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Abstract

This paper analyzes three formal models of
Transformer encoders that differ in the form
of their self-attention mechanism: unique hard
attention (UHAT); generalized unique hard at-
tention (GUHAT), which generalizes UHAT;
and averaging hard attention (AHAT). We
show that UHAT and GUHAT Transformers,
viewed as string acceptors, can only recog-
nize formal languages in the complexity class
AC0, the class of languages recognizable by
families of Boolean circuits of constant depth
and polynomial size. This upper bound sub-
sumes Hahn’s (2020) results that GUHAT
cannot recognize the DYCK languages or the
PARITY language, since those languages are
outside AC0 (Furst et al., 1984). In contrast, the
non-AC0 languages MAJORITY and DYCK-1
are recognizable by AHAT networks, imply-
ing that AHAT can recognize languages that
UHAT and GUHAT cannot.

1 Introduction

The Transformer architecture for neural networks
(Vaswani et al., 2017) has yielded remarkable
advances in performance on a variety of bench-
mark tasks in natural language processing. These
advances have spurred considerable interest in
understanding the capabilities and limitations of
the Transformer architecture. While Transformer
networks are extremely complex when deployed
at scale, theoretical studies such as those of Pérez
et al. (2019), Yun et al. (2020), Hahn (2020),
and Merrill et al. (2022) have uncovered mean-
ingful insights about the expressive power of
Transformers by formulating abstract models of
the self-attention mechanism and analyzing their
computational power.

In this work, we analyze three restricted models
of self-attention based on their ability to recog-
nize formal languages. All three models use hard
attention—meaning that each attention head at-
tends only to the position or positions with the

highest attention score, with no attention paid to
any of the other positions—but differ in how they
behave in the case of ties in the maximum at-
tention value. In the first two models we study,
the attention mechanism returns the value at ex-
actly one position (for example, the leftmost) in
case several positions tie for the maximum at-
tention value. The first such model, which we
call generalized unique hard attention Transform-
ers (GUHAT) and was defined by Hahn (2020),
imposes no restrictions on the nature of activa-
tion values or the functions the network uses to
compute them. The second model, unique hard
attention Transformers (UHAT), was defined and
studied by Yao et al. (2021) and is a more concrete
version of GUHAT that incorporates restrictions
on the nature of activation values and computa-
tions. In the third model, which we call averaging
hard attention Transformers (AHAT), the atten-
tion mechanism returns the uniform average of
the values at positions with the maximum atten-
tion value. This is the definition of hard attention
used by Pérez et al. (2019), Yun et al. (2020), and
Merrill et al. (2022).1

Our main contribution is to prove that GUHAT
and UHAT can only recognize formal languages
in AC0, the class of formal languages recognized
by a family of Boolean circuits of constant depth
and polynomial size, whereas AHAT can rec-
ognize formal languages outside of AC0. More
formally, we prove that any formal language rec-
ognized using a GUHAT is also recognized by
a family of Boolean circuits of constant depth
and polynomial size, establishing AC0 as an up-
per bound on the expressiveness of UHAT and
GUHAT. We also show that every UHAT can
be simulated by an AHAT, establishing UHAT
as a subclass of AHAT. Based on the classical
results of Furst et al. (1984), our upper bound sub-
sumes Hahn’s (2020) results that GUHAT cannot

1Merrill et al. (2022) call it saturated hard attention.
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recognize the DYCK languages or the PARITY
language, neither of which belongs to AC0. Fur-
thermore, our result combines with Pérez et al.’s
(2019) AHAT implementation of the MAJORITY
language and Bhattamishra et al.’s (2020) AHAT
implementation of DYCK-1 (neither of which is
in AC0) to show that AHAT can recognize lan-
guages that GUHAT cannot. Recently, Merrill
et al. (2022) have given an upper bound on the
power of AHAT: namely, that every formal lan-
guage recognizable using averaging hard attention
is recognizable using a family of circuits of con-
stant depth and polynomial size with Boolean and
majority gates; that is, a family of circuits in the
complexity class TC0, known to be a strict superset
of AC0. Taken together, our paper establishes the
following relationships between the three models
we consider of hard-attention Transformers.

UHAT ⊆ GUHAT ⊆ AC0

UHAT � AHAT � AC0

2 Preliminaries

Let Σ be a fixed finite alphabet of symbols, and
let $ be a distinct end-of-sequence symbol not in
Σ. The set of strings of symbols over Σ of length
n is denoted by Σn, and the set of all finite strings
over Σ is denoted Σ∗. A (formal) language over
Σ is any subset of Σ∗.

The set of integers between i and j inclusive
is denoted [i..j]. Define the function � : N → N
as �(n) = �log2(n + 1)� for all n, and define
bin(i, n) to be the binary representation of i as
a string of length �(n), for every i ∈ [1..n]. For
example, bin(6, 30) = 00110. If P is a logical
predicate, then {P} denotes the truth value of P ;
for example, {(x ≥ y) ∨ (z > 3)} = 1 when
x ≥ y or z > 3, and is 0 otherwise.

3 Circuit Complexity

Our analysis of UHAT and GUHAT is carried
out within the framework of circuit complexity, in
which the complexity of a computational system
is measured by the size, depth, and types of gates
of a Boolean circuit implementing that system.
In this section we review the basic concepts,
definitions, and results of circuit complexity used
by our analysis. A detailed overview is provided
in Chapter 6 of Arora and Barak (2009).

3.1 Boolean Circuits

Boolean circuits are a formal model of com-
putational systems based on logic gates.
Roughly speaking, a Boolean circuit consists
of binary-valued input and output layers, with
feedforward connections2 to one another via
intermediate gates that implement logical opera-
tions. We use the following definition of Boolean
circuits.

Definition 1. A Boolean circuit with n inputs and
m outputs is a labeled directed acyclic graph
satisfying the following conditions. There are n
distinguished input vertices labeled with the vari-
ables x1, x2, . . . , xn. Each input vertex has fan-in
0. The rest of the vertices are gates, each hav-
ing a label from Constant-0, Constant-1, NOT,
AND, or OR. The Constant-0 and Constant-1
gates have fan-in 0, NOT gates have fan-in 1,
and AND and OR gates have unbounded fan-in.
Finally, the labels z1, z2, . . . , zm are applied to
some (not necessarily distinct) vertices; these are
the outputs.

We refer to the edges of a Boolean circuit as
wires. The size of a circuit is the number of wires it
contains, and the depth of a circuit is the maximum
length of a directed path of wires from an input
vertex to an output. A Boolean circuit C computes
a Boolean function from {0, 1}n to {0, 1}m; we
denote its output on input x = x1x2 . . . xn by
C(x).

Observe that a Boolean circuit has a fixed
number of input vertices, and therefore can only
take as input bit strings of a fixed length. We
would like to define circuit computation for a map
defined on all of {0, 1}∗. To that end, we allow
different circuits for inputs of different lengths.

Definition 2. A family of circuits is a sequence
{Cn}, where for each integer n ≥ 0, Cn is a
Boolean circuit with n inputs and one output. A
map f from {0, 1}∗ to {0, 1} is computed by a
family of circuits {Cn} if and only if for all n and
all x ∈ {0, 1}n, f(x) = Cn(x).

The class AC0 is defined by setting restrictions
on the size and depth of circuits within a family
of Boolean circuits.

Definition 3. A family of circuits is of constant
depth if there exists a constant K such that the
depth of Cn is bounded by K for all n. A family

2We consider only acyclic circuits.
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of circuits is of polynomial size if there exists a
constant c such that the size of Cn is bounded by
nc + c for all n. The set AC0 is the set of families
of Boolean circuits of both constant depth and
polynomial size.

We relate formal languages with families of
circuits by identifying languages L ⊆ Σ∗ with
Boolean functions that classify strings as belong-
ing to L or not. Formally speaking, let Σ be a
finite alphabet. A binary symbol encoding of Σ
is an injective map h from Σ to {0, 1}s, where
s = �(|Σ|). Thus h maps each symbol to a dis-
tinct binary string of length s. We extend h to a
homomorphism on strings from Σ∗. We say that
the circuit family {Cn} recognizes the language
L over Σ if there is a binary symbol encoding h
of Σ such that for every n and every x ∈ Σn,
Csn(h(x)) = 1 if and only if x ∈ L. With this
definition of language recognition via Boolean
circuits, we say that a language is in AC0 if and
only if it is recognized by a family of Boolean
circuits in AC0.

3.2 Non-AC0 Languages

Having defined the class AC0, we present some
examples of languages not belonging to this class.
First, the following three languages were shown
by Furst et al. (1984) to fall outside AC0.

Definition 4. We define the following languages
over the alphabet {0, 1}. The language PARITY
is the set of all strings containing an even number
of 1s; MAJORITY is the set of strings with at least
as many 1s as 0s; and EQUALITY is the set of
strings with exactly as many 1s as 0s.

Additionally, we show later in this paper
(Corollary 3) that DYCK-1 also falls outside AC0.

Definition 5. The language DYCK-k is the set of
strings over an alphabet of k types of pairs of
brackets that are correctly nested and matched.
For example, DYCK-2 over the alphabet {(, ), [, ]}
can be described by a context free grammar with
productions S → ε, S → (S), S → [S], and
S → SS. The language DYCK-(k,D) is the set
of strings in DYCK-k in which the depth of nest-
ing of brackets never exceeds D. The language
SHUFFLE-k is the shuffle (arbitrary interleaving)
of strings from k versions of DYCK-1 each using
a different type of bracket pair.

Finally, we define PALINDROMES, a language
shown in Section 5 to be in GUHAT.

Definition 6. The language PALINDROMES is the
set of strings equal to their reverses, which can
be described by the context free grammar with
productions S → ε, S → σ, and S → σSσ for
each alphabet symbol σ.

4 Hard Attention Transformers

We now define the three kinds of hard atten-
tion Transformers studied in this paper: GUHAT,
UHAT, and AHAT. These formalisms are models
of computation inspired by the encoder portion
of the Transformer architecture. They conceptu-
alize Transformers as cascading layers of feature
extractors that convert a sequence of embeddings
into increasingly higher-level representations.

4.1 General Framework

We begin by presenting a general framework that
subsumes the three hard attention Transformer
models. Formally, a generalized Transformer is a
device that maps a string x ∈ Σ∗$ to 1 or 0, signi-
fying that x is accepted or rejected, respectively.
Each such device is parameterized by a collection
of functions described as follows.

Definition 7. A generalized Transformer with K
layers and H attention heads is a tuple T =
(Σ,A, f, f att

k,h, f
pool, f act

k , g | k ∈ [1..K], h ∈
[1..H]) where

• Σ is the input alphabet,

• A is the set of activation values,

• f : Σ ∪ {$} × N × N → A is the input
function,

• f att
k,h : A × A → R is the attention function

for layer k and head h,

• fpool : A∗×R∗ → A is the pooling function,

• f act
k : AH+1 → A is the activation function

for layer k, and

• g : A → {0, 1} is the model output function.

On input x1x2 . . . xn where xn = $, a string
y
(0)
1 y

(0)
2 . . . y

(0)
n ∈ An of initial activation values

is given by

y
(0)
i = f(xi, i, n)

for all i. Each layer k then produces a string
y(k) = y

(k)
1 y

(k)
2 . . . y

(k)
n ∈ An of activation val-

ues from the previous activation values y(k−1) =
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y
(k−1)
1 y

(k−1)
2 . . . y

(k−1)
n as follows. First, each atten-

tion head h produces an n× n matrix of attention
scores ai,j,k,h given by

ai,j,k,h = f att
k,h

(
y
(k−1)
i , y

(k−1)
j

)

for all positions i, j of the input string. Next, the
pooling function converts each row of attention
scores into an activation value based on y(k−1):

bi,k,h = fpool
(
y
(k−1)
1 , y

(k−1)
2 , . . . , y(k−1)

n ,

ai,1,k,h, ai,2,k,h, . . . , ai,n,k,h

)
.

Finally, the layer output y(k) is computed using
the layer’s activation function:

y
(k)
i = f act

k

(
y
(k−1)
i , bi,k,1, . . . , bi,k,H

)
.

When y(k) has been computed for all k ∈ [1..K],
the final output of the generalized Transformer
T (x) is computed by applying the model output
function to the last symbol of y(K); that is,

T (x) = g
(
y(K)
n

)
.

If T (x) = 1, we say that T accepts x; otherwise,
we say that T rejects x. The language recognized
by T , denoted L(T ), is the set of strings x ∈ Σ∗

such that T accepts x$.
The formalism we have presented above is

fully generalized in the sense that we have placed
no restrictions on the activation values A or the
functions f , f att

k,h, fpool, f act
k , or g, other than to

specify their domains and co-domains. The three
hard attention Transformer models are derived by
placing restrictions upon these elements.

4.2 Unique and Averaging Hard Attention
The first restriction we consider is on the form
of the pooling function. We consider two types
of pooling functions: the unique hard attention
function, used in GUHAT and UHAT, and the
averaging hard attention function, used in AHAT.

In unique hard attention, the pooling function
simply selects the activation value from the previ-
ous layer corresponding to the argmax of the row
of attention scores. In case of a tie, the leftmost
activation value is selected.

Definition 8. The unique hard attention function
is the pooling function fUHA : A∗ × R∗ → A
defined as follows. On inputs (y1, y2, . . . , yn) ∈

An and (a1, a2, . . . , an) ∈ Rn, let j ∈ [1..n] be
the least position that maximizes aj . Then,

fUHA(y1, . . . , yn, a1, . . . , an) = yj .

Averaging hard attention is similar to unique
hard attention, except that in the case of a tie, the
selected activation values are averaged.

Definition 9. Let A be a vector space over a
field containing Q. The averaging hard attention
function is the pooling function fAHA : A∗×R∗ →
A defined as follows. On inputs (y1, y2, . . . , yn) ∈
An and (a1, a2, . . . , an) ∈ Rn, let j1, j2, . . . , jm ∈
[1..n] be all the positions that maximize aj . Then,

fAHA(y1, . . . , yn, a1, . . . , an) =
1

m

m∑
i=1

yji .

The GUHAT model is defined as the class
of generalized Transformers that use unique
hard attention.

Definition 10. A generalized unique hard atten-
tion Transformer is a generalized Transformer
whose pooling function is fUHA. We use the term
GUHAT to refer to the class of generalized unique
hard attention Transformers, and also to the class
of languages they recognize.

The GUHAT model mostly follows the defi-
nitions of Hahn (2020). It is slightly generalized
in allowing the input function f to depend on
the input length n, and in allowing the activa-
tion function f act

k to depend on the layer k, but
these generalizations are immaterial. In particu-
lar, it is not necessary to assume that the input
length n is provided to the input function: if the
input function were f(σ, i) = (σ, i), the subse-
quent layer could direct attention at every position
to position n (because it uniquely contains the
end-of-sequence symbol $), at which point the
value of n is available at every position.

4.3 Restricted Models: UHAT and AHAT

GUHAT allows the activation values A and the
functions f , f att

k,h, f act
k , and g to take on any

arbitrary mathematical value. In practical appli-
cations of Transformer networks, however, these
components are restricted in specific ways. Many
variations of hard attention Transformers attempt
to incorporate these restrictions into theoretical
models, though they do not entirely agree on the
details of these restrictions.
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The UHAT and AHAT models adopt many
of these restrictions, largely following the def-
initions of Yao et al. (2021). For the sake of
computability, we require activation values to
be vectors of rational numbers. Following Pérez
et al. (2019), we restrict scalars to be rational as
well. Next, we assume that the input function f
is decomposed into a token embedding function
and a position embedding function. Mirroring the
more familiar description of attention functions
in terms of query, key, and value matrices, we
use a bilinear form for attention functions pro-
posed in Luong et al. (2015). In addition to the
unique and averaging hard attention mechanisms,
we allow the pooling function to be future-masked
(where for position i only those positions j with
j ≤ i are considered in the attention compu-
tation) or past-masked (similarly for j ≥ i).
Finally, we assume that activation functions and
the model output function are computed by feed-
forward neural networks with ReLU activation.
These restrictions are summarized below.

Definition 11. For d ∈ N, a restricted Trans-
former of dimension d is a generalized Trans-
former such that

• the set of activation values is A = Qd;

• the input function is given by

f(σ, i, n) = fe(σ) + p(i, n),

where fe : Σ ∪ {$} → Qd is the token
embedding function and p : N × N → Qd is
the position embedding function;

• each attention function is of the form

f att
k,h(y, y

′) = y�Ak,hy
′,

where Ak,h ∈ Qd×d;

• the pooling function may be future-masked
or past-masked;

• each activation function is computed by
a feedforward neural network with ReLU
activation;

• the output function g is computed by a feed-
forward neural network with ReLU activation
followed by a softmax layer, with g(y) = 1
if and only if the output of the network on
input y is greater than or equal to 1/2.

Because Σ is finite, we may assume that the
token embedding function is given by a table
lookup. Our formulation of position embedding is
somewhat more general than the definition of Yao
et al. (2021), who take the position embedding to
be a scalar defined as p(i, n) = i/n that occupies
one position of the initial activation vector.

The UHAT and AHAT models are defined to
be restricted Transformers that satisfy the above
conditions and use unique and averaging hard
attention, respectively.

Definition 12. A unique hard attention Trans-
former is a restricted Transformer whose pooling
function is fUHA or a future- or past-masked
version thereof. An averaging hard atten-
tion Transformer is a restricted Transformer
whose pooling function is fAHA or a future-or
past-masked version thereof. We use the terms
UHAT and AHAT, respectively, for these classes
of Transformers, and also for the classes of
languages they recognize.

UHAT is clearly a subclass of GUHAT because
the former imposes restrictions on the form of the
input, attention, activation, and output functions.
We suspect, but do not prove, that this inclusion
is proper. Moreover, we briefly argue below that
UHAT is properly contained in AHAT.

Proposition 1. UHAT is a strict subclass of AHAT.

Proof sketch. Because AHAT recognizes non-
AC0 languages (Pérez et al., 2019; Bhattamishra
et al., 2020), it suffices to show that UHAT ⊆
AHAT. Let T be a UHAT of dimension d rec-
ognizing L. We define a UHAT T̂ of dimension
d + 2 recognizing L that has no ties in its at-
tention values. Since the pooling functions fUHA

used in UHAT and fAHA used in AHAT are
identical in the absence of ties, replacing the pool-
ing function of T̂ with fAHA gives us an AHAT
recognizing L.

Let N be a sufficiently large integer depending
on n, specified below. Each activation value ŷ

(k)
i

in T̂ is y
(k)
i from T with two additional constant

components, set to 1 and i/N by the input func-
tion. The attention function f̂ att

k,h(ŷ
(k−1)
i , ŷ

(k−1)
j )

computes ai,j,k,h using the original attention func-
tion and activation values, subtracting the value
j/N . This is achievable with a bilinear map.

If for j < � the attention values ai,j,k,h and
ai,�,k,h are tied in T , then after subtracting j/N

804

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00490/2037124/tacl_a_00490.pdf by guest on 07 Septem
ber 2023



Figure 1: Activation values computed by a GUHAT Transformer for PALINDROMES as it rejects the input abcca$.

and �/N respectively, the tie is broken in favor
of j. However, N must also be large enough to
preserve the order of any two attention values that
are not tied. There are a finite number of different
attention values that arise in the computation of
T on all the inputs of length n, and it suffices to
choose N so that n/N is less than the distance
between any pair of such attention values.

4.4 Prior Results for These Models

Hahn (2020) shows that the languages 1∗ and
{anbn | n ≥ 1} are in GUHAT, and the lan-
guages PARITY and DYCK-k for all k ≥ 1 are
not in GUHAT. Pérez et al. (2019) show that
even without positional information, the language
MAJORITY is in AHAT. Bhattamishra et al.
(2020) show that SHUFFLE-k is in AHAT, which
implies that DYCK-1 is in AHAT. Yao et al. (2021)
show that the language DYCK-(k,D) is in UHAT.
The latter two results use positional masking, but
no other positional information.

5 PALINDROMES in GUHAT

Let us now illustrate how a GUHAT computes
by way of example. In this section, we describe a
GUHAT with 2 layers and 1 head that recognizes
the language PALINDROMES over the alphabet
Σ = {a, b, c}. Broadly speaking, this Transformer
works as follows. The first layer is responsible for
comparing each symbol of the input string with
the corresponding symbol on the opposite side of
the string, and marking whether the two symbols
match. The second layer reads these markings,
searching for a mismatch identified by the first
layer. If one is found, the model output function
returns 0; otherwise, it returns 1. For intuition,
we simultaneously illustrate the Transformer’s
computation on the input abcca$, which should be
rejected.

The input function is defined as f(σ, i, n) =
(σ, i, n) for each σ ∈ Σ and i ∈ [1..n]. For
our example input, the initial (layer 0) activation

values are shown in the first row of Figure 1. These
activation values are not rational-valued vectors,
of course, but the GUHAT model imposes no
restriction on the form these values can take.

We define the attention function for layer 1,
f att
1,1 ((σ, i, n), (σ

′, j, n)), to be {(j = n− i)∨ (i =
j = n)}. For each position i < n, this selects the
activation at the correct corresponding position,
n − i. For position n, it selects the activation at
position n.

We define the activation function for layer 1 as

f act
1 ((xi, i, n), (xj , j, n)) =

⎧⎪⎨
⎪⎩

(1, i), xi �= xj

(1, i), i = j = n

(0, i), otherwise.

The layer 1 activation values for our example
input are shown in the second row of Figure 1. This
indicates that positions 2 and 4 found mismatched
symbols, and positions 1, 3, and 5 did not.

Layer 2 gathers the relevant information from
layer 1 into the last position. The layer 2 attention
function is defined by f att

2,1 ((r, i), (s, j)) = s. This
directs the attention at every position to the left-
most activation value (s, j) from layer 1 such that
s = 1. In our example, the leftmost such position
is 2, with its activation of (1, 2). If the input se-
quence had instead been a valid palindrome, none
of the positions i ∈ [1..n − 1] would have been
marked with (1, i) by layer 1. In this case, the
leftmost position with s = 1 would have been the
final position n, which has the activation value of
(1, n).

We define the layer 2 activation function as
f act
2 ((r, i), (s, j)) = (i, j). For our example input,

the activation values for layer 2 are shown in the
third row of Figure 1. The activation value at
position n will be (n, n) if and only if no earlier
position found a symbol mismatch, so the model
output function is simply g((i, j)) = {i = j}.
With the input sequence abcca$, the activation for
position 6 at layer 2 is (6, 2) and the output value
is 0. For a valid palindrome such as abcba$, the
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activation for position 6 at layer 2 is (6, 6) and the
output value is 1. Generalizing this construction
to an arbitrary alphabet Σ, we have the following.

Proposition 2. For any finite alphabet Σ, the
language PALINDROMES over Σ is in GUHAT.

6 A Normal Form for GUHAT

Despite the abstractness and generality of the
GUHAT model, we can define a normal form
representation and show that every Transformer
T in GUHAT is equivalent to a Transformer in
GUHAT in this normal form with the same number
of layers and heads. The key idea is to preserve
in the activation values all the information from
previous layers that has been used to compute
them, by requiring that the input and activation
functions just return the tuple of their arguments.
We also require that attention values be integers
in the smallest relevant range.

Definition 13. A GUHAT with K layers and H
heads is in informative normal form if and only if
the following conditions are satisfied.

• The input function is f(σ, i, n) = (σ, i, n).

• For each layer k ∈ [1..K], the activation
values are (H+1)-tuples of activation values
at layer k − 1, and the activation function is
defined by

f act
k (y, b1, . . . , bH) = (y, b1, . . . , bH).

• For each layer k ∈ [1..K] and attention head
h ∈ [1..H], the attention function f att

k,h returns
an integer in [0..N − 1], where N is the total
number of possible ordered pairs of activation
values at layer k − 1.

Lemma 1. For any Transformer T ∈ GUHAT,
there exists a Transformer T̂ ∈ GUHAT in in-
formative normal form such that L(T ) = L(T̂ ).
Moreover, T̂ has the same number of layers and
heads as T .

Proof. Let T be a GUHAT with K layers and
H heads, with input alphabet Σ, input function
f , attention functions fatt

k,h, activation functions
fact
k , and output function g. We describe how to

construct functions for an equivalent Transformer
T̂ in GUHAT in informative normal form, which
also has K layers and H heads. We assume that n
is the input length.

For T̂ the input function f̂(σ, i, n) is defined
to return the triple (σ, i, n). Note that there are
at most |Σ|n possible initial activation values.
We also define a function t0 that translates initial
activation values for T̂ into initial activation values
for T by t0(σ, i, n) = f(σ, i, n).

Now, we induct on the layers of T and T̂ .
Assume that we have defined attention and acti-
vation functions for T̂ for layers before k (where
the initial activation values are treated as ‘‘layer
0’’), and a translation function tk−1 that trans-
lates all possible activation values for T̂ from
the previous layer into activation values for T
from the previous layer. To define the attention
function for T̂ for layer k for head h, we enumer-
ate all the possible pairs ŷi and ŷj of activation
values of T̂ at layer k − 1, and determine the
corresponding attention values of T , which we
denote by vk,h(ŷi, ŷj) = f att

k,h(tk−1(ŷi), tk−1(ŷj)).
We make a list of all the distinct resulting values
and sort them into increasing order. Then we de-
fine f̂att

k,h(ŷi, ŷj) to be the rank of vk,h(ŷi, ŷj) in
this sorted list. The activation function for T̂ for
layer k is, by definition,

f̂ act
k (y, b1, . . . , bH) = (y, b1, . . . , bH).

The translation function for layer k is defined by

tk(y, b1, . . . , bH)

= fact
k (tk−1(y), tk−1(b1), . . . , tk−1(bH)),

that is, we translate each of the component activa-
tion values using tk−1 and then apply the activation
function of T .

Finally, the output function for T̂ is defined by
ĝ(ŷ) = g(tK(ŷ)), that is, we translate the layer K
activation value ŷ of T̂ to the layer K activation
value of T , and apply the output function of T .

By construction, T̂ is in informative normal
form, and it has K layers and H heads. It is not
difficult to see that for any input x, the translations
tk(ŷ) of the activation values ŷ of T̂ are equal to
the corresponding activation values of T , and the
outputs T̂ (x) = T (x) are equal as well. Thus,
L(T̂ ) = L(T ).

To illustrate the construction of T̂ in the proof
of Lemma 1, we briefly show how an informa-
tive normal form version of the Transformer for
PALINDROMES from Section 5 would process the
input x = abcca$. Because the attention functions
in that example return 0 or 1, their translation
is simplified.
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The initial activation values and layer 1 atten-
tion function are the same as in the example. The
resulting layer 1 activation sequence, consisting
of a sequence of paired initial activations and
attention values, is

((a, 1, 6), (a, 5, 6)),

((b, 2, 6), (c, 4, 6)), . . . , (($, 6, 6), ($, 6, 6)).

The translation t1 maps ((xi, i, n), (xj , j, n)) to
(0, i) if xi = xj and (1, i) if xi �= xj . When
applied to the above activation sequence, this
yields the previous example’s layer 1 activation
sequence.

The layer 2 attention function applied to a pair
of layer 1 activation values ((xi, i, n), (xj , j, n))
and ((xk, k, n), (x�, �, n)) first applies the transla-
tion function t1 to these two activation values to
recover the pairs (r, i) and (s, j), and then applies
the example’s layer 2 attention function to these
to yield the attention value s.

The layer 2 translation function maps a layer 2
activation value

(((xi, i, n), (xj , j, n)), ((xk, k, n), (x�, �, n)))

to (i, k). For layer 2 and position 6 the activation
value for this input is

((($, 6, 6), ($, 6, 6)), ((b, 2, 6), (c, 4, 6))),

which is mapped to (6, 2) by t2. The previous
example’s output function compares 6 and 2 and
returns 0, rejecting the input x.

7 From GUHAT to Circuits

In this section we show that for every language
L ∈ GUHAT, we can construct a family of Bool-
ean circuits of constant depth and polynomial
size that also recognizes L. This will prove the
following, which is our main result.

Theorem 1. Every language in GUHAT is recog-
nized by a family of circuits in AC0.

Let L be a language over Σ that is in GUHAT.
By Lemma 1, we may assume that L is recognized
by GUHAT Transformer T in informative normal
form. Assume T has K layers and H heads.

What we describe below is a family of circuits
to recognize the end-marked language L$, which
can easily be converted to a family of circuits that
recognizes L by hard-wiring the representation
of the end-of-sequence symbol $ at the end of

the input string using constant gates. Let s =
�(|Σ|+1) and let h be any binary symbol encoding
for Σ ∪ {$}. We construct a family of Boolean
circuits {Cn} of constant depth and polynomial
size such that for all positive integers n and all
x ∈ Σn−1, x ∈ L if and only if Csn(h(x$)) = 1.

The key step of the proof is to bound the
number of bits needed to represent attention and
activation values for an input sequence of length
n by O(log n), where the suppressed constants
depend on K and H .

Lemma 2. Let T be a GUHAT in informative
normal form with K layers and H heads, and
alphabet Σ. Let s = �(|Σ|+1). Then for any input
of length n and any k ∈ [0..K], the activation
values at layer k can be represented by (H +
1)k(2�(n) + s) bits, and for k ≥ 1, the attention
scores at layer k can be represented by 2(H +
1)k−1(2�(n) + s) bits.

Proof. For an input sequence of length n, the
initial activation values are (σ, i, n), where σ ∈
Σ ∪ {$} and i ∈ [1..n]. This can be represented
by a string of 2�(n) + s bits. At each successive
layer, the activation values are a tuple of (H + 1)
values from the previous layer, which multiplies
the number of bits required to represent them
by (H + 1). Also, the range of attention scores
is bounded by the number of ordered pairs of
activation values at the previous layer, so atten-
tion values can be represented by twice the num-
ber of bits to represent an activation value at the
previous layer.

It is worth observing that the bounds provided
by Lemma 2 do not hold in the case of AHAT.
Attention scores may be the result of the average
of an arbitrary subset of the possible inputs, which
means that there are exponentially more possible
activation values at each layer.

The following elementary facts about Boolean
circuits will be useful.

Lemma 3. An arbitrary Boolean function f of n
inputs and m outputs can be computed by a depth
3 circuit of size at most m(n2n + 2n + n).

Proof. Express each output zi of f as a disjunctive
normal form (DNF) formula of at most 2n terms,
each with at most n literals. Convert each DNF
formula to a circuit with one OR gate with inputs
from an AND gate for each term, each of whose
inputs is either an input to the function, or the
result of applying a NOT gate to an input. In each
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such circuit, the OR gate has at most 2n input
wires, each AND gate has at most n input wires,
and each of at most n NOT gates has one input
wire, for a total size bounded by n2n + 2n + n.
The final circuit consists of these m separate cir-
cuits computing in parallel, and its size is at most
m times the size of each one. The longest pos-
sible path to an output from an input is through a
NOT, an AND, and the OR gate, for a depth of
at most 3.

Corollary 1. If a Boolean function f has at most
c log n inputs and at most d log n outputs, then it
may be computed by a Boolean circuit of depth
3 and size at most (d log n)(nc(c log n) + nc +
c log n).

With the O(log n) bound on the number of
bits to represent activation and attention values,
Lemma 2 yields circuits of constant depth and size
polynomial in n for the input, attention, activa-
tion, and output functions. Additional circuitry is
necessary to implement the comparison of atten-
tion scores and selection of the activation value to
attend to for each position, layer, and head.

We construct the overall circuit Csn according
to the layers of T , starting with the input function.
Let the inputs to T be xi for i ∈ [1..n]. The
inputs to Csn are xi,j for i ∈ [1..n] and j ∈ [1..s],
where xi,j are the bits of h(xi), representing the
binary encoding of input symbol xi. At layer 0
for position i, the value of y

(0)
i = f(xi, i, n) =

(xi, i, n) is achieved by having the input wires xi,j
for j ∈ [1..s] followed by a sequence of constants
0 or 1 representing bin(i, n) and bin(n, n) for a
total of 2�(n) + s wires representing the value
(xi, i, n).

Inducting on layers, we assume that for some
k ∈ [1..K] the circuit Csn has been constructed
to contain the wires representing all the activation
values y

(k−1)
i for i ∈ [1..n] at layer k − 1. The

portion of the circuit computing the representa-
tions of activation values at layer k is described
as follows. Fix a position i ∈ [1..n] and a head
h ∈ [1..H]. For each j ∈ [1..n], there is a circuit
Ai,j,k,h that has as input the wires for the activation
values y(k−1)

i and y
(k−1)
j and as output, wires rep-

resenting the nonnegative integer attention score
ai,j,k,h in binary. Each of these circuits Ai,j,k,h

has 2(H+1)k−1(2�(n)+s) inputs and outputs by
Lemma 2, and therefore can be computed using
depth 3 and size polynomial in n, by Corollary 1.

All Hn2 such circuits for layer k operate in
parallel, for overall depth 3 and size polyno-
mial in n.

We next describe the circuit that implements the
pooling function fUHA. For each pair j, j′ ∈ [1..n],
there is a circuit Di,j,j ′,k,h whose inputs are the
outputs of Ai,j,k,h and Ai,j ′,k,h and whose output
is a single wire gi,j,j ′,k,h with a value of 1 if
ai,j,k,h ≥ ai,j ′,k,h and 0 otherwise. Because of
the bounds on the number of inputs and outputs,
each of these circuits can have depth 3 and size
polynomial in n by Corollary 1. These n2 circuits
all compute in parallel.3 Then for each position
j, whether j maximizes ai,j,k,h can be computed
by an AND gate whose inputs are gi,j,j ′,k,h for all
j′ ∈ [1..n]. Let the output of this AND gate be
denoted mi,j,k,h. Then mi,j,k,h = 1 if and only if
the position j maximizes ai,j,k,h. This increases
the depth by 1.

For each j, an indicator zi,j,k,h is computed
by an AND gate whose inputs are mi,j,k,h and
NOT(mi,j ′,k,h) for all j′ < j. Thus, zi,j,k,h = 1
if and only if j is the leftmost position that max-
imizes ai,j,k,h. This increases the depth by 2.

Finally, these indicator values are used to com-
bine the layer k−1 activation values in a selection
circuit, yielding the representation of the activa-
tion value bi,k,h = y

(k−1)
j such that zi,j,k,h = 1.

In general, such a selection circuit takes as in-
put t selector bits z1, . . . , zt, where exactly one
zj = 1, and t input values w1, . . . , wt, where each
wr consists of S bits. It outputs S bits represent-
ing the selected wj (for which zj = 1). Letting
wr,s denote bit s of wr, the computation can be
described as vr,s = wr,s ∧ zr for r ∈ [1..t] and
s ∈ [1..S], which can be computed by one layer
of tS AND gates in parallel. Then the bits of the
output are us =

∨S
r=1 vr,s for s ∈ [1..S], which

can be computed by one layer of S OR gates in
parallel. Thus, the selection circuit adds 2 to the
depth, and a polynomial in n to the size.

Because each activation function for a GUHAT
in informative normal form simply returns its
arguments, no further computation is needed for
the activation values. The representation of the
activation value y

(k)
i is just the sequence of wires

representing y(k−1)
i followed by those representing

bi,k,1, through bi,k,H .

3In fact, comparison of two b-bit integers can be done
with a Boolean circuit of constant depth and size polynomial
in b, but that is not necessary for the present purpose.
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To produce the output of the circuit, we note
that the representation of y

(L)
n has O(log n) bits

and the output of g is a single bit, so g can
be implemented by a Boolean circuit of constant
depth and size polynomial in n, by Corollary 1.
This concludes the proof of Theorem 1.

Furst et al. (1984) prove that the PARITY,
EQUALITY, and MAJORITY languages are not in
AC0, which immediately implies the following.

Corollary 2. GUHAT does not contain the lan-
guages PARITY, MAJORITY, or EQUALITY.

To see that the DYCK-k languages are also not
in AC0, we reduce from the EQUALITY language.

Corollary 3. For all k ≥ 1, the language DYCK-k
is not in AC0, and is therefore not in GUHAT.

Proof. It suffices to prove this for k = 1. Assume
that there is a family {Cn} of Boolean circuits in
AC0 that recognizesDYCK-1. We may assume that
the binary symbol encoding ish([) = 0 andh(]) =
1. We show how to use this to construct a family
{En} of Boolean circuits in AC0 that recognizes
the EQUALITY language, a contradiction.
En is constructed from C3n as follows. If the

inputs to En are x1, . . . , xn, then En consists of
C3n with its first n inputs set to the constant 0, its
middle n inputs set to x1, . . . , xn, and its last n
inputs set to the constant 1.

Let x be any element of {0, 1}n. If the number
of occurrences of 0 is not equal to the number
of occurrences of 1 in x, then the input to C3n

has unequal numbers of [ and ] symbols, which
is not in DYCK-1 and x is rejected. If the number
of occurrences of 0 is equal to the number of
occurrences of 1 in x, then in any prefix of the
input to C3n, the number of occurrences of ] is less
than or equal to the number of occurrences of [.
At the end of the input, the number of occurrences
of [ is equal to the number of occurrences of ], so
the input to C3n is in DYCK-1 and x is accepted.
Thus {En} is a family of Boolean circuits in
AC0 that recognizes the language EQUALITY,
a contradiction.

8 Discussion and Conclusions

We have defined formal language recognition by
the encoder portion of a Transformer network us-
ing generalized unique hard attention (GUHAT),

unique hard attention (UHAT), and averaging hard
attention (AHAT), and shown that languages in
UHAT and GUHAT are recognizable by constant
depth, polynomial size families of circuits, that
is, families of circuits in the complexity class
AC0. This strengthens the negative result of Hahn
(2020) that the languages PARITY and DYCK-k
are not in GUHAT, and provides a simpler and
more general proof. Combined with prior results
of Pérez et al. (2019) showing that the language
MAJORITY is in AHAT, or Bhattamishra et al.
(2020) showing that the language DYCK-1 is in
AHAT, this shows that AHAT contains languages
that are not in GUHAT or UHAT.

Many intriguing open questions remain. What
classical closure properties hold for the classes of
languages GUHAT, UHAT, and AHAT? Closure
under complement just requires complementing
the output function g, and closure under pairwise
union and intersection should be straightforward
using a parallel approach; but what about closure
under homomorphism, inverse homomorphism,
concatenation, or Kleene star? We briefly observe
that GUHAT and UHAT cannot be closed un-
der both Kleene star and concatentation lest they
contain all regular languages, including PARITY.

Existing formal models and indeed practical
implementations of Transformers vary in their
representation of position information, whether
as an absolute representation of position, a ratio
(e.g., position i in a sequence of length n as i/n),
through angle information (e.g., position i by the
pair (cos θi, sin θi) where θi = πi/2n), or as an
arbitrary learned embedding. In the UHAT and
AHAT models, the choice of positional encod-
ing can facilitate positional comparison (e.g., an
angle-based encoding allows for equality testing
via dot products) or make it uncomputable (e.g., if
positional encodings enumerate Turing machines
that halt on their own encodings). It remains to be
understood what effect such differences in posi-
tion representation have on the expressive power
of a model.

More generally, is it possible to prove that soft
attention, which we have not addressed here, is
strictly more powerful than even averaging hard
attention? Yao et al. (2021, Theorem B.3) present a
construction for a soft attention Transformer that
recognizes DYCK-k. This construction crucially
uses specialized encodings of position and layer
normalization, whose formal power remains to
be understood.
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Finally, given the success that Transformers
have had as models of natural language, it is
perhaps surprising that these models’ expressive
power seems to be best characterized (or at least
bounded) in terms of circuit complexity. Mathe-
matical explorations of natural language have most
commonly used the approach to language com-
plexity afforded by the Chomsky hierarchy and
its refinements, which is based on automata and
formal grammars. The apparent incomparability
of these approaches suggests that the exploration
of different types of Transformer models might
offer a new approach to the study of the formal
properties of natural language.
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