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Abstract

Idiomatic expressions (IEs), characterized by
their non-compositionality, are an impor-
tant part of natural language. They have
been a classical challenge to NLP, including
pre-trained language models that drive today’s
state-of-the-art. Prior work has identified defi-
ciencies in their contextualized representation
stemming from the underlying compositional
paradigm of representation. In this work,
we take a first-principles approach to build
idiomaticity into BART using an adapter
as a lightweight non-compositional language
expert trained on idiomatic sentences. The im-
proved capability over baselines (e.g., BART)
is seen via intrinsic and extrinsic methods,
where idiom embeddings score 0.19 points
higher in homogeneity score for embedding
clustering, and up to 25% higher sequence
accuracy on the idiom processing tasks of IE
sense disambiguation and span detection.

1 Introduction

Natural language has a common yet special
class of multi-word expressions (MWEs) called
idiomatic expressions (IEs) that exhibit seman-
tic non-compositionality, where the meaning of
the expression cannot be inferred from that of
its constituent words (e.g., the idiom break a
leg) (Baldwin and Kim, 2010). They are com-
monly used for specific communicative intents
(Moon, 1998; Baldwin and Kim, 2010) and are
individually rare but collectively frequent, ap-
pearing frequently across genres (Moon, 1998;
Haagsma et al., 2020). They have been classically
regarded as a ‘‘pain in the neck’’ to NLP sys-
tems (Sag et al., 2002) not only because of their
non-compositionality, but also because of their
contextual semantic ambiguity (used in idiomatic
or literal meaning depending on the context).

Challenges posed by the presence of IEs have
been identified across multiple NLU tasks even
with state-of-the-art (SOTA) solutions, including
sentiment analysis (Liu et al., 2017; Biddle et al.,
2020), paraphrase generation (Zhou et al., 2021),
natural language inference (Chakrabarty et al.,
2021), and dialog models (Jhamtani et al., 2021).

Even the the flagship NLP model GPT-3
(Brown et al., 2020) finds idioms challenging.
We tested for its idiom comprehension over 75
idioms, covering a spectrum of the most to the
least frequent idioms (based on their frequency of
occurrence in the BNC (Haagsma et al., 2020)).
We do this in question-answering mode where we
ask GPT-31 simple questions about idioms that
can only be answered correctly if their meanings
are understood in context (a sample of questions
and answers are shown in Table 1) and noted 37
incorrect answers (50.7% accuracy), showing its
inability to comprehend many idioms.

Despite the relative success of recent studies us-
ing pre-trained language models (PTLMs) for IE
processing, including idiom token and type clas-
sification (Liu, 2019), IE span detection (Zeng
and Bhat, 2021; Škvorc et al., 2022), and id-
iomatic to literal paraphrasing (Zhou et al., 2021),
the emerging knowledge is that PTLMs are un-
able to produce meaningful representation of IEs
in task-specific contexts (e.g., for IE sense dis-
ambiguation) (Tayyar Madabushi et al., 2021).
Noting that solutions to improve IE representa-
tion in a task-agnostic manner are largely missing,
this study aims to develop targeted solutions to
make language models (LMs) idiom-aware with
the immediate objective of improving IE repre-
sentation in large PTLMs yet without relying on

1We used OpenAI’s playground at https://gpt3demo
.com/.
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Idiom Question Answer by GPT-3

Never say die If I have a never say die attitude, would I run the marathon
injured or forfeit?

I would never run a
marathon injured.

All at sea If I am all at sea with my math assignment, am I making
progress or am I lost?

You are making progress.

Every trick in the book If I use every trick in the book to guarantee my grade, am
I a magician or a determined student?

A magician.

Kill two birds in one stone If I wanted to kill two birds in one stone, what kind of a
workplace should I work in?

A slaughterhouse.

Ahead of the game If I want to be ahead of the game, would I study early or
procrastinate?

Procrastinate.

Table 1: Questions used to probe the understanding of idioms and the answers provided by GPT-3.

astronomically large training corpora and param-
eters. In this work, we focus on improving IE
representation and seek answers to the following
questions about IE embeddings.

Q1: Are the current PTLMs capable of gen-
erating semantically meaningful contextualized
representations for IEs? Answering this question,
we examine the IEs embeddings produced by a
representative SOTA LM, for example, BART
(Lewis et al., 2020). Specifically, we perform an
intrinsic evaluation of IE embeddings by group-
ing them into semantic classes and observing how
they cluster.

Observing the low quality of IE representation,
we ask,

Q2: How can we expand the capability of these
LMs to produce high quality IE embeddings? As
a solution, we propose the Generation of Idiom
Embedding with Adapter (GIEA) approach that
extends the capabilities of the current SOTA LMs
by producing quality IE embeddings.

Concretely, unlike prior work that treats
each idiom as a new token (Hashempour and
Villavicencio, 2020), GIEA refrains from new to-
kenization to represent IEs and uses an adapter
(Houlsby et al., 2019; Pfeiffer et al., 2020a) as a
parameter-constrained learner of IE embeddings.
Finally, we devise a denoising auto-encoder-style
learning objective and train the network to recon-
struct selective masked sentence parts. Our use
of symbolic knowledge (Yu et al., 2021) of IEs
to aid the learning of their embeddings results in
the model needing a significantly small amount of
data (∼60MB) compared to that required for LM
pre-training (∼160GB of text for BART).

Our main contributions are as follows.

(1) We demonstrate the limited ability of SOTA
PTLMs for generating semantically mean-
ingful embeddings for IEs via a simple
probing task.

(2) We propose a lightweight solution, GIEA, an
adapter built over BART, to produce qual-
ity IE embeddings without altering input
sentences.

(3) We evaluate the resulting IE embeddings us-
ing intrinsic and extrinsic methods to show
that they are meaningful in the embedding
space and are task-agnostic and generaliz-
able across different idiom processing tasks
(IE sense disambiguation and IE span de-
tection). Compared to BART, GIEA gains
0.19 in homogeneity score (intrinsic evalu-
ation), performs competitively on IE sense
disambiguation, and gains 25% in sequence
accuracy for IE span detection.

(4) We conduct detailed analyses on the per-
formance and limitations of GIEA system
to provide meaningful insights and future
directions.2

2 The Inability to Represent Idiomatic
Expressions

Compositionality is a dominant paradigm driv-
ing the SOTA in NLP both at the tokenization
and architectural levels. The tokenization of most
LMs, for example, Byte-Pair Encoding (BPE)
(Sennrich et al., 2016) and WordPiece (Wu
et al., 2016), assumes compositionality not only

2The code for GIEA framework can be found at https://
github.com/zzeng13/GIEA.
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Idiom BART ITI+SF+SI

in the final analysis
in the long run at the end of the day
in the works in light of
in light of all things being equal

see red
see the light go spare
see stars fly off the handle
go down like a lead balloon do someone’s head in

quick as a flash
flash in the pan in the blink of an eye
keen as mustard like a bat out of hell
thin as a rake thick and fast

Table 2: The top-3 closest idioms ranked by cosine similarity by IE embeddings generated by BART and
ITI+SF+SI (our GIEA method). While the IE embeddings from GIEA are grouped by semantic meaning,
BART’s IE embeddings are grouped together mostly by surface-level token and/or syntactic similarity.

at the phrase-level but also at the word level. This
suggests that the meaning of a word is deduced
from that of the subword components. At the
architectural level, transformer-based LMs im-
plicitly consider all phrases (or even words) as
compositional. The self-attention mechanism in
transformers considers the embedding of a word
to be an attention weighted sum of the word em-
beddings in its context. This design leads to phrase
or even sentence embeddings to be overall compo-
sitional. In addition, each IE is individually rare,
compounding the difficulty for obtaining good IE
representation. This leads us to hypothesize that
the inherent notion of compositionality and the
rarity of IEs are a hindrance to the representation
of the IEs that are inherently non-compositional.
We test the validity of this hypothesis by analyzing
PTLMs’ representation of IEs.

IE Embedding Generation: We first obtain
the embeddings for the IEs in the MAGPIE
dataset (Haagsma et al., 2020), a collection of
potentially idiomatic expressions (PIEs), that is,
idioms used in a literal and idiomatic sense, and
the sentences in which they occur. Focusing on
the IEs used idiomatically (thus ensuring their
non-compositionality), we first retrieve all the
sentences in which they occur. Then, for each
sentence, we extract the BART base embeddings
corresponding to the IE tokens in the sentence.
We then apply mean pooling across the tokens
and across all the sentences in which the IE ap-
pears. In this manner we generate the embeddings
for 1,480 idioms from an average of 22 sentences
per idiom.

Group Idioms

Success home and dry; bear fruit; hit the mark
Quick in two shakes; full tilt; quick as a flash
Death kick the bucket; drop like flies
Happy on cloud nine; over the moon; ride high

Table 3: Example meaning groups and sampled
idioms from the groups.

We then list IEs most similar to a set of IEs
in the embedding space produced by the base
BART model, computed using the cosine sim-
ilarity. Table 2 shows examples of this listing
including three most similar IEs (second column)
to a sample of IEs (first column). As noted from
the examples, IEs with superficial token-level (see
red vs. see stars) and/or syntactic-level (quick as a
flash vs. keen as mustard) matches tend to be most
similar according to BART’s embeddings without
accounting for their semantic congruence. This
suggests that BART considers IEs mostly compo-
sitionally, an inadequate approach for representing
the non-compositionality of the IEs.

Synonymous IE Groups Creation: To quan-
tify the above qualitative finding, we manually
assigned 129 idioms into 20 distinct mean-
ing groups—‘‘in summary’’, ‘‘anger/upset’’,
‘‘easy/relax’’, ‘‘quick’’, ‘‘exactly’’, ‘‘death’’,
‘‘punish/criticize’’, ‘‘impress’’, ‘‘happy’’, ‘‘to
understand’’, ‘‘fail’’, ‘‘success’’, ‘‘close to’’,
‘‘decline/worsen’’, ‘‘grief/sad’’, ‘‘confront/deal
with’’, ‘‘persevere’’, ‘‘great effort’’, ‘‘unimpor-
tant’’, ‘‘careful’’—averaging 6.4 idioms per group
(see Table 3 for example groups and their idioms).
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The idiom groups must satisfy the following
two requirements: (1) Any two idioms from the
same group must have a similar meaning though
the idioms may not necessarily be interchange-
able; and (2) any two idioms from different
groups must not overlap in their meanings, that
is, the boundaries between any groups should be
clear. Moreover, we selected idioms that are id-
iomatically monosemous (excluding their literal
interpretations) according to our dictionaries.3 To
group the idioms, we first created a few candi-
date groups based on commonly occurring idiom
meanings, such as ‘‘anger/upset’’ and ‘‘happy’’.
Then, for each idiom we either assigned it to an ex-
isting group or to a newly created meaning group.
We only retained groups with more than three
idioms and stopped the process once we had 20
groups. Using the aforementioned requirements,
the validity of the groups and the idiom assign-
ments were verified by two annotators, one with
native and the other with near-native English abil-
ities (one of whom was not associated with this
study), using an idiom dictionary as needed. Only
idiom assignments that were judged as correct by
both the annotators were considered.

Clustering Embeddings: First, we generate the
embeddings for these idioms based on their dic-
tionary definitions using a pre-trained MPNet4

(Song et al., 2020) for sentence embeddings,
referred to as definition embeddings. As a con-
trast, we generate their BART IE embeddings,
referred to as BART embeddings, following the
procedure discussed above. Then, we run agglom-
erative clustering5 to produce 20 clusters with
complete linkage using the pairwise cosine sim-
ilarity between the embeddings (definition and
BART embeddings separately) as the distance
metric. Finally, we measure the clustering quality
using the homogeneity score as an index of the
embedding quality, which is 1.0 if all the clusters
contain only data points that are members of a
single class. The homogeneity score for definition
embeddings is 0.68, whereas the score for BART
embedding is only 0.45. This suggests that BART
embeddings are more scattered in the embedding

3The definitions were obtained from the Google dictionary
and Wiktionary. The idiom groups can be retrieved from
https://bit.ly/3R2pomM.

4The checkpoint used is ‘‘all-mpnet-base-v2’’ from
Sentence-Transformers (Reimers and Gurevych, 2019).

5Implemented by Scikit-Learn (Pedregosa et al., 2011).

space with less than half of the IEs from each
cluster having the same meaning.

3 Learning Representation for
Idiomatic Expressions

Toward producing higher quality IE embeddings
by PTLMs, we propose GIEA; given a set of idio-
matic sentences (i.e., sentences that each contains
an IE), GIEA freezes the base PTLM and trains
an adapter that specializes in IE representations.
This is done by reconstructing idiomatic sentences
that are corrupted with an idiom-aware noising
function and meeting a dictionary definition-aided
objective. GIEA’s overall framework is illustrated
in Figure 1. In this work, we select BART as our
base PTLM.

Noising Function. Following the pre-training
for BART, our training has a text corruption stage
with novel noising functions and a text recon-
struction stage. In the text corruption stage, we
introduce three noising functions such that one
permits predicting masked IEs using the context
words—the idiom-aware text infilling transfor-
mation—and the other two permit the model to
use IEs to predict context words, namely, the
copy and the span infilling transformation. In the
idiom-aware text infilling transformation, given a
sentence containing an IE, the entire IE is replaced
with a single [MASK] token. During training, the
model is asked to reconstruct the masked IE us-
ing the context words. Yet the masking of IEs
alone is not sufficient for learning meaningful IE
embeddings because the model sees IEs only in
the decoder’s input but never in the input sen-
tences, leaving the encoder’s adapter parameters
unreachable by the reconstruction loss.

The two additional noising functions, the copy
and the span infilling transformation, alleviate
this shortcoming by allowing the model to learn
to use IEs to infer the context words. In the
copy transformation, for each sentence with its IE
masked, we also supply its original, uncorrupted
sentence as input and thus the model only has
to copy the input sentence to the output. In the
span infilling transformation, we mask a span of
consecutive tokens excluding the IE tokens with
a single [MASK], effectively asking the model
to reconstruct the masked span using the IE and
the remaining context. As in BART pre-training,
span lengths are drawn from a Poisson distribution
(λ = 3). However, our 0-length spans correspond
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Figure 1: Overview of the GIEA training framework.

to the original (input) sentence, identical to that of
the copy transformation. Hence, the span infilling
technically subsumes the copy transformation.

Ideally, we would like the model to use an IE
to predict masked context words that are directly
related to the meaning of the IE. For example,
as shown in Figure 1, masking the sequence
‘‘so tired’’ helps the learning of the IE, ‘‘hit the
sack’’. However, since the masked spans are ran-
domly chosen, to guarantee that reconstructing the
masked spans contributes to the IE meaning acqui-
sition and inspired by prior success in prompting
methods (Liu et al., 2021), we inject manually
created templates for span infilling (e.g., When
people say hit the sack, they mean that [MASK].)
by connecting each IE to its dictionary definition
as a sentence. We create four such templates per
idiom with variations.6

During training, that is, the reconstruction stage,
we randomly apply the idiom-aware text infilling

6The templates for a given [IE] are:

(1) ‘‘The idiom [IE] means [MASK].’’,

(2) ‘‘When people say [IE] , they mean [MASK].’’,

(3) ‘‘[IE] is used to mean [MASK].’’,

(4) ‘‘If someone says [IE] , they mean that [MASK].’’

transformation to 50% of sentences, while apply-
ing the copy or span infilling transformation to the
remaining sentences in each epoch, and the model
is asked to reconstruct the uncorrupted sentences.
We experiment with and analyze the use of both
the copy and span infilling in Section 5.

Similarity Forcing. We leverage the dictio-
nary definitions of IEs to aid the learning of
semantically rich IE embeddings and supple-
ment the small number of idiomatic sentences.
To give an idea of the relative paucity of avail-
able idiomatic sentences, the number of idiomatic
sentences in MAGPIE, the largest dataset for id-
iomatic sentences to date, is less than 30K, which
is several orders of magnitude smaller than the
BART pre-training corpus. Although collecting
more sentences with IEs from other corpora is a
way to directly enlarge the existing collection, iso-
lating the truly idiomatic instances of potentially
idiomatic expressions requires manual annotation,
an exercise that we leave for future work.

Specifically, during training, we use MPNet to
generate definition embeddings for each IE as
before. MPNet is used because it empirically out-
performs BART, as we will show in Section 5.
We also generate IE embeddings by mean pooling
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Figure 2: Illustration of the intrinsic and extrinsic evaluation tasks, including the generation of IE embeddings,
IE sense disambiguation, and IE span detection.

the BART’s final layer output embeddings cor-
responding to the IE tokens. Note that these IE
embeddings are generated from BART and the
adapter being trained and thus correspond to a non-
compositional representation. We then include
the learning objective of increasing the cosine
similarity between the IE embeddings and their
corresponding definition embeddings. We refer
to this learning objective as similarity forcing,
which is intended to facilitate the learning of the
IE embeddings by making the embedding space
be more semantically meaningful, that is, locating
IEs with similar meanings closer to each other.

The final loss during training is the weighted
sum of the cross-entropy loss from reconstruc-
tion and the cosine similarity loss from similarity
forcing. In our experiments, we set the two losses
to be equally weighted and leave other weighting
schemes for future explorations.

Non-Compositional Language Adapter. In-
stead of fine-tuning the full model on our new
learning objective, we added an adapter with the
Pfeiffer architecture (Pfeiffer et al., 2020a) to
the base BART model for conditional generation.
This is so that during training, only the param-
eters of the adapter are trainable while those of
the underlying language model are fixed, thus
making our solution lightweight. Intuitively, be-
cause the added adapter is trained with the added
objective of producing meaningful embeddings
for non-compositional phrases (IEs), the adapter
can be considered to be an expert in processing
non-compositional language.

4 Experiments

Datasets. We use MAGPIE (Haagsma et al.,
2020), a recent and the largest-to-date dataset of
potentially idiomatic expressions in English, to
train GIEA and evaluate the baseline models. We
sample a subset of the dataset by selecting idioms
with a single idiomatic meaning according to our
IE dictionary (referencing Google dictionary and
Wiktionary) and their corresponding sentences
that are unambiguously labeled as being idiomatic
(indicated by a perfect confidence score). The
resulting collection has sentences drawn from a
diverse set of genres from the British National
Corpus (BNC) with 1,480 idioms with 32,693 sen-
tences (77.4% idiomatic) in the train set and 1,001
idioms with 4,102 (77.57% idiomatic) sentences
in the test set.

Evaluation Tasks. The overview of the intrinsic
and extrinsic evaluation tasks are illustrated in
Figure 2. The first task is an intrinsic evaluation
of IE embeddings.

Embedding Clustering. We follow the same pro-
cedure as described in Section 2 to perform
clustering on the 20 distinct idiom groups with
IE embeddings from the testing models. Note that
we only use the sentences from the test set here to
generate the IE embeddings. We use agglomera-
tive clustering with complete linkage and pairwise
embedding cosine similarity as the affinity metric.

The following two idiom-related tasks serve as
extrinsic evaluations of the IE embeddings.
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IE Sense Disambiguation. This is a common
probing task used to probe if IE embeddings
can differentiate the literal (compositional) from
the idiomatic (non-compositional) uses of the IEs
(Tayyar Madabushi et al., 2021; Adewumi et al.,
2021). Many IEs can be used both figuratively
or literally depending on the context. For exam-
ple, the phrase ‘‘behind closed doors’’ can be
interpreted literally as in The valuable items are
locked behind closed doors and can be understood
figuratively as in They avoided any publicity and
made all deals behind closed doors. To account
for this contextual ambiguity, these phrases are
often refer to as potentially idiomatic expressions
(PIEs) (Haagsma et al., 2020). The IE sense dis-
ambiguation task aims to classify each IE usage
into idiomatic and literal class. To create a disam-
biguation classifier, we appended a single linear
layer after the trained baseline embedding model.
Given a sentence with a PIE and the location of the
tokens belonging to the PIE, the baseline embed-
ding model generates the embeddings for every
token in the sentence. Then, the token embed-
dings corresponding to the PIE are mean pooled
and fed to the linear layer to generate a binary
classification. Only the linear layer is trainable
when training the classifier. Given that nearly
78% percent of IEs are used figuratively in MAG-
PIE test data, the majority-class baseline predicts
idiomatic label for all instances.

IE Span Detection. This is a more demanding
task compared to IE sense disambiguation and
studies focusing on this task are only emerging
(Zeng and Bhat, 2021). Given a sentence with a
PIE, a model is expected to classify every token
as idiomatic or literal; when the PIE is used
idiomatically, the tokens from the PIE will be
tagged as idiomatic; when the PIE is used literally,
all its tokens will be tagged as literal. To succeed
in this task, a model must identify the presence
of an IE and then precisely predict its boundary.
To create such a classifier, we append a two-layer
MLP that reduces the number of hidden neurons
by a factor of 2 after each layer and uses ReLU
activation between the layers. Only the MLP is
trainable. Because the tokens are overwhelmingly
literal, the majority-class baseline predicts each
token to be literal.

Note that for both the above tasks, more pow-
erful classifiers exist, as shown in prior works
(Liu and Hwa, 2017, 2019; Zeng and Bhat, 2021;

Škvorc et al., 2022). However, we deliberately
constrain the complexity of the classifiers to lin-
ear layers (or MLPs) to ensure the performance
differences reflect primarily the effect of differ-
ent IE embeddings rather than that of additional
modeling.

Evaluation Metrics. For intrinsic evaluation,
that is, the embedding clustering task, we evaluate
performance using homogeneity score to evalu-
ate the clustering quality. Given that two idioms
from different groups should have distinct mean-
ings, we also measure the mean cosine distance
between the embeddings for IEs from different
groups; the larger the distance the better. For the
IE sense disambiguation task, because it is a bi-
nary classification problem, we use accuracy and
F1 score to evaluate the performance. For IE span
detection, given that this is a sequence tagging
task, we use three evaluation metrics, namely,
sequence accuracy, token-level recall score, and
token-level accuracy. In sequence accuracy, an
instance is considered as correct if and only if all
the tokens in the sequence are tagged correctly,
making this the strictest metric. However, by only
considering sequence accuracy, one may underes-
timate the performance of models that can tag most
of the tokens from the positive (idiomatic) class
correctly. Hence, we also consider the token-level
recall and the accuracy score to complement the
strict sequence accuracy metric. For token-level
recall and accuracy, we compute the recall and
accuracy for each predicted sequence and the final
scores are averaged across all sequences.

Baseline Models. Due to the lack of di-
rectly related prior work, we include only the
majority-class baseline, BART, and variations
of GIEA to demonstrate the effect of different
components of our method detailed below.

Majority-class is a naı̈ve baseline that chooses
the majority class for any classification problem.

BART is the original pre-trained BART-base
model.

BART-FT is the fine-tuned full pre-trained
BART-base model using dictionary definition
template sentences mentioned in Section 3 in
addition to the MAGPIE train data with the
idiom-aware text infilling and span infilling
objective.
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Idiom-aware Text Infilling (ITI) Model is a
baseline that trains the adapter with only the
idiom-aware text infilling transformation.

Idiom-aware Text Infilling + Span Infilling Model
(ITI+SI) is a baseline that trains the adapter
with both the idiom-aware text infilling and span
infilling transformations.

Idiom-aware Text Infilling + Similarity Forcing
(ITI+SF) is GIEA that trains the adapter with
the idiom-aware text infilling transformation and
similarity forcing learning objective.

Our Models. We include two competing ver-
sions of GIEA using different noising functions:

Idiom-aware Text Infilling + Similarity Forcing +
Copy Model (ITI+SF+Copy) is GIEA that trains
the adapter with the similarity forcing objective
and both the idiom-aware text infilling and copy
transformations.

Idiom-aware Text Infilling + Similarity Forcing +
Span Infilling Model (ITI+SF+SI) is GIEA that
trains the adapter with the similarity forcing ob-
jective and both the idiom-aware text infilling
and span infilling transformations.

Experimental Setup. For the adapters in all
baseline models, our adapter implementation is
based on Pfeiffer et al. (2020a). The BART-base
model is implemented and maintained by Hug-
gingface (Wolf et al., 2020). The definition
embeddings are generated by an MPNet hosted
and maintained by the Sentence-Transformers
package (Reimers and Gurevych, 2019). For the
adapters, we trained all baseline GIEA models for
220 epochs with a batch size of 16. We trained a
set of IE sense disambiguation and IE span detec-
tion classifiers for each baseline model except for
the majority-class baseline. For IE sense disam-
biguation, we trained the classifier for 55 epochs
with a batch size of 32 and for IE span detection,
we trained it for 100 epochs with a batch size of
16. The linear layer and the MLP in the respective
classifiers were trained with a dropout rate of 0.2.
For all training, we used the Adam optimizer with
a learning rate of 1e-5. For all models, checkpoints
with the best validation performances were used
in the experiments. All the other hyperparameters
were in their default values. We only use MAG-
PIE’s idiomatic sentences to train GIEA and the

Method Score (Norm.) Dist. (Norm.)

BART 0.4546 (0.0) 0.0379 (0.0)
BART-FT 0.4659 (4.97) 0.0681 (14.99)
ITI 0.4597 (2.26) 0.0397 (0.876)
ITI+SI 0.4483 (−2.76) 0.0514 (6.71)
ITI+SF 0.4357 (−8.31) 0.0411 (1.64)
ITI+SF+Copy 0.5906 (59.92) 0.1980 (79.47)
ITI+SF+SI 0.6450 (83.86) 0.2284 (94.54)
Definition 0.6816 (100.0) 0.2394 (100.0)

Table 4: Results of intrinsic evaluation via clus-
tering. Score is the homogeneity scores. Dist. is
the averaged cosine distance between idioms from
different groups. Values are normalized (Norm.)
using BART and Definition embeddings are used
as lower and upper bound. Higher values are better.

baseline models, but we use both the idiomatic and
the literal sentences to train the probing models
for evaluation.

5 Results and Analyses

Intrinsic Evaluation. One of the defining char-
acteristics of a good representation is that the
embedding space should be semantically mean-
ingful, that is, the embeddings of similar meaning
IEs should be closer to each other in the embed-
ding space via some distance metric (e.g., cosine
similarity). As shown in Table 2, it is clear that
after training with our ITI+SF+SI objective, the
IE embeddings no longer cluster based on mere
superficial similarities, instead, their meaning is
the driving factor in determining their proximity
in the embedding space. As shown in Table 4,
the ITI+SF+SI method achieves the best homo-
geneity score and is significantly higher than the
original BART embeddings by 0.19. Also, the
mean cosine distance between the embeddings for
the IEs from different meaning groups is merely
0.0379 for BART, indicating the BART embed-
dings are inadequate in discriminating between
meanings; yet, the averaged distance is 0.2284 for
ITI+SF+SI, which is very close to the distance of
0.2394 by the definition embeddings. To provide
a more direct comparison, we also normalized the
baseline performances using the BART embed-
ding score as the lower bound and the definition
embedding score as the upper bound. Compar-
ing ITI+SF+SI and ITI+SF+Copy reveals that the
more sophisticated SI noising function enabled
the model to learn an embedding space that is
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Model Disambiguation Span Detection

F1 Acc Seq Acc Tkn Recall Tkn Acc

Majority Class 87.37 77.57 22.43 0.0 91.18
BART 95.89 93.71 50.76 75.45 96.51
BART-FT 96.46 94.49 61.53 84.98 97.24
ITI 96.04 93.88 55.07 79.16 96.82
ITI+SI 96.53 94.61 60.29 84.39 97.15
ITI+SF 95.81 93.52 54.97 76.75 96.69
ITI+SF+Copy 95.73 93.30 76.35 89.48 98.12
ITI+SF+SI 95.73 93.25 76.01 90.75 98.17

Table 5: Results of IE embedding extrinsic evaluation via IE disambiguation—evaluated using F1 score
(F1) and Accuracy (Acc%), and IE span detection—evaluated using sequence accuracy (Seq Acc%),
and token-level recall (Tkn Recall) and accuracy (Tkn Acc%). Best performances are boldfaced.

semantically richer, as the normalized homogene-
ity score and cosine distance of ITI+SF+SI is
higher than that of ITI+SF+Copy by 23.9 and 15.1.

Performance on IE Sense Disambiguation.
Though commonly used by prior work, IE sense
disambiguation is a relatively simple probing task
in idiom processing. As shown in Table 5, though
ITI+SI achieves the best performance numerically,
all methods compared achieve competitive per-
formances with respect to F1 and accuracy. This
shows that BART embeddings already capture the
idiosyncratic properties of IEs, in line with the
findings from recent papers (Tayyar Madabushi
et al., 2021; Adewumi et al., 2021). However,
we believe that one cannot judge the quality of
IE embeddings via this task alone, because IE
senses can be distinguished correctly without the
semantic knowledge of IEs. As evidence, under
the same setting, we trained another disambigua-
tion classifier with BART but replaced all the IEs
from the sentences with single mask tokens for
the classifier to make predictions based on just the
embeddings of the mask tokens, thus removing
all possible IE-related semantic information. We
found that such a classifier still performs with
an 86% accuracy, operating only on non-IE con-
textual information. So, IE comprehension ability
and IE embedding quality cannot be fully assessed
by probing the IE sense disambiguation ability,
suggesting that the intrinsic embedding quality
and performances on more difficult IE processing
tasks must also be considered.

Performance on IE Span Detection. IE span
detection is more difficult than IE sense disam-

biguation as it requires detecting the presence
of IEs and precisely identifying their loca-
tions. The performance in this task showcases
the superiority of our IE embedding methods.
ITI+SF+Copy achieves the best performance that
is 25.6 points higher than BART in sequence ac-
curacy, our strictest metric. For token-level recall
and token-level accuracy, ITI+SF+SI achieves the
best performance with a 15-point gain in recall
and 1.66 higher in accuracy than BART. The gain
in token accuracy is small because the tokens are
overwhelmingly literal; the majority-class base-
line already achieves a 91% accuracy. The fact
that ITI+SF+SI has better token-level perfor-
mance than ITI+SF+Copy signifies that though
ITI+SF+SI detects the span less precisely, it re-
covers the tokens from within IEs better than
ITI+SF+Copy does.

Effect of Copy and Span Infilling. We next
examine the usefulness of the copy transfor-
mation and span infilling transformation in the
noising function. Without copy and span infilling,
the ITI+SF suffers in both intrinsic and extrinsic
evaluation. For embedding clustering, the homo-
geneity score of ITI+SF is lower than ITI+SF+SI
by 0.15 and lower than ITI+SF+Copy by 0.21,
performing even slightly worse than the origi-
nal BART’s embeddings. For IE span detection,
ITI+SF’s sequence accuracy is lower than that
of ITI+SF+SI and ITI+SF+Copy by 21.0% and
21.4%, respectively. Notably, without copy and
span infilling transformation, ITI+SF performs
barely better than BART, gaining only 4.2% in
sequence accuracy. To a lesser degree, ITI+SI also
demonstrates the usefulness of the span infilling
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Base Model Sent Emb Clustering Disambiguation Span Detection

Homogeneity F1 Acc Seq Acc Tkn Recall Tkn Acc

BART MPNet 0.6450 95.73 93.25 76.01 90.75 98.17
BART BART 0.4671 95.75 93.29 74.55 88.66 98.02
BERT MPNet 0.4879 91.42 86.36 56.05 78.19 97.34

Table 6: Alternative models’ evaluation performances with different LM base models and sentence
embedding models (Sent Emb). All models are trained with the same ITI+SF+SI objective.

transformation when compared with ITI, gaining
5.22% in sequence accuracy. Thus, copy or span
infilling transformation is necessary and beneficial
during the training of the embedding model. More-
over, even though ITI+SF+Copy and ITI+SF+SI
performs competitively on the extrinsic evaluation
tasks, ITI+SF+SI outperforms ITI+SF+Copy in
the intrinsic evaluation task by a meaningful mar-
gin demonstrating ITI+SF+SI’s superiority over
ITI+SF+Copy.

Effect of Similarity Forcing. By comparing
ITI+SF and ITI or ITI+SF+SI and ITI+SI, we
examine the effect of similarity forcing. While
ITI+SF performs similarly or even slightly worse
than ITI on evaluation tasks, the performance gain
of ITI+SF+SI over ITI+SI is noteworthy, for ex-
ample, it gains 15.8% in sequence accuracy for
IE span detection and 0.20 points in homogene-
ity score for embedding clustering. Considering
the effect of copy and span infilling noising
function, we see that ITI+SF+SI shows better per-
formance than either ITI+SI or ITI+SF. This leads
us to infer that similarity forcing is only useful
when combined with the copy and span infilling
transformation. In addition, we also compare the
performance between ITI+SF+SI and BART-FT
to demonstrate the usefulness of similarity forc-
ing. BART-FT is a BART model fine-tuned on the
same training data as ITI+SI. Though BART-FT
has significantly more trainable parameters and
the same access to external knowledge from the
IE definition template sentences during training,
BART-FT under-performs ITI+SF+SI by 14.48
points in sequence accuracy for span detection and
0.18 points in homogeneity score for embedding
clustering. Therefore, we conclude that using sim-
ilarity forcing in combination with copy- or span
infilling transformation can boost the performance
by a significant margin.

MPNet vs. BART for Definition Embedding.
Though the MPNet’s definition embeddings and

BART’s IE embeddings are in different spaces,
we believe minimizing the cosine similarity be-
tween them to improve IE embeddings’ semantic
meanings is a valid exercise because (1) the id-
iomatic meanings of IEs and the meaning of their
component words are not related; hence relat-
ing their idiomatic meanings to the definition
meanings from MPNet’s space will not affect
the embeddings of the original words; and (2)
prior research suggests that minimizing cosine
similarity can even help relate the meanings be-
tween image embeddings and natural language
embeddings (clearly not in the same embedding
space) (Radford et al., 2021), hence the space
difference between MPNet and BART should not
present a problem. Moreover, using MPNet for the
definition embedding results in an overall better
empirical performance because MPNet produces
higher-quality sentence embeddings than BART.
We experimented training the ITI+SF+SI model
but replaced the MPNet’s definition embeddings
with that from BART. Comparing the results of
the resulting model with those of ITI+SF+SI with
MPNet embeddings, shown in the second row
of Table 6, we see the resulting model achieves
competitive performance for disambiguation but
inferior performances in both span detection and
embedding clustering with a sequence accuracy
that is lower by 1.46% and a homogeneity score
that is lower by 0.18. In fact, even the definition
embedding, when generated by BART, only ob-
tains a homogeneity score of 0.55 (not shown in
tables) which is even lower than the ITI+SF+SI
by around 0.10. This justifies our use of MPNet
for definition embeddings.

Effect of Base Language Models. In our case,
encoder-decoder LMs (e.g., BART) are more suit-
able than an encoder-only LMs (e.g., BERT)
because the decoder allows the use of the
idiom-aware text infilling objective that asks the
model to reconstruct the entire idiom from a single
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mask token. To empirically demonstrate the ben-
efit, we trained an ITI+SF+SI model with BERT
as the base LM and modified the idiom-aware
text infilling objective by using one mask token
per idiom token. As shown in the third row of
Table 6, the BERT-based model under-performs
its BART-based counterpart in all evaluation tasks
by large margins.

Error Analysis on IE Embeddings. Here, we
further examine the quality of the definition em-
beddings and ITI+SF+SI’s IE embeddings (named
GIEA embeddings). We compute precision at k
(P@k) score for each idiom from the 129 idioms
in the 20 meaning groups as follows. Given the
embedding for an IE, E, we first find the k = 3
closest IEs using pairwise cosine similarity and
n, the number of k closest IEs that are from the
same group as E; then, P@3 is computed as n/k.
The mean score for definition embeddings is 0.64.
Meanwhile, the mean score for GIEA embeddings
is 0.52, that is, each IE has about half of the
3-closest IEs from the same group. We found
a large disparity among the groups with respect
to the mean score for each meaning group. While
most groups have a mean score around 0.5, groups
such as ‘‘anger/upset’’, ‘‘quick’’, and ‘‘success’’
have scores higher than 0.6, and those of others,
such as ‘‘punish/criticize’’, ‘‘decline/worsen’’,
‘‘persevere’’ are lower than 0.2.

Also, we found that the per group P@3 scores of
the definition embedding are positively correlated
with those of GIEA embedding with a Pearson
correlation coefficient of 0.76. Based on these
observations, we infer that the difficulty of learn-
ing IE meanings depends on the specific meaning
group and the quality of the definition embedding
directly affects the learned GIEA embedding. Im-
proving the definition embeddings through better
sentence embedding methods (e.g., by training
specifically on dictionary definitions) may further
improve the performance of our method. We also
leave the important aspect assessing the quality of
original compositional embeddings after learning
IE embeddings to a follow-up study.

Error Analysis on Extrinsic Evaluation Tasks.
Here, we analyze the error of the best performing
ITI+SF+SI model on the tasks of span detec-
tion and disambiguation. For span detection, we
sampled 300 incorrect instances with imperfect
sequence accuracies (30.5% of all incorrect sam-

ples) and categorized them into the six error types
defined in Zeng and Bhat (2021). Among the sam-
pled errors, we found that 3.7% were attributable
to identifying one of the IEs when multiple IEs
are present, 57% to detecting only a portion of
the idiom span, 1% to identifying figurative ex-
pressions other than the ground truth idiom, 25%
to identifying a PIE as idiomatic when actually
used in the literal sense, 8.3% for failing to rec-
ognize the presence of an idiom, and another 5%
for returning random tokens that are not mean-
ingful nor part of any PIEs, that is, over 60%
of the errors were in the detection of figurative
tokens. In fact, over 40.8% of test idioms had
their spans precisely tagged in all of their test
instances. For disambiguation, over 82.8% of the
test PIEs were classified with 100% accuracy and
only less than 6% of the test PIEs had an ac-
curacy less than 50%. For both disambiguation
and span detection, the per-idiom accuracies were
weakly correlated with the number of training in-
stances per idiom (Pearson correlation coefficient
of −3.84e-4 for disambiguation and 0.26 for span
detection), suggesting that the performance dis-
crepancy among idiom types is caused by factors
other than their frequency in the train set. Future
studies should consider the characteristics of the
hard-to-learn idioms to improve the embeddings
of the under-performing idioms.

Limitations. An obvious limitation of GIEA is
that it cannot generalize its representation ability
to idioms unseen during training. From the results
in Section 2 and Section 5, it is evident that the
meanings of IEs cannot be learned from general
corpora alone (even when there is a collection of
sentences with IEs), rather, external knowledge
(e.g., IE definitions) is a fundamental to provid-
ing the strong supervising signal (i.e., similarity
forcing loss) needed for training. Taking this into
consideration, we believe that it is impractical
to generalize the representation ability to the un-
seen idioms because (1) intuitively, each IE has a
unique origin, metaphorical linkage, and interpre-
tation, so, the meaning of IEs have to be learned
on a case-by-case basis; and (2) from our error
analysis, even with the same training data and
objective, the learning difficulty is highly idiom
dependent, a point that is also corroborated by
Nedumpozhimana et al. (2022). Therefore, we do
not currently see a practical way to generalize
GIEA to idioms that are unseen. However, we
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argue that this does not hinder the utility of GIEA,
since our training data, MAGPIE, already con-
tains idiomatic sentences for idioms (and meta-
phors) that occur in sources such as the Oxford
Dictionary of English Idioms (Ayto and Press,
2009) and Wiktionary. Thus, we expect GIEA to
cover most frequently used idioms. Besides, even
though expanding an IE lexicon to include new id-
ioms may be easy, gathering idiomatic sentences
for those new idioms requires human input. So, an
important future study is to consider methods that
generalize GIEA to idioms with known identities
but with limited or no idiomatic sentences.

6 Related Work

IE Processing Tasks. Classically, two main
idiom-related processing tasks, namely, idiom type
classification and idiom token classification, have
been studied (Cook et al., 2008; Liu and Hwa,
2019; Liu, 2019). Idiom type classification aims to
decide if a set of MWEs can be used as IEs with-
out considering additional context (Westerståhl,
2002; Fazly and Stevenson, 2006; Tabossi et al.,
2008, 2009; Shutova et al., 2010; Reddy et al.,
2011; Cordeiro et al., 2016). Idiom token classifi-
cation determines if a given PIE is used in a literal
or figurative sense in a sentence and solutions
include those that mostly assume the knowledge
of the location and/or identify of the PIEs (Fazly
et al., 2009; Feldman and Peng, 2013; Peng and
Feldman, 2016; Salton et al., 2016; Taslimipoor
et al., 2018; Peng et al., 2014; Liu and Hwa,
2019), build per-idiom classifiers (Liu and Hwa,
2017), extract embeddings based on PIE positions
(Liu and Hwa, 2019), or focus on only PIEs with
specific syntactic structures (Taslimipoor et al.,
2018). Due to the impracticality of acquiring this
prior knowledge in real-world applications, most
recent works (Zeng and Bhat, 2021; Škvorc et al.,
2022) study the idiomatic expression identifica-
tion problem, jointly the detecting and localizing
a PIE without requiring PIE identity or position.
This problem is related to the MWE identification
task in STREUSLE (Schneider and Smith, 2015)
but with a focus on expressions with semantic
idiomaticity. In-line with prior state-of-the-art, we
use the IE token classification and IE identifica-
tion, dubbed as IE sense disambiguation and IE
span detection, as the extrinsic evaluation tasks to
our IE embeddings.

Impact of IE Presence. Since Sag et al.’s (2002)
study on the impact of MWE, not only have
studies identified the influence of IEs across var-
ious NLP applications (Salton et al., 2014; Fadee
et al., 2018; Ganitkevitch et al., 2013; Liu et al.,
2017; Biddle et al., 2020), recent efforts have
also sought ways to mitigate them (Jhamtani
et al., 2021; Chakrabarty et al., 2021). How-
ever, the techniques used either simply enlarge
the training data by including idiomatic sentences
or paraphrase idiomatic sentences into equivalent
literal sentences, completely ignoring the funda-
mental issue of IE representation. Other works
(Tayyar Madabushi et al., 2021) have probed
how idiomaticity is handled in PTLMs but offer
no solution to improve their representation. Ef-
forts to improve IE span detection or IE sense
disambiguation include transforming the original
representations from pre-trained LMs by incor-
porating static word embeddings alone (Liu and
Hwa, 2017), with additional syntactic informa-
tion (Zeng and Bhat, 2021), utilizing contrastive
loss to make literal and figurative speech embed-
dings more distinctive (Lin et al., 2021), treating
IEs as new tokens during training (Hashempour
and Villavicencio, 2020), or combining represen-
tations from multiple pre-trained LMs (Škvorc
et al., 2022). Taking a different approach in this
work, instead of creating task-specific representa-
tions or altering tokenization at the input, we first
train an LM that produces better IE embeddings
in general and then show their benefit in the idiom
processing tasks. In principle, our trained GIEA
can be plugged into the prior works for idiom pro-
cessing tasks, replacing their embedding models
and improving their performances, an aspect we
leave to future explorations.

Adapter. Originally developed for computer vi-
sion applications (Rebuffi et al., 2017, 2018),
adapters are new modules of simple projection
layers added between the trained transformer lay-
ers, used in NLP as a parameter-efficient and fast
fine-tuning method to adapt pre-trained LMs to
new tasks or domains (Houlsby et al., 2019; Bapna
and Firat, 2019). Recently, adapters have shown
effectiveness in multi-task and multi-lingual trans-
fer learning as well (Pfeiffer et al., 2020b; Ansell
et al., 2021). In this work, we utilize an adapter as
a lightweight non-compositional language expert
that is trained on idiomatic sentences and thus can
expand upon the base LM to generate semantically
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meaningful IE embeddings. The compact Pfeiffer
adapter architecture (Pfeiffer et al., 2020a) is used
in GIEA.

(Non-)Compositional Phrase Embedding.
The core idea for works on non-compositional
phrase embeddings is to avoid treating phrases as
purely compositional (by aggregating word em-
beddings) or non-compositional (treating phrases
as single units), but consider both aspects. The
approaches have adaptive weights and consider
different compositions within a phrase (Li et al.,
2018a; Hashimoto and Tsuruoka, 2016; Li et al.,
2018b) or utilize hypernymy information and
represent phrases in special embedding spaces
(Jana et al., 2019). Although related, these embed-
ding methods cannot produce the contextualized
phrase embeddings as transformer-based models
do, nor can they be combined with PTLMs to aid
downstream tasks.

Embedding Evaluation. The evaluation of
word and phrase embeddings (Hashimoto and
Tsuruoka, 2016; Jana et al., 2019) is typically
via intrinsic methods (e.g., similarity and anal-
ogy) and extrinsic methods, e.g., downstream NLP
tasks (Schnabel et al., 2015; Ghannay et al., 2016;
Hupkes and Zuidema, 2018; Wang et al., 2019).
A popular alternative evaluation method is prob-
ing, where a simple diagnostic classifier is trained
to extract information from frozen embeddings
and determine the extent to which desired linguis-
tic properties are encoded in the representations
(Adi et al., 2016; Warstadt et al., 2019; Alt et al.,
2020; Ravichander et al., 2021). Our intrinsic and
extrinsic evaluation of embeddings follow these
prior works.

7 Conclusion and Future Work

In this work, we first demonstrate current BART’s
inability produce semantically meaningful repre-
sentations for idioms, then, we propose GIEA,
that uses a lightweight adapter, a set of denois-
ing auto-encoder-style learning objectives, and
a similarity forcing objective to produce quality
IE embeddings without altering the input tok-
enization. Through both intrinsic evaluation of
embedding quality and extrinsic evaluation on
their usefulness on idiom-processing tasks, we
find that GIEA greatly improves upon embedding
quality and usefulness compared to the original
pre-trained BART’s embeddings.

Future work should explore means to improve
embedding quality for hard-to-learn idioms based
on observed performance, IEs other than idioms
(e.g., phrasal verbs), and the use of GIEA with
other SOTA idiom processing models. Lastly,
applying idiom-aware PTLMs to downstream ap-
plications that require the IE comprehension, such
as dialog modeling and machine translation, would
be fruitful pursuits.
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Ruder, Kyunghyun Cho, and Iryna Gurevych.
2020a. Adapterhub: A framework for adapt-
ing transformers. In Proceedings of the 2020
Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2020):
Systems Demonstrations, pages 46–54, On-
line. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2020.emnlp-demos.7

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and
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