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Abstract

A fundamental goal of scientific research is
to learn about causal relationships. However,
despite its critical role in the life and so-
cial sciences, causality has not had the same
importance in Natural Language Processing
(NLP), which has traditionally placed more
emphasis on predictive tasks. This distinc-
tion is beginning to fade, with an emerging
area of interdisciplinary research at the con-
vergence of causal inference and language
processing. Still, research on causality in NLP
remains scattered across domains without uni-
fied definitions, benchmark datasets and clear
articulations of the challenges and opportuni-
ties in the application of causal inference to
the textual domain, with its unique proper-
ties. In this survey, we consolidate research
across academic areas and situate it in the
broader NLP landscape. We introduce the sta-
tistical challenge of estimating causal effects
with text, encompassing settings where text is
used as an outcome, treatment, or to address
confounding. In addition, we explore potential
uses of causal inference to improve the ro-
bustness, fairness, and interpretability of NLP

∗All authors equally contributed to this paper. Au-
thor names are organized alphabetically in two clusters:
First students and post-docs and then faculty members.
The email address of the corresponding (first) author is:
feder@campus.technion.ac.il.

models. We thus provide a unified overview
of causal inference for the NLP community.1

1 Introduction

The increasing effectiveness of NLP has created
exciting new opportunities for interdisciplinary
collaborations, bringing NLP techniques to a
wide range of external research disciplines (e.g.,
Roberts et al., 2014; Zhang et al., 2020; Ophir
et al., 2020) and incorporating new data and tasks
into mainstream NLP (e.g., Thomas et al., 2006;
Pryzant et al., 2018). In such interdisciplinary
collaborations, many of the most important re-
search questions relate to the inference of causal
relationships. For example, before recommending
a new drug therapy, clinicians want to know the
causal effect of the drug on disease progression.
Causal inference involves a question about a coun-
terfactual world created by taking an intervention:
What would a patient’s disease progression have
been if we had given them the drug? As we ex-
plain below, with observational data, the causal
effect is not equivalent to the correlation between
whether the drug is taken and the observed dis-
ease progression. There is now a vast literature
on techniques for making valid inferences using

1An online repository containing existing research on
causal inference and language processing is available
here: https://github.com/causaltext/causal
-text-papers.
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traditional (non-text) datasets (e.g., Morgan and
Winship, 2015), but the application of these
techniques to natural language data raises new
fundamental challenges.

Conversely, in many classical NLP applica-
tions, the main goal is to make accurate predic-
tions: Any statistical correlation is admissible,
regardless of the underlying causal relationship.
However, as NLP systems are increasingly de-
ployed in challenging and high-stakes scenarios,
we cannot rely on the usual assumption that
training and test data are identically distributed,
and we may not be satisfied with uninterpretable
black-box predictors. For both of these problems,
causality offers a promising path forward: Domain
knowledge of the causal structure of the data gen-
erating process can suggest inductive biases that
lead to more robust predictors, and a causal view
of the predictor itself can offer new insights on its
inner workings.

The core claim of this survey paper is that
deepening the connection between causality and
NLP has the potential to advance the goals of both
social science and NLP researchers. We divide
the intersection of causality and NLP into two
areas: Estimating causal effects from text, and
using causal formalisms to make NLP methods
more reliable. We next illustrate this distinction.

Example 1. An online forum has allowed its users
to indicate their preferred gender in their profiles
with a female or male icon. They notice that
users who label themselves with the female icon
tend to receive fewer ‘‘likes’’ on their posts. To
better evaluate their policy of allowing gender
information in profiles, they ask: Does using the
female icon cause a decrease in popularity for
a post?

Ex. 1 addresses the causal effect of signaling
female gender (treatment) on the likes a post
receives (outcome) (see discussion on signaling
at Keith et al., 2020). The counterfactual question
is: If we could manipulate the gender icon of
a post, how many likes would the post have
received?

The observed correlation between the gender
icons and the number of ‘‘likes’’ generally does
not coincide with the causal effect: It might in-
stead be a spurious correlation, induced by other
variables, known as confounders, which are cor-
related with both the treatment and the outcome
(see Gururangan et al., 2018, for an early discus-

sion of spurious correlation in NLP). One possible
confounder is the topic of each post: Posts writ-
ten by users who have selected the female icon
may be about certain topics (e.g., child birth or
menstruation) more often, and those topics may
not receive as many likes from the audience of
the broader online platform. As we will see in
§ 2, due to confounding, estimating a causal effect
requires assumptions.

Example 1 highlights the setting where the text
encodes the relevant confounders of a causal ef-
fect. The text as a confounder setting is one of
many causal inferences we can make with text
data. The text data can also encode outcomes or
treatments of interest. For example, we may won-
der about how gender signal affects the sentiment
of the reply that a post receives (text as outcome),
or about how a writing style affects the ‘‘likes’’ a
post receives (text as treatment).

NLP Helps Causal Inference. Causal inference
with text data involves several challenges that are
distinct from typical causal inference settings:
Text is high-dimensional, needs sophisticated
modeling to measure semantically meaningful fac-
tors like topic, and demands careful thought to
formalize the intervention that a causal question
corresponds to. The developments in NLP around
modeling language, from topic models (Blei
et al., 2003) to contextual embeddings (e.g.,
Devlin et al., 2019), offer promising ways to ex-
tract the information we need from text to estimate
causal effects. However, we need new assump-
tions to ensure that the use of NLP methods leads
to valid causal inferences. We discuss existing re-
search on estimating causal effects from text and
emphasize these challenges and opportunities in
§ 3.

Example 2. A medical research center wants to
build a classifier to detect clinical diagnoses from
the textual narratives of patient medical records.
The records are aggregated across multiple hos-
pital sites, which vary both in the frequency of the
target clinical condition and the writing style of
the narratives. When the classifier is applied to
records from sites that were not in the training
set, its accuracy decreases. Post-hoc analysis in-
dicates that it puts significant weight on seemingly
irrelevant features, such as formatting markers.

Like Ex. 1, Ex. 2 also involves a counter-
factual question: Does the classifier’s prediction
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change if we intervene to change the hospital
site, while holding the true clinical status fixed?
We want the classifier to rely on phrases that
express clinical facts, and not writing style. How-
ever, in the training data, the clinical condition
and the writing style are spuriously correlated,
due to the site acting as a confounding variable.
For example, a site might be more likely to en-
counter the target clinical condition due to its
location or speciality, and that site might also
employ distinctive textual features, such as boil-
erplate text at the beginning of each narrative. In
the training set, these features will be predictive
of the label, but they are unlikely to be useful in
deployment scenarios at new sites. In this ex-
ample, the hospital site acts like a confounder:
It creates a spurious correlation between some
features of the text and the prediction target.

Example 2 shows how the lack of robustness
can make NLP methods less trustworthy. A re-
lated problem is that NLP systems are often black
boxes, making it hard to understand how human-
interpretable features of the text lead to the ob-
served predictions. In this setting, we want to
know if some part of the text (e.g., some se-
quence of tokens) causes the output of an NLP
method (e.g., classification prediction).

Causal Models Can Help NLP. To address the
robustness and interpretability challenges posed
by NLP methods, we need new criteria to learn
models that go beyond exploiting correlations.
For example, we want predictors that are invari-
ant to certain changes that we make to text, such
as changing the format while holding fixed the
ground truth label. There is considerable promise
in using causality to develop new criteria in ser-
vice of building robust and interpretable NLP
methods. In contrast to the well-studied area of
causal inference with text, this area of causality
and NLP research is less well understood, though
well-motivated by recent empirical successes. In
§4, we cover the existing research and review
the challenges and opportunities around using
causality to improve NLP.

This position paper follows a small body of
surveys that review the role of text data within
causal inference (Egami et al., 2018; Keith et al.,
2020). We take a broader view, separating the in-
tersection of causality and NLP into two distinct
lines of research on estimating causal effects in
which text is at least one causal variable (§3) and

using causal formalisms to improve robustness
and interpretability in NLP methods (§4). After
reading this paper, we envision that the reader
will have a broad understanding of: different types
of causal queries and the challenges they pre-
sent; the statistical and causal challenges that
are unique to working with text data and NLP
methods; and open problems in estimating effects
from text and applying causality to improve NLP
methods.

2 Background

Both focal problems of this survey (causal effect
estimation and causal formalisms for robust and
explainable prediction) involve causal inference.
The key ingredient to causal inference is defin-
ing counterfactuals based on an intervention of
interest. We will illustrate this idea with the
motivating examples from §1.

Example 1 involves online forum posts and
the number of likes Y that they receive. We
use a binary variable T to indicate whether a
post uses a ‘‘female icon’’ (T = 1) or a ‘‘male
icon’’ (T = 0). We view the post icon T as the
‘‘treatment’’ in this example, but do not assume
that the treatment is randomly assigned (it may
be selected by the posts’ authors). The counterfac-
tual outcome Y (1) represents the number of
likes a post would have received had it used a
female icon. The counterfactual outcome Y (0) is
defined analogously.

The fundamental problem of causal inference
(Holland, 1986) is that we can never observe
Y (0) and Y (1) simultaneously for any unit
of analysis, the smallest unit about which one
wants to make counterfactual inquiries (e.g., a
post in Ex. 1). This problem is what makes
causal inference harder than statistical inference
and impossible without identification assumptions
(see § 2.2).

Example 2 involves a trained classifier f(X)
that takes a textual clinical narrative X as input
and outputs a diagnosis prediction. The text X
is written based on the physician’s diagnosis Y ,
and is also influenced by the writing style used
at the hospital Z. We want to intervene upon
the hospital Z while holding the label Y fixed.
The counterfactual narrative X(z) is the text we
would have observed had we set the hospital to
the value z while holding the diagnosis fixed. The
counterfactual prediction f(X(z)) is the output
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the trained classifier would have produced had we
given the counterfactual review X(z) as input.

2.1 Causal Estimands

An analyst begins by specifying target causal
quantities of interest, called causal estimands,
which typically involve counterfactuals. In Ex-
ample 1, one possible causal estimand is the
average treatment effect (ATE) (Rubin, 1974),

ATE = E[Y (1)− Y (0)] (1)

where the expectation is over the generative dis-
tribution of posts. The ATE can be interpreted as
the change in the number of likes a post would
have received, on average, had the post used a
female icon instead of a male icon.

Another possible causal effect of interest is
the conditional average treatment effect (CATE)
(Imbens and Rubin, 2015),

CATE = E[Y (1)− Y (0) | G] (2)

where G is a predefined subgroup of the pop-
ulation. For example, G could be all posts on
political topics. In this case, the CATE can be
interpreted as the change in the number of likes
a post on a political topic would have received,
on average, had the post used a male icon instead
of a female icon. CATEs are used to quantify
the heterogeneity of causal effects in different
population subgroups.

2.2 Identification Assumptions for
Causal Inference

We will focus on Example 1 and the ATE in
Equation (1) to explain the assumptions needed
for causal inference. Although we focus on the
ATE, related assumptions are needed in some
form for all causal estimands. Variables are the
same as those defined previously in this section.

Ignorability requires that the treatment assign-
ment be statistically independent of the counter-
factual outcomes,

T ⊥⊥ Y (a) ∀a ∈ {0, 1} (3)

Note that this assumption is not equivalent to
independence between the treatment assignment
and the observed outcome Y . For example, if
ignorability holds, Y ⊥⊥ T would additionally
imply that the treatment has no effect.

Randomized treatment assignment guarantees
ignorability by design. For example, we can guar-
antee ignorability in Example 1 by flipping a coin
to select the icon for each post, and disallowing
post authors from changing it.

Without randomized treatment assignment, ig-
norability could be violated by confounders, var-
iables that influence both the treatment status and
potential outcomes. In Example 1, suppose that:
(i) the default post icon is male, (ii) only experi-
enced users change the icon for their posts based
on their gender, (iii) experienced users write posts
that receive relatively more likes. In this scenario,
the experience of post authors is a confounder:
Posts having female icons are more likely to be
written by experienced users, and thus receive
more likes. In the presence of confounders, causal
inference is only possible if we assume condi-
tional ignorability,

T ⊥⊥ Y (a) | X ∀a ∈ {0, 1} (4)

where X is a set of observed variables, condition-
ing on which ensures independence between the
treatment assignment and the potential outcomes.
In other words, we can assume that all confounders
are observed.

Positivity requires that the probability of receiv-
ing treatment is bounded away from 0 and 1 for
all values of the confounders X:

0 < Pr(T = 1 | X = x) < 1, ∀x (5)

Intuitively, positivity requires that each unit under
study has the possibility of being treated and has
the possibility of being untreated. Randomized
treatment assignment can also guarantee positivity
by design.

Consistency requires that the outcome observed
for each unit under study at treatment level a ∈
{0, 1} is identical to the outcome we would have
observed had that unit been assigned to treatment
level a,

T = a ⇔ Y (a) = Y ∀a ∈ {0, 1} (6)

Consistency ensures that the potential outcomes
for each unit under study take on a single value
at each treatment level. Consistency will be vi-
olated if different unobservable ‘‘versions’’ of
the treatment lead to different potential outcomes.
For example, if red and blue female icons had

1141

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00511/2054690/tacl_a_00511.pdf by guest on 07 Septem
ber 2023



different effects on the number of likes received,
but icon color was not recorded. Consistency will
also be violated if the treatment assignment of
one unit affects the potential outcomes of another;
a phenomenon called interference (Rosenbaum,
2007). Randomized treatment assignment does not
guarantee consistency by design. For example, if
different icon colors affect the number of likes
but are not considered by the model, then a ran-
domized experiment will not solve the problem.
As Hernán (2016) discusses, consistency assump-
tions are a ‘‘matter of expert agreement’’ and,
while subjective, these assumptions are at least
made more transparent by causal formalisms.

These three assumptions enable identifying the
ATE defined in Equation (1), as formalized in
the following identification proof:

E[Y (a)]
(i)
= EX [E[Y (a) | X]]

(ii)
= EX [E[Y (a) | X,T = a]]

(iii)
= EX [E[Y | X,T = a]],∀a ∈ {0, 1}

where equality (i) is due to iterated expectation,
equality (ii) follows from conditional ignorabil-
ity, and equality (iii) follows from consistency
and positivity, which ensures that the conditional
expectation E[Y |X, T = a] is well defined. The
final expression can be computed from observ-
able quantities alone.

We refer to other background material to discuss
how to identify and estimate causal effects with
these assumptions in hand (Rubin, 2005; Pearl,
2009; Imbens and Rubin, 2015; Egami et al.,
2018; Keith et al., 2020).

2.3 Causal Graphical Models

Finding a set of variables X that ensure con-
ditional ignorability is challenging, and requires
making several carefully assessed assumptions
about the causal relationships in the domain un-
der study. Causal directed-acyclic graphs (DAGs)
(Pearl, 2009) enable formally encoding these as-
sumptions and deriving the set of variablesX after
conditioning on which ignorability is satisfied.

In a causal DAG, an edge X → Y implies that
X may or may not cause Y . The absence of an
edge between X and Y implies that X does not
cause Y . Bi-directed dotted arrows between vari-
ables indicate that they are correlated potentially
through some unobserved variable.

Figure 1: Causal graphs for the motivating examples.
(Left) In Example 1, the post icon (T ) is correlated
with attributes of the post (X), and both variables af-
fect the number of likes a post receives (Y ). (Right)
In Example 2, the label (Y , i.e., diagnosis) and hospi-
tal site (Z) are correlated, and both affect the clini-
cal narrative (X). Predictions f(X) from the trained
classifier depend on X .

Figure 1 illustrates the causal DAGs we assume
for Example 1 and Example 2. Given a causal
DAG, causal dependencies between any pair of
variables can be derived using the d-separation
algorithm (Pearl, 1994). These dependencies can
then be used to assess whether conditional ignor-
ability holds for a given treatment, outcome, and
set of conditioning variables X . For example, in
the left DAG in Figure 1, the post icon T is not
independent of the number of likes Y unless we
condition on X . In the right DAG, the prediction
f(X) is not independent of the hospital Z even
after conditioning on the narrative X .

3 Estimating Causal Effects with Text

In §2, we described assumptions for causal in-
ference when the treatment, outcome, and con-
founders were directly measured. In this section,
we contribute a novel discussion about how
causal assumptions are complicated when vari-
ables necessary for a causal analysis are extracted
automatically from text. Addressing these open
challenges will require collaborations between
the NLP and causal estimation communities to
understand what are the requisite assumptions
to draw valid causal conclusions. We highlight
prior approaches and future challenges in settings
where the text is a confounder, the outcome, or
the treatment – but this discussion applies broadly
to many text-based causal problems.

To make these challenges clear, we will ex-
pand upon Example 1 by supposing that a hy-
pothetical online forum wants to understand and
reduce harassment on its platform. Many such
questions are causal: Do gendered icons influence
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the harassment users receive? Do longer suspen-
sions make users less likely to harass others? How
can a post be rewritten to avoid offending others?
In each case, using NLP to measure aspects of
language is integral to any causal analysis.

3.1 Causal Effects with Textual Confounders
Returning to Example 1, suppose the platform
worries that users with female icons are more
likely to receive harassment from other users.
Such a finding might significantly influence plans
for a new moderation strategy (Jhaver et al., 2018;
Rubin et al., 2020). We may be unable or un-
willing to randomize our treatment (the gender
signal) of the author’s icon), so the causal effect
of gender signal on harassment received might be
confounded by other variables. The topic of the
post may be an important confounder: some sub-
ject areas may be discussed by a larger proportion
of users with female icons, and more controversial
subjects may attract more harassment. The text of
the post provides evidence of the topic and thus
acts as a confounder (Roberts et al., 2020).

Previous Approaches. The main idea in this
setting is to use NLP methods to extract con-
founding aspects from text and then adjust for
those aspects in an estimation approach such as
propensity score matching. However, how and
when these methods violate causal assumptions
are still open questions. Keith et al. (2020) pro-
vide a recent overview of several such methods
and many potential threats to inference.

One set of methods apply unsupervised di-
mensionality reduction methods that reduce high-
dimensional text data to a low-dimensional set of
variables. Such methods include latent variable
models such as topic models, embedding meth-
ods, and auto-encoders. Roberts et al. (2020) and
Sridhar and Getoor (2019) have applied topic
models to extract confounding patterns from text
data, and performed an adjustment for these
inferred variables. Mozer et al. (2020) match
texts using distance metrics on the bag-of-words
representation.

A second set of methods adjust for confounders
from text with supervised NLP methods. Recently,
Veitch et al. (2020) adapted pre-trained language
models and supervised topic models with multi-
ple classification heads for binary treatment and
counterfactual outcomes. By learning a ‘‘suffi-
cient’’ embedding that obtained low classification

loss on the treatment and counterfactual outcomes,
they show that confounding properties could be
found within text data. Roberts et al. (2020) com-
bine these strategies with the topic model approach
in a text matching framework.

Challenges for Causal Assumptions with Text.
In settings without randomized treatments, NLP
methods that adjust for text confounding require a
particularly strong statement of conditional ignor-
ability (Equation 4): All aspects of confounding
must be measured by the model. Because we can-
not test this assumption, we should seek domain
expertise to justify it or understand the theoretical
and empirical consequences if it is violated.

When the text is a confounder, its high-
dimensionality makes positivity unlikely to hold
(D’Amour et al., 2020). Even for approaches that
extract a low-dimensional representation of the
confounder from text, positivity is a concern.
For example, in Example 1, posts might con-
tain phrases that near-perfectly encode the chosen
gender-icon of the author. If the learned represen-
tation captures this information alongside other
confounding aspects, it would be nearly impos-
sible to imagine changing the gender icon while
holding the gendered text fixed.

3.2 Causal Effects on Textual Outcomes

Suppose platform moderators can choose to sus-
pend users who violate community guidelines for
either one day or one week, and we want to know
which option has the greatest effect at decreasing
the toxicity of the suspended user. If we could col-
lect them for each user’s post, ground-truth human
annotations of toxicity would be our ideal outcome
variable. We would then use those outcomes to
calculate the ATE, following the discussion in
§ 2. Our analysis of suspensions is complicated
if, instead of ground-truth labels for our toxicity
outcome, we rely on NLP methods to extract the
outcome from the text. A core challenge is to distill
the high-dimensional text into a low-dimensional
measure of toxicity.

Challenges for Causal Assumptions with Text.
We saw in § 2 that randomizing the treat-
ment assignment can ensure ignorability and pos-
itivity; but even with randomization, we require
more careful assessment to satisfy consistency.
Suppose we randomly assign suspension lengths
to users and then once those users return and
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continue to post, we use a clustering method to
discover toxic and non-toxic groupings among the
formerly suspended users. To estimate the causal
effect of suspension length, we rely on the trained
clustering model to infer our outcome variable.
Assuming that the suspension policy does in truth
have a causal effect on posting behavior, then be-
cause our clustering model depends on all posts in
its training data, it also depends on the treatment
assignments that influenced each post. Thus, when
we use the model to infer outcomes, each user’s
outcome depends on all other users’ treatments.
This violates the assumption of consistency—that
potential outcomes do not depend on the treatment
status of other units. This undermines the theoret-
ical basis for our causal estimate, and, in practice,
implies that different randomized treatment as-
signments could lead to different treatment ef-
fect estimates.

These issues can be addressed by developing
the measure on only a sample of the data and then
estimating the effect on a separate, held-out data
sample (Egami et al., 2018).

3.3 Causal Effects with Textual Treatments

As a third example, suppose we want to understand
what makes a post offensive. This might allow
the platform to provide automated suggestions
that encourage users to rephrase their post. Here,
we are interested in the causal effect of the text
itself on whether a reader reports it as offensive.
Theoretically, the counterfactual Y (t) is defined
for any t, but could be limited to an exploration
of specific aspects of the text. For example, do
second-person pronouns make a post more likely
to be reported?

Previous Approaches. One approach to study-
ing the effects of text involves treatment discovery:
producing interpretable features of the text—such
as latent topics or lexical features like n-grams
(Pryzant et al., 2018)—that can be causally linked
to outcomes. For example, Fong and Grimmer
(2016) discovered features of candidate biogra-
phies that drove voter evaluations, Pryzant et al.
(2017) discovered writing styles in marketing
materials that are influential in increasing sales
figures, and Zhang et al. (2020) discovered con-
versational tendencies that lead to positive mental
health counseling sessions.

Another approach is to estimate the causal
effects of specific latent properties that are in-

tervened on during an experiment or extracted
from text for observational studies (Pryzant et al.,
2021; Wood-Doughty et al., 2018). For example,
Gerber et al. (2008) studied the effect of appeal-
ing to civic duty on voter turnout. In this setting,
factors are latent properties of the text for which
we need a measurement model.

Challenges for Causal Assumptions with Text.
Ensuring positivity and consistency remains a
challenge in this setting, but assessing conditional
ignorability is particularly tricky. Suppose the
treatment is the use of second-person pronouns,
but the relationship between this treatment and the
outcome is confounded by other properties of the
text (e.g., politeness). For conditional ignorability
to hold, we would need to extract from the text and
condition on all such confounders, which requires
assuming that we can disentangle the treatment
from many other aspects of the text (Pryzant
et al., 2021). Such concerns could be avoided
by randomly assigning texts to readers (Fong and
Grimmer, 2016, 2021), but that may be impracti-
cal. Even if we could randomize the assignment
of texts, we still have to assume that there is no
confounding due to latent properties of the reader,
such as their political ideology or their tastes.

3.4 Future Work

We next highlight key challenges and oppor-
tunities for NLP researchers to facilitate causal
inference from text.

Heterogeneous Effects. Texts are read and in-
terpreted differently by different people; NLP
researchers have studied this problem in the con-
text of heterogeneous perceptions of annotators
(Paun et al., 2018; Pavlick and Kwiatkowski,
2019). In the field of causal inference, the idea that
different subgroups experience different causal ef-
fects is formalized by a heterogeneous treatment
effect, and is studied using conditional average
treatment effects (Equation (2)) for different sub-
groups. It may also be of interest to discover
subgroups where the treatment has a strong effect
on an outcome of interest. For example, we may
want to identify text features that characterize
when a treatment such as a content moderation
policy is effective. Wager and Athey (2018) pro-
posed a flexible approach to estimating heteroge-
neous effects based on random forests. However,
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such approaches, which are developed with tabu-
lar data in mind, may be computationally infea-
sible for high-dimensional text data. There is an
opportunity to extend NLP methods to discover
text features that capture subgroups where the
causal effect varies.

Representation Learning. Causal inference
from text requires extracting low-dimensional
features from text. Depending on the setting,
the low-dimensional features are tasked with ex-
tracting confounding information, outcomes, or
treatments. The need to measure latent aspects
from text connects to the field of text representa-
tion learning (Le and Mikolov, 2014; Liu et al.,
2015; Liu and Lapata, 2018). The usual objective
of text representation learning approaches is to
model language. Adapting representation learning
for causal inference offers open challenges; for
example, we might augment the objective func-
tion to ensure that (i) positivity is satisfied, (ii)
confounding information is not discarded, or (iii)
noisily measured outcomes or treatments enable
accurate causal effect estimates.

Benchmarks. Benchmark datasets have pro-
pelled machine learning forward by creating
shared metrics by which predictive models can
be evaluated. There are currently no real-world
text-based causal estimation benchmarks due to
the fundamental problem of causal inference that
we can never obtain counterfactuals on an individ-
ual and observe the true causal effects. However,
as Keith et al. (2020) discuss, there has been
some progress in evaluating text-based estimation
methods on semi-synthetic datasets in which real
covariates are used to generate treatment and out-
comes (e.g., Veitch et al., 2020; Roberts et al.,
2020; Pryzant et al., 2021; Feder et al., 2021;
Weld et al., 2022). Wood-Doughty et al. (2021)
employed large-scale language models for con-
trolled synthetic generation of text on which
causal methods can be evaluated. An open prob-
lem is the degree to which methods that perform
well on synthetic data generalize to real-world
data.

Controllable Text Generation. When running
a randomized experiment or generating synthetic
data, researchers make decisions using the em-
pirical distribution of the data. If we are study-
ing whether a drug prevents headaches, it would

make sense to randomly assign a ‘reasonable’
dose—one that is large enough to plausibly be
effective but not so large as to be toxic. But when
the causal question involves natural language, do-
main knowledge might not provide a small set
of ‘reasonable’ texts. Instead, we might turn to
controllable text generation to sample texts that
fulfill some requirements (Kiddon et al., 2016).
Such methods have a long history in NLP; for
example, a conversational agent should be able to
answer a user’s question while being perceived
as polite (Niu and Bansal, 2018). In our text as
treatment example where we want to understand
which textual aspects make a text offensive, such
methods could enable an experiment allowing us
to randomly assign texts that differ on only a spe-
cific latent aspect. For example, we could change
the style of a text while holding its content fixed
(Logeswaran et al., 2018). Recent work has ex-
plored text generation from a causal perspective
(Hu and Li, 2021), but future work could develop
these methods for causal estimation.

4 Robust and Explainable Predictions
from Causality

Thus far we have focused on using NLP tools
for estimating causal effects in the presence of
text data. In this section, we consider using causal
reasoning to help solve traditional NLP tasks such
as understanding, manipulating, and generating
natural language.

At a first glance, NLP may appear to have lit-
tle need for causal ideas. The field has achieved
remarkable progress from the use of increasingly
high-capacity neural architectures to extract cor-
relations from large-scale datasets (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019). These
architectures make no distinction between causes,
effects, and confounders, and they make no at-
tempt to identify causal relationships: A feature
may be a powerful predictor even if it has no direct
causal relationship with the desired output.

Yet correlational predictive models can be un-
trustworthy (Jacovi et al., 2021): They may latch
onto spurious correlations (‘‘shortcuts’’), leading
to errors in out-of-distribution (OOD) settings
(e.g., McCoy et al., 2019); they may exhibit un-
acceptable performance differences across groups
of users (e.g., Zhao et al., 2017); and their be-
havior may be too inscrutable to incorporate into
high-stakes decisions (Guidotti et al., 2018). Each
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of these shortcomings can potentially be addressed
by the causal perspective: Knowledge of the causal
relationship between observations and labels can
be used to formalize spurious correlations and mit-
igate their impact (§ 4.1); causality also provides
a language for specifying and reasoning about
fairness conditions (§ 4.2); and the task of ex-
plaining predictions may be naturally formulated
in terms of counterfactuals (§ 4.3). The applica-
tion of causality to these problems is still an active
area of research, which we attempt to facilitate
by highlighting previously implicit connections
among a diverse body of prior work.

4.1 Learning Robust Predictors

The NLP field has grown increasingly concerned
with spurious correlations (Gururangan et al.,
2018; McCoy et al., 2019, inter alia). From a
causal perspective, spurious correlations arise
when two conditions are met. First, there must
be some factor(s) Z that are informative (in the
training data) about both the features X and label
Y . Second, Y and Z must be dependent in the
training data in a way that is not guaranteed to
hold in general. A predictor f : X → Y will learn
to use parts of X that carry information about
Z (because Z is informative about Y ), which
can lead to errors if the relationship between Y
and Z changes when the predictor is deployed.2

This issue is illustrated by Example 2, where
the task is to predict a medical condition from the
text of patient records. The training set is drawn
from multiple hospitals which vary both in the
frequency of the target clinical condition (Y )
and the writing style of the narratives (represented
in X). A predictor trained on such data will use
textual features that carry information about the
hospital (Z), even when they are useless at pre-
dicting the diagnosis within any individual hospi-
tal. Spurious correlations also appear as artifacts
in benchmarks for tasks such as natural language

2From the perspective of earlier work on domain adap-
tation (Søgaard, 2013), spurious correlations can be viewed
as a special case of a more general phenomenon in which
feature-label relationships change across domains. For exam-
ple, the lexical feature boring might have a stronger negative
weight in reviews about books than about kitchen appliances,
but this is not a spurious correlation because there is a di-
rect causal relationship between this feature and the label.
Spurious correlations are a particularly important form of
distributional shift in practice because they can lead to in-
consistent predictions on pairs of examples that humans
view as identical.

inference, where negation words are correlated
with semantic contradictions in crowdsourced
training data but not in text that is produced under
more natural conditions (Gururangan et al., 2018;
Poliak et al., 2018).

Such observations have led to several proposals
for novel evaluation methodologies (Naik et al.,
2018; Ribeiro et al., 2020; Gardner et al., 2020)
to ensure that predictors are not ‘‘right for the
wrong reasons’’. These evaluations generally take
two forms: invariance tests, which assess whether
predictions are affected by perturbations that are
causally unrelated to the label, and sensitivity
tests, which apply perturbations that should in
some sense be the minimal change necessary to
flip the true label. Both types of test can be moti-
vated by a causal perspective. The purpose of an
invariance test is to determine whether the predic-
tor behaves differently on counterfactual inputs
X(Z = z̃), where Z indicates a property that
an analyst believes should be causally irrelevant
to Y . A model whose predictions are invariant
across such counterfactuals can in some cases be
expected to perform better on test distributions
with a different relationship between Y and Z
(Veitch et al., 2021). Similarly, sensitivity tests
can be viewed as evaluations of counterfactuals
X(Y = ỹ), in which the label Y is changed but
all other causal influences on X are held constant
(Kaushik et al., 2020). Features that are spuriously
correlated with Y will be identical in the factual
X and the counterfactual X(Y = ỹ). A predictor
that relies solely on such spurious correlations
will be unable to correctly label both factual and
counterfactual instances.

A number of approaches have been proposed
for learning predictors that pass tests of sensi-
tivity and invariance. Many of these approaches
are either explicitly or implicitly motivated by a
causal perspective. They can be viewed as ways
to incorporate knowledge of the causal structure
of the data into the learning objective.

4.1.1 Data Augmentation
To learn predictors that pass tests of invariance
and sensitivity, a popular and straightforward ap-
proach is data augmentation: Elicit or construct
counterfactual instances, and incorporate them
into the training data. When the counterfactu-
als involve perturbations to confounding factors
Z, it can help to add a term to the learning
objective to explicitly penalize disagreements in
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the predictions for counterfactual pairs, for exam-
ple, |f(X(Z = z))− f(X(Z = z̃))|, when f is
the prediction function (Garg et al., 2019). When
perturbations are applied to the label Y , training
on label counterfactuals X(Y = ỹ) can improve
OOD generalization and reduce noise sensitivity
(Kaushik et al., 2019, 2020; Jha et al., 2020).3

Counterfactual examples can be generated
in several ways: (1) manual post-editing (e.g.,
Kaushik et al., 2019; Gardner et al., 2020), (2)
heuristic replacement of keywords (e.g., Shekhar
et al., 2017; Garg et al., 2019; Feder et al., 2021),
and (3) automated text rewriting (e.g., Zmigrod
et al., 2019; Riley et al., 2020; Wu et al., 2021;
Calderon et al., 2022). Manual editing is typi-
cally fluent and accurate but relatively expensive.
Keyword-based approaches are appropriate in
some cases—for example, when counterfactuals
can be obtained by making local substitutions of
closed-class words like pronouns—but they can-
not guarantee fluency or coverage of all labels
and covariates of interest (Antoniak and Mimno,
2021), and are difficult to generalize across lan-
guages. Fully generative approaches could po-
tentially combine the fluency and coverage of
manual editing with the ease of lexical heuristics.

Counterfactual examples are a powerful re-
source because they directly address the missing
data issues that are inherent to causal inference,
as described in § 2. However, in many cases it
is difficult for even a fluent human to produce
meaningful counterfactuals: Imagine the task of
converting a book review into a restaurant re-
view while somehow leaving ‘‘everything else’’
constant (as in Calderon et al., 2022). A related
concern is lack of precision in specifying the de-
sired impact of the counterfactual. To revise a
text from, say, U.S. to U.K. English, it is unam-
biguous that ‘‘colors’’ should be replaced with
‘‘colours’’, but should terms like ‘‘congress’’ be
replaced with analogous concepts like ‘‘parlia-
ment’’? This depends on whether we view the
semantics of the text as a causal descendent of

3More broadly, there is a long history of methods that
elicit or construct new examples and labels with the goal of
improving generalization, e.g., self-training (McClosky et al.,
2006; Reichart and Rappoport, 2007), co-training (Steedman
et al., 2003), and adversarial perturbations (Ebrahimi et al.,
2018). The connection of such methods to causal issues such
as spurious correlations has not been explored until recently
(Chen et al., 2020; Jin et al., 2021).

the locale. If such decisions are left to the anno-
tators’ intuitions, it is difficult to ascertain what
robustness guarantees we can get from counter-
factual data augmentation. Finally, there is the
possibility that counterfactuals will introduce new
spurious correlations. For example, when asked to
rewrite NLI examples without using negation, an-
notators (or automated text rewriters) may simply
find another shortcut, introducing a new spuri-
ous correlation. Keyword substitution approaches
may also introduce new spurious correlations if the
keyword lexicons are incomplete (Joshi and He,
2021). Automated methods for conditional text
rewriting are generally not based on a formal coun-
terfactual analysis of the data generating process
(cf. Pearl, 2009), which would require model-
ing the relationships between various causes and
consequences of the text. The resulting counterfac-
tual instances may therefore fail to fully account
for spurious correlations and may introduce new
spurious correlations.

4.1.2 Distributional Criteria
An alternative to data augmentation is to design
new learning algorithms that operate directly on
the observed data. In the case of invariance tests,
one strategy is to derive distributional properties
of invariant predictors, and then ensure that these
properties are satisfied by the trained model.

Given observations of the potential confounder
at training time, the counterfactually invariant pre-
dictor will satisfy an independence criterion that
can be derived from the causal structure of the
data generating process (Veitch et al., 2021). Re-
turning to Example 2, the desideratum is that the
predicted diagnosis f(X) should not be affected
by the aspects of the writing style that are associ-
ated with the hospital Z. This can be formalized
as counterfactual invariance to Z: The predic-
tor f should satisfy f(X(z)) = f(X(z′)) for all
z, z′. In this case, both Z and Y are causes of
the text features X .4 Using this observation, it
can be shown that any counterfactually invariant
predictor will satisfy f(X) ⊥⊥ Z | Y , that is, the
prediction f(X) is independent of the covariate
Z conditioned on the true label Y . In other cases,
such as content moderation, the label is an effect
of the text, rather than a cause—for a detailed

4This is sometimes called the anticausal setting, because
the predictor f : X → Ŷ must reverse the causal direction
of the data generating process (Schölkopf et al., 2012).
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discussion of this distinction, see Jin et al. (2021).
In such cases, it can be shown that a counterfac-
tually invariant predictor will satisfy f(X) ⊥⊥ Z
(without conditioning on Y ). In this fashion,
knowledge of the true causal structure of the
problem can be used to derive observed-data sig-
natures of the counterfactual invariance. Such
signatures can be incorporated as regulariza-
tion terms in the training objective (e.g., using
kernel-based measures of statistical dependence).
These criteria do not guarantee counterfactual
invariance—the implication works in the other
direction—but in practice they increase coun-
terfactual invariance and improve performance
in out-of-distribution settings without requiring
counterfactual examples.

An alternative set of distributional criteria can
be derived by viewing the training data as aris-
ing from a finite set of environments, in which
each environment is endowed a unique distri-
bution over causes, but the causal relationship
between X and Y is invariant across environ-
ments. This view motivates a set of environmental
invariance criteria: The predictor should include
a representation function that is invariant across
environments (Muandet et al., 2013; Peters et al.,
2016); we should induce a representation such
that the same predictor is optimal in every en-
vironment (Arjovsky et al., 2019); the predictor
should be equally well calibrated across envi-
ronments (Wald et al., 2021). Multi-environment
training is conceptually similar to domain adap-
tation (Ben-David et al., 2010), but here the goal
is not to learn a predictor for any specific target
domain, but rather to learn a predictor that works
well across a set of causally compatible domains,
known as domain generalization (Ghifary et al.,
2015; Gulrajani and Lopez-Paz, 2020). However,
it may be necessary to observe data from a very
large number of environments to disentangle the
true causal structure (Rosenfeld et al., 2021).

Both general approaches require richer training
data than in typical supervised learning: Either ex-
plicit labels Z for the factors to disentangle from
the predictions or access to data gathered from
multiple labeled environments. Obtaining such
data may be rather challenging, even compared
to creating counterfactual instances. Furthermore,
the distributional approaches have thus far been
applied only to classification problems, while
data augmentation can easily be applied to struc-
tured outputs such as machine translation.

4.2 Fairness and Bias
NLP systems inherit and sometimes amplify un-
desirable biases encoded in text training data
(Barocas et al., 2019; Blodgett et al., 2020).
Causality can provide a language for specifying
desired fairness conditions across demographic
attributes like race and gender. Indeed, fairness
and bias in predictive models have close connec-
tions to causality: Hardt et al. (2016) argue that a
causal analysis is required to determine the fair-
ness properties of an observed distribution of data
and predictions; Kilbertus et al. (2017) show that
fairness metrics can be motivated by causal inter-
pretations of the data generating process; Kusner
et al. (2017) study ‘‘counterfactually fair’’ predic-
tors where, for each individual, predictions are the
same for that individual and for a counterfactual
version of them created by changing a protected
attribute. However, there are important questions
about the legitimacy of treating attributes like
race as variables subject to intervention (e.g.,
Kohler-Hausmann, 2018; Hanna et al., 2020), and
Kilbertus et al. (2017) propose to focus instead on
invariance to observable proxies such as names.

Fairness with Text. The fundamental connec-
tions between causality and unfair bias have been
explored mainly in the context of relatively
low-dimensional tabular data rather than text.
However, there are several applications of the
counterfactual data augmentation strategies from
§ 4.1.1 in this setting: For example, Garg et al.
(2019) construct counterfactuals by swapping lists
of ‘‘identity terms’’, with the goal of reducing
bias in text classification, and Zhao et al. (2018)
swap gender markers such as pronouns and names
for coreference resolution. Counterfactual data
augmentation has also been applied to reduce
bias in pre-trained models (e.g., Huang et al.,
2019; Maudslay et al., 2019) but the extent
to which biases in pre-trained models propa-
gate to downstream applications remains unclear
(Goldfarb-Tarrant et al., 2021). Fairness appli-
cations of the distributional criteria discussed in
§ 4.1.2 are relatively rare, but Adragna et al.
(2020) show that invariant risk minimization
(Arjovsky et al., 2019) can reduce the use of spu-
rious correlations with race for toxicity detection.

4.3 Causal Model Interpretations
Explanations of model predictions can be cru-
cial to help diagnose errors and establish trust
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with decision makers (Guidotti et al., 2018; Jacovi
and Goldberg, 2020). One prominent approach
to generate explanations is to exploit network ar-
tifacts, such as attention weights (Bahdanau et al.,
2014), which are computed on the path to gen-
erating a prediction (e.g., Xu et al., 2015; Wang
et al., 2016). Alternatively, there have been at-
tempts to estimate simpler and more interpretable
models by using perturbations of test examples or
their hidden representations (Ribeiro et al., 2016;
Lundberg and Lee, 2017; Kim et al., 2018). How-
ever, both attention and perturbation-based meth-
ods have important limitations. Attention-based
explanations can be misleading (Jain and Wallace,
2019), and are generally possible only for indi-
vidual tokens; they cannot explain predictions
in terms of more abstract linguistic concepts.
Existing perturbation-based methods often gen-
erate implausible counterfactuals and also do
not allow for estimating the effect of sentence-
level concepts.

Viewed as a causal inference problem, explana-
tion can be performed by comparing predictions
for each example and its generated counterfac-
tual. While it is usually not possible to observe
counterfactual predictions, here the causal system
is the predictor itself. In those cases it may be
possible to compute counterfactuals, for example,
by manipulating the activations inside the network
(Vig et al., 2020; Geiger et al., 2021). Treatment
effects can then be computed by comparing the
predictions under the factual and counterfactual
conditions. Such a controlled setting is similar to
the randomized experiment described in § 2, where
it is possible to compute the difference between
an actual text and what the text would have been
had a specific concept not existed in it. Indeed,
in cases where counterfactual texts can be gener-
ated, we can often estimate causal effects on text-
based models (Ribeiro et al., 2020; Gardner et al.,
2020; Rosenberg et al., 2021; Ross et al., 2021;
Meng et al., 2022; Zhang et al., 2022). However,
generating such counterfactuals is challenging
(see § 4.1.1).

To overcome the counterfactual generation
problem, another class of approaches proposes
to manipulate the representation of the text and
not the text itself (Feder et al., 2021; Elazar et al.,
2021; Ravfogel et al., 2021). Feder et al. (2021)
compute the counterfactual representation by pre-
training an additional instance of the language
representation model employed by the classifier,

with an adversarial component designed to ‘‘for-
get’’ the concept of choice, while controlling for
confounding concepts. Ravfogel et al. (2020)
offer a method for removing information from
representations by iteratively training linear clas-
sifiers and projecting the representations on their
null-spaces, but do not account for confound-
ing concepts.

A complementary approach is to generate
counterfactuals with minimal changes that ob-
tain a different model prediction (Wachter et al.,
2017; Mothilal et al., 2020). Such examples allow
us to observe the changes required to change a
model’s prediction. Causal modeling can facili-
tate this by making it possible to reason about the
causal relationships between observed features,
thus identifying minimal actions which might
have downstream effects on several features, ul-
timately resulting in a new prediction (Karimi
et al., 2021).

Finally, a causal perspective on attention-based
explanations is to view internal nodes as mediators
of the causal effect from the input to the output
(Vig et al., 2020; Finlayson et al., 2021). By
querying models using manually crafted counter-
factuals, we can observe how information flows,
and identify where in the model it is encoded.

4.4 Future Work

In general we cannot expect to have full causal
models of text, so a critical question for future
work is how to safely use partial causal mod-
els, which omit some causal variables and do not
completely specify the causal relationships within
the text itself. A particular concern is unobserved
confounding between the variables that are ex-
plicitly specified in the causal model. Unobserved
confounding is challenging for causal inference
in general, but it is likely to be ubiquitous in
language applications, in which the text arises
from the author’s intention to express a structured
arrangement of semantic concepts, and the label
corresponds to a query, either directly on the in-
tended semantics or on those understood by the
reader.

Partial causal models of text can be ‘‘top
down’’, in the sense of representing causal rel-
ationships between the text and high-level doc-
ument metadata such as authorship, or ‘‘bottom
up’’, in the sense of representing local linguistic
invariance properties, such as the intuition that a

1149

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00511/2054690/tacl_a_00511.pdf by guest on 07 Septem
ber 2023



multiword expression like ‘San Francisco’ has a
single cause. The methods described here are al-
most exclusively based on top-down models, but
approaches such as perturbing entity spans (e.g.,
Longpre et al., 2021) can be justified by implicit
bottom-up causal models. Making these connec-
tions more explicit may yield new insights. Future
work may also explore hybrid models that con-
nect high-level document metadata with medium-
scale spans of text such as sentences or paragraphs.

A related issue is when the true variable of
interest is unobserved but we do receive some
noisy or coarsened proxy variable. For example,
we may wish to enforce invariance to dialect but
have access only to geographical information, with
which dialect is only approximately correlated.
This is an emerging area within the statistical
literature (Tchetgen et al., 2020), and despite the
clear applicability to NLP, we are aware of no
relevant prior work.

Finally, applications of causality to NLP have
focused primarily on classification, so it is natural
to ask how these approaches might be extended to
structured output prediction. This is particularly
challenging for distributional criteria like f(X) ⊥⊥
Z | Y , because f(X) and Y may now represent
sequences of vectors or tokens. In such cases it
may be preferable to focus on invariance criteria
that apply to the loss distribution or calibration.

5 Conclusion

Our main goal in this survey was to collect the
various touchpoints of causality and NLP into
one space, which we then subdivided into the
problems of estimating the magnitude of causal
effects. and more traditional NLP tasks. These
branches of scientific inquiry share common goals,
intuitions, and are beginning to show methodo-
logical synergies. In § 3 we showed how recent
advances in NLP modeling can help researchers
make causal conclusions with text data and the
challenges of this process. In § 4, we showed
how ideas from causal inference can be used
to make NLP models more robust, trustworthy,
and transparent. We also gather approaches that
are implicitly causal and explicitly show their
relationship to causal inference. Both of these
spaces, especially the use of causal ideas for robust
and explainable predictions, remain nascent with
a large number of open challenges which we have
detailed throughout this paper.

A particular advantage of causal methodology
is that it forces practitioners to explicate their
assumptions. To improve scientific standards, we
believe that the NLP community should be clearer
about these assumptions and analyze their data
using causal reasoning. This could lead to a better
understanding of language and the models we
build to process it.
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Tejas Vaidhya, Ayush Kaushal, Mrinmaya
Sachan, and Bernhard Schoelkopf. 2021.
Causal direction of data collection matters: Im-
plications of causal and anticausal learning for
NLP. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language
Processing, pages 9499–9513. https://doi
.org/10.18653/v1/2021.emnlp-main.748

Nitish Joshi and He He. 2021. An investigation
of the (in) effectiveness of counterfactually
augmented data. arXiv preprint arXiv:2107
.00753. https://doi.org/10.18653/v1
/2022.acl-long.256

Amir-Hossein Karimi, Bernhard Schölkopf, and
Isabel Valera. 2021. Algorithmic recourse: from
counterfactual explanations to interventions. In
Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency,
pages 353–362. https://doi.org/10.1145
/3442188.3445899

Divyansh Kaushik, Eduard Hovy, and Zachary
C. Lipton. 2019. Learning the difference
that makes a difference with counterfactually-
augmented data. arXiv preprint arXiv:1909
.12434.

Divyansh Kaushik, Amrith Setlur, Eduard Hovy,
and Zachary C. Lipton. 2020. Explaining the
efficacy of counterfactually-augmented data.
arXiv preprint arXiv:2010.02114.

Katherine Keith, David Jensen, and Brendan
O’Connor. 2020. Text and causal inference:
A review of using text to remove confounding

from causal estimates. In ACL. https://doi
.org/10.18653/v1/2020.acl-main.474
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