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Abstract

Fact-checking has become increasingly im-
portant due to the speed with which both
information and misinformation can spread
in the modern media ecosystem. Therefore,
researchers have been exploring how fact-
checking can be automated, using techniques
based on natural language processing, machine
learning, knowledge representation, and data-
bases to automatically predict the veracity of
claims. In this paper, we survey automated
fact-checking stemming from natural language
processing, and discuss its connections to re-
lated tasks and disciplines. In this process, we
present an overview of existing datasets and
models, aiming to unify the various definitions
given and identify common concepts. Finally,
we highlight challenges for future research.

1 Introduction

Fact-checking is the task of assessing whether
claims made in written or spoken language are
true. This is an essential task in journalism, and
is commonly conducted manually by dedicated
organizations such as PolitiFact. In addition to
external fact-checking, internal fact-checking is
also performed by publishers of newspapers, mag-
azines, and books prior to publishing in order to
promote truthful reporting. Figure 1 shows an ex-
ample from PolitiFact, together with the evidence
(summarized) and the verdict.

Fact-checking is a time-consuming task. To as-
sess the claim in Figure 1, a journalist would need
to search through potentially many sources to
find job gains under Trump and Obama, evaluate
the reliability of each source, and make a com-
parison. This process can take professional fact-
checkers several hours or days (Hassan et al.,
2015; Adair et al., 2017). Compounding the prob-
lem, fact-checkers often work under strict and

∗Equal contribution.

tight deadlines, especially in the case of internal
processes (Borel, 2016; Godler and Reich, 2017),
and some studies have shown that less than half
of all published articles have been subject to veri-
fication (Lewis et al., 2008). Given the amount of
new information that appears and the speed with
which it spreads, manual validation is insufficient.

Automating the fact-checking process has been
discussed in the context of computational journal-
ism (Flew et al., 2010; Cohen et al., 2011; Graves,
2018), and has received significant attention in
the artificial intelligence community. Vlachos and
Riedel (2014) proposed structuring it as a sequence
of components—identifying claims to be checked,
finding appropriate evidence, producing verdicts
—that can be modeled as natural language pro-
cessing (NLP) tasks. This motivated the develop-
ment of automated pipelines consisting of subtasks
that can be mapped to tasks well-explored in
the NLP community. Advances were made possi-
ble by the development of datasets, consisting of
either claims collected from fact-checking web-
sites, for example Liar (Wang, 2017), or purpose-
made for research, for example, FEVER (Thorne
et al., 2018a).

A growing body of research is exploring the
various tasks and subtasks necessary for the au-
tomation of fact checking, and to meet the need
for new methods to address emerging challenges.
Early developments were surveyed in Thorne and
Vlachos (2018), which remains the closest to an
exhaustive overview of the subject. However, their
proposed framework does not include work on
determining which claims to verify (i.e., claim
detection), nor does their survey include the re-
cent work on producing explainable, convincing
verdicts (i.e., justification production).

Several recent papers have surveyed research
focusing on individual components of the task.
Zubiaga et al. (2018) and Islam et al. (2020)
focus on identifying rumors on social media,
Küçük and Can (2020) and Hardalov et al. (2021)

178

Transactions of the Association for Computational Linguistics, vol. 10, pp. 178–206, 2022. https://doi.org/10.1162/tacl a 00454
Action Editor: Yulan He. Submission batch: 6/2021; Revision batch: 9/2021; Published 2/2022.

c© 2022 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00454/1987018/tacl_a_00454.pdf by guest on 07 Septem
ber 2023

mailto:zg283@cam.ac.uk
mailto:mss84@cam.ac.uk
mailto:av308@cam.ac.uk
https://doi.org/10.1162/tacl_a_00454


Figure 1: An example of a fact-checked statement.
Referring to the manufacturing sector, Donald Trump
said ‘‘I brought back 700,000 jobs. Obama and Biden
brought back nothing.’’ The fact-checker gave the
verdict False based on the collected evidence.

on detecting the stance of a given piece of ev-
idence towards a claim, and Kotonya and Toni
(2020a) on producing explanations and justifica-
tions for fact-checks. Finally, Nakov et al. (2021a)
surveyed automated approaches to assist fact-
checking by humans. While these surveys are
extremely useful in understanding various aspects
of fact-checking technology, they are fragmented
and focused on specific subtasks and components;
our aim is to give a comprehensive and exhaustive
birds-eye view of the subject as a whole.

A number of papers have surveyed related
tasks. Lazer et al. (2018) and Zhou and Zafarani
(2020) surveyed work on fake news, including
descriptive work on the problem, as well as work
seeking to counteract fake news through compu-
tational means. A comprehensive review of NLP
approaches to fake news detection was also pro-
vided in Oshikawa et al. (2020). However, fake
news detection differs in scope from fact check-
ing, as the former focuses on assessing news arti-
cles, and includes labeling items based on aspects
not related to veracity, such as satire detection
(Oshikawa et al., 2020; Zhou and Zafarani, 2020).
Furthermore, other factors—such as the audience
reached by the claim, and the intentions and forms
of the claim—are often considered. These factors
also feature in the context of propaganda detec-
tion, recently surveyed by Da San Martino et al.
(2020b). Unlike these efforts, the works discussed
in this survey concentrate on assessing veracity of
general-domain claims. Finally, Shu et al. (2017)

and da Silva et al. (2019) surveyed research on
fake news detection and fact checking with a focus
on social media data, while this survey covers fact
checking across domains and sources, including
newswire, science, etc.

In this survey, we present a comprehensive
and up-to-date survey of automated fact-checking,
unifying various definitions developed in previ-
ous research into a common framework. We begin
by defining the three stages of our fact-checking
framework—claim detection, evidence retrieval,
and claim verification, the latter consisting of ver-
dict prediction and justification production. We
then give an overview of the existing datasets
and modeling strategies, taxonomizing these and
contextualizing them with respect to our frame-
work. We finally discuss key research challenges
that have been addressed, and give directions for
challenges that we believe should be tackled by
future research. We accompany the survey with a
repository,1 which lists the resources mentioned
in our survey.

2 Task Definition

Figure 2 shows a NLP framework for automated
fact-checking consisting of three stages: (i) claim
detection to identify claims that require veri-
fication; (ii) evidence retrieval to find sources
supporting or refuting the claim; and (iii) claim
verification to assess the veracity of the claim
based on the retrieved evidence. Evidence retrieval
and claim verification are sometimes tackled as a
single task referred to as factual verification, while
claim detection is often tackled separately. Claim
verification can be decomposed into two parts
that can be tackled separately or jointly: verdict
prediction, where claims are assigned truthful-
ness labels, and justification production, where
explanations for verdicts must be produced.

2.1 Claim Detection
The first stage in automated fact-checking is claim
detection, where claims are selected for verifica-
tion. Commonly, detection relies on the concept
of check-worthiness. Hassan et al. (2015) de-
fined check-worthy claims as those for which
the general public would be interested in know-
ing the truth. For example, ‘‘over six million
Americans had COVID-19 in January’’ would

1www.github.com/Cartus/Automated-Fact
-Checking-Resources.
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Figure 2: A natural language processing framework for automated fact-checking.

be check-worthy, as opposed to ‘‘water is wet’’.
This can involve a binary decision for each po-
tential claim, or an importance-ranking of claims
(Atanasova et al., 2018; Barrón-Cedeño et al.,
2020). The latter parallels standard practice in in-
ternal journalistic fact-checking, where deadlines
often require fact-checkers to employ a triage
system (Borel, 2016).

Another instantiation of claim detection based
on check-worthiness is rumor detection. A rumor
can be defined as an unverified story or state-
ment circulating (typically on social media) (Ma
et al., 2016; Zubiaga et al., 2018). Rumor detec-
tion considers language subjectivity and growth
of readership through a social network (Qazvinian
et al., 2011). Typical input to a rumor detection
system is a stream of social media posts, where-
upon a binary classifier has to determine if each
post is rumorous. Metadata, such as the number
of likes and re-posts, is often used as features
to identify rumors (Zubiaga et al., 2016; Gorrell
et al., 2019; Zhang et al., 2021).

Check-worthiness and rumorousness can be
subjective. For example, the importance placed
on countering COVID-19 misinformation is not
uniform across every social group. The check-
worthiness of each claim also varies over time,
as countering misinformation related to current
events is in many cases understood to be more
important than countering older misinformation
(e.g., misinformation about COVID-19 has a
greater societal impact in 2021 than misinfor-
mation about the Spanish flu). Furthermore, older
rumors may have already been debunked by jour-
nalists, reducing their impact. Misinformation that
is harmful to marginalized communities may also
be judged to be less check-worthy by the general
public than misinformation that targets the ma-
jority. Conversely, claims originating from mar-
ginalized groups may be subject to greater scrutiny
than claims originating from the majority; for

example, journalists have been shown to assign
greater trust and therefore lower need for verifica-
tion to stories produced by male sources (Barnoy
and Reich, 2019). Such biases could be repli-
cated in datasets that capture the (often implicit)
decisions made by journalists about which claims
to prioritize.

Instead of using subjective concepts, Konstanti-
novskiy et al. (2021) framed claim detection as
whether a claim makes an assertion about the
world that is checkable, that is, whether it is verifi-
able with readily available evidence. Claims based
on personal experiences or opinions are uncheck-
able. For example, ‘‘I woke up at 7 am today’’ is
not checkable because appropriate evidence can-
not be collected; ‘‘cubist art is beautiful’’ is not
checkable because it is a subjective statement.

2.2 Evidence Retrieval
Evidence retrieval aims to find information be-
yond the claim—for example, text, tables, knowl-
edge bases, images, relevant metadata—to indicate
veracity. Some earlier efforts do not use any ev-
idence beyond the claim itself (Wang, 2017;
Rashkin et al., 2017; Volkova et al., 2017; Dungs
et al., 2018). Relying on surface patterns of claims
without considering the state of the world fails to
identify well-presented misinformation, including
machine-generated claims (Schuster et al., 2020).
Recent developments in natural language gener-
ation have exacerbated this issue (Radford et al.,
2019; Brown et al., 2020), with machine-generated
text sometimes being perceived as more trustwor-
thy than human-written text (Zellers et al., 2019).
In addition to enabling verification, evidence is
essential for generating verdict justifications to
convince users of fact-checks.

Stance detection can be viewed as an in-
stantiation of evidence retrieval, which typically
assumes a more limited amount of potential evi-
dence and predicts its stance towards the claim.
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For example, Ferreira and Vlachos (2016) used
news article headlines from the Emergent project2

as evidence to predict whether articles supported,
refuted, or merely reported a claim. The Fake
News Challenge (Pomerleau and Rao, 2017)
further used entire documents, allowing for ev-
idence from multiple sentences. More recently,
Hanselowski et al. (2019) filtered out irrelevant
sentences in the summaries of fact-checking ar-
ticles to obtain fine-grained evidence via stance
detection. While both stance detection and evi-
dence retrieval in the context of claim verification
are classification tasks, what is considered ev-
idence in the former is broader, including, for
example, a social media post responding ‘‘@AJE-
News @germanwings yes indeed:-(.’’ to a claim
(Gorrell et al., 2019).

A fundamental issue is that not all available
information is trustworthy. Most fact-checking
approaches implicitly assume access to a trusted
information source such as encyclopedias (e.g.,
Wikipedia [Thorne et al., 2018a]) or results
provided (and thus vetted) by search engines
(Augenstein et al., 2019). Evidence is then de-
fined as information that can be retrieved from
this source, and veracity as coherence with the
evidence. For real-world applications, evidence
must be curated through the manual efforts of
journalists (Borel, 2016), automated means (Li
et al., 2015), or their combination. For example,
Full Fact uses tables and legal documents from
government organizations as evidence.3

2.3 Verdict Prediction

Given an identified claim and the pieces of evi-
dence retrieved for it, verdict prediction attempts
to determine the veracity of the claim. The simplest
approach is binary classification, for example, la-
beling a claim as true or false (Nakashole and
Mitchell, 2014; Popat et al., 2016; Potthast et al.,
2018). When evidence is used to verify the claim,
it is often preferable to use supported/refuted (by
evidence) instead of true/false respectively, as in
many cases the evidence itself is not assessed by
the systems. More broadly it would be dangerous
to make such strong claims about the world given
the well-known limitations (Graves, 2018).

2www.cjr.org/tow center reports/craig
silverman lies damn lies viral content.php.

3www.fullfact.org/about/frequently-asked
-questions.

Many versions of the task employ finer-grained
classification schemes. A simple extension is to
use an additional label denoting a lack of informa-
tion to predict the veracity of the claim (Thorne
et al., 2018a). Beyond that, some datasets and
systems follow the approach taken by journalis-
tic fact-checking agencies, employing multi-class
labels representing degrees of truthfulness (Wang,
2017; Alhindi et al., 2018; Shahi and Nandini,
2020; Augenstein et al., 2019).

2.4 Justification Production

Justifying decisions is an important part of
journalistic fact-checking, as fact-checkers need
to convince readers of their interpretation of
the evidence (Uscinski and Butler, 2013; Borel,
2016). Debunking purely by calling something
false often fails to be persuasive, and can induce
a ‘‘backfire’’ effect where belief in the erroneous
claim is reinforced (Lewandowsky et al., 2012).
This need is even greater for automated fact-
checking, which may employ black-box compo-
nents. When developers deploy black-box models
whose decision-making processes cannot be un-
derstood, these artefacts can lead to unintended,
harmful consequences (O’Neil, 2016). Develop-
ing techniques that explain model predictions has
been suggested as a potential remedy to this prob-
lem (Lipton, 2018), and recent work has focused
on the generation of justifications (see Kotonya
and Toni’s [2020a] survey of explainable claim
verification). Research so far has focused on jus-
tification production for claim verification, as
the latter is often the most scrutinized stage in
fact-checking. Nevertheless, explainability may
also be desirable and necessary for the other stages
in our framework.

Justification production for claim verification
typically relies on one of four strategies. First,
attention weights can be used to highlight the
salient parts of the evidence, in which case jus-
tifications typically consist of scores for each
evidence token (Popat et al., 2018; Shu et al.,
2019; Lu and Li, 2020). Second, decision-making
processes can be designed to be understandable by
human experts, for example, by relying on logic-
based systems (Gad-Elrab et al., 2019; Ahmadi
et al., 2019); in this case, the justification is
typically the derivation for the veracity of the
claim. Finally, the task can be modeled as a form
of summarization, where systems generate textual
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Dataset Type Input #Inputs Evidence Verdict Sources Lang

CredBank (Mitra and Gilbert, 2015) Worthy Aggregate 1,049 Meta 5 Classes Twitter En
Weibo (Ma et al., 2016) Worthy Aggregate 5,656 Meta 2 Classes Twitter/Weibo En/Ch
PHEME (Zubiaga et al., 2016) Worthy Individual 330 Text/Meta 3 Classes Twitter En/De
RumourEval19 (Gorrell et al., 2019) Worthy Individual 446 Text/Meta 3 Classes Twitter/Reddit En
DAST (Lillie et al., 2019) Worthy Individual 220 Text/Meta 3 Classes Reddit Da
Suspicious (Volkova et al., 2017) Worthy Individual 131,584 ✗ 2/5 Classes Twitter En
CheckThat20-T1 (Barrón-Cedeño et al., 2020) Worthy Individual 8,812 ✗ Ranking Twitter En/Ar
CheckThat21-T1A (Nakov et al., 2021b) Worthy Individual 17,282 ✗ 2 Classes Twitter Many
Debate (Hassan et al., 2015) Worthy Statement 1,571 ✗ 3 Classes Transcript En
ClaimRank (Gencheva et al., 2017) Worthy Statement 5,415 ✗ Ranking Transcript En
CheckThat18-T1 (Atanasova et al., 2018) Worthy Statement 16,200 ✗ Ranking Transcript En/Ar
CitationReason (Redi et al., 2019) Checkable Statement 4,000 Meta 13 Classes Wikipedia En
PolitiTV (Konstantinovskiy et al., 2021) Checkable Statement 6,304 ✗ 7 Classes Transcript En

Table 1: Summary of claim detection datasets. Input can be a set of posts (aggregate) or an individual
post from social media, or a statement. Evidence include text and metadata. Verdict can be a multi-class
label or a rank list.

explanations for their decisions (Atanasova et al.,
2020b). While some of these justification types
require additional components, we did not intro-
duce a fourth stage in our framework as in some
cases the decision-making process of the model is
self-explanatory (Gad-Elrab et al., 2019; Ahmadi
et al., 2019).

A basic form of justification is to show which
pieces of evidence were used to reach a verdict.
However, a justification must also explain how
the retrieved evidence was used, explain any as-
sumptions or commonsense facts employed, and
show the reasoning process taken to reach the
verdict. Presenting the evidence returned by a re-
trieval system can as such be seen as a rather
weak baseline for justification production, as it
does not explain the process used to reach the
verdict. There is furthermore a subtle difference
between evaluation criteria for evidence and justi-
fications: Good evidence facilitates the production
of a correct verdict; a good justification accurately
reflects the reasoning of the model through a read-
able and plausible explanation, regardless of the
correctness of the verdict. This introduces differ-
ent considerations for justification production, for
example, readability (how accessible an explana-
tion is to humans), plausibility (how convincing
an explanation is), and faithfulness (how accu-
rately an explanation reflects the reasoning of the
model) (Jacovi and Goldberg, 2020).

3 Datasets

Datasets can be analyzed along three axes aligned
with three stages of the fact-checking framework
(Figure 2): the input, the evidence used, and ver-

dicts and justifications that constitute the out-
put. In this section we bring together efforts that
emerged in different communities using different
terminologies, but nevertheless could be used to
develop and evaluate models for the same task.

3.1 Input
We first consider the inputs to claim detection
(summarized in Table 1) as their format and con-
tent influences the rest of the process. A typical
input is a social media post with textual con-
tent. Zubiaga et al. (2016) constructed PHEME
based on source tweets in English and German
that sparked a high number of retweets exceeding
a predefined threshold. Derczynski et al. (2017)
introduced the shared task RumourEval using the
English section of PHEME; for the 2019 iteration
of the shared task, this dataset was further ex-
panded to include Reddit and new Twitter posts
(Gorrell et al., 2019). Following the same anno-
tation strategy, Lillie et al. (2019) constructed a
Danish dataset by collecting posts from Reddit. In-
stead of considering only source tweets, subtasks
in CheckThat (Barrón-Cedeño et al., 2020; Nakov
et al., 2021b) viewed every post as part of the
input. A set of auxiliary questions, such as ‘‘does
it contain a factual claim?’’, ‘‘is it of general in-
terest?’’, were created to help annotators identify
check-worthy posts. Since an individual post may
contain limited context, other works (Mitra and
Gilbert, 2015; Ma et al., 2016; Zhang et al., 2021)
represented each claim by a set of relevant posts,
for example, the thread they originate from.

The second type of textual input is a docu-
ment consisting of multiple claims. For Debate
(Hassan et al., 2015), professionals were asked to
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Dataset Input #Inputs Evidence Verdict Sources Lang

CrimeVeri (Bachenko et al., 2008) Statement 275 ✗ 2 Classes Crime En
Politifact (Vlachos and Riedel, 2014) Statement 106 Text/Meta 5 Classes Fact Check En
StatsProperties (Vlachos and Riedel, 2015) Statement 7,092 KG Numeric Internet En
Emergent (Ferreira and Vlachos, 2016) Statement 300 Text 3 Classes Emergent En
CreditAssess (Popat et al., 2016) Statement 5,013 Text 2 Classes Fact Check/Wiki En
PunditFact (Rashkin et al., 2017) Statement 4,361 ✗ 2/6 Classes Fact Check En
Liar (Wang, 2017) Statement 12,836 Meta 6 Classes Fact Check En
Verify (Baly et al., 2018) Statement 422 Text 2 Classes Fact Check Ar/En
CheckThat18-T2 (Barrón-Cedeño et al., 2018) Statement 150 ✗ 3 Classes Transcript En
Snopes (Hanselowski et al., 2019) Statement 6,422 Text 3 Classes Fact Check En
MultiFC (Augenstein et al., 2019) Statement 36,534 Text/Meta 2–27 Classes Fact Check En
Climate-FEVER (Diggelmann et al., 2020) Statement 1,535 Text 4 Classes Climate En
SciFact (Wadden et al., 2020) Statement 1,409 Text 3 Classes Science En
PUBHEALTH (Kotonya and Toni, 2020b) Statement 11,832 Text 4 Classes Fact Check En
COVID-Fact (Saakyan et al., 2021) Statement 4,086 Text 2 Classes Forum En
X-Fact (Gupta and Srikumar, 2021) Statement 31,189 Text 7 Classes Fact Check Many
cQA (Mihaylova et al., 2018) Answer 422 Meta 2 Classes Forum En
AnswerFact (Zhang et al., 2020) Answer 60,864 Text 5 Classes Amazon En
NELA (Horne et al., 2018) Article 136,000 ✗ 2 Classes News En
BuzzfeedNews (Potthast et al., 2018) Article 1,627 Meta 4 Classes Facebook En
BuzzFace (Santia and Williams, 2018) Article 2,263 Meta 4 Classes Facebook En
FA-KES (Salem et al., 2019) Article 804 ✗ 2 Classes VDC En
FakeNewsNet (Shu et al., 2020) Article 23,196 Meta 2 Classes Fact Check En
FakeCovid (Shahi and Nandini, 2020) Article 5,182 ✗ 2 Classes Fact Check Many

Table 2: Summary of factual verification datasets with natural inputs. KG denotes knowledge graphs.
ChectThat18 has been extended later (Hasanain et al., 2019; Barrón-Cedeño et al., 2020; Nakov et al.,
2021b). NELA has been updated by adding more data from more diverse sources (Nørregaard et al.,
2019; Gruppi et al., 2020, 2021).

select check-worthy claims from U.S. presidential
debates to ensure good agreement and shared un-
derstanding of the assumptions. On the other hand,
Konstantinovskiy et al. (2021) collected checkable
claims from transcripts by crowd-sourcing, where
workers labeled claims based on a predefined tax-
onomy. Different from prior works focused on
the political domain, Redi et al. (2019) sampled
sentences that contain citations from Wikipedia ar-
ticles, and asked crowd-workers to annotate them
based on citation policies.

Next, we discuss the inputs to factual verifica-
tion. The most popular type of input to verification
is textual claims, which is expected given they are
often the output of claim detection. These tend to
be sentence-level statements, which is a practice
common among fact-checkers in order to include
only the context relevant to the claim (Mena,
2019). Many existing efforts (Vlachos and Riedel,
2014; Wang, 2017; Hanselowski et al., 2019;
Augenstein et al., 2019) constructed datasets by
crawling real-world claims from dedicated web-
sites (e.g., Politifact) due to their availability (see
Table 2). Unlike previous work that focus on

English, Gupta and Srikumar (2021) collected
non-English claims from 25 languages.

Others extract claims from specific domains,
such as science (Wadden et al., 2020), climate
(Diggelmann et al., 2020), and public health
(Kotonya and Toni, 2020b). Alternative forms of
sentence-level inputs, such as answers from ques-
tion answering forums, have also been considered
(Mihaylova et al., 2018; Zhang et al., 2020). There
have been approaches that consider a passage
(Mihalcea and Strapparava, 2009; Pérez-Rosas
et al., 2018) or an entire article (Horne et al., 2018;
Santia and Williams, 2018; Shu et al., 2020) as in-
put. However, the implicit assumption that every
claim in it is either factually correct or incorrect is
problematic, and thus rarely practised by human
fact-checkers (Uscinski and Butler, 2013).

In order to better control the complexity of
the task, efforts listed in Table 3 created claims
artificially. Thorne et al. (2018a) had annota-
tors mutate sentences from Wikipedia articles
to create claims. Following the same approach,
Khouja (2020) and Nørregaard and Derczynski
(2021) constructed Arabic and Danish datasets,
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Dataset Input #Inputs Evidence Verdict Sources Lang

KLinker (Ciampaglia et al., 2015) Triple 10,000 KG 2 Classes Google/Wiki En
PredPath (Shi and Weninger, 2016) Triple 3,559 KG 2 Classes Google/Wiki En
KStream (Shiralkar et al., 2017) Triple 18,431 KG 2 Classes Google/Wiki/WSDM En
UFC (Kim and Choi, 2020) Triple 1,759 KG 2 Classes Wiki En
LieDetect (Mihalcea and Strapparava, 2009) Passage 600 ✗ 2 Classes News En
FakeNewsAMT (Pérez-Rosas et al., 2018) Passage 680 ✗ 2 Classes News En
FEVER (Thorne et al., 2018a) Statement 185,445 Text 3 Classes Wiki En
HOVER (Jiang et al., 2020) Statement 26,171 Text 3 Classes Wiki En
WikiFactCheck (Sathe et al., 2020) Statement 124,821 Text 2 Classes Wiki En
VitaminC (Schuster et al., 2021) Statement 488,904 Text 3 Classes Wiki En
TabFact (Chen et al., 2020) Statement 92,283 Table 2 Classes Wiki En
InfoTabs (Gupta et al., 2020) Statement 23,738 Table 3 Classes Wiki En
Sem-Tab-Fact (Wang et al., 2021) Statement 5,715 Table 3 Classes Wiki En
FEVEROUS (Aly et al., 2021) Statement 87,026 Text/Table 3 Classes Wiki En
ANT (Khouja, 2020) Statement 4,547 ✗ 3 Classes News Ar
DanFEVER (Nørregaard and Derczynski, 2021) Statement 6,407 Text 3 Classes Wiki Da

Table 3: Summary of factual verification datasets with artificial inputs. Google denotes Google Relation
Extraction Corpora, and WSDM means the WSDM Cup 2017 Triple Scoring challenge.

respectively. Another frequently considered op-
tion is subject-predicate-object triples, for exam-
ple, (London, city in, UK). The popularity of
triples as input stems from the fact that they
facilitate fact-checking against knowledge bases
(Ciampaglia et al., 2015; Shi and Weninger, 2016;
Shiralkar et al., 2017; Kim and Choi, 2020) such
as DBpedia (Auer et al., 2007), SemMedDB
(Kilicoglu et al., 2012), and KBox (Nam et al.,
2018). However, such approaches implicitly as-
sume the non-trivial conversion of text into triples.

3.2 Evidence
A popular type of evidence often considered is
metadata, such as publication date, sources, user
profiles, and so forth. However, while it offers
information complementary to textual sources or
structural knowledge which is useful when the
latter are unavailable (Wang, 2017; Potthast et al.,
2018), it does not provide evidence grounding
the claim.

Textual sources, such as news articles, aca-
demic papers, and Wikipedia documents, are one
of the most commonly used types of evidence
for fact-checking. Ferreira and Vlachos (2016)
used the headlines of selected news articles, and
Pomerleau and Rao (2017) used the entire articles
instead as the evidence for the same claims. In-
stead of using news articles, Alhindi et al. (2018)
and Hanselowski et al. (2019) extracted sum-
maries accompanying fact-checking articles about
the claims as evidence. Documents from special-
ized domains such as science and public health
have also been considered (Wadden et al., 2020;
Kotonya and Toni, 2020b; Zhang et al., 2020).

The aforementioned works assume that evi-
dence is given for every claim, which is not
conducive to developing systems that need to re-
trieve evidence from a large knowledge source.
Therefore, Thorne et al. (2018a) and Jiang et al.
(2020) considered Wikipedia as the source of ev-
idence and annotated the sentences supporting or
refuting each claim. Schuster et al. (2021) con-
structed VitaminC based on factual revisions to
Wikipedia, in which evidence pairs are nearly
identical in language and content, with the ex-
ception that one supports a claim while the other
does not. However, these efforts restricted world
knowledge to a single source (Wikipedia), ignor-
ing the challenge of retrieving evidence from het-
erogeneous sources on the web. To address this,
other works (Popat et al., 2016; Baly et al., 2018;
Augenstein et al., 2019) retrieved evidence from
the Internet, but the search results were not anno-
tated. Thus, it is possible that irrelevant informa-
tion is present in the evidence, while information
that is necessary for verification is missing.

Though the majority of studies focus on unstruc-
tured evidence (i.e., textual sources), structured
knowledge has also been used. For example, the
truthfulness of a claim expressed as an edge in a
knowledge base (e.g., DBpedia) can be predicted
by the graph topology (Ciampaglia et al., 2015;
Shi and Weninger, 2016; Shiralkar et al., 2017).
However, while graph topology can be an indica-
tor of plausibility, it does not provide conclusive
evidence. A claim that is not represented by a path
in the graph, or that is represented by an unlikely
path, is not necessarily false. The knowledge base
approach assumes that true facts relevant to the
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claim are present in the graph; but given the in-
completeness of even the largest knowledge bases,
this is not realistic (Bordes et al., 2013; Socher
et al., 2013).

Another type of structural knowledge is semi-
structured data (e.g., tables), which is ubiquitous
thanks to its ability to convey important infor-
mation in a concise and flexible manner. Early
work by Vlachos and Riedel (2015) used tables
extracted from Freebase (Bollacker et al., 2008)
to verify claims retrieved from the web about
statistics of countries such as population, infla-
tion, and so on. Chen et al. (2020) and Gupta
et al. (2020) studied fact-checking textual claims
against tables and info-boxes from Wikipedia.
Wang et al. (2021) extracted tables from scien-
tific articles and required evidence selection in
the form of cells selected from tables. Aly et al.
(2021) further considered both text and table for
factual verification, while explicitly requiring the
retrieval of evidence.

3.3 Verdict and Justification

The verdict in early efforts (Bachenko et al., 2008;
Mihalcea and Strapparava, 2009) is a binary label
(i.e., true/false). However, fact-checkers usually
employ multi-class labels to represent degrees
of truthfulness (true, mostly-true, mixture, etc.),4

which were considered by Vlachos and Riedel
(2014) and Wang (2017). Recently, Augenstein
et al. (2019) collected claims from different
sources, where the number of labels vary greatly,
ranging from 2 to 27. Due to the difficulty of
mapping veracity labels onto the same scale, they
didn’t attempt to harmonize them across sources.
On the other hand, other efforts (Hanselowski
et al., 2019; Kotonya and Toni, 2020b; Gupta
and Srikumar, 2021) performed normalization by
post-processing the labels based on rules to sim-
plify the veracity label. For example, Hanselowski
et al. (2019) mapped mixture, unproven, and un-
determined onto not enough information.

Unlike prior datasets that only required out-
putting verdicts, FEVER (Thorne et al., 2018a)
expected the output to contain both sentences
forming the evidence and a label (e.g., support, re-
fute, not enough information). Later datasets with
both natural (Hanselowski et al., 2019; Wadden
et al., 2020) and artificial claims (Jiang et al.,
2020; Schuster et al., 2021) also adopted this

4www.snopes.com/fact-check-ratings.

scheme, where the output expected is a combina-
tion of multi-class labels and extracted evidence.

Most existing datasets do not contain textual
explanations provided by journalists as justifica-
tion for verdicts. Alhindi et al. (2018) extended
the Liar dataset with summaries extracted from
fact-checking articles. While originally intended
as an auxiliary task to improve claim verification,
these justifications have been used as explana-
tions (Atanasova et al., 2020b). Recently, Kotonya
and Toni (2020b) constructed the first dataset
that explicitly includes gold explanations. These
consist of fact-checking articles and other news
items, which can be used to train natural lan-
guage generation models to provide post-hoc
justifications for the verdicts, However, using
fact-checking articles is not realistic, as they are
not available during inference, which makes the
trained system unable to provide justifications
based on retrieved evidence.

4 Modeling Strategies

We now turn to surveying modeling strategies for
the various components of our framework. The
most common approach is to build separate mod-
els for each component and apply them in pipeline
fashion. Nevertheless, joint approaches have also
been developed, either through end-to-end learn-
ing or by modeling the joint output distributions
of multiple components.

4.1 Claim Detection

Claim detection is typically framed as a classifi-
cation task, where models predict whether claims
are checkable or check-worthy. This is challeng-
ing, especially in the case of check-worthiness:
Rumorous and non-rumorous information is of-
ten difficult to distinguish, and the volume of
claims analyzed in real-world scenarios (e.g., all
posts published to a social network every day)
prohibits the retrieval and use of evidence. Early
systems employed supervised classifiers with fea-
ture engineering, relying on surface features like
Reddit karma and up-votes (Aker et al., 2017),
Twitter-specific types (Enayet and El-Beltagy,
2017), named entities and verbal forms in po-
litical transcripts (Zuo et al., 2018), or lexical and
syntactic features (Zhou et al., 2020).

Neural network approaches based on sequence-
or graph-modeling have recently become popu-
lar, as they allow models to use the context of
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surrounding social media activity to inform deci-
sions. This can be highly beneficial, as the ways
in which information is discussed and shared
by users are strong indicators of rumorousness
(Zubiaga et al., 2016). Kochkina et al. (2017)
employed an LSTM (Hochreiter and Schmidhuber,
1997) to model branches of tweets, Ma et al.
(2018) used Tree-LSTMs (Tai et al., 2015) to
directly encode the structure of threads, and
Guo et al. (2018) modeled the hierarchy by using
attention networks. Recent work explored fusing
more domain-specific features into neural models
(Zhang et al., 2021). Another popular approach is
to use Graph Neural Networks (Kipf and Welling,
2017) to model the propagation behaviour of a
potentially rumorous claim (Monti et al., 2019; Li
et al., 2020; Yang et al., 2020a).

Some works tackle claim detection and claim
verification jointly, labeling potential claims as
true rumors, false rumors, or non-rumors (Buntain
and Golbeck, 2017; Ma et al., 2018). This allows
systems to exploit specific features useful for both
tasks, such as the different spreading patterns
of false and true rumors (Zubiaga et al., 2016).
Veracity predictions made by such systems are
to be considered preliminary, as they are made
without evidence.

4.2 Evidence Retrieval and
Claim Verification

As mentioned in Section 2, evidence retrieval
and claim verification are commonly addressed
together. Systems mostly operate as a pipeline
consisting of an evidence retrieval module and
a verification module (Thorne et al., 2018b), but
there are exceptions where these two modules are
trained jointly (Yin and Roth, 2018).

Claim verification can be seen as a form of
Recognizing Textual Entailment (RTE; Dagan
et al., 2010; Bowman et al., 2015), predicting
whether the evidence supports or refutes the claim.
Typical retrieval strategies include commercial
search APIs, Lucene indices, entity linking, or
ranking functions like dot-products of TF-IDF
vectors (Thorne et al., 2018b). Recently, dense
retrievers employing learned representations and
fast dot-product indexing (Johnson et al., 2017)
have shown strong performance (Lewis et al.,
2020; Maillard et al., 2021). To improve preci-
sion, more complex models—for example, stance
detection systems—can be deployed as second,

fine-grained filters to re-rank retrieved evidence
(Thorne et al., 2018b; Nie et al., 2019b,a;
Hanselowski et al., 2019). Similarly, evidence
can be re-ranked implicitly during verification in
late-fusion systems (Ma et al., 2019; Schlichtkrull
et al., 2021). An alternative approach was pro-
posed by Fan et al. (2020), who retrieved evidence
using question generation and question answering
via search engine results. Some work avoids re-
trieval by making a closed-domain assumption and
evaluating in a setting where appropriate evidence
has already been found (Ferreira and Vlachos,
2016; Chen et al., 2020; Zhong et al., 2020a;
Yang et al., 2020b; Eisenschlos et al., 2020); this,
however, is unrealistic. Finally, Allein et al. (2021)
took into account the timestamp of the evidence
in order to improve veracity prediction accuracy.

If only a single evidence document is retrieved,
verification can be directly modeled as RTE. How-
ever, both real-world claims (Augenstein et al.,
2019; Hanselowski et al., 2019; Kotonya and Toni,
2020b), as well as those created for research pur-
poses (Thorne et al., 2018a; Jiang et al., 2020;
Schuster et al., 2021) often require reasoning over
and combining multiple pieces of evidence. A
simple approach is to treat multiple pieces of evi-
dence as one by concatenating them into a single
string (Luken et al., 2018; Nie et al., 2019a), and
then employ a textual entailment model to infer
whether the evidence supports or refutes the claim.
More recent systems employ specialized compo-
nents to aggregate multiple pieces of evidence.
This allows the verification of more complex
claims where several pieces of information must
be combined, and addresses the case where the
retrieval module returns several highly related
documents all of which could (but might not)
contain the right evidence (Yoneda et al., 2018;
Zhou et al., 2019; Ma et al., 2019; Liu et al., 2020;
Zhong et al., 2020b; Schlichtkrull et al., 2021).

Some early work does not include evidence
retrieval at all, performing verification purely on
the basis of surface forms and metadata (Wang,
2017; Rashkin et al., 2017; Dungs et al., 2018).
Recently, Lee et al. (2020) considered using the
information stored in the weights of a large pre-
trained language model—BERT (Devlin et al.,
2019)—as the only source of evidence, as it has
been shown competitive in knowledge base com-
pletion (Petroni et al., 2019). Without explicitly
considering evidence such approaches are likely
to propagate biases learned during training, and
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render justification production impossible (Lee
et al., 2021; Pan et al., 2021).

4.3 Justification Production
Approaches for justification production can be
separated into three categories, which we ex-
amine along the three dimensions discussed in
Section 2.4—readability, plausibility, and faith-
fulness. First, some models include components
that can be analyzed as justifications by human
experts, primarily attention modules. Popat et al.
(2018) selected evidence tokens that have higher
attention weights as explanations. Similarly, co-
attention (Shu et al., 2019; Lu and Li, 2020) and
self-attention (Yang et al., 2019) were used to
highlight the salient excerpts from the evidence.
Wu et al. (2020b) further combined decision trees
and attention weights to explain which tokens
were salient, and how they influenced predictions.
Recent studies have shown the use of attention
as explanation to be problematic. Some tokens
with high attention scores can be removed without
affecting predictions, while some tokens with low
(non-zero) scores turn out to be crucial (Jain and
Wallace, 2019; Serrano and Smith, 2019; Pruthi
et al., 2020). Explanations provided by attention
may therefore not be sufficiently faithful. Further-
more, as they are difficult for non-experts and/or
those not well-versed in the architecture of the
model to grasp, they lack readability.

Another approach is to construct decision-
making processes that can be fully grasped by
human experts. Rule-based methods use Horn
rules and knowledge bases to mine explanations
(Gad-Elrab et al., 2019; Ahmadi et al., 2019),
which can be directly understood and verified.
These rules are mined from a pre-constructed
knowledge base, such as DBpedia (Auer et al.,
2007). This limits what can be fact-checked to
claims that are representable as triples, and to in-
formation present in the (often manually curated)
knowledge base.

Finally, some recent work has focused on
building models which—like human experts—can
generate textual explanations for their decisions.
Atanasova et al. (2020b) used an extractive ap-
proach to generate summaries, while Kotonya and
Toni (2020b) adopted the abstractive approach.
A potential issue is that such models can gener-
ate explanations that do not represent their actual
veracity prediction process, but which are never-
theless plausible with respect to the decision. This

is especially an issue with abstractive models,
where hallucinations can produce very mislead-
ing justifications (Maynez et al., 2020). Also,
the model of Atanasova et al. (2020b) assumes
fact-checking articles provided as input during
inference, which is unrealistic.

5 Related Tasks

Misinformation and Disinformation Misin-
formation is defined as constituting a claim that
contradicts or distorts common understandings of
verifiable facts (Guess and Lyons, 2020). On the
other hand, disinformation is defined as the subset
of misinformation that is deliberately propagated.
This is a question of intent: disinformation is
meant to deceive, while misinformation may be
inadvertent or unintentional (Tucker et al., 2018).
Fact-checking can help detect misinformation, but
not distinguish it from disinformation. A recent
survey (Alam et al., 2021) proposed to integrate
both factuality and harmfulness into a frame-
work for multi-modal disinformation detection.
Although misinformation and conspiracy theories
overlap conceptually, conspiracy theories do not
hinge exclusively on the truth value of the claims
being made, as they are sometimes proved to be
true (Sunstein and Vermeule, 2009). A related
problem is propaganda detection, which overlaps
with disinformation detection, but also includes
identifying particular techniques such as appeals
to emotion, logical fallacies, whataboutery, or
cherry-picking (Da San Martino et al., 2020b).

Propaganda and the deliberate or acciden-
tal dissemination of misleading information has
been studied extensively. Jowett and O’Donnell
(2019) address the subject from a communications
perspective, Taylor (2003) provides a historical
approach, and Goldman and O’Connor (2021)
tackle the related subject of epistemology and
trust in social settings from a philosophical per-
spective. For fact-checking and the identification
of misinformation by journalists, we direct the
reader to Silverman (2014) and Borel (2016).

Detecting Previously Fact-checked Claims
While in this survey we focus on methods for
verifying claims by finding the evidence rather
than relying on previously conducted fact checks,
misleading claims are often repeated (Hassan
et al., 2017); thus it is useful to detect whether a
claim has already been fact-checked. Shaar et al.
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(2020) formulated this task recently as ranking,
and constructed two datasets. The social media
version of the task then featured at the shared task
CheckThat! (Barrón-Cedeño et al., 2020; Nakov
et al., 2021b). This task was also explored by Vo
and Lee (2020) from a multi-modal perspective,
where claims about images were matched against
previously fact-checked claims. More recently,
Sheng et al. (2021) and Kazemi et al. (2021) con-
structed datasets for this task in languages beyond
English. Hossain et al. (2020) detected misinfor-
mation by adopting a similar strategy. If a tweet
was matched to any known COVID-19 related
misconceptions, then it would be classified as
misinformative. Matching claims against previ-
ously verified ones is a simpler task that can often
be reduced to sentence-level similarity (Shaar
et al., 2020), which is well studied in the context
of textual entailment. Nevertheless, new claims
and evidence emerge regularly. Previous fact-
checks can be useful, but they can become out-
dated and potentially misleading over time.

6 Research Challenges

Choice of Labels The use of fine-grained
labels by fact-checking organizations has re-
cently come under criticism (Uscinski and Butler,
2013). In-between labels like ‘‘mostly true’’ often
represent ‘‘meta-ratings’’ for composite claims
consisting of multiple elementary claims of differ-
ent veracity. For example, a politician might claim
improvements to unemployment and productivity;
if one part is true and the other false, a fact-checker
might label the full statement ‘‘half true’’. Noisy
labels resulting from composite claims could be
avoided by intervening at the dataset creation
stage to manually split such claims, or by learning
to do so automatically. The separation of claims
into truth and falsehood can be too simplistic, as
true claims can still mislead. Examples include
cherry-picking, where evidence is chosen to sug-
gest a misleading trend (Asudeh et al., 2020),
and technical truth, where true information is
presented in a way that misleads (e.g., ‘‘I have
never lost a game of chess’’ is also true if the
speaker has never played chess). A major chal-
lenge is integrating analysis of such claims into
the existing frameworks. This could involve new
labels identifying specific forms of deception, as
is done in propaganda detection (Da San Martino
et al., 2020a), or a greater focus on producing

justifications to show why claims are misleading
(Atanasova et al., 2020b; Kotonya and Toni, 2020b).

Sources and Subjectivity Not all information
is equally trustworthy, and sometimes trustworthy
sources contradict each other. This challenges the
assumptions made by most current fact-checking
research relying on a single source considered au-
thoritative, such as Wikipedia. Methods must be
developed to address the presence of disagreeing
or untrustworthy evidence. Recent work proposed
integrating credibility assessment as a part of
the fact-checking task (Wu et al., 2020a). This
could be done, for example, by assessing the
agreement between evidence sources, or by as-
sessing the degree to which sources cohere with
known facts (Li et al., 2015; Dong et al., 2015;
Zhang et al., 2019). Similarly, check-worthiness
is a subjective concept varying along axes includ-
ing target audience, recency, and geography. One
solution is to focus solely on objective checka-
bility (Konstantinovskiy et al., 2021). However,
the practical limitations of fact-checking (e.g., the
deadlines of journalists and the time-constraints
of media consumers) often force the use of a
triage system (Borel, 2016). This can introduce
biases regardless of the intentions of journalists
and system-developers to use objective criteria
(Uscinski and Butler, 2013; Uscinski, 2015).
Addressing this challenge will require the de-
velopment of systems allowing for real-time in-
teraction with users to take into account their
evolving needs.

Dataset Artefacts and Biases Synthetic
datasets constructed through crowd-sourcing are
common (Zeichner et al., 2012; Hermann et al.,
2015; Williams et al., 2018). It has been shown
that models tend to rely on biases in these datasets,
without learning the underlying task (Gururangan
et al., 2018; Poliak et al., 2018; McCoy et al.,
2019). For fact-checking, Schuster et al. (2019)
showed that the predictions of models trained
on FEVER (Thorne et al., 2018a) were largely
driven by indicative claim words. The FEVER 2.0
shared task explored how to generate adversarial
claims and build systems resilient to such attacks
(Thorne et al., 2019). Alleviating such biases and
increasing the robustness to adversarial examples
remains an open question. Potential solutions
include leveraging better modeling approaches
(Utama et al., 2020a,b; Karimi Mahabadi et al.,
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2020; Thorne and Vlachos, 2021), collecting
data by adversarial games (Eisenschlos et al.,
2021), or context-sensitive inference (Schuster
et al., 2021).

Multimodality Information (either in claims
or evidence) can be conveyed through multiple
modalities such as text, tables, images, audio, or
video. Though the majority of existing works have
focused on text, some efforts also investigated how
to incorporate multimodal information, including
claim detection with misleading images (Zhang
et al., 2018), propaganda detection over mixed
images and text (Dimitrov et al., 2021), and claim
verification for images (Zlatkova et al., 2019;
Nakamura et al., 2020). Monti et al. (2019) argued
that rumors should be seen as signals propagat-
ing through a social network. Rumor detection is
therefore inherently multimodal, requiring anal-
ysis of both graph structure and text. Available
multimodal corpora are either small in size (Zhang
et al., 2018; Zlatkova et al., 2019) or constructed
based on distant supervision (Nakamura et al.,
2020). The construction of large-scale annotated
datasets paired with evidence beyond metadata
will facilitate the development of multimodal
fact-checking systems.

Multilinguality Claims can occur in multi-
ple languages, often different from the one(s)
evidence is available in, calling for multilin-
gual fact-checking systems. While misinformation
spans both geographic and linguistic boundaries,
most work in the field has focused on English.
A possible approach for multilingual verification
is to use translation systems for existing methods
(Dementieva and Panchenko, 2020), but relevant
datasets in more languages are necessary for test-
ing multilingual models’ performance within each
language, and ideally also for training. Currently,
there exist a handful of datasets for factual verifi-
cation in languages other than English (Baly et al.,
2018; Lillie et al., 2019; Khouja, 2020; Shahi
and Nandini, 2020; Nørregaard and Derczynski,
2021), but they do not offer a cross-lingual set-
up. More recently, Gupta and Srikumar (2021)
introduced a multilingual dataset covering 25 lan-
guages, but found that adding training data from
other languages did not improve performance.
How to effectively align, coordinate, and lever-
age resources from different languages remains an
open question. One promising direction is to dis-

till knowledge from high-resource to low-resource
languages (Kazemi et al., 2021).

Faithfulness A significant unaddressed chal-
lenge in justification production is faithfulness.
As we discuss in Section 4.3, some justifications
—such as those generated abstractively (Maynez
et al., 2020)—may not be faithful. This can be
highly problematic, especially if these justifica-
tions are used to convince users of the validity of
model predictions (Lertvittayakumjorn and Toni,
2019). Faithfulness is difficult to evaluate for,
as human evaluators and human-produced gold
standards often struggle to separate highly plau-
sible, unfaithful explanations from faithful ones
(Jacovi and Goldberg, 2020). In the model in-
terpretability domain, several recent papers have
introduced strategies for testing or guaranteeing
faithfulness. These include introducing formal cri-
teria that models should uphold (Yu et al., 2019),
measuring the accuracy of predictions after re-
moving some or all of the predicted non-salient
input elements (Yeh et al., 2019; DeYoung
et al., 2020; Atanasova et al., 2020a), or disprov-
ing the faithfulness of techniques by counterex-
ample (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019). Further work is needed to develop
such techniques for justification production.

From Debunking to Early Intervention and
Prebunking The prevailing application of auto-
mated fact-checking is to discover and intervene
against circulating misinformation, also referred
to as debunking. Efforts have been made to re-
spond quickly after the appearance of a piece of
misinformation (Monti et al., 2019), but common
to all approaches is that intervention takes place
reactively after misinformation has already been
introduced to the public. NLP technology could
also be leveraged in proactive strategies. Prior
work has employed network analysis and similar
techniques to identify key actors for interven-
tion in social networks (Farajtabar et al., 2017);
using NLP, such techniques could be extended
to take into account the information shared by
these actors, in addition to graph-based features
(Nakov, 2020; Mu and Aletras, 2020). Another
direction is to disseminate countermessaging be-
fore misinformation can spread widely; this is
also known as pre-bunking, and has been shown
to be more effective than post-hoc debunking
(van der Linden et al., 2017; Roozenbeek et al.,
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2020; Lewandowsky and van der Linden, 2021).
NLP could play a crucial role both in early de-
tection and in the creation of relevant coun-
termessaging. Finally, training people to create
misinformation has been shown to increase resis-
tance towards false claims (Roozenbeek and van
der Linden, 2019). NLP could be used to facilitate
this process, or to provide an adversarial oppo-
nent for gamifying the creation of misinformation.
This could be seen as a form of dialogue agent to
educate users, however there are as of yet no
resources for the development of such systems.

7 Conclusion

We have reviewed and evaluated current auto-
mated fact-checking research by unifying the task
formulations and methodologies across different
research efforts into one framework comprising
claim detection, evidence retrieval, verdict predic-
tion, and justification production. Based on the
proposed framework, we have provided an exten-
sive overview of the existing datasets and mod-
eling strategies. Finally, we have identified vital
challenges for future research to address.
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Lluı́s Màrquez, Alessandro Moschitti, and
Preslav Nakov. 2018. Integrating stance de-
tection and fact checking in a unified corpus.
In Proceedings of the 2018 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers),
pages 21–27, New Orleans, Louisiana. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/N18-2004

Aviv Barnoy and Zvi Reich. 2019. The When,
Why, How and So-What of Verifications. vol-
ume 20, pages 2312–2330. Taylor & Francis.
https://doi.org/10.1080/1461670X
.2019.1593881

Alberto Barrón-Cedeño, Tamer Elsayed, Preslav
Nakov, Giovanni Da San Martino, Maram
Hasanain, Reem Suwaileh, Fatima Haouari,
Nikolay Babulkov, Bayan Hamdan, Alex
Nikolov, Shaden Shaar, and Zien Sheikh Ali.
2020. Overview of CheckThat! 2020: Auto-
matic identification and verification of claims
in social media. In Experimental IR Meets Mul-
tilinguality, Multimodality, and Interaction -
11th International Conference of the CLEF
Association, CLEF 2020, Thessaloniki, Greece,
September 22–25, 2020, Proceedings, volume
12260 of Lecture Notes in Computer Science,
pages 215–236. Springer.

Alberto Barrón-Cedeño, Tamer Elsayed, Reem
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Riedel, and Douwe Kiela. 2020. Retrieval-
augmented generation for knowledge-intensive
NLP tasks. In Advances in Neural Information
Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020,
NeurIPS 2020, December 6–12, 2020, virtual.

Jiawen Li, Yudianto Sujana, and Hung-Yu
Kao. 2020. Exploiting microblog conversa-
tion structures to detect rumors. In Proceed-
ings of the 28th International Conference on
Computational Linguistics, pages 5420–5429,
Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

197

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00454/1987018/tacl_a_00454.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.18653/v1/S17-2083
https://doi.org/10.18653/v1/S17-2083
https://doi.org/10.1145/3412869
https://doi.org/10.1145/3412869
https://doi.org/10.18653/v1/2020.coling-main.474
https://doi.org/10.18653/v1/2020.coling-main.474
https://doi.org/10.1126/science.aao2998
https://doi.org/10.1126/science.aao2998
https://pubmed.ncbi.nlm.nih.gov/29590025
https://doi.org/10.18653/v1/D19-1523
https://doi.org/10.18653/v1/D19-1523
https://doi.org/10.1177/1529100612451018
https://doi.org/10.1177/1529100612451018
https://pubmed.ncbi.nlm.nih.gov/26173286
https://doi.org/10.1080/10463283.2021.1876983
https://doi.org/10.1080/10463283.2021.1876983


Yaliang Li, Jing Gao, Chuishi Meng, Qi Li, Lu Su,
Bo Zhao, Wei Fan, and Jiawei Han. 2015. A sur-
vey on truth discovery. SIGKDD Explorations,
17(2):1–16. https://doi.org/10.1145
/2897350.2897352

Anders Edelbo Lillie, Emil Refsgaard Middelboe,
and Leon Derczynski. 2019. Joint rumour stance
and veracity prediction. In Proceedings of the
22nd Nordic Conference on Computational
Linguistics, pages 208–221, Turku, Finland.
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