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Abstract
When generating text from probabilistic mod-
els, the chosen decoding strategy has a pro-
found effect on the resulting text. Yet the
properties elicited by various decoding strate-
gies do not always transfer across natural lan-
guage generation tasks. For example, while
mode-seeking methods like beam search per-
form remarkably well for machine translation,
they have been observed to lead to incoherent
and repetitive text in story generation. Despite
such observations, the effectiveness of decod-
ing strategies is often assessed on only a sin-
gle task. This work—in contrast—provides a
comprehensive analysis of the interaction be-
tween language generation tasks and decoding
strategies. Specifically, we measure changes
in attributes of generated text as a function of
both decoding strategy and task using human
and automatic evaluation. Our results reveal
both previously observed and novel findings.
For example, the nature of the diversity–
quality trade-off in language generation is very
task-specific; the length bias often attributed
to beam search is not constant across tasks.

https://github.com/gianwiher
/decoding-NLG

1 Introduction

Modern neural networks constitute an exciting
new approach for the generation of natural lan-
guage text. Much of the initial research into neural
text generators went into designing different ar-
chitectures (Sutskever et al., 2014; Rush et al.,
2015; Serban et al., 2017). However, recent work
has hinted that which decoding strategy (i.e., the
method used to generate strings from the model)
may be more important than the model architec-
ture itself. For instance, a well replicated recent
result is that, under a probabilistic neural text
generator trained with the maximum-likelihood
objective, the most probable string is often not
human-like or high quality (Stahlberg and Byrne,
2019; Eikema and Aziz, 2020). In light of this
finding, a plethora of decoding strategies have

been introduced in the literature, each claiming
to generate more desirable text than competing
approaches.

Lamentably, empirical studies of decoding stra-
tegies are typically evaluated on a single natural
language generation task—without investigation
into how performance may change across tasks—
despite the fact that these tasks differ qualitatively
across a large number of axes. These qualitative
differences manifest quantitatively as well: For
example, we can see in Figure 1 that high prob-
ability strings are favorable in some tasks, like
machine translation (MT), while heavily disfa-
vored in others, like story generation (SG). Conse-
quently, we should not a priori expect a strategy
that works well for one task to demonstrate the
same performance in another. Indeed, several
cases already show evidence of this: Beam search
works remarkably well for machine translation
but, outside of this context, has been observed
to return dull text or degenerate text (Holtzman
et al., 2020; DeLucia et al., 2021). This raises
a natural fear that decoding strategies have been
optimized for performance on a specific task, and
the task-agnostic claims about the effectiveness
of one decoding strategy over another are poten-
tially ill-founded. A broader analysis of decod-
ing strategies—both within and across tasks—is
needed in order to fully understand the extent of
such a problem.

Our work fills this gap, providing the first
comprehensive comparison of decoding strategies
across natural language generation tasks. Empiri-
cally, we compare strategy performance on several
axes, taxonomizing methods into groups such as
deterministic and stochastic, to understand the
importance of various strategy attributes for quan-
tifiable properties of text. In summary, our main
findings include the following:

• Many previous empirical observations,
among them the quality-diversity and quality-
probability trade-offs (Ippolito et al., 2019;
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Figure 1: Quality-probability trade-off for different
language generation tasks: story generation, uncondi-
tional language generation, abstractive summarization,
dialogue, and machine translation. Notably, general
trends in each curve differ drastically across tasks, de-
spite training models with the same objective. See §4.3
for details on how quality scores are computed.

Zhang et al., 2021; Nadeem et al., 2020),
manifest themselves in very task-specific
ways. For example, our experiments reveal
a distinct quality-diversity trade-off albeit
only in a certain subset of tasks. This brings
into question whether there is a single
phenomenon under consideration or many
distinct, but related, phenomena.

• A group-level analysis shows the first empiri-
cal evidence of a distinct divide in preference
for stochastic versus deterministic strategies
across tasks: All directed generation tasks ap-
pear to favor the latter, yet there is a notable
trend in the strength of this preference—even
the inverse is true for story generation.

We see these results as both a reference point for
language generation practitioners, so that they can
more confidently choose a decoding strategy that
fits their needs, and as an indicator of potential
strengths and weaknesses of today’s neural prob-
abilistic language generators. We have reason to
believe that there is a task-specific optimization
happening in the literature whereby many of the
proposed and (even celebrated) decoding strate-
gies only outperform their competitors on specific
tasks. Thus, our paper serves as a cautionary note
about proper comparisons.

2 Probabilistic Language Generators

In this work, we consider models for language
generation tasks that define a probability distribu-
tion over strings. More formally, these models are

probability distributions q over an output space
Y—(perhaps) conditioned on an input x—where
Y is the set consisting of all possible strings that
can be constructed from the vocabulary V:

Y def
= {BOS ◦ v ◦ EOS | v ∈ V∗} (1)

where BOS and EOS stand for special reserved
beginning-of-sentence and end-of-sentence to-
kens, respectively; V∗ is the Kleene closure
of V .

Today’s language generators are typically
parameterized by encoder–decoder architectures
with attention mechanisms (Sutskever et al.,
2014), notably the transformer (Vaswani et al.,
2017), with trainable weights θ. These models
follow a local-normalization scheme, meaning
that for all t > 0, q( · | y<t) defines a probability
distribution over V def

= V ∪ {EOS}. The probabil-
ity of a sequence y = 〈y0, y1, . . . 〉 can thus be
factorized as follows:

q(y) =

|y|∏
t=1

q(yt | y<t) (2)

where y<t
def
=〈y0, . . . , yt−1〉 and y<1 = y0

def
= BOS.

In order to learn the weights θ, we minimize
some loss function L(θ; C), defined in terms of a
corpus C. In theory, we want examples in C to be
assigned high probability. Accordingly, our loss
is typically their negative log-likelihood under q.1

3 The Decoding Problem

We define the decoding problem as the search for
a string y∗ according to a given model q and a set
of decision rules. Given the probabilistic nature of
most language generators, the natural choice for
such a string would be the most probable sequence
under the model

y� = argmax
y∈Y

log q(y | x) (3)

Solving the optimization problem in Eq. (3) is
commonly referred to as maximum a posteriori
(MAP) decoding. There are two main reasons

1For certain tasks, this loss is typically augmented with
label smoothing (Szegedy et al., 2016) to combat overfit-
ting. In short, a certain probability mass is discounted from
the ground-truth token and redistributed uniformly across
all the other tokens.
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why in practice this direct optimization is not
used when decoding: First, because of the expo-
nentially large space Y and the non-Markovian
structure of commonly used neural generators,
direct optimization is often computationally in-
feasible. Second, recent research has shown that
the mode (i.e., the MAP solution y∗) is often
not human-like or high quality text (Eikema and
Aziz, 2020). For example, in the domain of MT,
the most likely string under the model is often
the empty string (Stahlberg and Byrne, 2019).
For open-ended generation,2 it has been observed
that there is a positive correlation between like-
lihood and quality up to only a certain inflection
point, after which the correlation becomes nega-
tive (Zhang et al., 2021). Thus in practice, y∗ is
almost exclusively approximated using heuristic
methods. An overview of such (commonly used)
methods is presented below.

3.1 Deterministic Algorithms

Greedy Search. One approximation of y∗ is
obtained by greedily choosing the most probable
token at each decoding step t, that is, the following
recursion is performed until the EOS symbol is
chosen or some maximum time step T is reached:

y0 = BOS (4)
yt = argmax

y∈V
log q(y | x,y<t) (for t > 0)

Note that there is no formal guarantee that greedy
decoding will return the global optimum of the
decoding objective since decisions are only locally
optimal.

Beam Search. Beam search is a simple exten-
sion of greedy search. Rather than considering
only the highest probability continuation of our
string at each step, we keep the K ∈ Z+ highest
probability paths, where the hyperparameter K is
referred to as the beam:

Y0 = {BOS} (5)

Yt = argmax
Y ′
t⊆Bt,

|Y ′
t |=K

∑
y∈Y ′

t

log q(y | x) (for t > 0)

2We define directed generation tasks as involving a strong
relationship between input and output (e.g., as in MT); for
open-ended tasks, input contexts only pose a soft constraint
on the output space, i.e., there is a considerable degree of
freedom in what is a plausible output (e.g., in dialogue or
story generation).

where for t > 0

Bt =
{
yt−1 ◦ y | y ∈ V and yt−1 ∈ Yt−1

}
(6)

is our beam, consisting of all possible extensions
of y ∈ Yt−1. As with greedy decoding, the recur-
sion is performed until all strings end in the EOS

symbol or some maximum time step T is reached.
The highest scoring string y∗ is then chosen from
this final set YT .

Beyond the log-probability, other scoring func-
tions have been proposed as modifications to
the vanilla beam search algorithm. For example,
Vijayakumar et al. (2018) propose diverse beam
search (DBS) to address the issue of the lack of
diversity within the set of returned strings. The
algorithm further splits the beam into several sub-
groups and adds an inner iteration at each time step
to maximize inter-group diversity. We refer the
reader to the original work for the full algorithm.

3.2 Stochastic Algorithms

Ancestral Sampling. Instead of approximating
y∗, one can obtain generations by sampling y ∼
q(· | x). Due to the local normalization scheme of
the models that we consider, this can be achieved
simply by setting y0 = BOS and then drawing each
yt ∼ q(· | x,y<t) until EOS is sampled.

Top-k Sampling. Perhaps due to the ‘‘unreli-
able tail’’ of the distribution (Holtzman et al.,
2020)—that is, the subset of V that are unreal-
istic extensions of a string but are necessarily
assigned probability mass due to the non-sparse
nature of the softmax transformation—sampling
directly from q(· |x) can lead to text that is inco-
herent and sometimes even unrelated to the subject
(Fan et al., 2018). One way to overcome this is-
sue is to limit the sampling space to the top-k
most likely tokens in each decoding step. Prior
to sampling, the distribution over V is recom-
puted: Let Zk(x,y<t)

def
=

∑
y∈V(k) q(y | x,y<t)

where V (k) ⊆ V is defined to be the set of the k
most likely tokens. The truncated distribution is
given by:

π(y | x,y<t) =

{
q(y|x,y<t)
Zk(x,y<t)

if y ∈ V (k)

0 otherwise
(7)
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Task X Yout q Dataset

Machine Translation (MT) sequence in source language sequence in target language FAIR’s WMT19 submission NEWSTEST2019
Abstractive Summarization (AS) news article summary BART CNN/DAILYMAIL

Dialogue (Diag) conversation history response DIALOGPT DIALOGPT
Story Generation (SG) short prompt related story GPT-2 (small and medium) WRITINGPROMPTS

Unconditional Generation (ULG) empty sequence (〈BOS〉) plausible natural language strings GPT-2 (small and medium) WIKITEXT-103

Table 1: Overview of the tasks considered in this work. Examples given for X and Yout are the intended
input and output, respectively. Models q are evaluated on the test set of the specified dataset. Note that
we fine-tune the GPT-2 models on the specified dataset, while other models are loaded from checkpoints
provided by the Hugging Face framework (Wolf et al., 2020).

Nucleus (Top-p) Sampling. Rather than always
considering a fixed size set, nucleus sampling dy-
namically adjusts the number of tokens under
consideration based on the spread of the probabil-
ity distribution at each generation step. Formally,
nucleus sampling (Holtzman et al., 2020) consid-
ers the smallest subset of tokens whose cumula-
tive probability mass exceeds a chosen threshold
p. For generation step t and p ∈ (0, 1], the top-p
vocabulary V (p) ⊆ V is defined as the smallest
set such that ∑

y∈V (p)

q(y | x,y<t) ≥ p (8)

The truncated distribution is computed similar to
Eq. (7) with Zp(x,y<t)

def
=

∑
y∈V (p) q(y | x,y<t).

Bayes Minimum Risk (MBR). Under proba-
bilistic language generators, probability mass is
often spread over a large set of likely candidates
without clear preference (Ott et al., 2018). How-
ever, this set of likely strings should not be arbi-
trary when q is good. Rather, these strings should
capture the statistics of training data well, con-
taining a number of potentially good solutions
(Eikema and Aziz, 2020). This motivates a deci-
sion rule that exploits all available information in
this set. Let u : Y × Y → R be a utility function
that evaluates a string y against reference ŷ. Ac-
cording to statistical decision theory (Bickel and
Doksum, 1977), the optimal decision y∗ is the
one that minimizes expected risk

y∗ = argmin
y∈Y

Eq(ŷ|x)[−u(y, ŷ)] (9)

Like MAP, it is generally computationally infea-
sible to solve the MBR objective exactly given the
size of Y . In practice, one can obtain an unbiased
estimate of the expected risk via Monte Carlo

(MC) methods, limiting the search space for the
maximization problem to the set sampled during
this estimation procedure.

4 Experimental Setup

The strategies presented in Section 3 are com-
pared across a variety of NLG tasks covering
open-ended as well as directed generations tasks.
We define a task more formally as a triple (X ,
Yout, q) where X denotes the input space, Yout ⊆ Y
the output space3 and q a model that defines a
probability distribution over Yout for every input
x ∈ X . A high-level overview of these tasks (and
the respective datasets used) can be found in
Table 1. We use solely transformer-based models,
all state-of-the-art for their respective tasks (Ng
et al., 2019; Lewis et al., 2020; Zhang et al.,
2020; Radford et al., 2019). We use open-sourced
versions of models for reproducibility.

Decoding Strategy Settings. Most of the decod-
ing algorithms specified in the previous section
depend on certain parameters. For all our exper-
iments we use the following settings:

• We consider beam search with beam sizes
K = 5 and K = 10, and DBS with Ham-
ming distance as a dissimilarity function,
λ = 0.7 and G = K = 5. The choice of dis-
similarity function and hyperparameters is
based on the recommendations from the orig-
inal work. When we only want to return one
string, we select the hypothesis with the high-
est score according to log q.

• For top-k sampling, we set k = 30 and for
top-p sampling, we set p = 0.85 based on

3Note that formally the input and output spaces only differ
by the model-specific vocabularies and maximum generation
length l ∈ Z+.
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Quality Metrics

Automatic

BLEU Corpus-level metric originally developed to assess translation quality of MT systems
(Papineni et al., 2002). Produces a score between 0 and 1 based on modified n-gram
precision. We use the SACREBLEU (Post, 2018) framework.

METEOR Metric based on the harmonic mean of unigram precision and recall. Originally developed
to evaluate MT. We use version 1.5 of the implementation from Denkowski and Lavie
(2014).

COMET Neural framework to train multilingual MT evaluation systems proposed by Rei et al.
(2020). The nature of these metrics makes it only compatible with the MT task. We use a
pretrained model checkpoint provided by the original work.

ROUGE Recall-oriented set of metrics originally developed to assess the quality of automatically
generated summaries (Lin, 2004). We report the ROUGE-L measure, which is based on longest
common subsequences between candidate and reference.

BLEURT Trained evaluation metric based on BERT (Devlin et al., 2019). Returns a score that indicates
to what extent the candidate is grammatical and conveys the meaning of the reference
(Sellam et al., 2020). We use a pretrained model checkpoint provided by the original work.

Human

ADEQUACY How well does the response/continuation fit in a given conversation history?

NATURALNESS To what degree does the text seem to be a natural English text?

QUALITY How high is the overall quality of the text?

ACCURACY Given the context, is the text accurate?

FLUENCY How fluent is the given text?

Diversity Metrics

DIST-n Number of distinct n-grams divided by the total number of n-grams (Li et al., 2016).

ENT-n The fact that infrequent n-gram contribute more to diversity than frequent ones is not taken
into account by dist-n. This limitation is addressed by the ent-n metric first proposed by
Zhang et al. (2018) which reflects how uniform the empirical n-gram distribution is for a
given sentence.

n-GRAM DIV. Average over dist-n measures for different values of n. We calculate the average over
n ∈ {1, . . . , 5}.

SELF-BLEU Average BLEU score across strings when using all other strings in set as references (Zhu
et al., 2018).

REPETITION If a phrase (minimum length of 2) is repeated at least three times until the end of the
generation, it is labeled as a repetition. This definition of a repetition is taken from
Holtzman et al. (2020)

Table 2: List of metrics considered in this work. For human evaluation metrics, prompt shown is
provided to raters.

experiments in DeLucia et al. (2021) that
suggest a parameter range p ∈ [0.7, 0.9].

• For MBR,4 we obtain 30 to 32 ancestral
samples5 to approximate the expected risk in
Eq. (9) using MC. The candidate sequences,

4We use code provided at github.com/Roxot/mbr-nmt.
5To speed up the generation process, samples are gener-

ated in batches. Depending on the memory requirements of

for which we all calculate the expected risk,
consists of the ancestral samples used for the
MC approximations together with sequences
obtained from the other decoders. The metric
BEER (Stanojević and Sima’an, 2014) is
used as the utility function u.

the different models, the batch size differs across tasks, thus
creating small differences in the number of samples acquired.
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Task ADEQUACY QUALITY FLUENCY NATURALNESS ACCURACY

Diag � �
AS � �
SG � �
ULG � �

Table 3: Criteria used for each task in human
evals.

4.1 Metrics

We use a number of different metrics to compare
text across decoding strategies. An overview of
all metrics can be found in Table 2. Note that
we roughly divide the set of metrics into two
categories: diversity metrics and quality metrics.
Intuitively, we may expect that the two criteria
are not always of equal importance. For example,
in MT an accurate, high quality translation of the
input is often more highly valued than generating
engaging or stylized language or a wider range
of diverse outputs. On the other hand, a conver-
sational agent that is able to talk about a diverse
range of topics is likely highly preferred to one
that repeats the safest phrases over and over (Li
and Jurafsky, 2016). In our subsequent experi-
ments, we provide a quantitative analysis of this
trade-off.

4.2 Evaluation of Quality

For tasks where one has access to a ground truth
reference, for example, MT, AS, and to some ex-
tent Diag, there are a variety of automatic met-
rics to evaluate quality. Most of these metrics are
based on statistics of n-gram overlap between
output and reference. This class of metrics has its
limitations; consequently we also consider human
judgments of text quality using criteria in Table 2.
We use the prolific framework to obtain ratings
from 5 different annotators on 200 examples per
decoding strategy; criteria used for each of the
tasks is given in Table 3. For each of the criteria,
an 8-point Likert scale is used. We select the cri-
teria based on which have been most commonly
used to assess performance of text generators
on a given task, as outlined by van der Lee et al.
(2021), and describe them to the annotators as in
Table 2. If a rater assigns high scores to multiple
examples that do not fulfill the specified criteria
at all, the rating is rejected and we obtain a fresh
set of scores from a new rater. For SG, AS, and
Diag the raters are first presented with a prompt/
news article/dialogue history followed by the out-

puts of the different decoders and the reference
in random order. For unconditional language
generation we present the raters with generations
and references in random order.6

4.3 Evaluation of Diversity

Automatic metrics to measure lexical diversity
of generated text are mostly based on statistics
of n-gram counts; while lexical diversity is a
narrow definition of diversity, it is the commonly
employed one in language generation as diverse
word choice is arguably a large factor for this
characteristic. Note that lexical diversity can be
measured at the string level, that is, within a given
string y, or across a set of strings {y(1),y(2), . . . }.
While we provide some results for the former set of
metrics, we focus largely on the latter set, as often
practitioners are more concerned with having a
diverse set of generations per input. Specifically,
we take measurements with respect to sets decoded
by each strategy, namely, the size K set decoded
by beam search or K items generated according to
a specific stochastic scheme.7 For the stochastic
decoders, we set K = 10. For each input x ∈ X
we thus obtain a set of outputs, denoted by Sx, per
decoder over which we calculate various metrics,
such as self-BLEU or n-gram diversity. Self-BLEU is
calculated on a per-string basis as the average of
BLEU scores when setting one of the generations
y(i) ∈ Sx as the hypothesis and all other strings in
Sx \ {y(i)} as references. To calculate dist-n,
ent-n, and n-gram diversity metrics for a set
of generations, we concatenate all outputs and
perform calculations as described in Table 2. For
ULG, where we only have one input x, we instead
calculate scores over random (disjoint) subsets of
size K = 10.

5 Results

5.1 Quality

Human evaluations are aggregated across raters,
using the median value for each string. Results
are displayed in Figure 2. According to human
raters, sampling directly from the model yields

6We omit human annotations for MT because it has been
observed that there is no significant gain over the automatic
metrics when using crowd workers due to large variations in
evaluation (Freitag et al., 2021).

7Because greedy and MBR decoding are methods that
only return a single string, they are not considered in the
latter set of metrics.
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Figure 2: Median human evaluation ratings.

Dialogue Summarization MT (De-En) MT (En-De)
HUMAN BLEU ROUGE-L HUMAN BLEU ROUGE-L BLEU METEOR COMET BLEU METEOR COMET

Greedy 4.660 0.661 9.072(4) 3.671 16.560 28.027 40.083 42.444 0.548 42.072 59.174 0.613
BS (k = 5) 4.495 0.758(3) 8.796 5.235(5) 17.197 31.138 41.049 43.005 0.561(3) 42.746(5) 59.602(3) 0.622
BS (k = 10) 4.456 0.746 8.331 5.180 16.726 30.650 41.211(5) 43.101(3) 0.560 42.680 59.583 0.622(3)
DBS 4.689(3) 0.436 8.708 5.122 18.141(5) 31.487(6) 39.770 42.254 0.538 41.702 58.793 0.611
MBR 3.815 0.510 8.469 3.709 10.771 25.120 40.811 42.952 0.547 42.370 59.241 0.605
Ancestral 3.329 0.196 5.408 1.825 5.390 17.985 17.402 27.425 −0.520 15.595 35.722 −0.832
Top-k 4.234 0.308 6.961 4.276 11.644 25.961 27.574 35.651 0.376 27.091 47.839 0.458
top-p 3.914 0.308 6.331 3.976 11.785 25.505 29.397 36.704 0.382 29.998 49.778 0.481

Table 4: Corpus-level quality metrics for Diag, AS, and MT. For Diag and AS the human score is
calculated by taking the mean over the two criteria upon which the text is rated.

text with the lowest quality metrics across all tasks:
The clear exception is for SG, where we observe
that mode-seeking strategies lead to degenerate
text (further discussion in §5.4). In general, for
the directed generation tasks (AS and Diag), beam
search variants perform the best, even outperform-
ing human generated references. Interestingly, de-
spite its limited exploration of the search space,
greedy decoding generates texts on par with beam
search methods for Diag.

On the other hand, the results of stochastic meth-
ods are more nuanced: Although top-p and top-k
decoding generate more highly rated texts than
ancestral sampling, they often fail to reach quality
levels of the beam search based methods. MBR
decoding, which as a decoding strategy perhaps
falls somewhere between the classes of determin-
istic and stochastic, likewise performs somewhere
between these classes in terms of quality met-
rics. Overwhelmingly, trends in performance are
much more distinct when analyzing strategies as
stochastic vs. deterministic, rather than individu-
ally, suggesting that small algorithmic differences
in decoding strategies may not be as critical as
prior work has made seem.

We present automatic quality evaluation met-
rics for directed generation tasks in Table 4—the
number in brackets in Table 4 shows how many
of the decoders performed significantly worse
than the best one in terms of the respective met-

ric, as determined by an example-level permu-
tation test. We use a significance level of 0.01;
the resulting p-values were corrected for multiple
testing using a Bonferroni correction. We observe
similar trends as with our human evaluations:
Beam search methods perform best, followed by
top-p and top-k sampling, with ancestral sam-
pling performing worst. Despite mixed results in
Figure 2, MBR decoding yields competitive re-
sults in terms of automatic evaluation metrics,
even matching the performance of beam search;
this is perhaps not surprising given the poor cor-
relation between human and automatic evaluation
that is frequently observed in language generation.
On Diag, we only observe a significant differ-
ence in performance between the best decoder
and the worst 3, respectively, worst 4 decoders.
Similarly, on MT, we observe that except for the
BLEU metric, only a significant difference between
the best and the worst 3 decoders is present. On
the other hand, we have that for the AS the best
performing decoder significantly outperforms any
other decoder except the other beam search meth-
ods. This contrasts the observation for Diag and
MT where the mode seeking decoders seem all to
perform equal.

5.2 Diversity
We report diversity metrics for different strategies
and tasks in Figure 3. Points are connected to
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Figure 3: Diversity metrics calculated at the set level. For ULG, the metrics are calculated for randomly chosen
(disjoint) subsets of all generations. Note that low self-BLEU indicates high diversity.

better illustrate general trends across diversity
metrics, not due to a quantitative relationship
between the metrics themselves. We see that in
general, the trends for a given task are quite
consistent across diversity metrics, that is, lines
of the same color follow the same trend across
facets. On the other hand, trends across tasks are
not as similar. For example, the gap in diversity
between deterministic and stochastic methods is
much more exacerbated in SG than MT.

Across tasks, ancestral sampling consistently
produces the most diverse outputs. Limiting the
search space, as in top-k and top-p sampling,
leads to a drop in diversity compared to pure
sampling; notably, this drop appears to be much
more significant for directed generations tasks.
Interestingly, introducing a diversity promoting
term, as in DBS, increases diversity with respect
to beam-based decoding algorithms, but still leads
to substantially less diverse strings than stochastic
methods.

At the task-level, responses for Diag seem to
be more inherently diverse than for other tasks.
Even methods known for producing repetitive sets
(e.g., beam search) generate a relatively diverse
set of solutions. This suggests that even though
diverse options are often desired in Diag, we
may not need to explicitly optimize for them via
the chosen decoding strategy. On the other hand,
diversity in SG is quite sensitive to the chosen
decoding strategy, displaying drastic differences.

5.3 Quantitative Trade-offs in NLG Tasks

We provide an analysis of the importance of dif-
ferent metrics for each of the language generation
tasks, looking specifically at their relationships
with perceived quality.

The Probability–Quality Relationship. Natu-
ral language generation is performed almost solely
using probabilistic models. While ideally, we
would like high quality text to be assigned high
probability (and vice versa), we see that in prac-
tice this is not always the case (Cohen and Beck,
2019; Stahlberg and Byrne, 2019; Holtzman et al.,
2020; Zhang et al., 2021; DeLucia et al., 2021).
The trends observed in Figure 1 reveal that while
high probability is often a determinant of quality
in directed generation tasks, such as MT and AS,8

there is a negative correlation between quality and
probability in SG and ULG at least up until a cer-
tain inflection point. Such relationships have been
a main motivation behind research into new de-
coding strategies (e.g., Li et al., 2016; Shao et al.,
2017; Holtzman et al., 2020). The quality scores
in Figure 1 are obtained by taking the mean over
human ratings. For MT, sentence-BLEU is used.

This relationship also manifests in the divide in
performance between deterministic strategies—all
of which to some extent are mode-seeking—and
stochastic strategies. Naturally, the deterministic
decoding strategies we consider produce (on av-
erage) higher probability strings, as probability
is part of their decoding objectives. Figure 6
shows that when compared to ancestral samples,
most beam search generations are more strongly
associated with higher (length) normalized log-
likelihood than the output of the sampling based
decoders. Thus, we might expect the results ob-
served in Figure 1 to appear in a comparison of
deterministic and stochastic strategies. We rank

8As computational constraints make it difficult (if not
infeasible) to decode the highest probability string from
neural models, we do not observe behavior at the extreme
end of Figure 1, which other works have observed to produce
poor quality text.
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Figure 4: Highest ranks achieved by stochastic vs. de-
terministic strategies on each input; a rank of 1 means
a generation from the respective group of decoding
strategies was ranked 1st among all generations. We
omit ULG since only stochastic strategies are consid-
ered for this task. Note that the lowest possible rank
for a deterministic strategy is 4 and for a stochastic
strategy is 5.

strategies within a task according to human rat-
ings when available and calculate the highest
rank obtained by each of the two groups. More
specifically, for each input, we order generations
according to their median human rating. Ranks
are then assigned to each decoding strategy ac-
cording to this ordering (lower is better). We
then look at the highest rank achieved by the
two subsets of decoding strategies. From Figure 4
we can see a distinct divide in preference for
deterministic vs. stochastic strategies across tasks:
All directed generation tasks appear to favor
mode-seeking strategies. Yet there is a notable
trend in the strength of this preference. As we
might intuitively expect, we see an upward trend
in the difference in rankings of mode-seeking vs.
stochastic decoding methods as a task becomes
more semantically constrained. At one end of
the spectrum, in SG, we observe that in nearly
all cases, the most highly ranked output from a
deterministic strategy is still ranked below the
worst of the stochastic strategies,9 indicating the
ill-suitedness of mode-seeking strategies for such
tasks. The opposite is true of MT at the other end
of the spectrum.

9This must be the case since the average maximum
ranking for mode-seeking methods is almost 4.

Figure 5: The relationship between diversity (n-gram
div) and quality (median human rating) across language
generation tasks. Results are qualitatively the same
when using other diversity metrics, as we might expect
given the results in Figure 3.

The Diversity–Quality Relationship. Here we
investigate how diversity—as quantified by met-
rics in §4.1—relates to quality in a given task.
Note that the probability–quality relationship has
previously been attributed to a trade-off between
diversity and quality (Zhang et al., 2021; Nadeem
et al., 2020), albeit only in the investigation of a
small subset of language generation tasks. How-
ever, we see in Figure 5 that the relationship
between diversity and probability is not so easily
defined: it changes quite drastically across tasks.

Specifically, Figure 5 shows there is indeed a
trade-off for the two quantities in AS and MT,
yet there appears to be an interdependence for
open-ended generation tasks. Notably, Diag ap-
pears to fall outside of this paradigm, which
perhaps challenges its definition as a directed
generation task. In conjunction with other results
(e.g., Figure 6), the trends shown in Figure 5
suggest that within directed tasks, Diag falls
closer to open-ended generation tasks on the task
spectrum. We further see that stochastic and deter-
ministic methods are distinctly divided along the
diversity–quality trend in each task; although this
result is perhaps to some extent expected, the
separating line is surprisingly sharp in all cases.

5.4 Eliciting Metrics

We now look at the ability of different decoding
strategies to elicit the qualitative metrics described
in §4.1, the quantitative properties studied in §5.3,
as well as certain undesirable attributes of text.
Through this analysis, we hope to ascertain how
the effectiveness of different decoding strategies
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Figure 6: Correlations between quality metrics and other quantitative attributes of text with different decoding
schemes separated by task.

generalizes across tasks, and which—if any—
more general claims can be made about these
strategies.

Figure 6 shows how different decoders corre-
late with various metrics, using ancestral samples
as a baseline.10 Our first take-away is that these
correlation plots differ notably across tasks, which
further demonstrates the sensitivity of the perfor-
mance of decoding strategies to the task at hand.
Among these differences though, we observe cer-
tain trends that provide insights into how decoders’
abilities to generate certain types of texts trans-
fers across tasks. For example, the performance
of decoders within the subsets of directed and
open-ended generation tasks is reasonably consis-
tent. We first discuss more specific trends with
respect to quality metrics.

Quality Metrics. We first note that there is no
single decoding method that consistently corre-

10Ancestral samples give us an unbiased sample of the
type of text that is assigned probability mass by our model,
thus making it a good baseline for observing the effects of
decoding strategies.

lates most strongly with high-quality text, which
heeds further warnings against more general
claims made about decoder performance. Per-
haps the most distinct result when looking at
decoders’ correlations with quality metrics is the
difference in correlations for mode-seeking meth-
ods between open-ended and directed generation
tasks. Here we see that on the directed tasks, the
use of mode-seeking methods appears to correlate
highly with quality, with no substantial differ-
ences among this class of methods even when,
for example, also optimizing for intra-set diver-
sity (as in DBS). Interestingly, the strengths of
the correlations shown by stochastic methods are
much more consistent across all tasks than the
mode-seeking methods. While in general, decoder
performance with respect to quality metrics is rel-
atively consistent for directed generation tasks,
there are exceptions to this consistency: MBR
correlates well with quality metrics for MT, but
underperforms in comparison to other decoders
for both AS and Diag. On AS, greedy search
tends to lead to poorer quality text than top-p and
top-k sampling where, for the other directed tasks,
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Figure 7: Fraction of generations that degenerate into
repetition (see Table 2 for definition). Note the different
scales for the different tasks.

all mode-seeking methods provide generations of
higher quality.

Diversity Metrics. In comparison to quality,
we observe that behavior of different decoders
changes less with respect to diversity. For diver-
sity metrics calculated over a set of generations,
ancestral sampling consistently generates the most
diverse text (as demonstrated by the negative
n-gram diversity/positive self-BLEU correlations
shown by all decoders). This is true even in com-
parison to DBS, which optimizes for intra-set
diversity.11 Mode-seeking decoding strategies
consistently have a stronger negative correlation
with set-level diversity metrics (e.g., self-BLEU)
than their stochastic counterparts. This difference
is more pronounced on certain tasks: For example,
both Figure 6 and Figure 3 show a bigger jump
in diversity scores between DBS and top-p sam-
pling on SG compared to MT or AS. Interestingly,
there is little consistency across tasks in terms of
sequence-level string diversity.

Repetitions. Probabilistic language generators
are known to occasionally produce text with de-
generate qualities (Dinan et al., 2020; Holtzman
et al., 2020; Welleck et al., 2020b). One common
form of degenerate behavior is repetitions, where
generation falls into a loop of repeating the same
phrase until the decoding algorithm terminates.

11Although in general, DBS seems to be relatively effective
at optimizing for intra-set diversity in comparison to other
decoders, even achieving low self-BLEU on SG despite also
causing degeneration, as shown in Figure 7.

Story Gen. (small) Story Gen. (medium)
% repetition ppl % repetition ppl

Greedy 95.67 1.07 98.47 1.09
BS (k = 5) 92.58 1.11 90.70 1.11
BS (k = 10) 95.67 1.11 88.01 1.11
DBS 99.25 1.05 97.75 1.05
MBR 0.20 27.19 0 28.46
Ancestral 0.23 30.43 0.13 32.98
Top-k 1.97 7.10 0.53 7.38
Top-p 15.87 5.52 5.65 6.33
Reference 0 23.83 0 19.28

Table 5: Perplexities and repetition count for
different strategies on the SG task. Mode-seeking
strategies are able to produce text with very low
perplexity but these generations almost always
degenerate into repetitions.

Here we analyze the fraction of times this behav-
ior occurs for different strategies; results can be
found in Figure 7. On the SG task, we observe a
substantial amount of text degeneration for mode-
seeking strategies; this holds true for both small (s)
and medium variants of GPT-2. Across both open-
ended tasks, the only stochastic decoding scheme
that appears to elicit this degenerate behavior is
top-p sampling; Although only a small percent-
age of samples, it is responsible for all of the
degenerate behavior observed for the ULG task.
Notably, for all tasks besides SG, we see repet-
itive behavior in less than 1% of generations.
The exact repetition counts together with the per-
plexity of the generated texts for SG are shown
in Table 5.

Length. We further investigate how different
decoding strategies affect the length of generated
text. Length biases have frequently been observed
in language generation tasks (Murray and Chiang,
2018; Welleck et al., 2020a), both for shorter
and longer strings. In this experiment, we hope
to observe how much the decoding scheme can
be held responsible for these biases. We report
results in Figure 8 and Figure 9. For MT, all
strategies manage to generate strings of lengths
similar to the reference with the exception of
ancestral sampling, which produces slightly longer
strings. Interestingly, there are no consistent trends
for beam search variants across the other directed
generation tasks; rather, trends seem to be inverted
for Diag and AS.

We see large variation in the length of gen-
erated strings for the SG task, especially among
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Figure 8: Differences between lengths of generated
texts to reference strings. MAPE denotes the mean ab-
solute percentage difference between reference lengths
and the lengths of generated texts. MPE denotes the
mean percentage error, where we do not take the abso-
lute value of the difference in lengths, in order to get
a sense of whether generated strings are (on average)
longer or shorter than the reference.

mode-seeking strategies; for example, standard
beam search produces rather short strings while
DBS and greedy decoding produce inordinately
long strings. For the unconditional language gen-
eration task, we observe no big differences in gen-
erated sequence length among stochastic methods.
Collectively, these results tell us that the pre-
viously observed length biases are task–decoder
specific, rather than purely decoder specific.

6 Discussion

When constructing a text generation pipeline, the
choice of decoding strategy has a large effect on
various aspects of the resulting text. Yet when
making this choice for a specific language gen-
eration task, practitioners are currently limited to
either basing their decision on non-comprehensive
analyses, using expensive human annotations or
even resorting to guesswork. There are potential
pitfalls in these practices: As evidenced by various
results in this work, certain properties of decod-
ing schemes—especially quality—do not transfer
across tasks. This work aims to provide guidance
for practitioners in the choice of decoding strate-
gies, revealing their strengths and weaknesses
with respect to individual tasks while also giving
insights into whether one can expect these prop-
erties to transfer to tasks outside of this study.

Figure 9: Mean lengths of generated text for open-
ended tasks. Results are displayed from models based
on the medium-sized version of GPT-2; we omit results
for the small version, which were ostensibly the same.

While all of the takeaways from this work cannot
be summarized in a few lines, we highlight some
key observations below.

The relationships and trade-offs between certain
properties of text changes notably from one task
to another. For example, as depicted in Figure 1,
high-probability strings are typically also of high
quality for MT while there is an almost inverse
relationship between these attributes for SG. As
shown in Figure 5, a quality–diversity trade-off
exists for directed generation tasks whereas for
open-ended generation tasks, the relationship is
almost a co-dependence. These task-specific char-
acteristics must be taken into account when both
choosing and developing decoding strategies.

While decoder performance generally does not
transfer faithfully across tasks, we can still identify
some rules from our experiments that practition-
ers can use. For one, we see that on directed
generation tasks, mode-seeking methods all per-
form competitively in terms of quality. Further,
for stochastic decoders, we observe that restrict-
ing the sample space—as done in top-p and top-k
decoding—greatly increases quality compared to
ancestral sampling, albeit sacrificing some diver-
sity. The ability of a decoder to elicit diversity in
text—at least at the set-level—is perhaps the most
consistent decoder quality across tasks. There are
many other use-case specific insights that can
be drawn from the results shown by figures and
statistics in this work, which we hope serve as
further guidance for practitioners.

It is worth noting that the behavior of decoders
depends on their respective hyperparameters, for
example, k or p in top-k and top-p sampling.
This work does not perform a thorough search
over hyperparameters, instead utilizing those most
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widely used in order to optimize for the useful-
ness of our results to practitioners, who are likely
to use similar default settings. While based on
the results of other works, these choices should
provide representative variants of the text gener-
ated according to the respective decoding strategy,
this is a limitation of our work worth taking into
consideration.

7 Conclusion

This work provides an extensive analysis of the ef-
fects of different decoding strategies on generated
text across various language generation tasks. We
show how different attributes of model-generated
text change depending not just on decoding strat-
egy, but also on the task at hand, using both human
and automatic evaluations. Our results both con-
firm several prior observations, for example, a
trade-off between diversity and quality metrics for
specific NLG tasks, while also revealing a number
of previously unobserved trends in language gen-
eration, both with respect to decoding strategies
and the tasks themselves. A main take-away of
these results is that decoding strategies are per-
haps optimized for specific language generation
tasks and that practitioners should take great care
in basing their choice of decoding strategy off
of results reported for alternate tasks. We release
the evaluation framework and generations in the
hopes that this type of analysis will be extended,
for example, by ablating components of model or
training strategies, in order to isolate which arti-
facts can be attributed to the nature of a specific
generation task vs. design choices. We ultimately
see this line of research as important for helping
practitioners more confidently choose a decoding
strategy that fits their needs without the use of
valuable resources, for the further development
of decoding strategies and for better understand-
ing the shortcomings of probabilistic language
generators.
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