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Abstract

Localizing a semantic parser to support new
languages requires effective cross-lingual gen-
eralization. Recent work has found success
with machine-translation or zero-shot meth-
ods, although these approaches can struggle
to model how native speakers ask questions.
We consider how to effectively leverage min-
imal annotated examples in new languages
for few-shot cross-lingual semantic parsing.
We introduce a first-order meta-learning algo-
rithm to train a semantic parser with maximal
sample efficiency during cross-lingual trans-
fer. Our algorithm uses high-resource lan-
guages to train the parser and simultaneously
optimizes for cross-lingual generalization to
lower-resource languages. Results across six
languages on ATIS demonstrate that our
combination of generalization steps yields
accurate semantic parsers sampling ≤10% of
source training data in each new language.
Our approach also trains a competitive model
on Spider using English with generalization
to Chinese similarly sampling ≤10% of train-
ing data.1

1 Introduction

A semantic parser maps natural language (NL)
utterances to logical forms (LF) or executable pro-
grams in some machine-readable language (e.g.,
SQL). Recent improvement in the capability of
semantic parsers has focused on domain transfer
within English (Su and Yan, 2017; Suhr et al.,
2020), compositional generalization (Yin and
Neubig, 2017; Herzig and Berant, 2021; Scholak
et al., 2021), and, more recently, cross-lingual
methods (Duong et al., 2017; Susanto and Lu,
2017b; Richardson et al., 2018).

Within cross-lingual semantic parsing, there
has been an effort to bootstrap parsers with min-

1Our code and data are available at github.com
/tomsherborne/xgr.

imal data to avoid the cost and labor required
to support new languages. Recent proposals in-
clude using machine translation to approximate
training data for supervised learning (Moradshahi
et al., 2020; Sherborne et al., 2020; Nicosia et al.,
2021) and zero-shot models, which engineer cross-
lingual similarity with auxiliary losses (van der
Goot et al., 2021; Yang et al., 2021; Sherborne
and Lapata, 2022). These shortcuts bypass costly
data annotation but present limitations such as
‘‘translationese’’ artifacts from machine transla-
tion (Koppel and Ordan, 2011) or undesirable
domain shift (Sherborne and Lapata, 2022). How-
ever, annotating a minimally sized data sample
can potentially overcome these limitations while
incurring significantly reduced costs compared
to full dataset translation (Garrette and Baldridge,
2013).

We argue that a few-shot approach is more
realistic for an engineer motivated to support ad-
ditional languages for a database—as one can
rapidly retrieve a high-quality sample of transla-
tions and combine these with existing supported
languages (i.e., English). Beyond semantic pars-
ing, cross-lingual few-shot approaches have also
succeeded at leveraging a small number of anno-
tations within a variety of tasks (Zhao et al., 2021,
inter alia) including natural language inference,
paraphrase identification, part-of-speech-tagging,
and named-entity recognition. Recently, the ap-
plication of meta-learning to domain generali-
zation has further demonstrated capability for
models to adapt to new domains with small sam-
ples (Gu et al., 2018; Li et al., 2018; Wang et al.,
2020b).

In this work, we synthesize these directions
into a meta-learning algorithm for cross-lingual
semantic parsing. Our approach explicitly opti-
mizes for cross-lingual generalization using fewer
training samples per new language without per-
formance degradation. We also require minimal
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computational overhead beyond standard gradient-
descent training and no external dependencies be-
yond in-task data and a pre-trained encoder. Our
algorithm, Cross-Lingual Generalization Reptile
(XG-REPTILE) unifies two-stage meta-learning into
a single process and outperforms prior and con-
stituent methods on all languages, given identical
data constraints. The proposed algorithm is still
model-agnostic and applicable to more tasks re-
quiring sample-efficient cross-lingual transfer.

Our innovation is the combination of both
intra-task and inter-language steps to jointly learn
the parsing task and optimal cross-lingual trans-
fer. Specifically, we interleave learning the overall
task from a high-resource language and learn-
ing cross-lingual transfer from a minimal sample
of a lower-resource language. Results on ATIS
(Hemphill et al., 1990) in six languages (English,
French, Portuguese, Spanish, German, Chinese)
and Spider (Yu et al., 2018) in two languages (En-
glish, Chinese) demonstrate our proposal works
in both single- and cross-domain environments.
Our contributions are as follows:

• We introduce XG-REPTILE, a first-order
meta-learning algorithm for cross-lingual
generalization. XG-REPTILE approximates an
optimal manifold using support languages
with cross-lingual regularization using tar-
get languages to train for explicit cross-
lingual similarity.

• We showcase sample-efficient cross-lingual
transfer within two challenging semantic
parsing datasets across multiple languages.
Our approach yields more accurate parsing
in a few-shot scenario and demands 10×
fewer samples than prior methods.

• We establish a cross-domain and cross-
lingual parser obtaining promising results for
both Spider in English (Yu et al., 2018) and
CSpider in Chinese (Min et al., 2019).

2 Related Work

Meta-Learning for Generalization Meta-
Learning2 has recently emerged as a promising
technique for generalization, delivering high
performance on unseen domains by learning to

2We refer the interested reader to Wang et al. (2020b),
Hospedales et al. (2022), and Wang et al. (2021b) for more
extensive surveys on meta-learning.

learn, that is, improving learning over multiple
episodes (Hospedales et al., 2022; Wang et al.,
2021b). A popular approach is Model-Agnostic
Meta-Learning (Finn et al., 2017, MAML),
wherein the goal is to train a model on a variety
of learning tasks, such that it can solve new tasks
using a small number of training samples. In ef-
fect, MAML facilitates task-specific fine-tuning
using few samples in a two-stage process. MAML
requires computing higher-order gradients (i.e.,
‘‘gradient through a gradient’’) which can often
be prohibitively expensive for complex models.
This limitation has motivated first-order ap-
proaches to MAML which offer similar perfor-
mance with improved computational efficiency.

In this vein, the Reptile algorithm (Nichol
et al., 2018) transforms the higher-order gradi-
ent approach into K successive first-order steps.
Reptile-based training approximates a solution
manifold across tasks (i.e., a high-density pa-
rameter sub-region biased for strong cross-task
likelihood), then similarly followed by rapid
fine-tuning. By learning an optimal initializa-
tion, meta-learning proves useful for low-resource
adaptation by minimizing the data required
for out-of-domain tuning on new tasks. Kedia
et al. (2021) also demonstrate the utility of Reptile
to improve single-task performance. We build on
this to examine single-task cross-lingual transfer
using the manifold learned with Reptile.

Meta-Learning for Semantic Parsing A va-
riety of NLP applications have adopted meta-
learning in zero- and few-shot learning scenarios
as a method of explicitly training for general-
ization (Lee et al., 2021; Hedderich et al., 2021).
Within semantic parsing, there has been increasing
interest in cross-database generalization, moti-
vated by datasets such as Spider (Yu et al., 2018)
requiring navigation of unseen databases (Herzig
and Berant, 2017; Suhr et al., 2020).

Approaches to generalization have included
simulating source and target domains (Givoli and
Reichart, 2019) and synthesizing new training data
based on unseen databases (Zhong et al., 2020;
Xu et al., 2020a). Meta-learning has demonstrated
fast adaptation to new data within a monolin-
gual low-resource setting (Huang et al., 2018; Guo
et al., 2019; Lee et al., 2019; Sun et al., 2020).
Similarly, Chen et al. (2020) utilize Reptile to
improve generalization of a model, trained on
source domains, to fine-tune on new domains.
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Our work builds on Wang et al. (2021a), who
explicitly promote monolingual cross-domain
generalization by ‘‘meta-generalizing’’ across dis-
joint, domain-specific batches during training.

Cross-lingual Semantic Parsing A surge of in-
terest in cross-lingual NLU has seen the creation of
many benchmarks across a breadth of languages
(Conneau et al., 2018; Hu et al., 2020; Liang
et al., 2020), thereby motivating significant ex-
ploration of cross-lingual transfer (Nooralahzadeh
et al., 2020; Xia et al., 2021; Xu et al., 2021;
Zhao et al., 2021, inter alia). Previous approaches
to cross-lingual semantic parsing assume parallel
multilingual training data (Jie and Lu, 2014) and
exploit multi-language inputs for training without
resource constraints (Susanto and Lu, 2017a,b).

There has been recent interest in evaluating if
machine translation is an economic proxy for cre-
ating training data in new languages (Sherborne
et al., 2020; Moradshahi et al., 2020). Zero-shot
approaches to cross-lingual parsing have also
been explored using auxiliary training objectives
(Yang et al., 2021; Sherborne and Lapata, 2022).
Cross-lingual learning has also been gaining
traction in the adjacent field of spoken-language
understanding (SLU). For datasets such as Multi-
ATIS (Upadhyay et al., 2018), MultiATIS++ (Xu
et al., 2020b), and MTOP (Li et al., 2021),
zero-shot cross-lingual transfer has been studied
through specialized decoding methods (Zhu et al.,
2020), machine translation (Nicosia et al., 2021),
and auxiliary objectives (van der Goot et al.,
2021).

Cross-lingual semantic parsing has mostly
remained orthogonal to the cross-database gen-
eralization challenges raised by datasets such as
Spider (Yu et al., 2018). While we primarily
present findings for multilingual ATIS into SQL
(Hemphill et al., 1990), we also train a parser on
both Spider and its Chinese version (Min et al.,
2019). To the best of our knowledge, we are
the first to explore a multilingual approach to
this cross-database benchmark. We use Reptile to
learn the overall task and leverage domain gener-
alization techniques (Li et al., 2018; Wang et al.,
2021a) for sample-efficient cross-lingual transfer.

3 Problem Definition

Semantic Parsing We wish to learn a param-
eterized parsing function, pθ, which maps from

a natural language utterance and a relational data-
base context to an executable program expressed
in a logical form (LF) language:

P = pθ (Q, D) (1)

As formalized in Equation (1), we learn pa-
rameters, θ, using paired data (Q,P,D) where
P is the logical form equivalent of natural lan-
guage question Q. In this work, our LFs are all
executable SQL queries and therefore grounded
in a database D. A single-domain dataset refer-
ences only one D database for all (Q,P ), whereas
a multi-domain dataset demands reasoning about
unseen databases to generalize to new queries.
This is expressed as a ‘zero-shot’ problem if the
databases at test time, Dtest, were unseen during
training. This challenge demands a parser capa-
ble of domain generalization beyond observed
databases. This is in addition to the structured
prediction challenge of semantic parsing.

Cross-Lingual Generalization Prototypical se-
mantic parsing datasets express the question, Q, in
English only. As discussed in Section 1, our parser
should be capable of mapping from additional
languages to well-formed, executable programs.
However, prohibitive expense limits us from
reproducing a monolingual model for each addi-
tional language and previous work demonstrates
accuracy improvement by training multilingual
models (Jie and Lu, 2014). In addition to the
challenges of structured prediction and domain
generalization, we jointly consider cross-lingual
generalization. Training primarily relies on exist-
ing English data (i.e., QEN samples) and we show
that our meta-learning algorithm in Section 4
leverages a small sample of training data in new
languages for accurate parsing. We express this
sample, Sl, for some language, l, as:

Sl = (Ql, P, D)Nl
i=0 (2)

where Nl is the sample size from l, assumed
to be smaller than the original English dataset
(i.e., Nl � NEN). Where available, we extend
this paradigm to develop models for L different
languages simultaneously in a multilingual setup
by combining samples as:

SL = {Sl1 ,Sl2 , . . . ,SlN} (3)
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We can express cross-lingual generalization as:

pθ (P | Ql, D) → pθ (P | QEN, D) (4)

where pθ (P | QEN, D) is the predicted distri-
bution over all possible output SQL sequences
conditioned on an English question, QEN, and a
database D. Our goal is for the prediction from a
new language, Ql, to converge towards this ex-
isting distribution using the same parameters θ,
constrained to fewer samples in l than English.

We aim to maximize the accuracy of predict-
ing programs on unseen test data from each
non-English language l. The key challenge is
learning a performant distribution over each new
language with minimal available samples. This
includes learning to incorporate each l into the
parsing task and modeling the language-specific
surface form of questions. Our setup is akin to
few-shot learning; however, the number of ex-
amples needed for satisfactory performance is an
empirical question. We are searching for both
minimal sample sizes and maximal sampling ef-
ficiency. We discuss our sampling strategy in
Section 5.2 with results at multiple sizes of SL

in Section 6.

4 Methodology

We combine two meta-learning techniques for
cross-lingual semantic parsing. The first is the
Reptile algorithm outlined in Section 2. Reptile
optimizes for dense likelihood regions within the
parameters (i.e., a solution manifold) through pro-
moting inter-batch generalization (Nichol et al.,
2018). Standard Reptile iteratively optimizes the
manifold for an improved initialization across
objectives. Rapid fine-tuning yields the final
task-specific model. The second technique is the
first-order approximation of DG-MAML (Li et al.,
2018; Wang et al., 2021a). This single-stage pro-
cess optimizes for domain generalization by
simulating ‘‘source’’ and ‘‘target’’ batches from
different domains to explicitly optimize for cross-
batch generalization. Our algorithm, XG-REPTILE,
combines these paradigms to optimize a target
loss with the overall learning ‘‘direction’’ de-
rived as the optimal manifold learned via Rep-
tile. This trains an accurate parser demonstrating
sample-efficient cross-lingual transfer within an
efficient single-stage learning process.

Figure 1: One iteration of XG-REPTILE. (1) Run K
iterations of gradient descent over K support batches to
learn φK , (2) compute ∇macro, the difference between
φK and φ1, (3) find the loss on the target batch using
φK , and (4) compute the final gradient update from
∇macro and the target loss.

4.1 The XG-REPTILE Algorithm

Each learning episode of XG-REPTILE comprises
two component steps: intra-task learning and
inter-language generalization to jointly learn pars-
ing and cross-lingual transfer. Alternating these
processes trains a competitive parser from multi-
ple languages with low computational overhead
beyond existing gradient-descent training. Our
approach combines the typical two stages of
meta-learning to produce a single model without
a fine-tuning requirement.

Task Learning Step We first sample from the
high-resource language (i.e., SEN) K ‘‘support’’
batches of examples, BS = {(QEN, P,D)}. For
each of K batches: We compute predictions,
compute losses, calculate gradients and adjust pa-
rameters using some optimizer (see illustration in
Figure 1). After K successive optimization steps
the initial weights in this episode, φ1, have been
optimized to φK . The difference between final
and initial weights is calculated as:

∇macro = φK − φ1 (5)

This ‘‘macro-gradient’’ step is equivalent to a
Reptile step (Nichol et al., 2018), representing
learning a solution manifold as an approximation
of overall learning trajectory.
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Algorithm 1 XG-REPTILE

Require: Support data, SEN, target data, SL

Require: Inner learning rate, α, outer learning rate, β
1: Initialise θ1, the vector of initial parameters
2: for t ← 1 to T do
3: Copy φ1 ← θt−1

4: Sample K support batches {BS}Kk=1 from SEN
5: Sample target language l from L languages
6: Sample target batch BT from Sl

7: for k ← 1 to K [Inner Loop] do
8: LS

k ← Forward
(
BS
k , φk−1

)

9: φk ← Adam
(
φk−1, ∇LS

k , α
)

10: end for
11: Macro grad: ∇macro ← φK − φ1

12: Target Step: LT ← Forward
(
BT , φK

)

13: Total gradient: ∇Σ = ∇macro +∇φK
LT

14: Update θt ← SGD (θt−1, ∇Σ, β)
15: end for

Cross-Lingual Step The second step samples
one ‘‘target’’ batch, BT = (Ql, P, D), from a
sampled target language (i.e., Sl ⊂ SL). We com-
pute the cross-entropy loss and gradients from the
prediction of the model at φK on BT :

LT = Loss (pφK
(Ql,D) , P ) (6)

We evaluate the parser at φK on a target lan-
guage we desire to generalize to. We show below
that the gradient of LT comprises the loss at φK

and additional terms maximizing the inner product
between the high-likelihood manifold and the tar-
get loss. The total gradient encourages intra-task
and cross-lingual learning (see Figure 1).

Algorithm 1 outlines the XG-REPTILE process
(loss calculation and batch processing are simpli-
fied for brevity). We repeat this process over T
episodes to train model pθ to convergence. If we
optimized for target data to align with individual
support batches (i.e.,K = 1) then we may observe
batch-level noise in cross-lingual generalization.
Our intuition is that aligning the target gradient
with an approximation of the task manifold, i.e.,
∇macro, will overcome this noise and align new
languages to a more mutually beneficial direction
during training. We observe this intuitive behavior
during learning in Section 6.

We efficiently generalize to low-resource
languages by exploiting the asymmetric data re-
quirements between steps: One batch of the target
language is required for K batches of the source
language. For example, if K = 10 then using this

1
K proportionality requires 10% of target-language
data relative to support. We demonstrate in
Section 6 that we can use a smaller < 1

K quantity
per target language to increase sample efficiency.

Gradient Analysis Following Nichol et al.
(2018), we express gk = ∇LS

k , the gradient in
a single step of the inner loop (Line 9), as:

gk = ḡi + H̄k (φk − φ1) +O
(
α2

)
(7)

We use a Taylor series expansion to approximate
gk by ḡk, the gradient at the original point, φ1,
the Hessian matrix of the gradient at the initial
point, H̄k, the step difference between position
φk and the initial position and some scalar terms
with marginal influence, O

(
α2

)
.

By evaluating Equation (7) at i = 1 and rewrit-
ing the difference as a sum of gradient steps (e.g.,
Equations (8) and (9)), we arrive at an expression
for gk shown in Equation (10) expressing the gra-
dient as an initial component, ĝk, and the product
of the Hessian at k, with all prior gradient steps.
We refer to Nichol et al. (2018) for further vali-
dation that the gradient of this product maximizes
the cross-batch expectation—therefore promoting
cross-batch generalization and towards the solu-
tion manifold. The final gradient (Equation (11)) is
the accumulation over gk steps and is equivalent
to Equation (5). ∇macro comprises both gradi-
ents of K steps and additional terms maximiz-
ing the inner-product of cross-batch gradients.

Use gj = ḡj +O(α) (8)

φk − φ1 = −α

k−1∑

j=1

gj (9)

gk = ḡi − αH̄i

k−1∑

j=1

ḡj +O
(
α2

)
(10)

∇macro =

K∑

k=1

gk (11)

We can similarly express the gradient of the
target batch as Equation (12) where the term,
H̄T∇macro, is the cross-lingual generalization
product similar to the intra-task generalization
seen above.

gT = ḡT − αH̄T∇macro +O
(
α2

)
(12)
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Equation (13) shows an example final gradi-
ent when K = 2. Within the parentheses are
the cross-batch and cross-lingual gradient prod-
ucts as components promoting fast learning across
multiple axes of generalization.

∇Σ = g1 + g2 + gT

= ḡ1 + ḡ2 + ḡT (13)

− α
(
H̄2ḡ1 + H̄T [ḡ1 + ḡ2]

)
+O

(
α2

)

The key hyperparameter in XG-REPTILE is the
number of inner-loop steps K representing a
trade-off between manifold approximation and
target step frequency. At small K, the manifold
approximation may be poor, leading to sub-
optimal learning. At largeK, then improved mani-
fold approximation incurs fewer target batch steps
per epoch, leading to weaked cross-lingual trans-
fer. In practice, K is set empirically, and Section 6
identifies an optimal region for our task.

XG-REPTILE can be viewed as generalizing
two existing algorithms. Without the LT loss,
our approach is equivalent to Reptile and lacks
cross-lingual alignment. If K = 1, then XG-
REPTILE is equivalent to DG-FMAML (Wang
et al., 2021a) but lacks generalization across
support batches. Our unification of these al-
gorithms represent the best of both approaches
and outperforms both techniques within semantic
parsing. Another perspective is that XG-REPTILE

learns a regularized manifold, with immediate
cross-lingual capability, as opposed to standard
Reptile, which requires fine-tuning to transfer
across tasks. We identify how this contrast in
approaches influences cross-lingual transfer in
Section 6.

5 Experimental Design

We evaluate XG-REPTILE against several com-
parison systems across multiple languages. Where
possible, we re-implement existing models and
use identical data splits to isolate the contribu-
tion of our training algorithm.

5.1 Data

We report results on two semantic parsing data-
sets. First on ATIS (Hemphill et al., 1990), us-
ing the multilingual version from Sherborne and
Lapata (2022) pairing utterances in six languages
(English, French, Portuguese, Spanish, German,
Chinese) to SQL queries. ATIS is split into 4,473

training pairs with 493 and 448 examples for
validation and testing, respectively. We report
performance as execution accuracy to test if pre-
dicted SQL queries can retrieve accurate data-
base results.

We also evaluate on Spider (Yu et al., 2018),
combining English and Chinese (Min et al., 2019,
CSpider) versions as a cross-lingual task. The
latter translates all questions to Chinese but re-
tains the English database. Spider is significantly
more challenging; it contains 10,181 questions
and 5,693 unique SQL queries for 200 multi-table
databases over 138 domains. We use the same
split as Wang et al. (2021a) to measure general-
ization to unseen databases/table-schema during
testing. This split uses 8,659 examples from 146
databases for training and 1,034 examples from
20 databases for validation. The test set contains
2,147 examples from 40 held-out databases and
is held privately by the authors. To our knowl-
edge, we report the first multilingual approach
for Spider by training one model for English and
Chinese. Our challenge is now multi-dimensional,
requiring cross-lingual and cross-domain gener-
alization. Following Yu et al. (2018), we report
exact set match accuracy for evaluation.

5.2 Sampling for Generalization

Training for cross-lingual generalization often
uses parallel samples across languages. We illus-
trate this in Equation (14), where y1 is the equiv-
alent output for inputs, x1, in each language:

EN : (x1, y1)DE : (x1, y1)ZH : (x1, y1) (14)

However, high sample overlap risks trivializing
the task because models are not learning from
new pairs, but instead matching only new inputs
to known outputs. A preferable evaluation will
test composition of novel outputs from unseen
inputs:

EN : (x1, y1) DE : (x2, y2) ZH : (x2, y2) (15)

Equation (15) samples exclusive, disjoint datasets
for English and target languages during training.
In other words, this process is subtractive—for
example, a 5% sample of German (or Chinese)
target data leaves 95% of data as the English
support. This is similar to K-fold cross-validation
used to evaluate across many data splits. We
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sample data for our experiments with Equa-
tion (15). It is also possible to use Equation (16),
where target samples are also disjoint, but we
find this setup results in too few English exam-
ples for effective learning.

EN : (x1, y1) DE : (x2, y2) ZH : (x3, y3) (16)

5.3 Semantic Parsing Models

We use a Transformer encoder-decoder model
similar to Sherborne and Lapata (2022) for our
ATIS experiments. We use the same mBART50
encoder (Tang et al., 2021) and train a Trans-
former decoder from scratch to generate SQL.

For Spider, we use the RAT-SQL model
(Wang et al., 2020a), which has formed the
basis of many performant submissions to the
Spider leaderboard. RAT-SQL can successfully
reason about unseen databases and table schema
using a novel schema-linking approach within
the encoder. We use the version from Wang
et al. (2021a) with mBERT (Devlin et al., 2019)
input embeddings for a unified model between
English and Chinese inputs. Notably, RAT-SQL
can be over-reliant on lexical similarity features
between input questions and tables (Wang et al.,
2020a). This raises the challenge of generaliz-
ing to Chinese where such overlap is null. For
fair comparison, we implement identical models
as prior work on each dataset and only evaluate
the change in training algorithm. This is why we
use an mBART50 encoder component for ATIS
experiments and different mBERT input embed-
dings for Spider experiments.

5.4 Comparison Systems

We compare our algorithm against several strong
baselines and adjacent training methods including:

Monolingual Training A monolingual Trans-
former is trained on gold-standard pro-
fessionally translated data for each new
language. This is a monolingual upper bound
without few-shot constraints.

Multilingual Training A multilingual Trans-
former is trained on the union of all data
from the ‘‘Monolingual Training’’ method.
This ideal upper bound uses all data in all
languages without few-shot constraints.

Translate-Test A monolingual Transformer is
trained on source English data (SEN). Ma-
chine translation is used to translate test
data from additional languages into English.
Logical forms are predicted from translated
data using the English model.

Translate-Train Machine translation is used to
translate English training data into each tar-
get language. A monolingual Transformer is
trained on translated training data and logical
forms are predicted using this model.

Train-EN∪All A Transformer is trained on
English data and samples from all target
languages together in a single stage (i.e.,
SEN∪SL). This is superior to training without
English (e.g., on SL only); we contrast to this
approach for more competitive comparison.

TrainEN→FT-All We first train on English sup-
port data, SEN, and then fine-tune on target
samples, SL.

Reptile-EN→FT-All Initial training uses Rep-
tile (Nichol et al., 2018) on English support
data, SEN, followed by fine-tuning on tar-
get samples, SL. This is a typical usage of
Reptile for training a low-resource multi-
domain parser (Chen et al., 2020).

We also compare to DG-FMAML (Wang et al.,
2021a) as a special case of XG-REPTILE when
K = 1. Additionally, we omit pairwise versions
of XG-REPTILE (e.g., separate models general-
izing from English to individual languages).
These approaches demand more computation and
demonstrated no significant improvement over a
multi-language approach. All Machine Transla-
tion uses Google Translate (Wu et al., 2016).

5.5 Training Configuration

Experiments focus on the expansion from English
to additional languages, where we use English as
the ‘‘support’’ language and additional languages
as ‘‘target’’. Key hyperparameters are outlined in
Table 1. We train each model using the given opti-
mizers with early stopping where model selection
is through minimal validation loss for combined
support and target languages. Input utterances
are tokenized using SentencePiece (Kudo and
Richardson, 2018) and Stanza (Qi et al., 2020)
for ATIS and Spider, respectively. All experi-
ments are implemented in PyTorch on a single
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ATIS Spider

Batch Size 10 16
Inner Optimizer SGD
Inner LR 1× 10−4

Outer Optimizer Adam (Kingma and Ba, 2015)
Outer LR 1× 10−3 5× 10−4

Optimum K 10 3
Max Train Steps 20,000
Training Time 12 hours 2.5 days

Table 1: Experimental hyperparameters for XG-
REPTILE on ATIS and Spider set primarily by
replicating prior work.

V100 GPU. We report key results for ATIS aver-
aged over three seeds and five random data splits.
For Spider, we submit the best singular model
from five random splits to the leaderboard.

6 Results and Analysis

We contrast XG-REPTILE to baselines for ATIS
in Table 2 and present further analysis within
Figure 2. Results for the multi-domain Spider
are shown in Table 3. Our findings support our
hypothesis that XG-REPTILE is a superior algo-
rithm for jointly training a semantic parser and
encouraging cross-lingual generalization with im-
proved sample efficiency. Given the same data,
XG-REPTILE produces more mutually beneficial
parameters for both model requirements with
only modifications to the training loop.

Comparison across Generalization Strategies
We compare XG-REPTILE to established learn-
ing algorithms in Table 2. Across baselines,
we find that single-stage training, that is, Train-
EN∪All or machine-translation based mod-
els, perform below two-stage approaches. The
strongest competitor is the Reptile-EN→FT-All
model, highlighting the effectiveness of Reptile
for single-task generalization (Kedia et al., 2021).
However, XG-REPTILE performs above all base-
lines across sample rates. Practically, 1%, 5%,
10% correspond to 45, 225, and 450 example
pairs, respectively. We identify significant im-
provements (p < 0.01; relative to the closest
model using an independent t-test) in cross-
lingual transfer through jointly learning to parse
and multi-language generalization while main-
taining single-stage training efficiency.

Compared to the upper bounds, XG-REPTILE

performs above Monolingual Training at ≥ 1%
sampling, which further supports the prior ben-
efit of multilingual modeling (Susanto and Lu,
2017a). Multilingual Training is only marginally
stronger than XG-REPTILE at 1% and 5% sam-
pling despite requiring many more examples.
XG-REPTILE@10% improves on this model by
an average +1.3%. Considering that our upper
bound uses 10× the data of XG-REPTILE@10%,
this accuracy gain highlights the benefit of ex-
plicit cross-lingual generalization. This is con-
sistent at higher sample sizes (see Figure 2(c)
for German).

At the smallest sample size, XG-REPTILE@1%,
demonstrates a +12.4% and +13.2% improve-
ment relative to Translate-Train and Translate-
Test. Machine translation is often viable for
cross-lingual transfer (Conneau et al., 2018). How-
ever, we find that mistranslation of named entities
incurs an exaggerated parsing penalty—leading
to inaccurate logical forms (Sherborne et al.,
2020). This suggests that sample quality has an
exaggerated influence on semantic parsing perfor-
mance. When training XG-REPTILE with MT data,
we also observe a lower Target-language aver-
age of 66.9%. This contrast further supports the
importance of sample quality in our context.

XG-REPTILE improves cross-lingual generaliza-
tion across all languages at equivalent and lower
sample sizes. At 1%, it improves by an average
+15.7% over the closest model, Reptile-EN→
FT-All. Similarly, at 5%, we find +9.8% gain,
and at 10%, we find +8.9% relative to the clos-
est competitor. Contrasting across sample sizes—
our best approach is @10%, however, this is
+3.5% above @1%, suggesting that smaller
samples could be sufficient if 10% sampling is
unattainable. This relative stability is an improve-
ment compared to the 17.7%, 11.2%, or 10.3%
difference between @1% and @10% for other
models. This implies that XG-REPTILE better uti-
lizes smaller samples than adjacent methods.

Across languages at 1%, XG-REPTILE improves
primarily for languages dissimilar to English
(Ahmad et al., 2019) to better minimize the
cross-lingual transfer gap. For Chinese (ZH), we
see that XG-REPTILE@1% is +26.4% above the
closest baseline. This contrasts with the smallest
gain, +8.5% for German, with greater similar-
ity to English. Our improvement also yields less
variability across target languages—the standard
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EN FR PT ES DE ZH Target Avg

ZX-PARSE (Sherborne and Lapata, 2022) 76.9 70.2 63.4 59.7 69.3 60.2 64.6 ± 5.0
Monolingual Training 77.2 67.8 66.1 64.1 66.6 64.9 65.9 ± 1.4
Multilingual Training 73.9 72.5 73.1 70.4 72.0 70.5 71.7 ± 1.2
Translate-Train — 55.9 56.1 57.1 60.1 56.1 57.1 ± 1.8
Translate-Test — 58.2 57.3 57.9 56.9 51.4 56.3 ± 2.8

@1%

Train-EN∪All 69.7 ± 1.4 44.0 ± 3.5 42.2 ± 3.7 38.3 ± 6.8 45.8 ± 2.6 41.7 ± 3.6 42.4 ± 2.8
Train-EN→FT-All 71.2 ± 2.3 53.3 ± 5.2 49.7 ± 5.4 56.1 ± 2.7 52.5 ± 6.7 39.0 ± 4.0 50.1 ± 6.6
Reptile-EN→FT-All 73.2 ± 0.7 58.9 ± 4.8 54.8 ± 3.4 52.8 ± 4.4 60.6 ± 3.6 41.7 ± 4.0 53.8 ± 7.4
XG-REPTILE 73.8 ± 0.3 70.4 ± 1.8 70.8 ± 0.7 68.9 ± 2.3 69.1 ± 1.2 68.1 ± 1.2 69.5 ± 1.1

@5%

Train-EN∪All 67.3 ± 1.6 55.2 ± 4.5 54.7 ± 4.5 44.4 ± 4.5 55.8 ± 2.9 52.3 ± 4.3 52.5 ± 4.7
Train-EN→FT-All 69.2 ± 1.9 58.9 ± 5.3 54.8 ± 5.4 52.8 ± 4.5 60.6 ± 6.5 41.7 ± 9.5 53.8 ± 7.4
Reptile-EN→FT-All 69.5 ± 1.8 65.3 ± 3.8 61.3 ± 6.0 59.6 ± 2.6 64.9 ± 5.1 56.9 ± 9.2 61.6 ± 3.6
XG-REPTILE 74.4 ± 1.3 73.0 ± 0.9 71.6 ± 1.1 71.6 ± 0.7 71.1 ± 0.6 69.5 ± 0.5 71.4 ± 1.3

@10%

Train-EN∪All 65.7 ± 1.9 61.5 ± 1.7 62.1 ± 2.3 53.7 ± 3.2 62.7 ± 2.3 60.6 ± 2.4 60.1 ± 3.7
Train-EN→FT-All 67.4 ± 1.9 63.8 ± 5.8 60.3 ± 5.3 59.6 ± 4.0 64.5 ± 6.5 58.4 ± 6.4 61.3 ± 2.7
Reptile-EN→FT-All 72.8 ± 1.8 66.3 ± 4.2 64.6 ± 4.9 62.3 ± 6.4 66.6 ± 5.0 60.7 ± 3.6 64.1 ± 2.6
XG-REPTILE 75.8 ± 1.3 74.2 ± 0.2 72.8 ± 0.6 72.1 ± 0.7 73.0 ± 0.6 72.8 ± 0.5 73.0 ± 0.8

Table 2: Denotation accuracy using varying learning algorithms including XG-REPTILE at 1%, 5%,
and 10% sampling rates for target dataset size relative to support dataset for ATIS. We report
for English, French, Portuguese, Spanish, German, and Chinese. Target Avg reports the average
denotation accuracy across non-English languages ± standard deviation across languages. For few-shot
experiments, we also report the standard deviation (±) across random samples. Best few-shot results
per language are bolded.

Figure 2: Ablation Experiments on ATIS (a) accuracy against inner loop size K across languages, (b) accuracy
against K for German when varying batch size, and (c) accuracy against dataset sample size relative to support
dataset from 1% to 50% for German. For (b), the K = 1 case is equivalent to DG-FMAML (Wang et al., 2021a).

deviation across languages for XG-REPTILE@1%
is 1.1, compared to 2.8 for Train-EN∪All or 7.4
for Reptile-EN→FT-All.

We can also compare to ZX-PARSE, the method
of Sherborne and Lapata (2022) that engineers
cross-lingual latent alignment for zero-shot se-
mantic parsing without data in target languages.
With 45 samples per target language, XG-
REPTILE@1% improves by an average of +4.9%.
XG-REPTILE is more beneficial for distant
languages—cross-lingual transfer penalty be-
tween English and Chinese is −12.3% for ZX-
PARSE compared to −5.7% in our case. While
these systems are not truly comparable, given

different data requirements, this contrast is prac-
tically useful for comparison between zero- and
few-shot localization.

Influence of K on Performance In Figure 2(a)
we study how variation in the key hyperparame-
ter K, the size of the inner-loop in Algorithm 1
or the number of batches used to approximate
the solution manifold influences model per-
formance across languages (single run at 5%
sampling). When K = 1, the model learns gen-
eralization from batch-wise similarity, which is
equivalent to DG-FMAML (Wang et al., 2021a).
We empirically find that increasing K beyond
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one benefits performance by encouraging cross-
lingual generalization with the task over a sin-
gle batch, and it is, therefore, beneficial to align
an out-of-domain example with the overall di-
rection of training. However, as theorized in
Section 4, increasing K also decreases the fre-
quency of the outer step within an epoch leading
to poor cross-lingual transfer at high K. This
trade-off yields an optimal operating regime for
this hyper-parameter. We use K = 10 in our
experiments as the center of this region. Given
this setting of K, the target sample size must be
10% of the support sample size for training
in a single epoch. However, Table 2 identi-
fies XG-REPTILE as the most capable algorithm
for ‘‘over-sampling’’ smaller target samples for
resource-constrained generalization.

Influence of Batch Size on Performance We
consider two further case studies to analyze
XG-REPTILE performance. For clarity, we focus
on German; however, these trends are consistent
across all target languages. Figure 2(b) exam-
ines if the effects of cross-lingual transfer within
XG-REPTILE are sensitive to batch size during train-
ing (single run at 5% sampling). A dependence
between K and batch size could imply that the
desired inter-task and cross-lingual generaliza-
tion outlined in Equation (13) is an unrealistic,
edge-case phenomenon. This is not the case,
and a trend of optimal K setting is consistent
across many batch sizes. This suggests that K is
an independent hyper-parameter requiring tuning
alongside existing experimental settings.

Performance across Larger Sample Sizes We
consider a wider range of target data sample
sizes between 1% and 50% in Figure 2(c). We
observe that baseline approaches converge to be-
tween 69.3% and 73.9% at 50% target sample size.
Surprisingly, the improvement of XG-REPTILE is
retained at higher sample sizes with an accuracy
of 76.5%. The benefit of XG-REPTILE is still great-
est at low sample sizes with +5.4% improvement
at 1%; however, we maintain a +2.6% gain over
the closest system at 50%. While low sampling
is the most economical, the consistent benefit
of XG-REPTILE suggests a promising strategy for
other cross-lingual tasks.

Learning Spider and CSpider Our results on
Spider and CSpider are shown in Table 3. We

EN ZH

Dev Test Dev Test

Monolingual

DG-MAML 68.9 65.2 50.4 46.9
DG-FMAML 56.8 — 32.5 —
XG-REPTILE 63.5 — 48.9 —

Multilingual

XG-REPTILE @1% 56.8 56.5 47.0 45.6
@5% 59.6 58.1 47.3 45.6
@10% 59.2 59.7 48.0 46.0

Table 3: Exact set match accuracy for RAT-SQL
trained on Spider (English) and CSpider (Chi-
nese) comparing XG-REPTILE to DG-MAML and
DG-FMAML (Wang et al., 2021a). We exper-
iment with sampling between 1% to 10% of
Chinese examples relative to English. Monolin-
gual and multilingual best results are bolded.

compare XG-REPTILE to monolingual approaches
from Wang et al. (2021a) and discuss cross-lingual
results when sampling between 1% and 10% of
CSpider target during training.

In the monolingual setting, XG-REPTILE shows
significant improvement (p < 0.01; using an inde-
pendent samples t-test) compared to DG-FMAML
with +6.7% for English and +16.4% for Chinese
dev accuracy. This further supports our claim that
generalizing with a task manifold is superior to
batch-level generalization.

Our results are closer to DG-MAML (Wang
et al., 2021a), a higher-order meta-learning
method requiring computational resources and
training times exceeding 4× the requirements
for XG-REPTILE. XG-REPTILE yields accuracies
−5.4% and −1.5% below DG-MAML for En-
glish and Chinese, where DG-FMAML performs
much lower at −12.1% (EN) and −17.9% (ZH).
Our results suggest that XG-REPTILE is a supe-
rior first-order meta-learning algorithm rivaling
prior work with greater computational demands.3

In the multilingual setting, we observe that
XG-REPTILE performs competitively using as lit-
tle as 1% of Chinese examples. While training
sampling 1% and 5% perform similarly—the best
model sees 10% of CSpider samples during train-
ing to yield accuracy only −0.9% (test) below

3We compare against DG-MAML as the best public
available model on the CSpider leaderboard at the time of
writing.
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Figure 3: PCA Visualizations of sentence-averaged encodings for English (EN), French (FR), and Chinese (ZH)
from the ATIS test set (@1% sampling from Table 2). We identify the regularized weight manifold that improves
cross-lingual transfer using XG-REPTILE. We also improve in two similarity metrics averaged across languages.

the monolingual DG-MAML model. While per-
formance does not match monolingual models,
the multilingual approach has additional utility in
serving more users. As a zero-shot setup, predict-
ing SQL from CSpider inputs through the model
trained for English yields 7.9% validation accu-
racy, underscoring that cross-lingual transfer for
this dataset is non-trivial.

Varying the target sample size demonstrates
more variable effects for Spider compared to
ATIS. Notably, increasing the sample size yields
poorer English performance beyond the optimal
XG-REPTILE@5% setting for English. This may
be a consequence of the cross-database challenge
in Spider—information shared across languages
may be less beneficial than for single-domain
ATIS. The least performant model for both lan-
guages is XG-REPTILE@1%. Low performance
here for Chinese can be expected, but the perfor-
mance for English is surprising. We suggest that
this result is a consequence of ‘‘over-sampling’’
of the target data disrupting the overall training
process. That is, for 1% sampling and optimal
K = 4, the target data is ‘‘over-used’’ 25× for
each epoch of support data. We further observe
diminishing benefits for English with additional
Chinese samples. While we trained a competi-

tive parser with minimal Chinese data, this effect
could be a consequence of how RAT-SQL can-
not exploit certain English-oriented learning fea-
tures (e.g., lexical similarity scores). Future work
could explore cross-lingual strategies to unify
entity modeling for improved feature sharing.

Visualizing the Manifold Analysis of XG-
REPTILE in Section 4 relies on a theoretical ba-
sis that first-order meta-learning creates a dense
high-likelihood sub-region in the parameters (i.e.,
optimal manifold). Under these conditions, repre-
sentations of new domains should cluster within
the manifold to allow for rapid adaptation with
minimal samples. This contrasts with methods
without meta-learning, which provide no guaran-
tees of representation density. However, metrics
in Tables 2 and 3 do not directly explain if this
expected effect arises. To this end, we visualize
ATIS test set encoder outputs using PCA (Halko
et al., 2011) in Figure 3. We contrast English
(support) and French and Chinese as the most
and least similar target languages. Using PCA al-
lows for direct interpretation of low-dimensional
distances across approaches. Cross-lingual sim-
ilarity is a proxy for manifold alignment—as
our goal is accurate cross-lingual transfer from
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closely aligned representations from source and
target languages (Xia et al., 2021; Sherborne
and Lapata, 2022).

Analyzing Figure 3, we observe meta-learning
methods (Reptile-EN→FT-All, XG-REPTILE) to fit
target languages closer to the support (English,
yellow circle). In contrast, methods not utilizing
meta-learning (Train-EN∪All, Train-EN→FT-All)
appear less ordered with weaker representation
overlap. Encodings from XG-REPTILE are less
separable across languages and densely clus-
tered, suggesting the regularized manifold hypoth-
esized in Section 4 ultimately yields improved
cross-lingual transfer. Visualizing encodings from
English in the Reptile-EN model before fine-
tuning produces a similar cluster (not shown),
however, required fine-tuning results in ‘‘spread-
ing’’ leading to less cross-lingual similarity.

We also quantitatively examine the average
encoding change in Figure 3 using cosine simi-
larity and Hausdorff distance (Patra et al., 2019)
between English and each target language. Cosine
similarity is measured pair-wise across parallel
inputs in each language to gauge similarity from
representations with equivalent SQL outputs. As
a measure of mutual proximity between sets,
Hausdorff distance denotes a worst-case dis-
tance between languages to measure more general
‘‘closeness’’. Under both metrics, XG-REPTILE

yields the best performance with the most sub-
stantial pair-wise similarity and Hausdorff simi-
larity. These indicators for cross-lingual similarity
further support the observation that our ex-
pected behavior is legitimately occurring during
training.

Our findings better explain why our XG-
REPTILE performs above other training algorithms.
Specifically, our results suggest that XG-REPTILE

learns a regularized manifold which produces
stronger cross-lingual similarity and improved
parsing compared to Reptile fine-tuning a man-
ifold. This contrast will inform future work for
cross-lingual meta-learning where XG-REPTILE

can be applied.

Error Analysis We can also examine where
the improved cross-lingual transfer influences
parsing performance. Similar to Figure 3, we con-
sider the results of models using 1% sampling as
the worst-case performance and examine where
XG-REPTILE improves on other methods on the
test set (448 examples) over five languages.

Figure 4: Contrast between SQL from a French input
from ATIS for Train-EN∪All and XG-REPTILE. The
entities ‘‘San José’’ and ‘‘Phoenix’’ are not observed
in the 1% sample of French data but are mentioned
in the English support data. The Train-EN∪All ap-
proach fails to connect attributes seen in English when
generating SQL from French inputs (×). Training
with XG-REPTILE better leverages support data to gen-
erate accurate SQL from other languages (�).

Accurate semantic parsing requires sophisti-
cated entity handling to translate mentioned proper
nouns from utterance to logical form. In our
few-shot sampling scenario, most entities will
appear in the English support data (e.g., ‘‘Den-
ver’’ or ‘‘American Airlines’’), and some will
be mentioned within the target language sam-
ple (e.g., ‘‘Mineápolis’’ or ‘‘Nueva York’’ in
Spanish). These samples cannot include all possi-
ble entities—effective cross-lingual learning must
‘‘connect’’ these entities from the support data to
the target language—such that these names can
be parsed when predicting SQL from the target
language. As shown in Figure 4, the failure to rec-
ognize entities from support data, for inference on
target languages, is a critical failing of all models
besides XG-REPTILE.
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The improvement in cross-lingual similarity
using XG-REPTILE expresses a specific improve-
ment in entity recognition. Compared to the worst
performing model, Train-EN∪All, 55% of im-
provement accounts for handling entities absent
from the 1% target sample but present in the 99%
English support data. While XG-REPTILE can gen-
erate accurate SQL, other models are limited in
expressivity to fall back on using seen entities
from the 1% sample. This notably accounts for
60% of improvement in parsing Chinese, with
minimal orthographic overlap to English, indi-
cating that XG-REPTILE better leverages support
data without reliance on token similarity. In 48%
of improved parses, entity mishandling is the
sole error—highlighting how limiting poor cross-
lingual transfer is for our task.

Our model also improves handling of novel
modifiers (e.g., ‘‘on a weekday’’, ‘‘round-trip’’)
absent from target language samples. Modi-
fiers are often realized as additional sub-queries
and filtering logic in SQL outputs. Comparing
XG-REPTILE to Train-EN∪All, 33% of improve-
ment is related to modifier handling. Less capable
systems fall back on modifiers observed from the
target sample or ignore them entirely to generate
inaccurate SQL.

While XG-REPTILE better links parsing knowl-
edge from English to target languages—the
problem is not solved. Outstanding errors in all
languages primarily relate to query complexity,
and the cross-lingual transfer gap is not closed.
Furthermore, our error analysis suggests a future
direction for optimal sample selection to minimize
the error from interpreting unseen phenomena.

7 Conclusion

We propose XG-REPTILE, a meta-learning algo-
rithm for few-shot cross-lingual generalization
in semantic parsing. XG-REPTILE is able to bet-
ter utilize fewer samples to learn an economical
multilingual semantic parser with minimal cost
and improved sample efficiency. Compared to
adjacent training algorithms and zero-shot ap-
proaches, we obtain more accurate and consistent
logical forms across languages similar and dis-
similar to English. Results on ATIS show clear
benefit across many languages and results on Spi-
der demonstrate that XG-REPTILE is effective in a
challenging cross-lingual and cross-database sce-
nario. We focus our study on semantic parsing,

however, this algorithm could be beneficial in
other low-resource cross-lingual tasks. In future
work we plan to examine how to better align enti-
ties in low-resource languages to further improve
parsing accuracy.
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