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Abstract
This paper studies the use of language mod-
els as a source of synthetic unlabeled text for
NLP. We formulate a general framework called
‘‘generate, annotate, and learn (GAL)’’ to
take advantage of synthetic text within knowl-
edge distillation, self-training, and few-shot
learning applications. To generate high-quality
task-specific text, we either fine-tune LMs on
inputs from the task of interest, or prompt
large LMs with few examples. We use the best
available classifier to annotate synthetic text
with soft pseudo labels for knowledge distilla-
tion and self-training, and use LMs to obtain
hard labels for few-shot learning. We train new
supervised models on the combination of la-
beled and pseudo-labeled data, which results
in significant gains across several applications.
We investigate key components of GAL and
present theoretical and empirical arguments
against the use of class-conditional LMs to
generate synthetic labeled text instead of unla-
beled text. GAL achieves new state-of-the-art
knowledge distillation results for 6-layer trans-
formers on the GLUE leaderboard.

1 Introduction

There is an abundance of unlabeled data in the real
world, but task-specific unlabeled data within the
scope of a given machine learning problem can be
challenging to find. For instance, one cannot easily
find in-domain unlabeled text conforming to the
input distribution of a specific Natural Language
Processing (NLP) task from the GLUE benchmark
(Wang et al., 2019c). Some NLP tasks require an
input comprising a pair of sentences with a partic-
ular relationship between them. Moreover, clas-
sification datasets typically represent a tailored
distribution of data and only include a limited
number of class labels. If task-specific unlabeled
data were available, one could adopt self-training
(Yarowsky, 1995) to automatically annotate unla-
beled data with pseudo labels to improve accuracy
and robustness of classifiers (Xie et al., 2020;
Carmon et al., 2019). In addition, one can use

knowledge distillation (Hinton et al., 2015) on
fresh task-specific unlabeled data to more effec-
tively compress deep neural networks and ensem-
bles (Buciluă et al., 2006; Chen et al., 2020a).

In the absence of task-specific unlabeled data,
one could retrieve unlabeled examples from a
large and diverse open-domain dataset (Du et al.,
2020). However, such a retrieval-based approach
may not scale to problems with complex input
schemes, for example, sentence pairs with certain
relations. Recent work (Yang et al., 2020; Kumar
et al., 2020b) has considered the use of Language
Models (LMs) like GPT-2 (Radford et al., 2019)
as a means of data augmentation, showing the
effectiveness of this approach for commonsense
reasoning and classification tasks. Existing ap-
proaches often consider class-conditional genera-
tion, where the synthetic data is produced by con
ditioning on a specified class label. However, it
is unclear whether class-conditional generation is
best suited for NLP tasks. Furthermore, existing
pipelines often make synthetic data generation
complicated as one needs to detect and discard
low-quality synthetic labeled data or optionally
re-label data (Yang et al., 2020; Vu et al., 2021b).
For instance, Kumar et al. (2020b) observe that
it is difficult for sentences generated by label-
conditioned GPT-2 to retain the semantics/prag-
matics of the conditioning label, leading to poor
performance on downstream tasks.

We unify and simplify existing work on LMs
as a data source for NLP and develop a general
framework called ‘‘generate, annotate, and learn
(GAL )’’. The generality of GAL allows us to use
LM-generated synthetic data within novel appli-
cations such as Knowledge Distillation (KD) and
few-shot learning. GAL builds on recent advances
in text generation (Radford et al., 2019; Gao
et al., 2021) and uses powerful LMs to synthesize
task-specific unlabeled text by fine-tuning or con-
ditioning a large LM on in-distribution examples.
We use state-of-the-art classifiers to annotate gen-
erated text with soft pseudo labels when possible.
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We then combine labeled data and pseudo-labeled
data to train more effective supervised models,
resulting in significant gains on a range of NLP
tasks like KD and few-shot learning.

We present a justification for GAL based on
the empirical and vicinal risk minimization frame-
works (Vapnik, 1992; Chapelle et al., 2001). We
also investigate key components of GAL. We find
that even if class-conditional LMs are available
for text generation, it is more effective to discard
the conditioning labels and let the teacher models
produce pseudo labels. This observation is sup-
ported by our theoretical and empirical results.
Accordingly, in contrast to prior work (Yang et al.,
2020; Vu et al., 2021b), we advocate for the use
of simple unconditional LMs for text synthesis.
Further, we avoid any form of data filtering. Not
surprisingly, we find that the diversity of synthetic
text matters. That said, simple unconditional gen-
eration given random seeds provides sufficient
diversity, and crafting diverse LM prompts is
not needed.
In summary:

• We develop GAL, a simple and effective
approach to the use of LMs for task-specific
unlabeled text generation. We show that GAL
can be used effectively for KD, self-training,
and few-shot learning in NLP.

• We present theoretical and empirical investi-
gations for GAL, explaining why it works and
why using class-conditional LMs to generate
synthetic labeled data is not as effective.

• GAL advances KD for NLP and establishes
a new state-of-the-art (SoTA) resu lt for a sin-
gle 6-layer transformer on the GLUE test set.
It further improves prompt-based few-shot
learning, providing an average improvement
of 1.3% on four 4-shot learning NLP tasks,
outperforming GPT-3-6B.

2 Related Work

Data synthesis with large pre-trained language
models is closely related to our work (Kumar
et al., 2020b; Yang et al., 2020; Vu et al., 2021b;
Norouzi et al., 2020). Yang et al. (2020) propose
a complex scheme, including label-conditioned
data generation, data relabeling, data filtering,

and two-stage training, to utilize synthetic data.
By contrast, we show that a simple mixture of the
original data and synthetic unconditionally gener-
ated data can provide sizable gains. Furthermore,
we show a broader use of generative models on KD
and few-shot learning. Vu et al. (2021b) take a task
augmentation approach and employ conditional
generation to produce in-domain synthetic data
for an auxiliary language inference (NLI) task,
which is then used to initialize the target-task clas-
sifier. However, not all tasks (e.g., grammatical
acceptability judgments) can benefit from the NLI-
style auxiliary task (Wang et al., 2019a). We aim
to directly generate the unlabeled in-domain data
for the target task. Unlike Norouzi et al. (2020),
we do not use instance-based generative models.

More broadly, there has been a recent surge in
data synthesis and augmentation in NLP, includ-
ing rule-based and model-based approaches; see
Feng et al. (2021) for a recent survey. Data synthe-
sis with grammars has been explored in semantic
parsing and natural language understanding (e.g.,
see Wang et al., 2015, 2021; Marzoev et al.,
2020). Existing approaches to data augmentation
for NLP include lexicon replacement, sentence re-
trieval, and round-trip machine translation (Wang
and Yang, 2015; Yu et al., 2018; Kobayashi,
2018; Wu et al., 2019; Lichtarge et al., 2019; Wei
and Zou, 2019; Alberti et al., 2019; Du et al.,
2020; Shen et al., 2020). We, instead, propose
the use of unconditional autoregressive LMs for
data augmentation. This is simple, flexible, and
powerful.

Self-training is one of the oldest approaches
for semi-supervised learning (Scudder, 1965,
Fralick, 1967; Agrawala, 1970; Yarowsky, 1995;
Eisner and Karakos, 2005; Ueffing et al., 2007;
Du et al., 2020). Abney (2004) and Haffari and
Sarkar (2007) have theoretically analyzed self-
training for simple decision lists. Recent theoreti-
cal work analyzes self-training for linear models,
often under the assumption that the data distri-
bution is (nearly) Gaussian (Carmon et al., 2019;
Raghunathan et al., 2020; Chen et al., 2020b;
Kumar et al., 2020a; Oymak and Gulcu, 2020).
Wei et al. (2021) prove that, under ‘‘expansion’’
and ‘‘class separation’’ assumptions, self-training
can lead to more accurate neural network classi-
fiers. We present a theoretical framing of GAL in
terms of empirical and vicinal risk minimization
(Vapnik, 1992; Chapelle et al., 2001).

827

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00492/2038511/tacl_a_00492.pdf by guest on 07 Septem
ber 2023



Knowledge Distillation (KD) (Buciluă et al.,
2006; Hinton et al., 2015) uses a procedure sim-
ilar to self-training to distill knowledge of an
expressive teacher model into a smaller student
model. In contrast, self-distillation (Furlanello
et al., 2018; Zhang et al., 2019; Mobahi et al.,
2020) uses teacher and student models of equal
size, hoping to iteratively refine class labels. Pre-
vious work uses unlabeled data (Buciluă et al.,
2006) and adversarial training (Wang et al., 2018)
to improve KD. We demonstrate that synthetic
data generated by unconditional generative mod-
els can improve KD on NLP, outperforming strong
KD baselines, which often add more complexity
and additional hyperparameters (e.g., Sun et al.,
2019a; Jiao et al., 2019; Xu et al., 2020, Rashid
et al., 2021).

3 Generate, Annotate, and Learn (GAL)

Given a labeled dataset L = {(xi, yi)}Ni=1, we
first train an unconditional domain-specific gen-
erative model g(x) on Lx = {xi}Ni=1, and then
use it to synthesize unlabeled data. Such synthetic
unlabeled data is used within self-training and
KD even in the absence of in-domain unlabeled
data. We restrict our attention to basic KD and self-
training methods, even though GAL can be com-
bined with more sophisticated semi-supervised
techniques, too.

The effectiveness of GAL depends on the fi-
delity and diversity of synthetic examples. If we
had access to the oracle generative process, we
would be able to obtain the best KD and SSL
results, as if we had access to real task-specific
unlabeled data. Our preliminary experiments sug-
gest that large language models are particularly
effective within the GAL framework. Hence, as
shown in Figure 1, to build the best domain-
specific language model, we adopt a large lan-
guage model pretrained on lots of open-domain
text, and fine-tune it on a given dataset’s inputs,
that is, Lx, ignoring class labels. Both our theory
and ablations confirm that ignoring class labels is
a good idea (c.f., Section 4 and 5). Transferring
the knowledge of large language models is par-
ticularly beneficial when a small input dataset Lx

of text is available (Hernandez et al., 2021).
To improve computational efficiency of GAL,

we do not generate unlabeled data on the fly,
but generate as many unconditional samples as
possible and store them in a synthetic unlabeled

Figure 1: An illustration of GAL for NLP. We use
open-domain data once for self-supervised pretraining
(e.g., BERT) and once for training a large LM (e.g.,
GPT-2). BERT is fine-tuned on labeled data to yield a
classifier for the task of interest. GPT-2 is fine-tuned on
the same data without labels to obtain an unconditional
task-specific LM, which is used to generate lots of
synthetic in-domain unlabeled data for self-training
and KD.

dataset U . We use soft pseudo labels within self-
training and KD, as we empirically found it is
more effective than using hard labels on synthe-
tic data.

3.1 Knowledge Distillation with GAL

KD distills knowledge of an expressive teacher
model into a smaller student model (Hinton et al.,
2015). We pose the following objective function
for KD with labeled and synthetic unlabeled data:

�kd = λE(x,y)∼LH(y, fs(x))+

(1− λ)Ex̃∼g(x)H(h(x̃), fs(x̃)), (1)

where h is the teacher model, fs is the student
model, and g is the large pre-trained language
model (e.g., GPT2) fine-tuned on the text in the
training data Lx. H(q, p) = q� log p is the soft-
max cross entropy loss. Note the use of g(x),
approximating the unknown real data distribu-
tion P (x) in (1). Algorithm 1 summarizes the
GAL-KD process.

3.2 Self-Training with GAL

Self-training encourages knowledge transfer be-
tween a teacher and a student model in such a
way that the student can outperform the teacher.
Algorithm 2 summarizes the GAL -self-training
process. Given the labeled dataset L and the
synthetic unlabeled dataset U , an initial model de-
noted f1 is trained using supervised learning on the
labeled dataset L. Then, at iteration t, one adopts
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ft as the teacher model to annotate the unlabeled
dataset U using pseudo labels. In self-training
GAL, the student model ft+1 is trained to opti-
mize a classification loss on the combination of
L and U :

�t+1 = λE(x,y)∼LH(y, ft+1(x))+

(1− λ)Ex̃∼g(x)H(ft(x̃), ft+1(x̃)) , (2)

where λ = 0.5 unless stated otherwise. Although
many different variants of the basic self-training
algorithm discussed above exist in the literature,
we adopt the simplest variant of self-training and
limit hyperparameter tuning to a bare minimum.

3.3 Domain-Specific Text Generation

We take a pretrained GPT-2 language model
(Radford et al., 2019) and fine-tune it separately

on each dataset of interest after removing class
labels. We find that training from scratch on these
datasets is hopeless, but the larger the pretrained
GPT-2 variant, the better the validation perplex-
ity scores are. For tasks modeling a relationship
between multiple sentences, we concatenate a
separator token [SEP] between consecutive sen-
tences. To alleviate an over-fitting on the train-
ing set, we use the best checkpoint evaluated on
the dev set as our generation engine. Once a fine-
tuned GPT-2 model is obtained, we generate new
domain-specific data by using top-k random sam-
pling similar to Radford et al. (2019). We do not
feed any prompt to the LM, but a special [BOS]
token to initiate the generation chain. A genera-
tion episode is terminated when a special [EOS]
token is produced. We generate diverse sentences
by varying the random seed. After collecting
enough synthetic data, we only retain unique sen-
tences. For tasks with α input sentences, we dis-
card generated samples that violate this constraint
(approximately 10% of samples were rejected). Fi-
nally, we obtain task-specific synthetic data up to
40× larger than the original training sets. For some
samples of generated text for GLUE see Tables 11
and 12. We believe using bigger LMs and larger
synthetic datasets will improve our results, but we
are constrained by computer resources.

4 An Empirical Risk Minimization
Perspective

In supervised learning, one seeks to learn a map-
ping f that, given an input x, predicts a reasonable
output y. To define the supervised learning prob-
lem formally, one assumes that input-output pairs
are drawn from a joint distribution P , namely,
(x, y) ∼ P (x, y), and a loss function H(y, f(x))
is used to assess the quality of a mapping f . This
loss is used to define a notion of expected risk:

R(f) = EP (x,y)H(y, f(x)) . (3)

In almost all practical applications P (x, y) is
unknown. Hence, a labeled dataset of examples
L = {(xi, yi)}Ni=1 is used to approximate R(f) as

R̂(f) =
1

N

∑N

i=1
H(yi, f(xi)) . (4)

This objective function is known as empirical
risk, and learning f through minimizing R̂(f) is
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known as the empirical risk minimization princi-
ple (Vapnik, 1992). To compensate for the finite
sample size in (4), one typically combines R̂(f)
with a regularizer to improve generalization.

Beyond Empirical Risk Minimization. Empir-
ical risk minimization (4) is motivated as a way
to approximate P (x, y) through a set of Dirac
delta functions on labeled examples: Pδ(x, y) =∑

i δ(x= xi, y = yi)/N . However, this approx-
imation is far from perfect, hence one uses a
heldout validation set for early stopping and
hyperparameter tuning.

Vicinal risk minimization (Chapelle et al.,
2001) approximates expected risk as EPν (x,y)H
(y, f(x)), using a vicinity distribution, for exam-
ple, ν(x̃, ỹ | x, y) = N (x̃ − x, σ2)δ(ỹ = y) to
approximate P (x, y) as

Pν(x, y) =
1

N

∑N

i=1
ν(x̃ = x, ỹ = y | xi, yi) .

(5)

The goal is to increase the support of each labeled
data point and improve the quality and robustness
of the risk function.

Recent work on mixup regularization (Zhang
et al., 2018) proposes an effective way to con-
struct another vicinity distribution by interpolating
between two data points and their labels. Despite
their simplicity, these smoothing techniques tend
to improve matters.

Generative Models for Risk Minimization.
One can factorize the joint distribution of input-
output pairs as P (x, y) = P (x)P (y | x). Ac-
cordingly, if one is able to learn a reasonable
unconditional generative model of x denoted
g(x), then one can draw a pair (x, y) by first
drawing x ∼ g(x) and then using the current
instance of ft to draw y ∼ ft(x). Then, one can
use ft and g to approximate expected risk as

Rt(ft+1) = Ex∼g(x)Ey∼ft(x)H(y, ft+1(x)) .
(6)

The quality of this approximation highly depends
on the quality of ft and g. If ft is far from an
optimal classifier f ∗ or g(x) is far from P (x), (6)
yields a poor approximation.

The expected risk in (6) smoothens the risk
landscape in complex ways beyond simple Gaus-
sian smoothing and interpolation. This smoothing

is applicable to any continuous, discrete, or struc-
tured domain as long as expressive generative
models of P (x) are available. That said, for al-
most all reasonable loss functions H (e.g., softmax
cross entropy and squared error), (6) is minimized
when ft+1 = ft, which is not ideal, especially
when ft is far from f ∗. On the other hand, em-
pirical risk (4) anchors the problem in real la-
beled examples that are provided as ground truth.

GAL -self-training aims to combine the benefits
of (4) and (6) via:

Rt(ft+1) =
λ

N

∑N

i=1
H(yi, ft+1(xi))+

(1− λ)Ex∼g(x)Ey∼ft(x)H(y, ft+1(x)). (7)

In this formulation, if ft represents the minimizer
of empirical risk (4), then ft+1 = ft is the mini-
mizer of (7), too. However, one does not seek the
global minimizer of empirical risk, but rather the
best performance on heldout data. If ft is obtained
by stochastic gradient descent on any risk func-
tion, but early-stopped according to empirical risk
on a heldout set, then using such ft in (7) to define
Rt(ft+1) promotes the selection of a mapping ft+1

that minimizes empirical risk while staying close
to the best performing mapping so far (i.e., ft).
This formulation motivates self-training and GAL
as regularizers in the functional space and explains
why they can conceivably work. Although the ar-
guments are provided here for GAL-self-training,
extending them to GAL-KD is straightforward
(omitted due to the space constraints).

How About Class-conditional Generative
Models? One can also factorize the joint dis-
tribution P (x, y) as P (y)P (x | y) and accord-
ingly utilize a class-conditional generative model
g(x | y) to derive the following expected risk
formulation:

R(f) = Ey∼P (y)Ex∼g(x|y)H(y, ft+1(x)) . (8)

In this setting pseudo labeling is not needed as
synthetic data is already labeled. One can show
that the optimal classifier f ∗

g that minimizes (8)
for the cross-entropy loss is given by

f ∗
g (y | x) = g(x|y)P (y)

/∑
y′
g(x|y′)P (y′) ,

(9)

that is, turning the class-conditional generative
model into a classifier by using the Bayes rule
yields the optimal solution.
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Model MNLI(m/mm) CoLA SST-2 MRPC STS-B QQP QNLI RTE Avg

Previous work:
BERT-Theseus 82.4/82.1 47.8 92.2 87.6/83.2 85.6/84.1 71.6/89.3 89.6 66.2 78.6
BERT-PKD 81.5/81.0 − 92.0 85.0/79.9 − 70.7/88.9 89.0 65.5 −
tinyBERT 84.6/83.2 51.1 93.1 87.3/82.6 85.0/83.7 71.6/89.1 90.4 70.0 79.8
MATE-KD 86.2/85.6 58.6 95.1 91.2/88.1 88.5/88.4 73.0/89.7 92.4 76.6 83.5

Our results:
DistilRoBERTa 83.8/83.4 55.9 93.2 87.4/83.1 87.5/87.5 71.7/89.1 90.6 73.3 81.2
DistilRoBERTa + KD 84.5/84.1 53.0 93.5 88.9/85.1 88.0/87.4 71.9/89.2 91.0 75.0 81.5
DistilRoBERTa + WS 86.2/85.9 52.2 94.0 89.9/86.4 88.7/88.3 71.7/89.2 91.5 76.2 82.1
DistilRoBERTa + RT 86.2/85.6 55.0 94.9 90.1/86.5 89.2/88.9 72.5/89.7 92.1 77.2 82.9
DistilRoBERTa + GAL 86.9/86.4 58.6 95.3 91.6/88.7 89.9/89.5 73.0/89.9 92.7 79.7 84.3

Table 1: GLUE test results for a 6-layer transformer. GAL establishes a new state of the art on KD
for NLP. Baselines: BERT-Theseus (Xu et al., 2020), BERT-PKD (Sun et al., 2019a), tinyBERT
(Jiao et al., 2019), MATE-KD (Rashid et al., 2021), DistilRoBERTa (Sanh et al., 2019), and Distil-
RoBERTa + KD (standard KD), DistilRoBERTa + WS (word substitution), and DistilRoBERTa + RT
(round-trip translation). MNLI-m and MNLI-mm indicate matched and mismatched, respectively.

Provided that the accuracy of generative clas-
sifiers on text classification is behind their dis-
criminate counterparts (e.g., Ravuri and Vinyals,
2019), we think substituting (8) into (7) is not
a good idea. Essentially, by substituting (8) into
the classification objective, one is regularizing
f to remain close to f ∗

g , which is not an ef-
fective strategy if f ∗

g is not competitive. This
argument corroborates the evidence from our ab-
lation studies and recent work showing that using
class-conditional generative models to augment
supervised learning does not provide big gains
(Ravuri and Vinyals, 2019).

That said, one can still use class-conditional
generative models to synthesize high-fidelity sam-
ples. As long as these samples are treated as un-
labeled examples and annotated using a classifier,
for example, ft, we believe this is a reasonable
approach falling under GAL. Note that our ar-
gument above only applies to the scenario that
class-conditional generative models are used to
synthesize labeled examples. In other words, GAL
emphasizes prediction of the labels in the course
of the algorithm, rather than having the labels
predefined. If one uses the unlabeled synthetic
examples from class-conditional generative mod-
els, it still aligns to (7), which will be verified in
Section 5.4.

5 Experiments

In this section, we assess the effectiveness of
GAL on KD, self-training, and few-shot learning.

5.1 State-of-the-art Results of Knowledge
Distillation with GAL on GLUE

We use the GLUE benchmark (Wang et al.,
2019c) for our KD experiments; see Appendix A.1
for benchmark details. Our synthetic unlabeled
dataset U includes 40× as many examples as the
original dataset for each task in GLUE.

It is known that KD on fresh data, unseen during
training, performs better (Buciluă et al., 2006;
Chen et al., 2020a) than KD on original training
data. Hence, we investigate the effectiveness of
KD using generated unlabeled data through GAL.

We use the HuggingFace implementation (Wolf
et al., 2020) for KD experiments and adopt a stan-
dard experimental setup consistent with previous
work (Sun et al., 2019a; Xu et al., 2020). Follow-
ing Rashid et al. (2021), fine-tuned RoBERTa-
large (24-layer transformer) represents the teacher
and a DistilRoBERTa (6-layer transformer) (Sanh
et al., 2019) is used as the student. We train the
student model on U and L, where U is annotated
by the best RoBERTa-large model, achieving an
average score of 86.5. We then mix L and U at a
ratio of 1:4, which is equivalent to λ = 0.2. This
ratio works best on the dev set.

Table 1 shows the results of individual 6-layer
transformers on the GLUE test set. All of the base-
lines use an identical student architecture. GAL
achieves the best entry on the GLUE leaderboard,
marking a new state-of-the-art for KD on NLP. It
outperforms strong KD baselines such as Distil-
RoBERTa (Sanh et al., 2019), BERT-PKD (Sun
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Model MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE Avg

RoBERTa base 87.7 0.1 63.6 0.4 94.8 0.1 90.1 0.4 90.8 0.1 91.5 0.1 92.6 0.1 78.8 0.4 86.2
+ GAL (iter 1) 87.9 0.1 65.1 0.5 95.3 0.1 91.7 0.5 91.4 0.1 91.8 0.1 93.1 0.1 81.4 0.4 87.2
+ GAL (iter 2) 88.0 0.1 65.2 0.5 95.3 0.1 92.2 0.4 91.5 0.1 91.7 0.1 93.2 0.1 82.4 0.5 87.4
+ GAL (iter 3) 87.9 0.1 65.5 0.5 95.3 0.1 92.2 0.5 91.7 0.2 91.7 0.1 93.2 0.1 82.0 0.5 87.4

RoBERTa base + self-distillation 88.1 0.1 63.7 0.5 95.2 0.1 90.3 0.4 90.4 0.1 91.5 0.1 93.1 0.1 79.7 0.5 86.5

Table 2: RoBERTa base and GAL self-training results on GLUE dev sets, averaged across 5 indepen-
dent runs (numbers in the subscript indicate the error bar, i.e., standard deviation divided by

√
5.).

et al., 2019a), BERT-Theseus (Xu et al., 2020),
tinyBERT (Jiao et al., 2019), and MATE-KD
(Rashid et al., 2021). It also outperforms our own
DistilRoBERTa+KD baseline, which learns from
soft labels produced by an identical RoBERTa-
large ensemble on the original labeled dataset.
While the use of soft labels outperform the vanilla
fine-tuned DistilRoBERTa model, it significantly
underperforms our KD+GAL baseline. We also
compare with two strong data-augmentation base-
lines, round-trip translation (RT) (Yu et al., 2018;
Shleifer, 2019) and word substitutions (WS) (Jiao
et al., 2019; Wei and Zou, 2019). For RT, We gen-
erate 40× unlabeled data using German as the
bridge language (English→German→English). The
translations are generated via the best model in
WMT19 (Ng et al., 2019). We use the codebase
from Jiao et al. (2019) to conduct WS data aug-
mentation. We mirror the KD experimental setup
of GAL for both RT and WS. Although Distil-
RoBERTa+RT and DistilRoBERTa+WS are bet-
ter than vanilla DistilRoBERTa and KD variants,
they still drastically underperform our approach.

5.2 Self-Training with GAL on GLUE
We fine-tune a pretrained RoBERTa model pro-
vided by fairseq (Ott et al., 2019) on each GLUE
task. Fine-tuned RoBERTa serves as the first
teacher model for self-training. Each student
model is initialized with the original pretrained
RoBERTa and fine-tuned with exactly the same
hyperparameters as suggested by fairseq (Ott
et al., 2019). We combine the labeled dataset
L and the synthetic dataset U with a ratio of 1:1,
by oversampling labeled data. This corresponds
to λ = 0.5 in Eq. (7).

Table 2 shows that GAL provides an aver-
age improvement of +1.3% over RoBERTa-base.
We see consistent improvements with more GAL
iterations, but performance saturates after three
iterations. We further compare our approach with

a self-distillation (Furlanello et al., 2018) base-
line, in which the teacher and student models
use the same architecture and transfer knowledge
via the original labeled training set. Although
self-distillation provides a slight improvement,
the gains from GAL are more significant.

We delve deeper and combine GAL self-
training with RoBERTa-large and report test re-
sults for both single model and ensemble model
in Table 3. We observe consistent gains coming
from GAL on RoBERTa-large. Our results un-
derperform the latest and largest LMs from the
GLUE leaderboard, but we are optimistic that
GAL can be effectively combined with enormous
LMs to provide additional gains.

5.3 Prompt-based Few-shot Experiments
GPT3 (Brown et al., 2020) has introduced an
optimization-free paradigm for few-shot learning
for NLP. Without updating the parameters, large
LMs can correctly predict the labels of the in-
puts by conditioning on a prompt, which consists
of an instruction, a few labeled instances and a
new unlabeled input. We apply GAL to prompt-
based few-shot learning. Specifically, we present
k labeled examples as a prompt to GPT-J (Wang
and Komatsuzaki, 2021), an open-sourced re-
implementation of GPT-3-6B, and generate m
synthetic examples, followed by the correspond-
ing labels. Note that to mitigate noisy outputs, the
generation of each synthetic example only condi-
tions on the original k labeled examples. Finally,
we concatenate the original k examples and m
synthetic examples, and conduct a (k + m)-shot
learning experiment with GPT-J.

Brown et al. (2020) studied a total of 51 few-
shot learning tasks. Studying all of these tasks is
prohibitively expensive. Thus, we filter tasks by
following these two steps. First, since generating
m synthetic examples for each test instance is
computationally expensive, we exclude tasks that

832

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00492/2038511/tacl_a_00492.pdf by guest on 07 Septem
ber 2023



Model MNLI(m/mm) CoLA SST-2 MRPC STS-B QQP QNLI RTE Avg

Individual Models (our implementation):
RoBERTa-large 90.1/89.7 63.8 96.1 91.2/88.3 90.9/90.7 72.5/89.6 94.5 85.9 86.5
RoBERTa-large + GAL 90.2/89.8 66.2 96.4 92.0/89.2 90.7/90.5 73.6/89.9 95.0 86.3 87.1

Ensemble Models (our implementation):
RoBERTa-large 91.2/90.5 66.8 96.9 92.8/90.3 91.9/91.6 74.5/90.4 95.5 87.7 87.9
RoBERTa-large + GAL 91.0/90.7 67.9 97.1 93.1/90.8 91.6/91.4 74.5/90.4 95.8 88.2 88.2

State-of-the-art:
RoBERTa-large 90.8/90.2 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.3 95.4 88.2 88.0
ELECTRA 91.3/90.8 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 95.8 89.8 89.2
T5 92.2/91.9 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 96.9 92.8 89.8
ERNIE 91.9/91.4 74.4 97.8 93.9/91.8 93.0/92.6 75.2/90.9 97.3 92.0 90.2
DeBERTa 91.9/91.6 71.5 97.5 94.0/92.0 92.9/92.6 76.2/90.8 99.2 93.2 90.3

Table 3: RoBERTa-large with GAL self-training and SoTA methods evaluated on GLUE test sets. The benefit
of GAL on single models is larger than ensembles. It appears that self-training reduce the variance of models.
Baselines including much larger models: RoBERTa-large (Liu et al., 2019), ELECTRA (Clark et al., 2020),
T5 (Raffel et al., 2020), ERNIE (Sun et al., 2019b), and DeBERTa (He et al., 2020). MNLI-m and MNLI-mm
indicate matched and mismatched, respectively.

Model SST-2 PIQA COPA BoolQ Avg

4-shot 89.8 0.8 76.0 1.4 79.0 1.5 64.3 0.8 77.3
8-shot 91.3 0.8 76.2 1.2 79.0 1.5 66.2 0.8 78.2
16-shot 92.7 0.6 77.0 0.9 81.0 1.1 66.8 0.8 79.4

4-shot + synthetic 12-shot (GAL ) 91.5 0.7 76.7 1.0 80.0 1.2 65.9 0.8 78.5

Table 4: Few-shot learning results for GPT-J (6B) (Wang and Komatsuzaki, 2021)
on four NLP datasets. Accuracy is reported for these datasets.

have more than 5k test examples. Second, we fil-
ter tasks on which GPT-3-6B achieves a score
lower than 65% (please refer to Table H.1 in
Brown et al. [2020] for more details). After ap-
plying the filtering steps, we use four datasets:
SST-2 (Wang et al., 2019c), PIQA (Bisk et al.,
2020), COPA, and BoolQ (Wang et al., 2019b) as
the testbed. We notice that in order to generate
valid synthetic data, GPT-J requires to see at
least 4 labeled examples. In addition, at most
16 examples of BoolQ can be fed into GPT-J
without truncation. Thus, we set k and m to 4
and 12, respectively. As seen in Table 4, GAL
leads to an average improvement of 1.2% over
4-shot learning, and reduces the gap between
4-shot and 16-shot learning. We noticed that the
quality of some generated examples is low. We
believe the performance of few-shot learning can
be further improved with high-quality instances.
One solution is to generate many synthetic ex-
amples, and select a high-quality subset. Since
each test instance conditions on distinct labeled

instances, one has to generate different synthetic
instances for each test example from GPT-J, which
causes expensive computation. Due to such com-
putational constraints, we leave the investigation
of data selection strategies to the future work.

5.4 Ablating Components of GAL on GLUE

We conduct an in-depth study of different com-
ponents of GAL on GLUE datasets. Unless stated
otherwise, we use a RoBERTa-base model with a
combination of the original training data and 40×
synthetic data for each self-training experiment.

GPT-2 Model Size. Radford et al. (2019)
present a few variants of the GPT-2 model includ-
ing GPT-2, GPT-2-medium, GPT-2-large, and
GPT-2-XL. Larger GPT-2 models yield better
perplexity scores and higher generation quality.
We utilize these models except GPT-2-XL within
the GAL framework to study the impact of the
generative model’s quality on downstream task’s
performance. Table 5 shows that regardless of the
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GPT-2 SST-2 RTE MRPC CoLA

NA 94.8 78.8 90.1 63.6
small 95.5 81.3 90.9 63.9
medium 95.3 81.3 91.3 63.7
large 95.3 81.4 91.7 65.1

Table 5: GAL with various GPT-2 model sizes on
GLUE dev sets. NA indicates a RoBERTa base
model. We bold the best numbers.

Pseudo label SST-2 RTE MRPC CoLA

hard 95.0 80.7 90.8 63.0
soft 95.3 81.4 91.7 65.1

Table 6: GAL with soft vs. hard pseudo labels on
GLUE dev sets. We bold the best numbers.

GPT-2 model sizes, GAL consistently surpasses
the vanilla RoBERTa base. Moreover, SST-2 and
RTE datasets are not sensitive to the capacity of
GPT-2, but higher quality synthetic text improves
the results on MRPC and CoLA datasets. We leave
investigation of GPT-2-XL and even larger LMs
such as GPT-3 (Brown et al., 2020) to future work.

Soft vs. Hard Pseudo Label. We investigate
the use of soft and hard pseudo labels within the
GAL framework. The results in Table 6 suggest
that GAL using soft pseudo labels is more effective
than hard labels on the GLUE benchmark. This
finding is compatible with the intuition that soft
labels enable measuring the functional similarity
of neural networks better (Hinton et al., 2015).

Class-conditional Synthetic Data Generation.
Previous work (Kumar et al., 2020b; Ravuri
and Vinyals, 2019) suggests that it is chal-
lenging to utilize labeled synthetic data from
class-conditional generative models to boost the
accuracy of text and image classifiers. Our theory
in Section 4 points to the potential drawback of
class-conditional synthetic data. We empirically
study this phenomenon, by fine-tuning GPT-2 in a
class-conditional manner. Then we utilize its syn-
thetic examples in two different cases: 1) labeled
synthetic examples and 2) unlabeled synthetic ex-
amples. Table 7 shows that not only do class-
conditional LMs underperform unconditional LMs
in our GAL framework, but also they are much
worse than the baseline, when using the pre-
defined labels. Nevertheless, if we apply GAL
to these examples, the class-conditional LM is

on par with the unconditional one, which cor-
roborates the importance of the annotation step in
GAL. We provide more analysis in Appendix A.3.

6 Limitations

This work demonstrates that one can leverage
synthetic in-domain data generated by powerful
pre-trained generative models. For simplicity, we
do not employ any filtering avenue to retain di-
verse but high-quality data points. However, pre-
vious work has shown that advanced filtering
approaches can further improve the performance
(Sohn et al., 2020; Du et al., 2020; Yang et al.,
2020). Given that the improvements in the self-
training are not sizeable, we believe it is worth
imposing filtering methods on the synthetic data
to mitigate the side effects caused by the noisy
data points.

Although we examine the effectiveness of GAL
on various classification tasks, we still focus on
the sentence-level tasks. Because of the superior
performance on sentence-level tasks, there has
been a surge of interest shift to document-level
tasks, such as document-level machine transla-
tion (Miculicich et al., 2018; Voita et al., 2018;
Maruf and Haffari, 2018), document summariza-
tion (Rush et al., 2015; Nallapati et al., 2016),
and so forth. As these tasks suffer from data scar-
city, one can leverage GAL to synthesize more
data points. However, previous work has shown
that GPT-2 has difficulty generating coherent text
requiring long-range dependency (Orbach and
Goldberg, 2020; Guan et al., 2020). Thus, such
a limitation may hinder the application of GAL
to document-level tasks.

In addition, the label space of the studied tasks
is not as complex as the structured prediction
tasks, such as machine translation, dialog system,
question answering, and so on. However, we be-
lieve one can smoothly adapt GAL to these tasks
as well. Let us consider machine translation (MT)
as a canonical structured prediction task. Prior
work has shown that one can use (real) monolin-
gual data, in either source or the target language,
through data augmentation (Sennrich et al., 2016)
or knowledge distillation (Kim and Rush, 2016)
to improve the structured prediction tasks. This
suggests a promising avenue for future research
on using synthetically generate monolingual data
to improve MT for specialized domains where
even monolingual data is scarce.
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Generative model Labeled synthetic data SST-2 RTE MRPC CoLA

None (baseline) − 94.8 78.8 90.1 63.6

Class-conditional LM ✓ 92.9 74.4 86.0 58.4
Unconditional LM (GAL ) ✗ 95.3 81.4 91.7 65.1
Class-conditional LM (GAL) ✗ 95.4 81.0 91.4 65.2

Table 7: Synthetic data from class-conditional LMs underperforms GAL and RoBERTa on
GLUE dev sets.

Furthermore, Vu et al. (2021a) suggest that one
can leverage a retrieval-based approach to ob-
tain monolingual sentences from the generic data
stores. This retrieved monolingual data is then
employed to improve the translation quality in
a domain adaptation setting. This suggests that
a GAL-based approach to synthetically generate
monolingual text is a promising method to im-
prove MT for specialized domains—an interest-
ing direction for future research.

7 Conclusion

We present Generate, Annotate, and Learn (GAL):
a framework for self-training and knowledge dis-
tillation with generated unlabeled data. We mo-
tivate GAL from an expected risk minimization
perspective and demonstrate both theoretically
and empirically that the use of unconditional gen-
erative models for synthetic data generation is
more effective than class-conditional generative
models previously used in the literature. GAL
leverages advances in large pretrained language
models to help supervised learning and can have
implications for learning from limited labeled
data. GAL significantly helps improve knowledge
distillation and prompt-based few-shot learning.
In addition, a concurrent work (Gowal et al.,
2021) has shown that using generated images can
enhance the robustness of images classifiers. We
will explore this direction on NLP tasks in the
future. Finally, we hope that GAL will stimulate
new research on the evaluation and development
of large language models.
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A Appendices

A.1 Datasets

The statistics of GLUE are reported in Table 8.

A.2 GPT-2 for Classification

We have conducted additional experiments, where
we fine-tune GPT-2 as a classifier. We have
considered two variants of the GPT-2 model.
The first varant is the original GPT-2 model
(GPT2-original) pre-trained on open-domain text.
The second variant is the GPT-2 model that
was fine-tuned on the inputs of each task sepa-
rately (GPT-2-finetuned). This model was used to
generate task-specific (synthetic) unlabeled data.
Finally, we also consider self-training with GAL
on top of GPT2-original. Specifically, we use
the GPT-2-finetuned model to synthesize 40x
in-domain unlabeled data. Then we apply self-
training to GPT-2-original, where the data is
a combination of the original labeled data and
pseudo-labeled synthetic data. Table 9 suggests
that the gains of GAL come from the pseudo-
labeled synthetic data, i.e., both synthetic unla-
beled data and teacher’s knowledge. Without
the generation of synthetic unlabeled data, the
domain-specific knowledge embedded in GPT-2-
finetuned model cannot be utilized. As such,
GPT-2-finetuned model is inferior to the GPT2-
original model. Since RoBERTa-large is superior
to GPT-2 models, RoBERTa-large+GAL also
significantly outperform the GPT-2 counterpart.

A.3 Importance of Pseudo-labels

We have argued and demonstrated that using
class-conditional generative models to generate
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Dataset task domain #train #dev #test #classes

SST-2 sentiment analysis movie reviews 67k 872 1.8k 2
QQP paraphrase social QA questions 364k 40k 391k 2
QNLI QA/natural language inference Wikipedia 105k 5k 5.4k 2
RTE natural language inference news, Wikipedia 2.5k 277 3k 2
MNLI natural language inference misc. 393k 20k 20k 3
MRPC paraphrase news 3.7k 408 1.7k 2
CoLA acceptability misc. 8.5k 1043 1k 2
STS-B sentence similarity misc. 5.8k 15k 1.4k −

Table 8: Summary of the three sets of tasks used for evaluation of GAL. STS-B is a regression task, so
#classes is not applicable.

Model MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE Avg

GPT-2-original 85.9/85.6 54.8 94.5 86.9/82.2 86.3/85.2 72.5/89.3 91.2 69.8 80.9
GPT-2-finetuned 85.8/85.5 40.9 94.5 87.0/81.0 85.6/84.3 71.4/88.5 91.5 69.0 78.8
GPT-2-original+GAL 86.2/85.8 55.7 94.7 87.9/83.4 86.9/85.9 72.6/89.4 91.9 70.6 81.5

RoBERTa-large 90.1/89.7 63.8 96.1 91.2/88.3 90.9/90.7 72.5/89.6 94.5 85.9 86.5
RoBERTa-large + GAL 90.2/89.8 66.2 96.4 92.0/89.2 90.7/90.5 73.6/89.9 95.0 86.3 87.1

Table 9: GLUE test results of using GPT-2 and RoBERTa-large as classification models.

Label type Accuracy F1 Precision Recall

GPT2 86.0 87.0 88.7 85.5
RoBERTa 90.0 91.4 100.0 84.1
conditioning label 72.0 71.4 66.0 77.8

Table 10: Performance of GPT2 annotation,
RoBERTa annotation and conditioning labels on
100 random examples from the synthetic RTE
dataset generated by a class-conditional LM.

labeled synthetic examples is less effective than
GAL in Section 3 and Section 5. To further
verify this argument, we sample 100 instances
from the synthetic RTE dataset generated by the
label-prompted GPT2, as the class-conditional
LM. Then we annotate these examples using a
human annotator, GPT2 classifier, and RoBERTa
classifier. Finally, we compute the Accuracy, F1,

Precision, and Recall scores between human la-
bels and GPT2 labels, between human labels and
RoBERTa labels, and between human labels
and conditioned labels used by GPT2 when the
data was generated. Table 10 shows that class-
conditional LM has difficulty generating sen-
tences retaining the semantics or pragmatics of
a specified category, which also corroborates our
theoretical analysis in Section 3. On the other
hand, discriminative models, such as GPT2 clas-
sifier and RoBERTa classifier, are able to produce
higher quality labels that correlate better with
human annotations.

A.4 Generated Unlabeled Examples
Annotated with Pseudo Labels

We provide some synthetic sentences generated
by GAL in Tables 11 and 12.
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are more deeply thought through than in most ‘ right-thinking ’ films (positive)

KNN:
1: is far more sophisticated, insightful and thought-provoking than his previous films .
(positive)
2: is more sophisticated than its more obvious and less-than-dazzling counterparts (positive)
3: is about as well-thought as the idea of a bad hair day, (negative)

contains no wit, only labored gags (negative)

KNN:
1: lacks insight, and lacks empathy (negative)
2: has little humor or intelligence (negative)
3: lacks all wit and humanity (negative)

Table 11: SST-2: Two labeled examples, along with 3 nearest neighbors (based on RoBERTa
representations) from our synthetic dataset. We include labels for original examples and
pseudo-labels for synthetic examples in parenthesis.

How is the life of a math student? Could you describe your own experiences? [SEP] Which
level of prepration is enough for the exam jlpt5? (not duplicated)

KNN:
1: What are the best courses for a mechanical engineering student? [SEP] What is the best
course to do after completing a B.Tech in mechanical engineering? (not duplicated)
2: How much marks are needed to get through the GATE with electronics? [SEP] What is the
average score of the Gate EE exam? What are the cut-offs? (not duplicated)
3: What is the best time table for students to prepare for IAS? [SEP] How can one study for
IAS in a best time? (not duplicated)

How does an IQ test work and what is determined from an IQ test? [SEP] How does IQ test
works? (duplicated)

KNN:
1: What is the average IQ of the U.S. population? [SEP] How does an IQ test work? (not
duplicated)
2: Is the Iq test an effective way to measure intelligence? [SEP] How do IQ tests work?
(duplicated)
3: How is an IQ test on a scale from 1 to 100 scored? [SEP] How do you get your IQ tested?
(not duplicated)

Table 12: QQP: Two labeled examples, along with 3 nearest neighbors (based on RoBERTa
representations) from our synthetic dataset. We include labels for original examples and
pseudo-labels for synthetic examples in parenthesis.
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