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Abstract
Recent computational models of the acqui-
sition of spoken language via grounding in
perception exploit associations between spo-
ken and visual modalities and learn to represent
speech and visual data in a joint vector space. A
major unresolved issue from the point of eco-
logical validity is the training data, typically
consisting of images or videos paired with spo-
ken descriptions of what is depicted. Such a
setup guarantees an unrealistically strong cor-
relation between speech and the visual data.
In the real world the coupling between the
linguistic and the visual modality is loose,
and often confounded by correlations with
non-semantic aspects of the speech signal.
Here we address this shortcoming by using a
dataset based on the children’s cartoon Peppa
Pig. We train a simple bi-modal architecture
on the portion of the data consisting of dialog
between characters, and evaluate on segments
containing descriptive narrations. Despite the
weak and confounded signal in this training
data, our model succeeds at learning aspects
of the visual semantics of spoken language.

1 Introduction

Attempts to model or simulate the acquisition
of spoken language via grounding in the visual
modality date to the beginning of this century
(Roy and Pentland, 2002) but have gained momen-
tum recently with the revival of neural networks
(e.g., Synnaeve et al., 2014; Harwath and Glass,
2015; Harwath et al., 2016; Chrupała et al., 2017;
Alishahi et al., 2017; Harwath et al., 2018; Merkx
et al., 2019; Havard et al., 2019a; Rouditchenko
et al., 2021; Khorrami and Räsänen, 2021; Peng
and Harwath, 2022). Current approaches work
well enough from an applied point of view, but
most are not generalizable to real-life situations
that humans or adaptive artificial agents expe-

rience. Commonly used training data consist of
images or videos paired with spoken descriptions
of the scene depicted: However, the type of input
that a language learner receives from the environ-
ment is much more challenging. Firstly, speech
is only loosely coupled with the visual modality
in naturalistic settings (Matusevych et al., 2013;
Beekhuizen et al., 2013). Speakers often mention
concepts that are not present in the immediate
perceptual context, or talk about events that are
remote in space and/or time (for example past
experiences or future plans).

Secondly, in addition to correlations between
the visual scenes and the meaning of spo-
ken utterances, there are also correlations with
non-semantic aspects of the speech signal, such
as the voices of specific speakers, as well as
with non-speech ambient sounds. Although it is
plausible that such non-semantic correlations can
sometimes be useful to the learner in the general
endeavor of making sense of the world, for the
specific task of learning the semantics of linguistic
units they are likely more often an obstacle, as they
make it harder to zoom in on the meaning-bearing
aspects of the audio signal.

In the current study we make a first step
towards simulating the acquisition of language
via grounding in perception in a more natural-
istic scenario. Our main focus is on learning
the meaning of linguistic expressions from spo-
ken utterances grounded in video. We use the
well-known children’s cartoon Peppa Pig as a
case study. Compared to commonly used video
datasets, this dataset has a number of interest-
ing characteristics. The visual modality is very
schematic, the language is simple in terms of
vocabulary size and syntactic complexity, and
analysis of its linguistic features suggests its suit-
ability for beginner learners of English (Kokla,
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2021; Scheffler et al., 2021). Crucially, however,
most of the speech in the videos consists of nat-
uralistic dialogs between the characters in which
they do not only discuss the here and now, but
also often use displaced language.1 Thus, the ut-
terances are only loosely and noisily correlated to
the scenes and actions depicted in the videos.

This choice of data thus allows us to directly
address the ecological limitations of the current
approaches. In addition, the cartoon videos contain
comments interjected by the narrator. We use these
for evaluating the acquisition of meaning as they
are more descriptive and less noisy and allow
us to measure performance, while controlling for
speaker characteristics.

We implement a simple bi-modal architecture
that learns spoken language embeddings from
videos, and train it on the Peppa Pig dataset. Our
contributions are the following:

• We evaluate model performance in terms
of video fragment retrieval and additionally
design controlled evaluation protocols in-
spired by the intermodal preferential looking
paradigm (Hirsh-Pasek and Golinkoff, 1996).

• We carry out ablations of model compo-
nents in order to understand the effects of
pre-training for the audio and video en-
coders, the role of temporal information, and
of segmentation strategies while training.

We show that despite the challenges of our natural-
istic training data, our model succeeds at learning
associations between the form of spoken utter-
ances and their visual semantics. Moreover, even
though the model rarely hears words in isola-
tion, it captures aspects of the visual meaning of
frequent nouns and verbs. Our ablation studies
suggest that temporal information contributes to
video modeling (especially for longer segments),
and that self-supervised pre-training followed by
fine-tuning of the audio encoder is key to the best
performance.

2 Related Work

Early attempts at simulating grounded language
learning focus on interactions between adults and

1For example, when Daddy Pig explains that they need
to clean up before Mummy Pig sees the mess that Peppa and
George made, or when talking about plans to visit friends.

young children while playing with a set of ob-
jects from different categories (Roy, 1999, 2002;
Gorniak and Roy, 2003; Mukherjee and Roy,
2003). In a representative study from this series,
Roy and Pentland (2002) use speech recorded
from such interactions paired with different views
of the visible objects to identify linguistic units
(i.e., words) and visual categories, and to map
these two modalities together. A hard-coded vi-
sual system extracts object representations from
images, and spoken utterances are represented
as phoneme probabilities generated by an RNN
pre-trained on spectrograms. Their experiments on
small-scale data (around 20 words and seven vi-
sual categories) show that the model can segment
words and map them to visual categories.

2.1 Spoken Language Grounded in Images

The availability of datasets of images associated
with spoken captions such as Flickr Audio Captions
(Harwath and Glass, 2015), Places (Zhou et al.,
2014), and Spoken COCO (Hsu et al., 2019) led to
a rapid development of neural models of grounded
language learning; see Chrupała (2022) for a
comprehensive overview. In contrast to earlier
approaches, these models are trained end-to-end
directly on large datasets.

Following the architecture proposed in Karpathy
et al. (2014), the visual and speech modality
are usually encoded using separate pathways,
and subsequently mapped into a joint represen-
tation space. Visual features are extracted from
a pre-trained image classification model that pro-
cesses the whole or a specific region of an image
(however, see Harwath et al. [2018], who train
the model end-to-end on images and their spo-
ken captions on the Places dataset). The audio
encoder component in most models is either an
adaptation of Harwath et al. (2016), which feeds
a spectrogram of the speech signal to a convo-
lutional architecture, or a hybrid architecture of
convolutional followed by recurrent layers using
Mel-Frequency Cepstral Coefficient (MFCC) fea-
tures from the audio signal as input, as introduced
by Chrupała et al. (2017).

The majority of models of speech grounded in
images are optimized for and evaluated on im-
age retrieval via spoken caption and vice versa.
Additionally, a range of diagnostic analyses have
been performed on the hidden representations of
these models to study whether they encode the
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identity and boundaries of subword units such
as phonemes and syllables (Alishahi et al., 2017;
Harwath and Glass, 2019; Khorrami and Räsänen,
2021) as well as individual words (Chrupała et al.,
2017; Havard et al., 2019b). Moreover, in addi-
tion to examining form-meaning associations at
the utterance level, Harwath and Glass (2017) ex-
plicitly learn a lexicon by extracting audio and
image segments, clustering each modality sepa-
rately, and mapping them together by calculating
the pairwise similarities of their members in the
joint semantic space.

2.2 Spoken Language Grounded in Video
There have also been recent attempts to learn spo-
ken language grounded in video instead of static
images. Boggust et al. (2019) sample audio-visual
fragments from cooking videos; their grounded
model treats video frames as still images ignor-
ing the temporal dimension. Rouditchenko et al.
(2021) integrate the temporal information when
encoding videos from the Howto100m dataset
(Miech et al., 2019), and perform better than
previous work in language and video clip retrieval.

Models trained on instructional video datasets
often do not generalize well to other domains.
Monfort et al. (2021) highlight this limitation
and show that training on their larger and more
diverse Spoken Moments in Time dataset leads to
better generalization. But the point remains that
these video datasets contain descriptive speech,
thus ensuring that there is a strong correlation
between the spoken language and their visual
context, a characteristic that is not representative
of the experience of learning language in real
world. We remedy this limitation by using a video
dataset that does not guarantee a direct description
of the visual context.

2.3 Child Language Learning from Video
There are many studies on young children learning
language by watching videos; see Vanderplank
(2010) for a survey. The main takeaway of
these studies is that language learning is much
more effective in a social, conversational setting
than by passively watching videos (Kuhl et al.,
2003; Anderson and Pempek, 2005; Robb et al.,
2009), but learning does happen in such contexts.
Importantly for our goal, techniques such as the in-
termodal preferential looking paradigm have been
developed to systematically test young language
learners’ knowledge of words, syntactic structure,

and semantic roles (Hirsh-Pasek and Golinkoff,
1996; Bergelson and Swingley, 2012; Noble
et al., 2011). Nikolaus and Fourtassi (2021) use
this evaluation strategy to test semantic knowledge
at word and sentence level in their computational
model of word learning from images. We adapt
this approach to evaluate how our grounded model
associates semantic information to spoken words
and utterances from video.

2.4 Intra-linguistic Statistics
One further aspect of learning spoken language via
visual grounding is the fact that grounding is only
part of the story. Human children arguably infer
substantial amounts of information about language
structure and meaning from purely intra-linguistic
co-occurrence statistics (e.g., Saffran et al., 1996).
A similar mechanism is what allows written lan-
guage models such as BERT (Devlin et al., 2019)
or GPT-3 (Brown et al., 2020) to capture and
exhibit relatively sophisticated linguistic knowl-
edge. Loosely similar approaches have started
to also make an impact for the spoken modal-
ity (e.g., Baevski et al., 2020; Hsu et al., 2021).
Here we take a simple pre-training-based approach
to integrating this type of self-supervision with
learning-via-grounding.

3 Method

The main focus of this study is on the data
and evaluation. We thus keep the components
of our architecture simple, and follow established
modeling practices whenever possible.

3.1 Dataset
We use the dataset provided by Papasarantopoulos
and Cohen (2021), which consists of metadata
for the set of 209 episodes (seasons 1–5) of
the English-language version of Peppa Pig.2

The annotations created by Papasarantopoulos
and Cohen (2021) feature written transcriptions
aligned with the audio as well as segmentation
into dialog and narration.3 Dialogs are the parts
spoken by the characters, while narrations are
comments inserted by the narrator, which are more
descriptive in nature. All the narration segments

2We purchased the corresponding Peppa Pig episodes on
DVD support.

3The quality of the alignment and segmentation in this
dataset is variable. In cases where exact alignment is needed,
such as for word-level analyses, we re-align the transcriptions
using github.com/lowerquality/gentle.
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Split Type Size (h) # Clips

train dialog 10.01 15666
val dialog 0.66 1026
val narration 0.94 1467
test narration 0.64 1006

Table 1: Duration in hours and number of
clips (FIXED condition) for all dataset splits.

are uttered by the same voice actor. We use the
dialogs for training the model, and set aside the
narrations for evaluation purposes only. A small
portion of the dialog data is also used for valida-
tion. Specifically, out of the total 209 episodes, we
use dialog from episodes 1–196 for training, and
197–209 for validation. We set aside narrations
from episodes 1–104 for validation and 105–209
for testing. We disregard portions of the video
that are annotated as neither dialog nor narration:
This means our data consists mostly of video clips
that contain some speech.4 Table 1 shows the
sizes of the training and validation splits. The
vocabulary size of transcriptions corresponding
to the training data is 5,580.

3.2 Preprocessing

Our model is trained to discriminate positive
video-audio pairs from negative ones. The pos-
itive pairs are those that are temporally coincident
in the original video file. In order to generate
these training items we need to split the videos
into fragments. When preparing training data, we
use annotations to separate dialog and narration
data, but we do not use alignment with transcrip-
tions for further segmentation, in order to make
the setting naturalistic. Processing long segments
of video and audio is not tractable on commodity
GPU hardware, and we thus segment the data into
brief snippets roughly comparable in length to the
duration of a short sentence or a phrase. We use
the following two segmentation strategies:

Fixed Using this approach we simply split sec-
tions into fixed-length non-overlapping fragments
of 2.3 second duration. This length is close to the
mean duration of audio aligned to a single line

4Manual analysis of a random sample of 50 segments split
according to the method described in Section 3.2 showed that
approximately 6% of them contained no discernible words.

of subtitles. The number of clips for each dataset
split is shown in Table 1.

Jitter In this approach the mean duration of
the segments is the same (2.3 seconds) but we
randomly vary the length of the video, and, inde-
pendently, of the corresponding audio around this
average duration. This means that (i) the segments
can be partially overlapping and (ii) the video and
the audio it is paired with are of different length.
Specifically, we sample the fragment duration d
(in seconds) from the following distribution:

d ∼ min(6,max(0.05,N (2.3, 0.5))) (1)

The video is subsampled to 10 frames per sec-
ond, and to 180 × 100 resolution.5 The audio is
converted to mono by averaging the two channels
and the raw waveform is used as input. We use
the original sample rate of 44.1 kHz (instead of
downsampling to the 16 kHz sample rate used
for pre-training WAV2VEC2) as we found out that
this helps with generalization performance on the
narration validation data.

For evaluation we have a number of different
conditions and evaluation metrics described in de-
tail in Section 3.4 and in some of these conditions
we use the subtitles to guide segmentation.

3.3 Model Architecture
We adapt the general modeling framework from
studies on spoken image-caption data (Harwath
et al., 2016; Chrupała et al., 2017): Our objective
function is based on a triplet-like contrastive loss
with margin that encourages the matching audio
and video clips to be projected nearby in the
embedding space, and mismatching audio and
video clips to be far away:

� =
∑
av

[∑
a′

max(0, Sa′v − Sav + α)

+
∑
v′

max(0, Sav′ − Sav + α)

] (2)

where α is a margin, Sav is a similarity score be-
tween a matching audio-video clip pair, and Sa′v

and Sav′ denote similarity scores between mis-
matched pairs, that is, negative examples from
the current batch. Our heuristic to generate pos-
itive and negative examples is very simple: We

5Performance is better with higher resolution, but it makes
GPU memory requirements prohibitive.
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consider an example positive if the audio is tem-
porally aligned with a video clip in our data. Other
pairs of audio-video clips are considered negative.

3.3.1 Audio Encoder

The audio encoder portion of the model con-
sists of a SMALL WAV2VEC2 model (Baevski et al.,
2020) pre-trained in a self-supervised fashion,
without any supervised fine-tuning.6 The WAV2VEC2
architecture learns audio embeddings by self-
supervised learning driven by a contrastive loss ap-
plied to quantized latent representations of masked
frames, loosely inspired by the BERT approach
to language modeling (Devlin et al., 2019).

The output of this module is a temporal se-
quence of 28-dimensional vectors. We pool this
output across time using an attention mechanism
with dimension-wise weights (Merkx et al., 2019):

A = softmaxt (MLP(X))

z =
∑
t

(At �Xt) ,
(3)

where X is the tensor with the encoder output vec-
tors for each time-step t: An MLP followed by a
time-wise softmax is used to compute an attention
weight for each time step and for each dimension.
The pooling is followed by a linear projection to
512 dimensions and L2 normalization. For our
experiments we also use versions of the encoder
where the wav2vec2 weights are frozen, as well
as a randomly initialized rather than pre-trained
version.

3.3.2 Video Encoder

As a video encoder we use the 18-layer ResNet
(2+1)D architecture (Tran et al., 2018), pretrained
on the action recognition dataset Kinetics-400
(Kay et al., 2017). The pre-trained model is avail-
able via PyTorch.7 This architecture implements
3D convolution by decomposing it into a 2D
spatial convolution followed by 1D temporal con-
volution. The output of this module is aggregated
using the attention mechanism with the same
architecture as for the audio module, linearly pro-
jected to the same dimensionality as the audio
(512) and L2 normalized. For our experiments we

6Available from https://dl.fbaipublicfiles
.com/fairseq/wav2vec/wav2vec_small.pt.

7See https://pytorch.org/vision/stable
/models.html#resnet-2-1-d.

also use a version of the video encoder without
pre-training.

STATIC Baseline As a baseline to investigate
the contribution of temporal information to video
modeling, we swap the video ResNet (2+1)D with
the 2D ResNet pre-trained on ImageNet, which
embeds each video frame separately. These frame
embeddings are then attention-pooled as with the
standard video encoder.

To further investigate the impact of temporal
information while controlling for model architec-
ture, we evaluate model performance in a condi-
tion where we randomly scramble the video frames
within a clip at test time, thereby removing any
useful temporal information.

3.4 Evaluation

The most common approach to evaluation for
visually grounded models trained on spoken im-
age captions is caption-to-image retrieval (often
combined with image-to-caption retrieval); this
technique has been carried over from text-based
image-caption modeling. With the standard spo-
ken caption datasets this approach is unproblem-
atic because the content of the captions is not
correlated with extra-linguistic clues in the speech
signal, such as speaker identity (since speakers are
randomly assigned to captions) or non-speech en-
vironmental sounds. In such an artificial setting, a
retrieval metric measures the ability of the model
to match spoken utterances to images based on
their semantic content. This is not the case for the
Peppa Pig dataset: Here we can expect that when a
video segment depicts a particular character (e.g.,
George) then the audio in this segment is more
likely to contain utterances spoken by the voice
actor playing George. Moreover, some characters
might have a tendency to talk about certain topics
more often than others, and the model might pick
up on these associations instead of paying atten-
tion to the actual meaning of the uttered words.
Due to these factors, in a naive retrieval setting,
a model could obtain a high score by mostly
capturing these non-linguistic correlations.

In order to control for these factors, we leverage
the narrator speech in the videos. These utterances
are always spoken by the same actor, so speaker
identity cannot be used as a clue for matching
video and audio. Furthermore, the narration seg-
ments are akin to video captions in that they tend
to describe what is happening in the video and thus
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their semantic content is more strongly correlated
with the content of the video than in the case of
the dialog, which is also a desirable feature for the
purposes of system evaluation.

3.4.1 Video Retrieval

For the retrieval evaluation, as for training, we
also use both the FIXED and the JITTER segmentation
strategies; however, for most conditions, we only
report retrieval for the FIXED evaluation data.

We encode each audio clip in a candidate set
sampled from the validation (or test) data using the
speech encoder part of the model; similarly, we
encode each video clip using the video encoder.
We then measure cosine similarity between the en-
codings of the audio clip and all the video clips. If
the video clip corresponding to the audio is among
the n most similar video clips, we count that as
a success. The proportion of successes across all
audio clips gives us the retrieval metric known
as recall@n. In Section 5 we report recall@N
of the complete model on narration test data for
values of N between 1 and 10; for the rest of the
experiments in this paper we focus on n = 10.
We set the candidate set size to 100, and thus
the random baseline for the recall@10 is 10%.
In order to quantify uncertainty in this evaluation
due to the test data we repeat this procedure 500
times with randomly sampled candidate sets and
visualize the score distribution.

3.4.2 Triplets

The absolute value the recall@10 of this metric
may be hard to interpret as it depends on the
size and content of the candidate set. For this
reason, we evaluate model performance using a
simpler, controlled scenario, inspired by inter-
modal preferential looking paradigms in child
language acquisition (Hirsh-Pasek and Golinkoff,
1996). The proposed metric can be seen as a mul-
timodal version of the ABX score proposed in
Schatz (2016).

We extract clips aligned to a single subtitle
line, group them by length, and for each pair of
same-length video clips,8 we extract the audio
from one of them (selected at random)—this is
our anchor. The video clip from which the an-
chor was taken is the positive one, and the other

8To keep test items independent, the pairing of video clips
is done such that each clip only occurs as a member of a
single triplet.

Figure 1: Triplets Evaluation: Given a reference audio
sequence (anchor), we measure the model’s perfor-
mance at choosing the matching video (positive) over
a random distractor video (negative).

video clip is the negative one. This triplet of
stimuli forms a single test item.

We use the model’s audio encoder to encode
the anchor, and the video encoder to encode both
video clips. We then check whether the anchor is
more similar to the positive or to the negative clip
in terms of cosine similarity (see Figure 1 for an
example). More precisely, triplet accuracy is the
mean over all triplets of the following quantity:

signum(cosine(A,P )− cosine(A,N)) + 1

2
(4)

where A is the anchor, P is the positive and N
is the negative video clip. For this metric, we
expect random-guessing performance to be at 0.5,
and perfect performance to be at 1.0, regardless
of the specific set of test items. We also quantify
uncertainty by resampling the triplets 500 times
from the dataset, and display the score distribution.

3.4.3 Minimal Pairs
While the triplet evaluation gives us a general idea
about whether the model has learned a mapping
between audio and video at the utterance level, it
cannot tell us whether the model has acquired the
grounded semantics of individual words.

To address this question, we probe the model’s
performance in a more targeted triplet setup, where
the model is required to select the correct video
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Figure 2: Example and counter-example triplets cor-
responding to minimal pairs Peppa loves jumping and
George loves jumping.

from a pair of videos whose corresponding tran-
scripts only differ in one target word. To construct
the evaluation set, we search the transcripts of
the validation data for phrases with minimal
differences with respect to the most commonly
occurring nouns, verbs and adjectives. We set the
minimum frequency of the target word in our train-
ing set to 10, and the minimum phrase duration to
0.3 seconds.9 Following Nikolaus and Fourtassi
(2021), we pair every such triplet example with
a corresponding counter-example to control the
evaluation for linguistic biases in the dataset.

Figure 2 shows an example of how two counter-
balanced test trials are constructed from audio and
video clips. Here, the anchor Aexample of the ex-
ample triplet is the audio of Peppa loves jumping,
the positive video Pexample is the corresponding
video, and the negative video Nexample is the video
corresponding to George loves jumping. In the
counter-example triplet, the anchorAcounterex is the
audio of George loves jumping, and the positive
and negative videos are flipped.

We measure word accuracies by calculating
the triplet accuracy for all triplets that contain a
given word (e.g., Peppa in the previous example)
either as target or distractor. That is, we take into
account all cases where the model needs to use
the meaning of the given word for either choosing
or rejecting a video. We report word accuracy for
all nouns and verbs for which we find at least 100
pairs of triplets in the validation set. We did not
find enough examples for any adjectives, and thus
did not include them in our evaluation.

9For shorter sequences, we do not expect that the video
contains enough semantic information to distinguish target
and distractor. A phrase can also be a single word.

Figure 3: Recall@N as a function of N , for the narra-
tion test data. We show recall for the complete model,
for the FIXED and JITTER retrieval evaluation settings.

R@10 (fixed) R@10 (jitter) Triplet Acc

0.73± 0.05 0.73± 0.04 0.91± 0.01

Table 2: Results of the full model on narration
test data. We show the mean and standard de-
viation of bootstrapped scores, pooled over four
training runs (chance recall@10 = 10%; chance
triplet accuracy = 50%).

4 Experimental Settings

We implement the architecture in PyTorch
(Paszke et al., 2019). We use the Adam opti-
mizer (Kingma and Ba, 2015) with the scheduling
described in Devlin et al. (2019). We train every
configuration on a single GPU and stop training
after 48 hours, with batch-size 8 and accumulating
gradients over 8 batches, in 16 bit precision mode.
For each model configuration we save model
weights after each epoch and report results for the
checkpoint which gets the best triplet accuracy on
the narration validation data.

Our code is publicly available at https://
github.com/gchrupala/peppa, and can be
consulted for further details of the experimental
setup.

4.1 Sources of Variability

We account for two sources of variance in the
results. Firstly, for each model configuration we
ran four separate training runs in order to account
for the effect of random initialization. Secondly,
we estimate the variance due to validation/test
sample by resampling validation and test items 500
times. In the case of the minimal pairs evaluation,
we utilize bootstrapping with 100 re-samples. In
most cases in Section 5, we pool variance from
both sources and report overall spread, except
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Figure 4: Effect of pretraining on performance on the dialog and narration validation data. The top row shows
recall@10 (chance = 10%); the bottom row triplet accuracy (chance = 50%). Within each condition, we show
scores for four separate runs. AV: pretrained audio and video; A: pretrained audio; V: pretrained video; None: no
pretraining.

when specifically focusing on the contribution of
each source.

5 Results

Figure 3 shows recall@N for values ofN between
1 and 10 for the complete model on test narration
data in both FIXED and JITTER conditions. Both
plots show that the value of recall@N increases
monotnically. For the rest of this paper, we only
report recall@10.

Table 2 presents the recall@10 and triplet ac-
curacy scores on test narration data obtained with
the complete model. In Section 5.1 we investigate
the impact of various components of our training
setup on performance as measured by recall@10
and triplet accuracy. In Section 5.2 we focus on
the targeted evaluation via minimal pairs.

5.1 Ablations

For completeness, we report results on both dia-
log and narration data. However, the scores on
narration are our main focus as they are not
confounded by speaker-based clues, and thus in-
dicate to what extent the model learns aspects of
utterance meaning.

For experiments in Section 5.1.1 we include
each run as a separate boxplot to show the con-
sistency of the results between runs in different
training conditions. For the other experiments we
collapse the results of the four runs to avoid clutter.

5.1.1 Pretraining and Fine-tuning
Results on different pretraining configurations
are shown in Figure 4. The best overall per-
formance on both the dialog and the narration
data is achieved with a model where both the
video and audio encoder are pre-trained before
being fine-tuned on our data. On narration data,
for both metrics, we see a clear ranking of con-
figurations from best to worst: audio and video
pretraining (AV), audio pretraining (A), video pre-
training (V), and no training (None). Meanwhile,
for dialog data, the performance between A and
V conditions is comparable. In the absence of any
pretraining (None), some runs fail to converge,
thus performing at chance level.

To further understand and disentangle the ef-
fects of audio pretraining and fine-tuning, we train
a model with frozen parameters of the WAV2VEC2
module. The effect of this condition is shown
in Figure 5. We find that, without fine-tuning
of the WAV2VEC2 module, performance decreases
substantially on both metrics. In other words, best
performance is only achieved with pre-trained and
fine-tuned models.

5.1.2 Jitter
Next, we evaluate a model that has been trained
with varying video and audio lengths (JITTER). For
fair comparison, here we report recall@10 for both
FIXED and JITTER validation configurations. As seen
in Figure 6, the effect of JITTER is only minor and
the performance is comparable. However, we do
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Figure 5: Effect of freezing the parameters of the
WAV2VEC2 module on model performance, on the di-
alog and narration validation data (True: WAV2VEC2
frozen; False: WAV2VEC2 trained). The left graph shows
recall@10; the right graph triplet accuracy.

Figure 6: Effect of jitter on model performance, on
the dialog and narration validation data (True: jitter;
False: fixed). The left graph shows recall@10 on FIXED

evaluation data; the right graph on JITTER-ed data.

Figure 7: Effect of a STATIC image encoder on model
performance, on the dialog and narration validation
data (True: static video encoder; False: regular video
encoder). The left graph shows recall@10; the right
graph triplet accuracy. For both conditions only the
audio modality is pretrained.

observe some performance improvements when
using JITTER in the minimal pairs evaluation (cf.
Section 5.2).

5.1.3 Temporal Information

Finally, we explore the role of the temporal na-
ture of the visual modality. Figure 7 compares
the model with the regular video encoder with
one using the STATIC baseline encoder. For this
comparison we did not pretrain the video encoder

Figure 8: The effect of clip duration on the difference
in mean score between models with/without access
to temporal information, on triplet data. We calcu-
late the undiscretized triplet scores (cosine(A,P ) −
cosine(A,N)), average them over all same-duration
triplets, and for each duration compute the difference
in the average between time-aware and static mod-
els. Point size corresponds to the number of triplets
within each duration. The line of fit is a LOESS smoother
weighted by size.

Figure 9: Effect of scrambling the video frames on
model performance, on the dialog and narration valida-
tion data (True: video frames scrambled; False: video
frames in order). The left graph shows recall@10; the
right graph triplet accuracy.

in either condition, in order to remove the con-
found of the pretraining data.10 Across all metrics,
we observe substantial performance drops for the
STATIC model, which has access to the same video
frames, but does not have access to their temporal
ordering.

Additionally, we investigate the effect of clip
duration on this same comparison, using the triplet
evaluation data. Figure 8 shows that the effect
is nonlinear, and for the shortest clips temporal
information does not help and may even have a
detrimental effect.

Figure 9 shows the effect of scrambling the
video frames along the temporal dimension at
test time (note that here the video encoders are

10Note that there is one further confound we do not control
for: The regular encoder has many more parameters than the
STATIC one (31.5M vs. 11.7M).
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ID W2V Finet. Jitter V Pretr. A Pretr. Tmp Enc. Tmp Frames Nouns Verbs

0 � � � � � � 0.80± 0.02 0.79± 0.02
1 � � � � � 0.72± 0.01 0.71± 0.01
2 � � � � � 0.72± 0.02 0.78± 0.01
3 � � � � 0.56± 0.07 0.56± 0.07
4 � � � � � 0.69± 0.02 0.69± 0.01
5 � � � � � 0.75± 0.01 0.75± 0.01
6 � � � � 0.78± 0.01 0.76± 0.01
7 � � � � � 0.79± 0.02 0.78± 0.02

Table 3: Minimal pair accuracies for nouns and verbs for different model ablations. W2V Finet:
WAV2VEC2 module finetuned; A Pretr: Audio encoder pretrained; V Pretr: Video encoder pretrained;
Tmp Enc: Video encoder with temporal information (not STATIC); Tmp Frames: Video frames in correct
temporal order (not scrambled). Mean and standard deviation calculated over bootstrapped scores (100
re-samples), pooled over 4 training runs.

pretrained). As expected, we observe substantial
performance drops when the model does not see
the video frames in the correct order.

For this ablation the differential impact of clip
duration on the two conditions is very similar as
in the STATIC ablation (figure not included).

5.2 Minimal Pairs
Table 3 presents results for the minimal pair eval-
uation along with several ablations. Models that
are pretrained and fine-tuned with JITTER (row 0)
perform best. In the first two configurations (rows
0 and 1), there is not much difference in the
scores for verbs and nouns. However, we observe
a substantial performance drop for both nouns and
verbs if the WAV2VEC2 module is not fine-tuned.

If the model is trained without JITTER (row 2),
performance drops substantially for nouns, but
not for verbs. One possible explanation for this
could be that the evaluation samples for nouns are
on average shorter than those for verbs (nouns:
0.43s vs. verbs: 0.49s), and a model trained with
JITTER performs better on short clips because it
has been exposed to clips of varying duration
during training. Supporting this hypothesis, we
find a positive correlation between log duration
of clips and accuracy, which is lower for models
trained with JITTER (Pearson r = 0.52, p < 0.001)
than for models without JITTER (Pearson r = 0.69,
p < 0.001).

In line with the general results, we find that the
benefit of audio pretraining (row 5) is greater than
that of video pretraining (row 4). A model without
any pretraining (row 3) only performs marginally
above chance.

Figure 10: Per-word accuracies on the minimal pairs
evaluation data for nouns.

For a model trained with a STATIC video encoder
(row 6), we compare performance to a model that
was also trained without video pretraining (row
5) as done for the general results. We observe a
slight performance improvement for nouns, and no
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Figure 11: Per-word accuracies on the minimal pairs
evaluation data for verbs.

significant difference for verbs. We suspect that
temporal information is not crucial for the min-
imal pairs evaluation, because most evaluation
samples are clips of short duration (on average:
0.44s, i.e., 4–5 frames), thus limiting the benefit of
the time dimension. As we saw in the analysis of
clip duration (Figure 8), temporal information for
such short clips does not improve performance,
and could even have detrimental effects. In the al-
ternative temporal ablation with scrambled video
frames (row 7), we observe no significant per-
formance drop compared to the base condition
(row 0).

Figures 10 and 11 show per-word accuracy for
nouns and verbs for the best performing model
configuration. We observe substantial variance in
the accuracy scores, suggesting that the difficulty
to learn certain words varies. For example, the
scores for house, car, and cake are the lowest.
This could be because these concepts are not
easy to ground, either because they are used in
displaced speech or because they do not often
refer to a similar visual entity. When looking at
our evaluation samples, we find that indeed the
word house is used in varying visual contexts
(house entrance, whole house, inside the house,
rabbit’s house) and in displaced speech (talk-
ing about going to somebody’s house). Cars are
only sometimes completely visible, often we see
only cartoon characters in a car. Regarding cake,
it refers to either a whole cake, a slice, batter,
or crumbs.

On the other end, performance for concrete
words such as ice, box, and sand is the best,
and indeed we find that in the evaluation ex-
amples these concepts are always present in the

corresponding video and visually highly similar.
Additionally, the words Pedro and Rebecca are
learned very well: They refer to Pedro Pony and
Rebecca Rabbit, easily visually distinguishable
from characters belonging to other species.

Further investigations with larger datasets are
necessary to reveal the underlying reasons for
difficulty, and relating them to predictors of age
of acquisition in the child language acquisition
literature (Roy et al., 2015; Frank et al., 2021).

6 Conclusion

We simulate grounded language learning in a nat-
uralistic setting, where the connection between
the linguistic and visual modalities is not al-
ways strong and is potentially confounded by
correlations with non-semantic aspects of the
speech signal. Our experimental results suggest
that despite the challenges inherent to the natu-
ralistic aspects of our training dataset, a simple
bimodal architecture can capture aspects of vi-
sual meaning of individual words as well as full
utterances, and generalize well to narrative ut-
terances featuring a single unseen speaker and a
descriptive rather than conversational style. Our
analyses show that generalization is substantially
boosted by fine-tuning audio representations pre-
trained on unlabeled single-modality speech data.
Fine-tuning a pretrained video encoder also makes
a contribution, but is less crucial to generalization
from dialog to narration.

We also investigate the role of temporal in-
formation in learning form-meaning mappings
and show that having access to time information
facilitates learning, except for very short video
segments.

6.1 Limitations and Future Work

To better understand what aspects of language
are learning in our setting, we need to carry out
in-depth analyses of learned representations on
sub-word, lexical, and phrasal levels. It would
also be worthwhile to figure out the details of how
specifically temporal information in video con-
tributes to acquiring linguistic knowledge. Some
analyses in this direction are currently constrained
by the size of the evaluation dataset, and more
large-scale datasets are needed in the future.

We model the acquisition of spoken language
from language-internal correlations as well as
from grounding in vision by fine-tuning an audio
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encoder pretrained on read speech. This approach
is rather simplistic and does not match the real
experience of language learners. It would be in-
teresting to make the setting more realistic by
using pretraining data which reflect a young
learner’s experience more closely, and to realisti-
cally interleave learning via self-supervision from
speech and via grounding in vision. Ideally we
would want to dispense with supervised pretrain-
ing of the video encoder as well and rather use a
model pretrained in a self-supervised way also for
this modality.
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Rogério Schmidt Feris, Danny Gutfreund, Yang
Zhang, Antonio Torralba, Michael Picheny,
and James R. Glass. 2019. Grounding spoken
words in unlabeled video. In CVPR Workshops,
pages 29–32.

Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot
learners. Advances in Neural Information
Processing Systems, 33:1877–1901.

Grzegorz Chrupała. 2022. Visually grounded
models of spoken language: A survey of
datasets, architectures and evaluation tech-
niques. Journal of Artificial Intelligence Re-
search, 73:673–707. https://doi.org/10
.1613/jair.1.12967

Grzegorz Chrupała, Lieke Gelderloos, and Afra
Alishahi. 2017. Representations of language in
a model of visually grounded speech signal.
In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 613–622,

933

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00498/2042609/tacl_a_00498.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.18653/v1/K17-1037
https://doi.org/10.18653/v1/K17-1037
https://doi.org/10.1177/0002764204271506
https://doi.org/10.1177/0002764204271506
https://doi.org/10.1073/pnas.1113380109
https://doi.org/10.1073/pnas.1113380109
https://doi.org/10.1613/jair.1.12967
https://doi.org/10.1613/jair.1.12967


Vancouver, Canada, Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/P17-1057

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Michael C. Frank, Mika Braginsky, Daniel
Yurovsky, and Virginia A. Marchman. 2021.
Variability and Consistency in Early Lan-
guage Learning: The Wordbank Project,
MIT Press. https://doi.org/10.7551
/mitpress/11577.001.0001

Peter Gorniak and Deb Roy. 2003. A visually
grounded natural language interface for refer-
ence to spatial scenes. In Proceedings of the 5th
International Conference on Multimodal Inter-
faces, pages 219–226. https://doi.org
/10.1145/958432.958474

David Harwath and James Glass. 2015. Deep
multimodal semantic embeddings for speech
and images. In 2015 IEEE Workshop on Auto-
matic Speech Recognition and Understanding
(ASRU), pages 237–244. IEEE. https://
doi.org/10.1109/ASRU.2015.7404800

David Harwath and James Glass. 2017. Learn-
ing word-like units from joint audio-visual
analysis. In Proceedings of the 55th Annual
Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers),
pages 506–517, Vancouver, Canada. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/P17-1047

David Harwath and James R. Glass. 2019. To-
wards visually grounded sub-word speech unit
discovery. In IEEE International Conference
on Acoustics, Speech and Signal Processing,
ICASSP 2019, Brighton, United Kingdom,
May 12-17, 2019, pages 3017–3021. IEEE.
https://doi.org/10.1109/ICASSP.2019
.8682666

David Harwath, Adria Recasens, Dı́dac Surı́s,
Galen Chuang, Antonio Torralba, and James

Glass. 2018. Jointly discovering visual ob-
jects and spoken words from raw sensory
input. In Proceedings of the European
Conference on Computer Vision (ECCV),
pages 649–665. https://doi.org/10.1007
/978-3-030-01231-1 40

David F. Harwath, Antonio Torralba, and James R.
Glass. 2016. Unsupervised learning of spoken
language with visual context. In Advances in
Neural Information Processing Systems 29:
Annual Conference on Neural Information Pro-
cessing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 1858–1866.

William N. Havard, Jean-Pierre Chevrot, and
Laurent Besacier. 2019a. Models of visually
grounded speech signal pay attention to
nouns: A bilingual experiment on English and
Japanese. In IEEE International Conference
on Acoustics, Speech and Signal Processing,
ICASSP 2019, Brighton, United Kingdom,
May 12-17, 2019, pages 8618–8622. IEEE.
https://doi.org/10.1109/ICASSP.2019
.8683069

William N. Havard, Jean-Pierre Chevrot, and
Laurent Besacier. 2019b. Word recognition,
competition, and activation in a model of visu-
ally grounded speech. In Proceedings of the
23rd Conference on Computational Natural
Language Learning (CoNLL), pages 339–348,
Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/K19-1032

Kathy Hirsh-Pasek and Roberta Michnick
Golinkoff. 1996. The intermodal preferential
looking paradigm: A window onto emerg-
ing language comprehension. In D. McDaniel,
C. McKee, and H. S. Cairns, editors, Methods
for assessing children’s syntax. The MIT Press.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert
Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. 2021. Hubert:
Self-supervised speech representation learn-
ing by masked prediction of hidden units.
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 29:3451–3460.

Wei-Ning Hsu, David Harwath, and James Glass.
2019. Transfer learning from audio-visual
grounding to speech recognition. In Proceed-
ings of Interspeech 2019, pages 3242–3246.

934

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00498/2042609/tacl_a_00498.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.18653/v1/P17-1057
https://doi.org/10.18653/v1/P17-1057
https://doi.org/10.7551/mitpress/11577.001.0001
https://doi.org/10.7551/mitpress/11577.001.0001
https://doi.org/10.1145/958432.958474
https://doi.org/10.1145/958432.958474
https://doi.org/10.1109/ASRU.2015.7404800
https://doi.org/10.1109/ASRU.2015.7404800
https://doi.org/10.18653/v1/P17-1047
https://doi.org/10.18653/v1/P17-1047
https://doi.org/10.1109/ICASSP.2019.8682666.
https://doi.org/10.1109/ICASSP.2019.8682666.
https://doi.org/10.1007/978-3-030-01231-1_40
https://doi.org/10.1007/978-3-030-01231-1_40
https://doi.org/10.1109/ICASSP.2019.8683069
https://doi.org/10.1109/ICASSP.2019.8683069
https://doi.org/10.18653/v1/K19-1032
https://doi.org/10.18653/v1/K19-1032


https://doi.org/10.21437/Interspeech
.2019-1227

Andrej Karpathy, Armand Joulin, and Fei-Fei Li.
2014. Deep fragment embeddings for bidirec-
tional image sentence mapping. In Advances
in Neural Information Processing Systems 27:
Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 1889–1897.

Will Kay, João Carreira, Karen Simonyan,
Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green,
TrevorBack, PaulNatsev, Mustafa Suleyman, and
Andrew Zisserman. 2017. The Kinetics human
action video dataset. CoRR, abs/1705.06950.

Khazar Khorrami and Okko Räsänen. 2021. Can
phones, syllables, and words emerge as side-
products of cross-situational audiovisual learn-
ing? A computational investigation. Language
Development Research, 1:123–191. https://
doi.org/10.31234/osf.io/37zna

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In 3rd
International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

Natassa Kokla. 2021. Peppa Pig: An innova-
tive way to promote formulaic language in
pre-primary EFL classrooms. Research Papers
in Language Teaching & Learning, 11(1).

Patricia K. Kuhl, Feng-Ming Tsao, and Huei-Mei
Liu. 2003. Foreign-language experience in in-
fancy: Effects of short-term exposure and
social interaction on phonetic learning. Pro-
ceedings of the National Academy of Sci-
ences, 100(15):9096–9101. https://doi
.org/10.1073/pnas.1532872100

Yevgen Matusevych, Afra Alishahi, and Paul
Vogt. 2013. Automatic generation of naturalis-
tic child-adult interaction data. In Proceedings
of the Annual Meeting of the Cognitive Science
Society, volume 35.

Danny Merkx, Stefan L. Frank, and Mirjam
Ernestus. 2019. Language learning using speech
to image retrieval. In Proceedings of Inter-
speech 2019, pages 1841–1845. https://
doi.org/10.21437/Interspeech.2019
-3067

Antoine Miech, Dimitri Zhukov, Jean-Baptiste
Alayrac, Makarand Tapaswi, Ivan Laptev,
and Josef Sivic. 2019. Howto100m: Learn-
ing a text-video embedding by watching
hundred million narrated video clips. In
2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019,
pages 2630–2640. IEEE. https://doi.org
/10.1109/ICCV.2019.00272

Mathew Monfort, SouYoung Jin, Alexander
Liu, David Harwath, Rogerio Feris, James
Glass, and Aude Oliva. 2021. Spoken moments:
Learning joint audio-visual representations
from video descriptions. In Proceedings of the
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). https://
doi.org/10.1109/CVPR46437.2021.01463

Niloy Mukherjee and Deb Roy. 2003. A visual
context-aware multimodal system for spo-
ken language processing. In Eighth European
Conference on Speech Communication and
Technology.

Mitja Nikolaus and Abdellah Fourtassi. 2021.
Evaluating the acquisition of semantic knowl-
edge from cross-situational learning in ar-
tificial neural networks. In Proceedings of
the Workshop on Cognitive Modeling and
Computational Linguistics, pages 200–210,
Online. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.cmcl-1.24

Claire H. Noble, Caroline F. Rowland, and
Julian M. Pine. 2011. Comprehension of argu-
ment structure and semantic roles: Evidence
from English-learning children and the forced-
choice pointing paradigm. Cognitive Science,
35(5):963–982. https://doi.org/10.1111
/j.1551-6709.2011.01175.x

Nikos Papasarantopoulos and Shay B. Cohen.
2021. Narration generation for cartoon videos.
Preprint: https://arxiv.org/abs/2101
.06803v1

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison,

935

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00498/2042609/tacl_a_00498.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.21437/Interspeech.2019-1227
https://doi.org/10.21437/Interspeech.2019-1227
https://doi.org/10.31234/osf.io/37zna
https://doi.org/10.31234/osf.io/37zna
https://doi.org/10.1073/pnas.1532872100
https://doi.org/10.1073/pnas.1532872100
https://doi.org/10.21437/Interspeech.2019-3067
https://doi.org/10.21437/Interspeech.2019-3067
https://doi.org/10.21437/Interspeech.2019-3067
https://doi.org/10.1109/ICCV.2019.00272
https://doi.org/10.1109/ICCV.2019.00272
https://doi.org/10.1109/CVPR46437.2021.01463
https://doi.org/10.1109/CVPR46437.2021.01463
https://doi.org/10.18653/v1/2021.cmcl-1.24
https://doi.org/10.18653/v1/2021.cmcl-1.24
https://doi.org/10.1111/j.1551-6709.2011.01175.x
https://doi.org/10.1111/j.1551-6709.2011.01175.x
https://arxiv.org/abs/2101.06803v1
https://arxiv.org/abs/2101.06803v1


Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. Pytorch: An imperative style,
high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer,
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