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Abstract

Automating the fact checking (FC) process
relies on information obtained from external
sources. In this work, we posit that it is crucial
for FC models to make veracity predictions
only when there is sufficient evidence and oth-
erwise indicate when it is not enough. To this
end, we are the first to study what information
FC models consider sufficient by introducing
a novel task and advancing it with three main
contributions. First, we conduct an in-depth
empirical analysis of the task with a new
fluency-preserving method for omitting infor-
mation from the evidence at the constituent
and sentence level. We identify when models
consider the remaining evidence (in)sufficient
for FC, based on three trained models with dif-
ferent Transformer architectures and three FC
datasets. Second, we ask annotators whether
the omitted evidence was important for FC,
resulting in a novel diagnostic dataset, Suffi-
cientFacts1, for FC with omitted evidence. We
find that models are least successful in detect-
ing missing evidence when adverbial modifiers
are omitted (21% accuracy), whereas it is easi-
est for omitted date modifiers (63% accuracy).
Finally, we propose a novel data augmenta-
tion strategy for contrastive self-learning of
missing evidence by employing the proposed
omission method combined with tri-training.
It improves performance for Evidence Suffi-
ciency Prediction by up to 17.8F1 score, which
in turn improves FC performance by up to 2.6
F1 score.

1 Introduction

Computational fact checking approaches typically
use deep learning models to predict the veracity
of a claim given background knowledge (Thorne
et al., 2018; Leippold and Diggelmann, 2020;

1We make the SufficientFacts dataset and the code
for the experiments publicly available both on https://
huggingface.co/datasets/copenlu/sufficient
facts and https://github.com/copenlu/sufficient
facts.

Augenstein, 2021). However, the necessary evi-
dence is not always available, either due to incom-
plete knowledge sources, or because the claim
has newly emerged and the relevant facts are not
documented yet. In such cases, FC models should
indicate that the information available is insuffi-
cient to predict the label, as opposed to making a
prediction informed by spurious correlations.

Prior work shows that FC models can some-
times predict the correct veracity based on just the
claim, ignoring the evidence, and that they can
overly rely on features such as the word over-
lap between the evidence and the claim (Schuster
et al., 2019, 2021), leading to biased predictions.
However, there are no previous studies on what
evidence a FC model considers to be enough
for predicting a veracity label. To this end, this
work introduces the novel task of Evidence Suffi-
ciency Prediction illustrated in Figure 1, which
we define as the task of identifying what in-
formation is sufficient for making a veracity
prediction. This task is related to FC and can op-
erate on instances and models from FC datasets,
but is focused on evaluating the capability of mod-
els to detect missing important information in the
provided evidence for a claim. The latter is usu-
ally not evaluated explicitly in current FC bench-
marks, where joint scores disregard a FC model’s
prediction when insufficient evidence is retrieved.

We study the new task by, first, conducting a
thorough empirical analysis of what models con-
sider to be sufficient evidence for FC. Second, we
collect human annotations for the latter, which
results in a novel diagnostic dataset, Sufficient-
Facts, for FC with omitted evidence. Finally, we
employ the method introduced for the empirical
analysis to improve the performance of models on
the new task of Evidence Sufficiency Prediction,
and show that considering it a component task
of FC significantly improves FC performance.
For the empirical analysis, we propose a new
fluency-preserving method that occludes portions
of evidence, automatically removing constituents
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Figure 1: An example from the VitaminC test set,
where the number modifier has been omitted from the
evidence. This results in there not being enough evi-
dence for predicting its support for the claim as judged
by human annotators, while two of the models still find
the remaining evidence to be sufficient.

or entire sentences, to create incomplete evidence.
We provide those as input to an ensemble of
Transformer-based FC models to obtain instances
on which FC models agree vs. disagree to have
(in)sufficient information. We perform extensive
experiments with three models—BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and
ALBERT (Lan et al., 2020)—and three textual FC
datasets with different types of claims—FEVER
(Thorne et al., 2018), HoVer (Jiang et al., 2020),
and VitaminC (Schuster et al., 2021).

To compare model behavior with human ratio-
nales for Evidence Sufficiency Prediction, we ask
annotators to indicate if the occluded evidence
texts still provide enough information for a fact-
check. This results in a novel diagnostic test
dataset, SufficientFacts, which contains infor-
mation about the type of the omitted information,
allowing for in-depth analyses of model behavior.

Finally, to improve model performance for de-
tecting omitted important evidence and, in turn,
FC, we propose to combine the proposed evidence
omission method with tri-training (Zhou and Li,
2005), which utilizes the agreement of three dif-
ferent machine learning models to label unlabeled
training instances (§5). This results in a novel
counterfactual data augmentation schema for
learning of (in)sufficient information. We find
that the proposed approach is highly effective in
improving model performance by up to 17.8 F1

score on the newly introduced SufficientFacts.
This also leads to improvements of up to 2.6
F1 score on the standard FC test sets for the
corresponding datasets.

2 Related Work

Here, we study when models trained on existing
FC datasets find evidence with omitted impor-
tant information to still be sufficient for veracity
prediction. Such cases might be considered vulner-
abilities of the models and can be due to models’
faulty reasoning, learned biases, etc. Hence, our
work is mainly related to studies exploring po-
tential biases learned by FC models and the vul-
nerabilities of FC models to adversarial attacks.
We further propose a method for evidence omis-
sion, which creates counterfactual instances, which
is related to studies on input-level instance re-
writing. We also use the proposed evidence omis-
sion method to collect counterfactually augmented
data (CAD) and compare that to using the col-
lected data in a contrastive learning (CL) loss
to improve performance on Evidence Sufficiency
Prediction and FC more generally. We thus dis-
cuss the relationship between our work and prior
studies on CAD and CL. Finally, we compare
our work based on deep learning models to FC
performed against knowledge bases (KBs), where
fact triples can also be missing.

Fact Checking Diagnostics. Previous work
has exposed various biases of FC models. Al-
though FEVER (Thorne et al., 2018) is one of
the largest datasets for FC, Schuster et al. (2019)
points out that models trained on it can verify a
claim solely based on the text of the claim, without
considering the evidence. To this end, Schuster
et al. (2019) introduce a new diagnostic data-
set, FeverSymmetric, of contrastively re-written
claims and evidence. They show that the models
fail to detect the contrastive changes in the text,
leading to a drop of up to 57.46 F1-score, com-
pared with 85.85 F1-score on the original FEVER
development set. Furthermore, the claims in
FEVER were manually written based on Wikipedia
article sentences, and thus have a large token over-
lap between the evidence and the claim, espe-
cially for supporting evidence. Hence, Schuster
et al. (2021) construct a new FC dataset, VitaminC,
where they instruct the annotators to avoid using
the same words as in the evidence. Ostrowski
et al. (2021) further create PolitiHop—a dataset
for claim verification of naturally occurring claims
with evidence composed of multiple hops over in-
terconnected evidence chunks. They study how
multi-hop vs. single inference architectures reason
over the evidence sets in PolitiHop. In addition,
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several papers (Thorne et al., 2019; Niewinski
et al., 2019; Hidey et al., 2020) explored the
vulnerability of FC models to adversarial attacks,
for example, by discovering universal trigger
words that fool a model into wrongly changing
its prediction (Atanasova et al., 2020). In con-
trast, we are interested in how much evidence is
enough for veracity prediction, studying this with
three different FC models trained on three differ-
ent datasets by omitting information at the con-
stituent and sentence levels and comparing it to
human judgments.

Instance Re-Writing. The above studies
mainly perform re-writing or insertion operations
for FC evidence. Here, we employ causal inter-
ventions on the evidence by omission to study
when information is (in)sufficient for a model’s
prediction. Elazar et al. (2021) also use causal
interventions that estimate the importance of a
property by removing it from a representation.
By comparison, even though text-level causal in-
terventions are more intricate due to the discrete
nature of text, we perform them on the text itself,
by following linguistic rules for optional con-
stituents to preserve the semantics and the fluency
of the text. Thorne and Vlachos (2021) perform
re-writing of claims by masking and then cor-
recting separate words. They thus generate claims
supported by the evidence, particularly for claims
not supported before the factual correction. In
a similar vein, Wright et al. (2022) decompose
long, scientific claims into shorter, atomic claims.
They then generate negative instances for those
by masking single words in claims and replacing
them with antonyms retrieved from a scientific
knowledge base. In contrast, we perform omis-
sions of evidence information at the sentence and
constituent levels and for the new task of Evidence
Sufficiency Prediction.

Contrastive Learning (CL) and Counterfac-
tual Data Augmentation (CAD). Most existing
work of CL in NLP employs contrastive self-
learning for model pre-training (Rethmeier and
Augenstein, 2021). Contrary to this, Rethmeier
and Augenstein (2022) propose for CL to be per-
formed jointly with the supervised objective. We
follow the latter to improve the performance of
FC models in detecting when important infor-
mation is missing from the evidence, by using
the original evidence texts paired with evidence
texts with omitted information as contrastive
data points. We perform contrastive self-training

jointly with the supervised objective, as we use
the contrastive loss as an unsupervised training
for Evidence Sufficiency Prediction. In contrast,
using it for pre-training followed by supervised
training could lead to the models forgetting the
information learned during pre-training, which is
needed to improve the performance on Sufficient-
Facts. An important factor for CL is the augmen-
tation of negative and positive instances, which
can be challenging due to the discrete nature of
text. Related work explores augmentation through
back-translation (Sennrich et al., 2016), masked
word substitution with an LM (Wu et al., 2019),
graph neighborhood sampling (Ostendorff et al.,
2022), mix-up (Chen et al., 2020), or a combina-
tion thereof (Qu et al., 2021). In a similar vein,
automated approaches for CAD in NLP include
paraphrasing (Iyyer et al., 2018) and controlled
(Madaan et al., 2021) text generation, which do
not necessarily change the target label of an in-
stance. CAD is found to improve model robust-
ness to data artifacts (Kaushik et al., 2020; Teney
et al., 2020) and to perform better out of domain
(Samory et al., 2021). In contrast, we use evi-
dence omission combined with tri-training for
contrastive negative evidence mining (§5).

Knowledge-Base Fact Checking. A relevant
line of work conducts FC against KBs by finding
fact triple chains that are (in)consistent with the
claim (Kim and Choi, 2021). Discovering such
missing triples could also be used to detect insuf-
ficient evidence information. As KBs can contain
an incomplete set of fact triples, related work
completes KBs from unstructured textual data on
the Web (Distiawan et al., 2019) or with graph
embedding techniques (Kim et al., 2018). This
work uses machine learning models that use tex-
tual evidence as input instead of performing an
intermediate step of completing a knowledge base
with needed fact triples.

3 Datasets

We employ three fact checking datasets (see
Table 1) and use the gold evidence documents,
that is, we do not perform document or sentence
retrieval (apart from for the ablation experiment
in Section 6.4). Thus, we avoid potential en-
forced biases for the veracity prediction models
if they had to learn to predict the correct sup-
port of the evidence for the claim given wrong
evidence sentences. Hence, each of the three fact
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Dataset/Size Example

FEVER
145,449 train
999,999 dev
999,999 test

Label: REFUTES (∈ {SUPPORTS, REFUTES, NOT ENOUGH INFO})
Claim: Sindh borders Indian states and is in India.
Evidence: [Sindh] Sindh is home to a large portion of Pakistan’s industrial sector and contains
two of Pakistan’s commercial seaports – Port Bin Qasim and the Karachi Port.

Vitamin C
370,653 train
63,054 dev
55,197 test

Label: SUPPORTS (∈ {SUPPORTS, REFUTES, NOT ENOUGH INFO})
Claim: Westlife sold more than 1 m. video albums and made over 23.5 m. sales in the UK.
Evidence: [Westlife] According to the British Phonographic Industry (BPI), Westlife has been
certified for 13 m. albums, 1.3 m. video albums, and 9.8 m. singles, with a total of more than
24 m. combined sales in the UK.

HoVer
18,171 train
1818 dev
4,000 test

Label: NOT SUPPORTED (∈ {SUPPORTS, NOT SUPPORTS=(REFUTES+NOT ENOUGH INFO)}
Claim: Reason Is Treason is the second single release from a British rock band that are not
from England. The band known for the early 90’s album Novelty are not from England either.
Evidence: [Kasabian] Kasabian are an English rock band formed in Leicester in 1997. [Jawbox]
Jawbox was an American alternative rock band from Washington, D.C., United States. [Reason
Is Treason] ‘‘Reason Is Treason’’ is the second single release from British rock band Kasabian.
[Novelty (album)] Novelty is an album from the early 90’s by Jawbox.

Table 1: Sizes and examples instances for the studied fact checking datasets (see §3).

checking datasets D = {(xi, yi)|xi = (ci, ei), i ∈
[1, |D|]} consists of instances with input xi and
veracity labels yi. The input comprises a claim
ci and gold evidence ei. The veracity label yi ∈
{0=SUPPORTS, 1=REFUTES, 2=NEI} for FEVER
and VitamiC, and yi ∈ {0=SUPPORTING, 1=
NOT SUPPORTING} for HoVer.

FEVER (Thorne et al., 2018) contains claim-
evidence pairs, where the evidence consists of
sentences from Wikipedia pages, and the claims
are written manually based on the content of those
Wikipedia pages. Note that 87% of the claims
have evidence consisting of one sentence. The
dataset has a high ratio of token overlap between
the claim and the evidence, where the overlap
is naturally higher for claims that are support-
ing (69%), than refuting (59%) and NEI (54%)
claims. The high overlap ratio can create a bias
for learning from token overlap, which can further
prevent generalisation, as also noted in related
work (Schuster et al., 2021).

Vitamin C (Schuster et al., 2021) is a col-
lection of sentences from Wikipedia containing
factual edits. For each factual edit, annotators
construct a claim that is SUPPORTED and one
that is REFUTED with the old and the new version
of the evidence. When the factual edit intro-
duces/removes facts from the evidence, claims
are constructed so that there is NOT ENOUGH
INFORMATION (NEI) to support them. Due to
its contrastive nature and reduced claim-evidence
overlap, the authors demonstrate that models

trained on the dataset gain a 10% accuracy im-
provement on adversarial fact verification.

HoVer (Jiang et al., 2020) is designed to col-
lect claims that need several hops over Wikipedia
evidence sentences to verify a claim. The evidence
contains between two and four sentences from
different Wikipedia articles. As the test dataset
is blind and we use the gold evidence, we use
the development set for testing purposes and
randomly select 10% of the training dataset for
development.

4 Evidence Omission

To study what types of information the evidence
models consider important, we propose to conduct
causal interventions for the evidence by omitting
information from it. We hypothesize that remov-
ing information important for the model to predict
the support of evidence for a claim will cause
a change in its original prediction, leading to the
model indicating that there is missing information.
If the removed information is not important for
the model though, removing it would not change
the model’s prediction. We then ask whether the
information that is important for a model when
predicting the support of the evidence text for a
claim, is actually important as judged by human
annotators. The human annotations allow for a
systematic study of common model errors, that
is, when the models still predict the correct label
even if important evidence information has been
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Type L Claim Evidence

S R The Endless River is an album by a
band formed in 1967.

[[The Endless River]] The Endless River is a studio
album by Pink Floyd. [[Pink Floyd]] Pink Floyd were
founded in 1965 by students . . .

PP R Uranium-235 was discovered by
Arthur Jeffrey Dempster in 2005.

[[Uranium-235]] It was discovered in 1935 by Arthur
Jeffrey Dempster.

NOUNM S Vedam is a drama film. [[Vedam (film)]] Vedam is a 2010 Indian drama film
written and directed by Radhakrishna Jagarlamudi . . .

ADJM S Christa McAuliffe taught social
studies.

[[Christa McAuliffe]] She took a teaching position as a
social studies teacher at Concord High School. . .

ADVM S Richard Rutowski heavily revised
the screenplay for Natural Born
Killers.

[[Natural Born Killers]] The film is based on an original
screenplay that was heavily revised by writer David
Veloz, associate producer Richard Rutowski . . .

NUMM S Being sentenced to federal prison is
something that happened to Efraim
Diveroli.

[[Efraim Diveroli]] Diveroli was sentenced to four years
in federal prison .

DATEM R Colombiana was released 1st Octo-
ber 2001.

[[Colombiana]] Colombiana is a French action film from
1st October 2011 . . .

SBAR R North Vietnam existed from 1945
to 1978.

[[North Vietnam]] North Vietnam, was a state in
Southeast Asia which existed from 1945 to 1976.

Table 2: Examples from the FEVER dataset of constituent types (§4.1) removed from the evidence for
a claim with Label (L) one of SUPPORTS (S) or REFUTES (R).

removed and when they consider the informa-
tion to be insufficient if unrelated evidence has
been removed.

4.1 Evidence Omission Generation

We omit information from the evidence text at the
sentence and constituent level. Particularly, we
aim to remove information from the evidence such
that it does not change its stance towards the claim
from SUPPORTS to REFUTES, or vice-versa,
while preserving the grammatical correctness and
fluency of the evidence. Following studies of lin-
guistic sentence structure (Burton-Roberts, 2016;
Börjars and Burridge, 2019), illustrated with
examples in Table 2, we collect prepositional
phrases, modifiers, and other optional sentence
constructs—that is, those constructs that can be
removed from the sentence without impairing its
grammatical correctness, and where the remain-
ing text is semantically identical to the original
one, except for the additional information from
the removed construct (Garvin, 1958). We use the
following optional sentence constructs:

Sentences (S). In FEVER and HoVer, the ev-
idence can consist of more than one sentence.
The separate sentences are supposed to contain
information important for the fact check, which
we further verify with manual annotations as

explained in Section 4.2. VitaminC consists of
single sentences only, and we thus only per-
form constituent-level omissions for it, as de-
scribed next.

Prepositional Phrases (PP) are optional
phrases that are not part of a Verb Phrase (VP),
but are child nodes of the root sentence in the
constituent tree (Brown et al., 1991). These usu-
ally function as adverbs of place and consist of
more than one word.

Noun Modifiers (NOUNM) are optional ele-
ments of a phrase or clause structure (Huddleston
and Pullum, 2005). NOUNM can be a single or a
group of nouns that modify another noun.

Adjective Modifiers (ADJM) are a single or a
group of adjectives that modify a noun.

Adverb Modifiers (ADVM) are a single or a
group of adverbs that modify verbs, adjectives,
or other adverbs and typically express manner,
place, time, and so forth.

Number Modifiers (NUMM) are a single or a
group of words denoting cardinality that quantify
a noun phrase.

Date Modifiers (DATEM) are a single or a
group of words that express temporal reference.
To preserve fluency, from a date expression con-
sisting of a day, a month, and a year, we omit
either the date, the date and the month, or the year.
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Subordinate Clauses (SBAR) are introduced
by a subordinating conjunction. Subordinate
clauses depend on the main clause and comple-
ment its meaning. SBARs can be adverb clauses,
adjective clauses, and noun clauses.

For the omission process, we use two pre-
trained models with high performance from the
Spacy library2: a part-of-speech (PoS) tagger with
an accuracy of 97.2 and a constituency parser
(Kitaev and Klein, 2018) with an F1-score of 96.3
on the revised WSJ test set (Bies et al., 2015).
During the omission process, we use the PoS tags
to find nouns, adjectives, adverbs, and numbers
and use the constituency tags to select only the
modifiers. Thus, we find the NOUNM, ADJM,
ADVM, and NUMM constructs. We collect SBAR
and PP constructs by finding their corresponding
tags in the constituent dependency tree. Finally, for
the date, we use two regular expressions that are
common date templates used in Wikipedia articles
(<month name, date, year> or <date, month name,
year>) and remove parts from the templates that
preserve the coherency (<date>, <year>, <month
name and date>, or <year and date>).

Overall, in this work, we perform a study of
insufficient evidence for FC by removing infor-
mation from the gold evidence. As explained in
Section 2, we perform causal interventions on
the evidence by omission to study when infor-
mation is (in)sufficient for a model’s prediction.
Replacement of words is another operation that
can be applied to the evidence. We can, for exam-
ple, replace different types of named entities with
pronouns, and different parts of the speech with
demonstrative pronouns to induce insufficient in-
formation. However, the replacement operation
does not allow for direct causal conclusions as
any change of a word with another could po-
tentially lead to confounding factors of the newly
introduced word and the model’s predictions. Note
that there are some pronouns used in the evidence
when they refer to the person/object of the ar-
ticle. We do not treat such cases as insufficient
information as the title of the page with the name
of the person/object is always prepended to the
sentence, which allows for coreference resolution.
Finally, another possible operation is the insertion
of new information, which would lead to insuffi-
cient evidence when performed on the claim. The
latter, however, requires the insertion of text that

2https://spacy.io/.

preserves the grammatical correctness and mean-
ing of the claim, which is hard to achieve in an
automated way.

4.2 Manual Annotations

Models. We train three Transformer-based FC
models: BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and ALBERT (Lan et al., 2020).
BERT is pre-trained with masked language mod-
eling and next sentence prediction objectives on
the Toronto Book Corpus (Kiros et al., 2015)
and the English Wikipedia.3 It is also the most
widely used pre-trained Transformer model.4

RoBERTa improves upon BERT by optimizing
key hyper-parameters, and is trained without the
next sentence prediction objective. RoBERTa is
one of the top-performing models on the GLUE
(Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) benchmarks composed of various
NLP tasks. The latter also holds for ALBERT,
another Transformer architecture that improves
upon BERT. It does so with parameter-reduction
techniques, which lower the memory consump-
tion of the model. ALBERT also employs a
self-supervised pre-training loss for inter-sentence
coherence. The latter is found to be beneficial for
tasks with multiple sentences, and Schuster et al.
(2021) report improved FC robustness with it on
VitaminC compared to BERT.

We train each model on the respective training
splits of each dataset with the claim c and the gold
evidence e as input to predict the gold veracity
label y: f(c, x) = ŷ. We optimize the supervised
cross-entropy loss:

LS = − 1

m

m∑

j=1

yj · log(ŷj) (1)

where m is the label space size.
We then use an ensemble of these three dif-

ferent Transformer-based FC models to collect
predictions for our new task Evidence Sufficiency
Prediction, as we want to find instances with omit-
ted information that are more broadly applicable
(e.g., those on which the models agree). The (dis)-
agreements between the models also allow us to
study the differences between them in detecting
omitted information. Transformer Language Mod-
els are pre-trained on large datasets, the veracity

3https://en.wikipedia.org.
4https://huggingface.co/models.
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of which can change over time (Schuster et al.,
2021). This makes it important that the FC models
take into account the facts in the given evidence.
When provided with differences and similarities
in the three FC models’ predictions, future work
could then also investigate the degree to which
different Transformer-based FC models encode
FC-relevant world knowledge they default to in
their predictions.

Annotation Task. Next, we collect evidence
with removed information as described above.
We then use the models to find which of the
omitted evidence they consider important, result-
ing in a prediction change to NEI. We consider
instances from the original test splits of each of the
datasets, where all models predicted the veracity
correctly before the evidence omission was per-
formed, as these are the cases where we can
observe whether evidence omission causes the
veracity prediction to change to NEI. We col-
lect instances with omitted evidence information
where the models: (1) agree that the evidence is
still enough vs. (2) insufficient; and where they (3)
disagree in their prediction. We collect a total of
400 instances at the sentence, and 600 instances
at the constituent, level from the test splits of
the corresponding datasets, distributed equally
among the above three groups.

We employ annotators on Amazon Mechan-
ical Turk.5 We first train potential annotators,
presenting them with annotation guidelines and
illustrative examples. We then select annotators
using a qualification test with nine test annota-
tions for our task. Each annotation had the cost
of $0.10, and annotators were paid $10 on aver-
age per hour. The annotation task is to determine
whether the evidence is still sufficient for predict-
ing the label without the omitted information. If
the remaining evidence is still sufficient, we ask
them for the reason—whether this is because the
removed evidence is repeated in the remaining
text or because the removed evidence is not rel-
evant to the veracity of the claim. Following the
annotation guidelines for FEVER and HoVer, we
ask the annotators not to use any world knowledge
or knowledge they might have about the claim.
For more details on the annotation task and the
guidelines, we release the dataset with a detailed
README file.

5https://www.mturk.com/.

The final dataset SufficientFacts = {(x′
i, y

′
i)|

x′
i = (ci, e

′
i), i ∈ [1, |SufficientFacts|]} con-

sists of test instances x′
i with labels y′i. All of

the instances in SufficientFacts are a subset of
the instances in the test datasets of FEVER, Vita-
minC, and HoVer with the following changes.
The input x′

i comprises the original claim ci and
the evidence with omitted information e′i. The to-
kens of e′i are a subset of the tokens of the origi-
nal gold evidence ei of the instance. To re-iterate,
the label of the originally selected instances is
either SUPPORTS or REFUTES, that is, they have
sufficient gold evidence information, where after
omitting information from the evidence, the new
label y′i becomes either NEI if the majority of
the annotators selected that important information
was removed, and otherwise remains the original
label – SUPPORTS and REFUTES for FEVER
and VitamiC, or SUPPORTING for HoVer.

The resulting inter-annotator agreement (IAA)
for SufficientFacts is 0.81 Fleiss’ κ from three
annotators. Due to the novelty of the introduced
task of Evidence Sufficiency Prediction, we do
not have direct points of comparison for IAA.
However, we point as a reference the IAA reported
for the related task of fact checking for the HoVer
dataset (0.63 Fleiss’ κ), and for the FEVER dataset
(0.68 Fleiss’ κ), where, for both datasets, the
annotators were thoroughly trained and highly
paid. The biggest challenges for our annotators,
judging by their errors during the qualification
test, were not to use common knowledge and
assumptions in their annotations, and the general
complexity of the task.

4.3 SufficientFacts Analysis

Overall Agreement with Annotators. The statis-
tics of the resulting dataset, SufficientFacts, are
presented in Table 3. We find that all three models
agree that the remaining evidence is still sufficient
(EI Agree) even when it has become insufficient
after omitting information needed for verifying
the claim (NEI) in 430 out of 1000 instances. We
assume that these failures of all three models to
detect missing information for FC point to the
models making predictions based only on patterns
observed in claims, or to the models defaulting
to world knowledge encoded in the pre-trained
Transformer models. We further find that when
the models disagree about whether the remain-
ing information is still sufficient (Disagree), they
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Table 3: Statistics of SufficientFacts presenting
the predictions of the models in the ensemble
(Model Pred: Agree Enough Information (EI
Agree), Agree Not Enough Information (NEI
Agree), Disagree, and Total) vs human annota-
tions of the same (EI – Irrelevant (EI I), EI –
Repeated (EI R), NEI). We present sentence
(SENT) and constituent omission (CONST) da-
taset splits separately. We embolden/underline
results of the datasets for predictions where the
three models agree (NEI Agree, EI Agree) and
have the highest/lowest agreement with human
annotations about EI I, EI R, and NEI predic-
tions. We use light blue/dark blue to denote
where lower/higher results are better.

disagree mostly about instances where the omit-
ted evidence information is needed for veracity
prediction (NEI)—in 823 out of 1000 instances.
By contrast, when the models agree that the re-
maining evidence is insufficient, they are correct
in 972 out of 1000 of the instances.

Separate Dataset Agreement with Annota-
tors. Looking at the separate datasets, it is the
hardest for the models to identify missing evidence
information needed for the fact check (EI Agree
vs. NEI) for HoVer, particularly with sentence
omissions, and the easiest for the VitaminC dataset
with constituent omissions. We hypothesize that

Figure 2: SufficientFacts: fine-grained analysis by
type of removed evidence inftype 4.1) vs. proportion
of correct predictions of NEI/EI instances. The pro-
portion is computed for the separate models: BERT,
RoBERTa, ALBERT, and for all three models agree-
ing on the correct NEI/EI label (All). The total number
of NEI/EI instances of each type is provided under
each of the types of removed evidence information. A
higher proportion of correct predictions is better.

the latter is due to the HoVer dataset having more
complex claims and requiring cross-sentence rea-
soning, whereas VitaminC contains contrastive
instances which, during training, guide the mod-
els to identify the parts of the evidence needed
for FC. Overall, the models fail to detect miss-
ing information more from sentences rather than
from constituents. We hypothesize that this effect
can be observed partly because models struggle
to conduct multi-hop reasoning over them. An-
other possible reason for that is that the models
could be better at verifying the type of information
removed from a sentence constituent rather than
from a sentence.

Performance by Omitted Evidence Type and
Model. Figure 2 provides a fine-grained analysis
of the performance of the models for different
types of omitted constituents. We observe that
it is the hardest to detect when the evidence
is missing information for the prediction (Cor-
rectly Predicted NEI) that was removed from
adverbial modifiers (ADVM), followed by subor-
dinate clauses (SBAR). By contrast, it is easiest
to detect missing information when it is a date
modifier (DATEM), followed by number mod-
ifiers (NUMM). BERT has the lowest rate of
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Figure 3: Example of augmented contrastive instances
for the original (anchor) instance. Red designates re-
moved evidence information, where the models agree
that the remaining evidence is not sufficient, produc-
ing a negative contrastive instance. Green designates
an added distractor sentence, producing a positive in-
stance. The distractor sentence, selected to have high
overlap with the claim but with insufficient infor-
mation, is used as another negative instance.

correctly detecting insufficient evidence from the
three models, followed by RoBERTa, and AL-
BERT performs best. We conjecture that this is
due to RoBERTa being an optimization of BERT,
and due to ALBERT including pre-training with
an inter-sentence coherence objective, which has
been shown to make the model more robust for
factual verification (Schuster et al., 2021). Even
though ALBERT contains fewer parameters than
BERT, it still detects better when the evidence is
insufficient. Finally, we see a natural trade-off be-
tween correctly detecting sufficient and correctly
detecting insufficient information. In particular,
some models such as ALBERT have a higher
number of correct predictions on instances with-
out enough information (Figure 2, left). However,
on instances with sufficient evidence informa-
tion (Figure 2, right), ALBERT has the lowest
number of correct predictions. In contrast, BERT
has the worst performance on the NEI instances,
but the best performance on EI instances.

5 Evidence Omission Detection

To improve the performance of models in recog-
nizing when the evidence is not enough for ver-
ifying a claim, we experiment with CAD (§5.2)
and a CL loss (§5.1). Both methods use contras-
tive data augmented with the proposed evidence
omission method (§4.1) in combination with tri-
training, as illustrated in Figure 3. We omit in-
formation from the original (anchor) evidence to

collect potential negative instances with missing
important evidence information compared to the
original evidence (Figure 3, right). From the re-
sulting candidates, we select as negative only
those predicted as having insufficient information
by the other two supervised models from the en-
semble (§4) (e.g., RoBERTa and ALBERT predict
NEI when we are training a model with a BERT
Transformer architecture). We also collect posi-
tive instances that still have sufficient evidence
information after applying a data augmentation
operation. For each instance xi, we find one dis-
tractor sentence from the document of the gold
evidence that is the most similar to the claim by
word overlap. We append the distractor sentence
to the original evidence, which serves as a positive
instance (Figure 3, left). Finally, we include only
the distractor sentence as a negative instance as
it does not have enough evidence contrasted both
with the positive and the anchor instances. We
conjecture that the latter would serve as a training
signal for avoiding the bias for overlap between
the claim and the evidence.

5.1 Contrastive Learning

We study self-supervised learning to train FC
models that recognise when the evidence is not
enough for verifying a claim. In particular, we
propose to use self-supervised CL jointly with
the supervised learning of the model to predict
the support of the evidence for a claim. Given
an anchor instance xi, a positive instance x+

i ,
and K− negative instances x−

i,k, k ∈ [1, K−], the
objective of CL is to make the anchor and the pos-
itive instance closer in the representation space,
and the anchor and the negative instances further
apart. The anchor, positive, and negative instances
are collected and/or augmented from the training
splits of the corresponding datasets as described
above. Each model, g(x) = l(h(x)) = l(e) = ŷ,
uses 12 encoding layers to encode an input in-
stance h(x) = e and uses the encoding e of
the last encoding layer to predict the veracity
label with a linear layer: l(e) = ŷ. We encode
the anchor, the positive, and the negative in
stances with the corresponding model g, resulting
in the anchor ei, the positive e+i , and the negative
e−i,j representations, and minimise the following
CL loss:

LCL=log σ(s(ei, e
+
i ;τ)+

K−∑

k=1

logσ(1−s(ei, e
−
i,k;τ))

(2)

754

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00486/2037141/tacl_a_00486.pdf by guest on 07 Septem
ber 2023



where s is a similarity function between the
representation of the two instances—cosine sim-
ilarity in our case, τ is a temperature parameter
subtracted from the cosine similarity (Ma and
Collins, 2018), and K− is the number of nega-
tives. Note that the CL loss is the same as Noise
Contrastive Estimation (Ma and Collins, 2018)
expressed as a binary objective loss. The represen-
tation of each instance is obtained by mean pool-
ing of the word representations of the instance in
the last layer of the model M. We include the con-
trastive self-learning loss for those instances that
are not annotated as NEI, as we cannot construct
contrastive negative evidence with insufficient
information for the instances that already do not
have enough information for verification. Finally,
the CL loss is optimised jointly with the super-
vised loss:

LS = − 1

m

m∑

j=1

yj · log(ŷj) (3)

L = LS + LCL (4)

where ŷi is the label prediction of model M,
m the label space size, yi is the gold label for
instance xi, yi ∈ {0=SUPPORTS, 1=REFUTES,
2=NEI} for FEVER and VitaminC, and yi ∈
{0=SUPPORTING, 1=NOT SUPPORTING} for
HoVer.

5.2 Counterfactual Data Augmentation

We also experiment with counterfactually aug-
mented evidence, using the negative and positive
instances constructed as described above (§5 and
Figure 3). As the models have high accuracy
when they agree that a piece of evidence with
omitted information is not sufficient (see agree-
ment with human annotations in Table 3), we
conjecture that the counterfactually augmented
instances would serve as a good training signal
for detecting (in)sufficient evidence information
without incurring annotation costs for training
data. The counterfactually augmented data is thus
simply combined with the training instances of
each dataset. In particular, we include in the
training set the claim and the original evidence
(anchor) with the corresponding gold label yi. We
include the positive instance—original evidence
with distractor sentence appended to it, with the
original gold label yi. The negative instances,

namely, those with insufficient evidence informa-
tion, are included with a gold label yi = NEI
for FEVER and VitaminC, and yi = NOT SUP-
PORTING for HoVer. Each model, h(c, e) = ŷ,
receives as input the original claim c and the aug-
mented or the original evidence e and predicts
the veracity label ŷ. We optimize a supervised
cross-entropy loss as per Equation 3.

5.3 Baseline Ensemble

We include a simple ensemble, consisting of the
three models: BERT, RoBERTa, and ALBERT.
Each ensemble contains only supervised models
(§4.2), models trained with CAD (§5.2), or models
trained with CL loss (§5.1). We employ majority
voting, where the final prediction is the most
common class among the predictions of the three
models on an instance, defaulting to the class
with the highest predicted probability if there is
no most common class.

5.4 Experimental Details

All models are trained on the respective training
splits of each dataset. We select the checkpoint
with the highest macro F1-score on the dev sets
and provide results on the test sets. We note that for
the newly introduced task Evidence Sufficiency
Prediction, we have an annotated test dataset Suf-
ficientFacts, but no training dataset. The training
is performed on the original training splits of the
corresponding datasets, which have a different
label distribution from the introduced diagnostic
test set. Hence, it is possible that some of the in-
stances in SufficientFacts are out of the original
training distribution, which would make this diag-
nostic dataset of rather adversarial nature.

We select the learning rate = 1e−5 and the
temperature parameters τ = 1.5 by grid search
over the performance on the dev sets from [1e−
5, 2e−5, 3e−5] and [0, 0.5, 1, 1.5, 2], respectively.
We use the batch sizes for corresponding models
from prior work: 8 for HoVeR, 32 for FEVER,
and 16 for VitaminC.

6 Results and Discussion

6.1 Supervised Model Performance

We start by discussing the performance of models
trained on the supervised splits of the correspond-
ing datasets to predict labels for claims based
on the newly created dataset SufficientFacts for
Evidence Sufficiency Prediction, presented in
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Dataset Model Veracity Pred. / Orig.Test Evidence Sufficiency Pred. / Suff.Facts
BERT RoBERTa ALBERT Ens. BERT RoBERTa ALBERT Ens.

FEVER
Supervised 87.16 88.69 86.67 88.81 59.51 59.10 63.00 61.36

+ CL 87.62 88.81 86.62 89.02 65.79 67.98 70.83 69.90
+ CAD 87.86 89.23 87.31 89.14 67.18 69.58 68.56 69.25

HoVer
Supervised 80.75 83.37 76.88 82.73 58.15 64.81 66.28 65.88

+ CL 81.82 83.38 77.62 83.08 74.91 75.41 72.83 78.05
+ CAD 81.87 83.65 79.44 83.65 74.98 77.14 76.12 79.07

VitaminC
Supervised 82.26 84.98 83.38 86.01 58.51 69.07 66.57 66.76

+ CL 83.00 85.54 83.48 86.22 62.34 72.18 68.13 70.42
+ CAD 83.56 85.65 83.82 86.14 72.93 75.79 75.13 78.60

Table 4: Macro F1-score test performance of models and an ensemble (Ens.) (§5.3) trained on the
supervised training splits of each dataset (Supervised), and in addition with the contrastive objective
(+CL) (§5.1) and the counterfactually augmented data (+CAD) (§5.2). Results are the average of
three different seed runs. The highest results for a test dataset and a model are in bold, and the overall
highest result of a model for a test dataset are additionally underlined.

Table 4. Recall that the instances in Sufficient-
Facts had correct predictions from all models be-
fore the evidence omission was performed (§4.2),
that is, the performance of the models on the in-
stances in SufficientFacts had 100 F1-score before
the evidence omission. Hence, the omission of
information from the evidence results in a perfor-
mance decrease from 100 to 58 F1-score (BERT
model for the HoVer dataset)—a decrease of up
to 42 F1-score. Out of the three FC models, BERT
has the lowest performance on SufficientFacts,
and ALBERT has the highest. The latter corrob-
orates that ALBERT is a more robust model for
fact verification, as explained in more detail in
Section 4.2.

Further, we observe the worst performance on
SufficientFacts for the HoVer dataset—down to
58 F1-score—followed by FEVER, and with the
best performance on VitaminC. We suggest that
the contrastive nature of the instances in VitaminC
that contain factual edits of the evidence, changing
the support of the evidence for the claim, as de-
scribed in Section 3, can indeed provide a bet-
ter learning signal for the models about which
parts of the evidence are important for verifying
the claim.

6.2 CL and Augmented Model Performance

Including a CL loss or CAD results in improve-
ments for all models and datasets on Sufficient-
Facts by up to 17.2 F1-score. Note that the

proposed technique does not incur additional
annotation costs for training data for Evidence
Sufficiency Prediction. This corroborates that
our proposed evidence omission approach com-
bined with tri-training improves the recognition of
(in)sufficient evidence. This, in turn, improves the
performance on the original test sets by up to 3.6
F1-score. Comparing the CL loss with counterfac-
tually augmented data, we see that CAD improves
the model performance in more cases on Suffi-
cientFacts, except for ALBERT for the FEVER
dataset. This could be because the augmented data
uses raw labels obtained with tri-learning, while
the CL loss only drives apart the negative instances
from the anchor in the representation space.

Finally, we compare the performance of CAD
and CL loss that rely on the agreement predictions
of the supervised models with the simple major-
ity voting ensembles (§5.3). Single models trained
with CAD and CL loss still outperform the ensem-
bles of the supervised models. A majority voting
classifier from the models trained with CAD and
CL loss improves the performance on the original
and SufficientFacts sets even further.

6.3 Comparison to Related Work

We further compare the performance of our mod-
els to existing systems on the used datasets (see
Table 5). Note that we are particularly interested
in veracity prediction to study what evidence mod-
els consider as sufficient for factuality prediction.
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Dataset Model F1

FEVER

DA (Thorne et al., 2018) 83.84
RoBERTa Supervised 88.69

+ CL 88.68
+ Augmented 89.23

HoVer

BERT (Jiang et al., 2020) 81.20
BERT Supervised 80.75

+ CL 81.82
+ Augmented 81.87

VitaminC

ALBERT (Schuster et al., 2021) 82.76
ALBERT Supervised 83.38

+ CL 83.48
+ Augmented 83.82

Table 5: Macro F1-score on the original test
set compared to baseline (FEVER) and SOTA
(HoVer, VitaminC) oracle results. Highest results
for a dataset are in bold.

Thus, in the base setting, we do not conduct ev-
idence retrieval, as typically performed for the
HoVer and FEVER datasets, but train models us-
ing gold evidence (oracle). For FEVER, existing
systems report results on both tasks, hence we can
only compare to the veracity prediction results
with oracle evidence available in the FEVER
dataset paper with a Decomposable Attention
(DA) model (Parikh et al., 2016). For HoVer
and VitaminC, the presented results are also from
the dataset papers of models trained with or-
acle evidence. As there are no other reported
results on these datasets, they also represent the
state-of-the-art for these two datasets. To compare
to them, we pick those of our models with the
same Transformer architecture as used in the re-
spective dataset papers, and the best-performing
model architecture for FEVER. Note that we use
the same training setting as in related work (§5.4)
for all models and datasets. We find that our su-
pervised models are close in performance to prior
reported results. Furthermore, including counter-
factual data augmentation and contrastive learning
leads to improvements over prior results for all
three datasets, by up to 2.6 F1-score.

6.4 Incorrect Evidence

So far, we studied model performance on in-
stances with omitted information from the gold
evidence. We now probe how well the models

Model BERT RoBERTa ALBERT Ens.

FEVER
Supervised 82.18 81.88 85.03 84.24

+ CL 87.63 93.53 95.18 91.60
+ CAD 89.50 94.73 90.89 90.95

HoVer
Supervised 97.27 78.64 97.65 88.57

+ CL 99.58 99.71 99.45 99.98
+ CAD 99.65 98.52 99.30 99.97

VitaminC
Supervised 69.99 80.36 80.69 78.33

+ CL 75.77 79.32 78.95 78.90
+ CAD 80.71 82.69 75.69 80.78

Table 6: Accuracy of models trained on the super-
vised training splits of each dataset (Supervised),
the contrastive objective in addition to training
with Supervised (+CL), and the counterfactu-
ally augmented data (+CAD). The models are
evaluated on the task of Evidence Sufficiency
Prediction on datasets with extracted unrelated
evidence information (§6.4).

detect missing information given retrieved incor-
rect evidence, which does not contain sufficient
information. The latter is possible in real-world
scenarios. The evidence we feed to the fact check-
ing model depends on the preceding evidence
retrieval step, which can retrieve gold evidence
with varying performance. While the fact check-
ing model is possibly trained on gold evidence
to avoid learning spurious correlations, we want
to evaluate its capability to recognize when the
retrieval system has discovered incorrect evidence
as well. Note that current FC benchmarks do not
consider the prediction of a veracity model if the
correct evidence is not retrieved. However, in re-
alistic situations, we do not know whether the
evidence is correct, and FC models would still
provide a veracity for a claim. Hence, we further
study the performance of models on incorrect evi-
dence. For each instance in the original test splits,
we retrieve incorrect evidence by selecting the
closest evidence of another claim in the dataset by
word overlap between the claim and the evidence
candidates. We then use the retrieved instead of
the original evidence. This results in a test set of
claims with incorrect evidence of the same size as
the original test split.

Table 6 reports results on the test datasets incor-
rect evidence. As all instances in the dataset have
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the new gold label of NEI, we report accuracy,
which corresponds to the ratio of the instances
with a predicted NEI label. We find that the per-
formance of the models is improved by as much as
27 accuracy points after training with CAD or CL,
which is another indication for the effectiveness of
the proposed training methods. We also find that
CAD again brings larger performance gains than
CL, except for HoVer, where the two approaches
achieve very similar accuracy scores.

The extended evaluation of incorrect evidence is
an important complement to the study of missing
evidence. However, the two are not necessarily
directly comparable. First, in Table 4, the two test
datasets—the Original Test and SufficientFacts—
both have instances with and without sufficient
evidence. The extended study on incorrect evi-
dence in this section only has instances that do
not have sufficient evidence. This also results in
our use of different measures to report results:
accuracy in Table 6, which is the percentage of
detected incorrectly retrieved evidence, and macro
F1-score in Table 4, which combines the perfor-
mance on up to three classes in a balanced way.

However, it is worth addressing the high per-
formance of the models on the irrelevant evidence
dataset. We employ evidence that has word
overlap with the claim, but is not necessarily
semantically similar to the claim. If the models
were to only rely on features of the claim or
on surface word overlap between the claim and
the evidence, the models would have low perfor-
mance on the irrelevant evidence dataset. We train
models to avoid such spurious correlations with
CAD and CL loss, which make discovering miss-
ing evidence information in irrelevant evidence
easy, leading to the observed high performance
in Table 6.

6.5 Error Analysis

Lastly, we conduct an error analysis on the newly
introduced SufficientFacts to understand whether
known biases in models trained on FC datasets
(§2) also affect predictions on SufficientFacts.

Claim-Only Prediction. Schuster et al. (2019)
found that FC models often learn spurious cor-
relations and can predict the correct label even
when no evidence is provided, as they learn only
features of the claim. We investigate whether it is
also among the reasons for incorrect predictions
of the models on the SufficientFacts dataset. We

1. Claim: Unison (Celine Dion album) was originally released by
Atlantic Records.
Evidence: [Unison (Celine Dion album)] The album was originally
released on 2 April 1990.
Dataset: FEVER, Model: BERT Gold: NEI, Sup.: SUPPORTS,
+CAD: NEI, +CL: NEI

2. Claim: Jean-Jacques Dessalines was born on October 2nd, 2017.
Evidence: [Jean-Jacques Dessalines] He defeated a French army at
the Battle of Vertiéres.
Dataset: FEVER, Model: RoBERTa, Gold: NEI, Sup.: SUPPORTS,
+CAD: NEI, +CL: SUPPORTS

3. Claim: The Times is a website. Evidence: N/A
Dataset: FEVER, Model: RoBERTa, Gold: NEI, Sup.:REFUTES,
+CAD: REFUTES, +CL: REFUTES

4. Claim: The Bragg–Gray cavity theory was developed by Louis
Harold Gray, William Lawrence Bragg, and a man knighted in the
year 1920.
Evidence: [William Henry Bragg] He was knighted in 1920.
Dataset: HoVer, Model: RoBERTa, Gold: NEI, supervised:
SUPPORTS, +CAD: SUPPORTS, +CL: SUPPORTS

Table 7: Example model predictions before (Sup.)
and after including CAD/CL loss training.

compute the percentage of instances in Sufficient-
Facts where the models do not predict when
provided with evidence. We find that for the
HoVer dataset, the supervised BERT model does
not predict an NEI label for 36% of the instances
in SufficientFacts, whereas the respective number
for RoBERTa is 23% and 14% for ALBERT. This
indicates that supervised models trained on HoVer
learn claim-only features for some instances. Af-
ter training the models with CAD (§5.2) and
CL loss (§5.1), fewer than 1% of instances from
SufficientFacts are predicted as having enough
information by each of thee models when given
only the claim. This indicates that training with
CAD and CL loss decreases the claim-only bias
for the HoVer dataset. For FEVER and VitaminC,
we find a lower percentage of instances (fewer
than 4%) in the corresponding SufficientFacts
splits that the supervised models predict as having
enough information when given only the claim.
We hypothesises that this is due to the larger
amount of training data in both datasets and due to
the contrastive nature of VitaminC, which requires
the models to learn features from the evidence
as well. The percentage is again decreased af-
ter training with CAD and CL (fewer than 1%).
Finally, we find that the instances that are still
not detected as having insufficient evidence af-
ter training with CAD/CL loss are those that the
model could have gained world knowledge about
during pre-training. One example of such a claim
is given in Table 7, row 3.
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Claim-Evidence Overlap. Schuster et al.
(2021) also find that FC models are biased in
predicting the SUPPORT class when the overlap
between the claim and the evidence is high. We
conjecture that this is another possible reason that
the instances in SufficientFacts are hard for the
models to distinguish as having missing important
evidence information, as their evidence still has
a high overlap with the claim. To probe this, we
compute the average overlap between the claim
and the evidence, disregarding stop words, of in-
stances in the SufficientFacts that are predicted as
having insufficient information by the supervised
models and by the models trained with CAD and
CL loss. For FEVER and HoVer, the instances
predicted as NEI by the supervised models have
low overlap with the claim that increases after
training with CAD and CL loss (61% to 68% for
HoVer and 63% to 65% for FEVER). An exam-
ple instance where the evidence has high overlap
with the claim and is predicted as NEI only after
training with CAD and CL loss can be found in
Table 7, row 1. The latter is an indication that
training with CAD and CL loss also reduces the
overlap bias of FC models. We do not observe a
change in the overlap ratio for VitaminC, where
we assume that training with contrastive instances
already prevents learning biases, including the
overlap bias.

Spurious Patterns. Finally, we investigate
whether the models learn other spurious patterns
that could lead to low results on SufficientFacts.
We already observed that for some instances, the
supervised models predict that the evidence is not
sufficient after removing irrelevant information
(Table 3), which is one indication of learned spu-
rious patterns. Further, when removing important
information, the supervised models still predict
the same label for some instances, as they rely
on other parts of the input, which might not be
important. Table 7 shows one example where the
supervised models did not recognise that the ev-
idence is missing important information (row 1),
but after training with CAD or CL loss, it was
detected as NEI. However, there are still possible
spurious correlations that the models learn even
after training with CAD or CL loss, for example,
the example in row 4. Another such example is in
row 3, where even after training with CAD and
CL loss, the models still find the claim without
any provided evidence sufficient for predicting a

refuted claim. As this example relies on knowl-
edge of common facts, we assume that the models
rely on knowledge obtained during pre-training or
fine-tuning instead. Finally, we find that CAD can
prevent the model from learning spurious correla-
tions more than the CL loss. This leads to more
instances having the correct prediction only after
training with CAD, as in the example in row 2.

7 Conclusion

We propose a new task related to fact checking,
namely, detecting when evidence with omitted
information is (in)sufficient. To this end, we con-
ducted an in-depth empirical analysis with a newly
introduced fluency-preserving method for omit-
ting evidence information. We compared what
Transformer-based models and humans find to be
sufficient information for FC, resulting in a novel
dataset, SufficientFacts. Finally, we showed that
the proposed evidence omission method can be
used for collecting contrastive examples for CL
and CAD, which improved the performance of
the studied models on the Evidence Sufficiency
Prediction task and on veracity prediction.

The resulting models could be applied to de-
tect emergent false claims, which gain popularity
before any reputable source can refute them, as
our proposed models can indicate when the pro-
vided input is insufficient for making a decision
and whether to provide the user with the veracity
prediction. Such models could also be used for
detecting knowledge or evidence gaps that need
to be filled to refute or support popular claims.
Another possible future research direction would
be to build FC models that indicate the particular
part of the claim that they are missing supporting
evidence for. Moreover, our proposed analysis
and methods could be applied to other knowledge-
intensive tasks, such as question answering.
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