K more repetitive n-grams
than the source, where K is a hyper-parameter
tuned on the perturbation-based hallucination data.
The NMT probability scores are used as a coarse
model signal to detect hallucinations based on the
heuristic that the model is less confident when
producing a hallucination. The output is classi-
fied as a hallucination if the probability score is
lower than a threshold tuned on the perturbation-
based hallucination data.

5.2.3 Quality Estimation Classifier

We also compare the introspection-based classi-
fiers with a baseline classifier based on the state-
of-the-art quality estimation model—COMET-QE

(Rei et al., 2020b). Given a source sentence and
its NMT translation, we compute the COMET-QE

score and classify the translation as a halluci-
nation if the score is below a threshold tuned on
the perturbation-based validation set.

5.2.4 Large Pre-trained Classifiers

We further compare the introspection-based clas-
sifiers with classifiers that rely on large pre-trained
multilingual models, to compare the discrimi-
native power of the source contribution patterns
from the NMT model itself to extrinsic semanti-
cally driven discrimination criteria.

We use the cosine distance between the LASER

representations (Artetxe and Schwenk, 2019;
Heffernan et al., 2022) of the source and the NMT

translation. It classifies a translation as a halluci-
nation if the distance score is higher than a thresh-
old tuned on the perturbation-based validation set.

Inspired by local hallucination (Zhou et al.,
2021) and cross-lingual semantic divergence
(Briakou and Carpuat, 2020) detection methods,

we build an XLM-R classifier by fine-tuning the
XLM-R model (Conneau et al., 2020) on synthetic
hallucination samples. We randomly select 50K
seed pairs of source and reference sentences with
source lengths between 20 and 60 from the paral-
lel corpus and use the following perturbations to
construct examples of detached hallucinations:

• Map a source sentence to a random target
from the parallel corpus to simulate natural,
detached hallucinations.

• Repeat a random dependency subtree in the
reference many times to simulate degener-
ated hallucinations.

• Drop a random clause from the source
sentence to simulate natural, detached hal-
lucinations.

We then collect diverse non-hallucinated samples:

• Original seed pairs provide faithful transla-
tions.

• Randomly drop a dependency subtree from a
reference to simulate incomplete translations.

• Randomly substitute a phrase in the reference
keeping the same part-of-speech to simulate
translations with locally unfaithful phrases.

The final training and validation sets contain
around 300k and 700 samples, respectively. We
fine-tune the pre-trained model with a batch size of
32. We use the Adam optimizer (Kingma and Ba,
2015) with decoupled weight decay (Loshchilov
and Hutter, 2019) and an initial learning rate of
2 × 10−5. We fine-tune all models for 5 epochs
and select the checkpoint with the highest F1
score on the validation set.

5.3 Findings

As shown in Table 4, we compare all classifiers
against the baselines by the Precision, Recall, and
F1 scores. Since false positives and false negatives
might have a different impact in practice (e.g.,
does the detector flag examples for review by
humans, or entirely automatically? what is MT

used for?), we also report the Area Under the
Receiver Operating Characteristic Curve (AUC),
which characterizes the discriminative power of
each method at varying threshold settings.
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Params
De-En En-Zh

P R F1 AUC P R F1 AUC

Model-free Baselines
Random 0 44.0 49.9 46.8 50.2 27.6 49.8 35.5 48.0
Degeneration 1 49.1 59.3 53.7 – 63.2 71.2 66.9 –
NMT Score 1 33.3 3.4 6.2 37.7 35.4 91.9 51.1 49.8

Quality Estimation Classifier
COMET-QE 363M 72.2 71.4 71.8 82.4 32.4 99.1 48.9 89.4

Large Pre-trained Classifiers
LASER 45M 81.6 54.0 65.0 89.5 54.6 64.0 58.9 75.3
XLM-R 125M 91.3 21.0 33.8 45.6 94.9 83.2 88.6 93.3

Introspection-based Classifiers
Attention-based < 400 54.3 89.0 67.4 70.1 36.0 71.0 47.7 68.6
LRP-based < 400 87.3 76.2 81.2 91.4 87.5 85.6 86.4 96.5

Ensemble Classifier
LRP + LASER 45M 100.0 45.7 62.7 – 94.5 59.5 72.9 –
LRP + XLM-R 125M 95.3 21.5 35.1 – 97.6 72.4 83.1 –

Table 4: Precision (P), Recall (R), F1, and Area Under the Receiver Operating Characteristic Curve
(AUC) scores of each classifier on English-Chinese (En-Zh) and German-English (De-En) NMT out-
puts (means of three runs). We boldface the highest scores based on independent Student t-test with
Bonferroni correction (p < 0.05). The Params column indicates the total number of parameters used
for each method (in addition to the NMT parameters).

Main Results The LRP-based, XLM-R, and the
LASER classifiers are the best hallucination detec-
tors, reaching AUC scores around 90 for either
or both language pairs, which is considered out-
standing discrimination ability (Hosmer Jr et al.,
2013).

The LRP-based classifier is the best and most
robust hallucination detector overall. It achieves
higher F1 and AUC scores than LASER on both lan-
guage pairs. Additionally, it outperforms XLM-R by
+47 F1 and +46 AUC on De-En, while achieving
competitive performance on En-Zh. This shows
that the source contribution patterns identified on
hallucinations under perturbations (§ 3) general-
ize as symptoms of natural hallucinations even
under domain shift, as the domain gap between
training and evaluation data is bigger on De-En
than En-Zh. It also confirms that LRP provides a
better signal to characterize token contributions
than attention, improving F1 by 14–39 points and
AUC by 21–28 points. These high scores represent
large improvements of 41–54 points on AUC and
20–75 points on F1 over the model-free baselines.

Model-free Baselines These baselines shed
light on the nature of the hallucinations in the
dataset. The degeneration baseline is the best
among them, with 53.7 F1 on De-En and 66.9
F1 on En-Zh, indicating that the Chinese halluci-
nations are more frequently degenerated than the
English hallucinations from German. However,
ignoring the remaining hallucinations is problem-
atic, since they might be more fluent and thus more
likely to mislead readers. The NMT score is a poor
predictor, scoring worse than the random baseline
on De-En, in line with previous reports that NMT

scores do not capture faithfulness well during in-
ference (Wang et al., 2020). Manual inspection
shows that the NMT score can be low when the
output is faithful but contains rare words, and it
can be high for a hallucinated output that contains
mostly frequent words.

Quality Estimation Classifier The COMET-QE

classifier achieves higher AUC and F1 scores
than the model-free classifiers, except for En-Zh,
where the degeneration baseline obtains higher F1
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than the COMET-QE classifier. However, compared
with the LRP-based classifier, COMET-QE lags be-
hind by 9-38 points on F1 and 7-9 points on
AUC. This is consistent with previous findings
that quality estimation models trained on data
with insufficient negative samples (e.g., COMET-
QE) are inadequate for detecting critical MT errors
such as hallucinations (Takahashi et al., 2021;
Sudoh et al., 2021; Guerreiro et al., 2022).

Pre-trained Classifiers The performance of
pre-trained classifiers varies greatly across lan-
guage pairs. LASER achieves a competitive AUC
score to the LRP-based classifier on De-En but
lags behind on En-Zh, perhaps because the LASER

model is susceptible to the many rare tokens in
the En-Zh evaluation data (from TED subtitles).
XLM-R obtains better performance on En-Zh, ap-
proaching that of the LRP-based classifier, but lags
behind greatly on De-En. This suggests that the
XLM-R classifier suffers from domain shift, which
is bigger on De-En (News→Law) than En-Zh
(News→TED). Fine-tuning the model on the syn-
thetic training data generalizes more poorly across
domains. By contrast, the introspection-based
classifiers are more robust.

Ensemble Classifiers The LASER and XLM-R clas-
sifiers emerge as the top classifiers apart from the
LRP-based one, but they make different errors than
LRP—the confusion matrix comparing their pre-
dictions shows that the LASER and LRP classifiers
agree on 68–78% of samples, while the XLM-R

and LRP classifiers agree on 64–88% of samples.
Thus an ensemble of LRP + LASER or LRP + XLM-R

(which detects hallucinations when the two clas-
sifiers both do so) yields a very high precision (at
the expense of recall).

LRP Ablations The LRP-based classifier benefits
the most from Source Contribution Staticity fea-
tures (Table 5). Removing them hurts AUC by
15–17 points and F1 by 28–31 points, confirm-
ing that the Static Source Contribution Hypothesis
holds on natural hallucinations. Ablating the Nor-
malized Source Contribution features also causes
a significant drop in F1 on De-En, while its impact
on En-Zh is not significant.

Error Analysis Incomprehensible but aligned
translations suffer from the highest false positive
rate for the LRP classifier, followed by incomplete

De-En En-Zh
F1 AUC F1 AUC

All features 81.2 91.4 86.4 96.5
- Src Contrib 74.4 92.7 85.3 96.1
- Staticity 50.7 76.6 58.3 80.0

Table 5: Ablating the Normalized Source Con-
tribution (Src Contrib) and Source Contribution
Staticity (Staticity) features used in the LRP-based
classifier. We boldface the highest scores based
on independent student’s t-test with Bonferroni
Correction(p < 0.05).

Source: C) DASS DIE WAREN IN DEM
ZUSTAND IN DIE GEMEINSCHAFT VER-
SANDT WORDEN SIND, IN DEM SIE ZUR
AUSSTELLUNG GESANDT WURDEN;
Correct Translation: C) THAT THE GOODS
WERE SHIPPED TO THE COMMUNITY IN
THE CONDITION IN WHICH THEY ARE
SENT FOR EXHIBITION;
Output: C) THAT THE WOULD BE CON-
SIDERED IN THE COMMUNITY, IN which
YOU WILL BE EXCLUSIVE;

Table 6: Example of a detached hallucination
produced by the De-En NMT being classified as
non-hallucination by the LRP-based classifier.

translations. Additionally, the classifier can fail to
detect hallucinations caused by the mistranslation
of a large span of the source with rare or previously
unseen tokens, rather than by pathological behav-
ior at inference time as shown by the example in
Table 6.

Toward Practical Detectors Detecting halluci-
nations in the wild is challenging since they tend
to be rare and their frequency may vary greatly
across test cases. We provide a first step in this
direction by stress testing the top classifiers in an
in-domain scenario where hallucinations are ex-
pected to be rare. Specifically, we randomly select
10k English sentences from the News Crawl: ar-
ticles from 2021 from WMT21 (Akhbardeh et al.,
2021) and use the En-Zh NMT model to translate
them into Chinese. We measure the Precision@20
for hallucination detection by manually exam-
ining the top-20 highest scoring hallucination
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predictions for each method. The LASER, XLM-R,
and LRP-based classifiers evaluated above (with-
out fine-tuning in this setting) achieve 35%, 45%,
and 45% Precision@20, respectively (compared
to 0% for the random baseline). More interest-
ingly, after tuning the threshold on the predicted
probabilities (which is originally set to 0.5) so
that each classifier predicts hallucination 1% of
the time, the LRP + LASER ensemble detects 9 hal-
lucinations with a much higher precision of 89%,
and the LRP + XLM-R ensemble detects 12 halluci-
nations with a precision of 83%. These ensemble
detectors thus have the potential to provide use-
ful signals for detecting hallucinations even when
they are needles in a haystack.

5.4 Limitations

Our findings should be interpreted with several
limitations in mind. First, we exclusively study
detached hallucinations in MT. Thus, we do not
elucidate the internal model symptoms that lead to
partial hallucinations (Zhou et al., 2021), although
the methodology in this work could be used to
shed light on this question. Second, we work with
NMT models trained using the parallel data from
WMT without exploiting monolingual data or com-
parable corpora retrieved from collections of
monolingual texts (e.g., WikiMatrix [Schwenk
et al., 2021]). It remains to be seen whether halluci-
nation symptoms generalize to NMT models trained
with more heterogeneous supervision. Finally,
we primarily test the hallucination classifiers in
roughly balanced test sets, while hallucinations
are expected to be rare in practice. We conducted
a small stress test which shows the promise of our
LRP +LASER classifier in more realistic conditions.
However, further work is needed to systematically
evaluate how these classifiers can be used for
hallucination detection in the wild.

6 Related Work

Hallucinations occur in all applications of neural
models to language generation, including abstrac-
tive summarization (Falke et al., 2019; Maynez
et al., 2020), dialogue generation (Dušek et al.,
2018), data-to-text generation (Wiseman et al.,
2017), and machine translation (Lee et al., 2018).
Most existing detection approaches view the gen-
eration model as a black-box, by 1) training hal-
lucination classifiers on synthetic data constructed

by heuristics (Zhou et al., 2021; Santhanam et al.,
2021), or 2) using external models to measure
the faithfulness of the outputs, such as question
answering or natural language inference models
(Falke et al., 2019; Durmus et al., 2020). These
approaches ignore the signals from the genera-
tion model itself and could be highly biased by
the heuristics used for synthetic data construc-
tion, or the biases in the external semantic mod-
els trained for other purposes. Concurrent to this
work, Guerreiro et al. (2022) explore glass-box
detection methods based on model confidence
scores or attention patterns (e.g., the proportion
of attention paid to the EOS token and the pro-
portion of source tokens with attention weights
higher than a threshold). They evaluate these
methods based on hallucination recall, and find
that model confidence is a better indicator of hal-
lucinations than attention patterns. In this paper,
we investigated varying types of glass-box pat-
terns based on the relative token contributions
instead of attention, and find that these patterns
yield more accurate hallucination detectors than
model confidence.

Detecting hallucinations in MT has not yet been
directly addressed by the MT quality estimation lit-
erature. Most quality estimation work has focused
on predicting a direct assessment of translation
quality, which does not distinguish adequacy and
fluency errors (Guzmán et al., 2019; Specia et al.,
2020). More recent task formulations target crit-
ical adequacy errors (Specia et al., 2021), but do
not separate hallucinations from other error types,
despite arguments that hallucinations should be
considered separately from other MT errors (Shi
et al., 2022). The critical error detection task at
WMT 2022 introduces an Additions error category,
which refers to hallucinations where the trans-
lation content is only partially supported by the
source (Zerva et al., 2022). Additions includes
both detached hallucinations (as in this work) and
partial hallucinations. Methods for addressing all
these tasks fall in two categories: 1) black-box
methods based on the source and output alone
(Specia et al., 2009; Kim et al., 2017; Ranasinghe
et al., 2020), and 2) glass-box methods based
on features extracted from the NMT model itself
(Rikters and Fishel, 2017; Yankovskaya et al.,
2018; Fomicheva et al., 2020). Black-box methods
typically use resource-heavy deep neural networks
trained on large amounts of annotated data. Our
work is inspired by the glass-box methods that
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rely on model probabilities, uncertainty quantifi-
cation, and the entropy of the attention distribu-
tion, but shows that relative token contributions
computed through LRP provide sharper features
to characterize hallucinations.

This paper combines interpretability techniques
to identify the symptoms of hallucinations. We
adopt a saliency method to measure the importance
of each input unit through a back-propagation
pass (Simonyan et al., 2014; Bach et al., 2015;
Li et al., 2016a; Ding et al., 2019). While other
saliency-based methods measure an abstract quan-
tity reflecting the importance of each input feature
by the partial derivative of the prediction with
regard to each input unit (Simonyan et al., 2014),
LRP (Bach et al., 2015) measures the proportional
contribution of each input unit. This makes it well-
suited to compare model behavior across sam-
ples. Furthermore, LRP does not require neural
activations to be differentiable and smooth, and
can be applied to a wide range of architectures, in-
cluding RNN (Ding et al., 2017) and Transformer
(Voita et al., 2021). We apply this technique to
analyze counterfactual hallucination samples in-
spired by perturbation methods (Li et al., 2016b;
Feng et al., 2018; Ebrahimi et al., 2018), but cru-
cially show that the insights generalize to natural
hallucinations.

7 Conclusion

We contribute a thorough empirical study of
the notorious but poorly understood hallucination
phenomenon in NMT, which shows that internal
model symptoms exhibited during inference are
strong indicators of hallucinations. Using counter-
factual hallucinations triggered by perturbations,
we show that distinctive source contribution pat-
terns alone indicate hallucinations better than the
relative contributions of the source and target.
We further show that our findings can be used
for detecting natural hallucinations much more
accurately than model-free baselines and quality
estimation models. Our detector also outperforms
black-box classifiers based on pre-trained models.
We release human-annotated test beds of natural
English-Chinese and German-English hallucina-
tions to enable further research. This work opens
a path toward detecting hallucinations in the
wild and improving models to minimize halluci-
nations in MT and other generation tasks.
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Chatterjee, Vishrav Chaudhary, Marta R.
Costa-jussa, Cristina España-Bonet, Angela
Fan, Christian Federmann, Markus Freitag,
Yvette Graham, Roman Grundkiewicz, Barry
Haddow, Leonie Harter, Kenneth Heafield,
Christopher Homan, Matthias Huck, Kwabena
Amponsah-Kaakyire, Jungo Kasai, Daniel
Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz,
Makoto Morishita, Masaaki Nagata, Ajay
Nagesh, Toshiaki Nakazawa, Matteo Negri,
Santanu Pal, Allahsera Auguste Tapo, Marco
Turchi, Valentin Vydrin, and Marcos Zampieri.
2021. Findings of the 2021 conference on ma-
chine translation (WMT21). In Proceedings
of the Sixth Conference on Machine Trans-
lation, pages 1–88, Online. Association for
Computational Linguistics.

David Alvarez-Melis and Tommi Jaakkola. 2017.
A causal framework for explaining the predic-
tions of black-box sequence-to-sequence mod-
els. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 412–421, Copenhagen, Denmark.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/D17
-1042

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for
zero-shot cross-lingual transfer and beyond.
Transactions of the Association for Computa-
tional Linguistics, 7:597–610. https://doi
.org/10.1162/tacl_a_00288

558

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00563/2131193/tacl_a_00563.pdf by guest on 09 Septem
ber 2023

https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288


Sebastian Bach, Alexander Binder, Grégoire
Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. 2015. On pixel-
wise explanations for non-linear classifier de-
cisions by layer-wise relevance propagation.
PloS One, 10(7):e0130140. https://doi.org
/10.1371/journal.pone.0130140, PubMed:
26161953

Emily M. Bender, Timnit Gebru, Angelina
McMillan-Major, and Shmargaret Shmitchell.
2021. On the dangers of stochastic parrots:
Can language models be too big? In Proceed-
ings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency FAccT ’21,
pages 610–623, New York, NY, USA. Asso-
ciation for Computing Machinery. https://
doi.org/10.1145/3442188.3445922

Alexandre Berard, Ioan Calapodescu, Marc
Dymetman, Claude Roux, Jean-Luc Meunier,
and Vassilina Nikoulina. 2019a. Machine
translation of restaurant reviews: New cor-
pus for domain adaptation and robustness. In
Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 168–176,
Hong Kong. Association for Computational
Linguistics. https://doi.org/10.18653/v1
/D19-5617

Alexandre Berard, Ioan Calapodescu, and Claude
Roux. 2019b. Naver labs Europe’s systems
for the WMT19 machine translation robustness
task. In Proceedings of the Fourth Conference
on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 526–532, Florence,
Italy. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/W19-5361

Alexander Binder, Grégoire Montavon,
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