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Abstract

Idiomatic expressions are an integral part of
natural language and constantly being added to
a language. Owing to their non-compositionality
and their ability to take on a figurative or literal
meaning depending on the sentential context,
they have been a classical challenge for NLP
systems. To address this challenge, we study
the task of detecting whether a sentence has
an idiomatic expression and localizing it when
it occurs in a figurative sense. Prior research
for this task has studied specific classes of
idiomatic expressions offering limited views
of their generalizability to new idioms. We
propose a multi-stage neural architecture with
attention flow as a solution. The network ef-
fectively fuses contextual and lexical infor-
mation at different levels using word and
sub-word representations. Empirical evalua-
tions on three of the largest benchmark datasets
with idiomatic expressions of varied syntactic
patterns and degrees of non-compositionality
show that our proposed model achieves new
state-of-the-art results. A salient feature of
the model is its ability to identify idioms un-
seen during training with gains from 1.4%
to 30.8% over competitive baselines on the
largest dataset.

1 Introduction

Idiomatic expressions (IEs) are a special class
of multi-word expressions (MWEs) that typically
occur as collocations and exhibit semantic non-
compositionality (a.k.a. semantic idiomaticity),
where the meaning of the expression is not deriv-
able from its parts (Baldwin and Kim, 2010). In
terms of occurrence, IEs are individually rare, but
collectively frequent in and constantly added to na-
tural language across different genres (Moon et al.,
1998). Additionally, they are known to enhance
fluency and used to convey ideas succinctly when
used in everyday language (Baldwin and Kim,
2010; Moon et al., 1998).

Classically regarded as a ‘‘pain in the neck’’
to idiom-unaware NLP applications (Sag et al.,
2002) these phrases are challenging for reasons
including their non-compositionality (semantic
idiomaticity), besides taking a figurative or literal
meaning depending on the context (semantic am-
biguity), as shown by the example in Table 1.
Borrowing the terminology from Haagsma et al.
(2020), we call these phrases potentially idiomatic
expressions (PIEs) to account for the context-
ual semantic ambiguity. Indeed, prior work has
identified the challenges that PIEs pose to many
NLP applications, such as machine translation
(Fadaee et al., 2018; Salton et al., 2014), para-
phrase generation (Ganitkevitch et al., 2013), and
sentiment analysis (Liu et al., 2017; Biddle et al.,
2020). Accordingly, making applications idiom-
aware, either by identifying them before or dur-
ing the task, has been found to be effective
(Korkontzelos and Manandhar, 2010; Nivre and
Nilsson, 2004; Nasr et al., 2015). This study
proposes a novel architecture that detects the pres-
ence of a PIE. When found, its span in a given
sentence is localized and returning the phrase if
it is used figuratively (i.e., used as an IE); other-
wise an empty string is returned indicating that
the phrase is used literally (see Table 1). Such a
network can serve as a preprocessing step for
broad-coverage downstream NLP applications
because we consider the ability to detect IEs to
be a first step towards their accurate processing.
This is the idiomatic expression identification
problem, which is the MWE identification prob-
lem defined by Baldwin and Kim (2010) limited to
MWEs with semantic idiomaticity.

Despite being well-studied in the current liter-
ature as idiom type and token classification (e.g.,
Fazly et al., 2009; Feldman and Peng, 2013; Salton
et al., 2016; Taslimipoor et al., 2018; Peng et al.,
2014; Liu and Hwa, 2019), previous methods are
limited for various reasons. They rely on knowing
the PIEs being classified and hence their exact
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Input Tom said many bad things about
Jane behind her back. (Figurative)
He took one from an armchair and
put it behind her back. (Literal)

Output behind her back
<CLS> <SEP>

Table 1: Example input and output for DISC
framework. When a potentially idiomatic expres-
sion (PIE; italicized) is used idiomatically, the
PIE is identified and extracted as the output;
otherwise the model outputs the start (<CLS>)
and end (<SEP>) tokens to indicate that it is used
literally.

positions, or focus on specific syntactic patterns
(e.g., verb-noun compounds or verbal MWEs),
thereby calling into question their use in more
realistic scenarios with unseen PIEs (a likely
event, given the prolific nature of PIEs). Addi-
tionally, without a cross-type (type-aware) evalua-
tion, where the PIE types from the train and test
splits are segregated (Fothergill and Baldwin,
2012; Taslimipoor et al., 2018, the true general-
izability of these methods to unseen idioms can-
not be inferred. For instance, a model could be
classifying by memorizing known PIEs or their
tendencies to occur exclusively as figurative or
literal expressions.

In contrast, this study aims to identify IEs in
general (i.e., without posing constraints on the
PIE type) in a more realistic setting where new
idioms may occur, by proposing the iDentifier of
Idiomatic expressions via Semantic Compatibility
(DISC) that performs detection and localization
jointly. The novelty is that we perform the task
without an explicit mention of the identity or the
position of the PIE. As a result, the task is more
challenging than the previously explored idiom
token classification.

An effective solution to this task calls for
the ability to relate the meaning of its compo-
nent words with each other (e.g., Baldwin, 2005;
McCarthy et al., 2007) as well as with the con-
text (Liu and Hwa, 2019). This aligns with the
widely upheld psycholinguistic findings on hu-
man processing of a phrase’s figurative meaning-
in comparison with its literal interpretation
(Bobrow and Bell, 1973). Toward this end, we rely
on the contextualized representation of a PIE
(accounting both for its internal and contex-

tual properties), hypothesizing that a figurative
expression’s contextualized representation should
be different from that of its literal counterpart.
We refer to this as its semantic compatibility
(SC)—if a PIE is semantically compatible with
its context, then it is literal; if not, it is figurative.
The idea of SC also captures the distinction be-
tween literal word combinations and idioms, in
terms of the semantics encoded by both (Jaeger,
1999) and the related property of selectional
preference (Wilks, 1975)—the tendency for a word
to semantically select or constrain which other
words may appear in its association (Katz and
Fodor, 1963) successfully used for processing
metaphors (Shutova et al., 2013) and word sense
disambiguation (Stevenson and Wilks, 2001). We
capture SC by effectively fusing information from
the input tokens’ contextualized and literal word
representations to then localize the span of PIE
used figuratively. Here we leverage the idea of
attention flow previously studied in a machine
comprehension setting (Seo et al., 2017).

Our main contributions in this work are:

A novel IE identification model, DISC, that uses
attention flow to fuse lexical semantic information
at different levels and discern the SC of a PIE.
Taking only a sentence as input and using only
word and POS representations, it simultaneously
performs detection and localization of the PIEs
used figuratively. To the best of our knowledge,
this is the first such study on this task.

Realistic evaluation: We include two novel as-
pects in our evaluation methodology. First, we
consider a new and stringent performance measure
for subsequence identification; the identification
is successful if and only if every word in the exact
IE subsequence is identified. Second, we consider
type-aware evaluation so as to highlight a mod-
el’s generalizability to unseen PIEs regardless of
syntactic pattern.

Competitive performance: Using benchmark
datasets with a variety of PIEs, we show DISC1

compares favorably with strong baselines on PIEs
seen during training. Particularly noteworthy is its
identification accuracy on unseen PIEs, which is
1.4% to 11.1% higher than the best baseline.

1The implementation of DISC is available at https://
github.com/zzeng13/DISC.
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2 Related Work

We provide a unified view of the diverse termi-
nologies and tasks studied in prior works that
define the scope of our study.

MWEs, IEs and Metaphors. We first introduce
the relation between the three related concepts,
namely, MWE, IE, and metaphor, in order to
present a clearer picture of the scope of our
work. According to Baldwin and Kim (2010) and
Constant et al. (2017), MWEs (e.g., bus driver
and good morning) satisfy the properties of out-
standing collocation and contain multiple words.
IEs are a special type of MWE that also exhibit
non-compositionality at the semantic level. This
has generally been considered to be the key dis-
tinguishing property between idioms (IEs) and
MWEs in general, although the boundary between
IEs and non-idiom MWEs is not clearly defined.
(Baldwin and Kim, 2010; Fadaee et al., 2018;
Liu et al., 2017; Biddle et al., 2020). Metaphors
are a form of figurative speech used to make an
implicit comparison at an attribute level between
two things seemingly unrelated on the surface. By
definition, certain MWEs and IEs use metaphor-
ical figuration (e.g., couch potato and behind the
scenes). However, not all metaphors are IEs be-
cause metaphors are not required to possess any of
the properties of IEs—that is, the components of a
metaphor need not co-occur frequently (metaphors
can be uniquely created by anyone), metaphors
can be direct and plain comparisons and thus
are not semantically non-compositional, and they
need not have multiple words (e.g., titanium in the
sentence ‘‘I am titanium’’).

PIE and MWE Processing. Current literature
considers idiom type classification and idiom to-
ken classification (Cook et al., 2008; Liu and
Hwa, 2019; Liu, 2019) as two idiom-related tasks.
Idiom type classification decides if a phrase could
be used as an idiom without specifically consid-
ering its context. Several works (e.g., Fazly and
Stevenson, 2006; Shutova et al., 2010) have
studied the distinguishing properties of idioms
from other literal phrases, especially that of non-
compositionality (Westerståhl, 2002; Tabossi
et al., 2008; 2009; Reddy et al., 2011; Cordeiro
et al., 2016).

In contrast, idiom token classification (Fazly
et al., 2009; Feldman and Peng, 2013; Peng and
Feldman, 2016; Salton et al., 2016; Taslimipoor

et al., 2018; Peng et al., 2014; Liu and Hwa, 2019)
determines whether a given PIE is used literally
or figuratively in a sentence. Prior work has used
per-idiom classifiers that are completely non-
scalable to be practical (Liu and Hwa, 2017), re-
quired the position of the PIEs in the sentence (e.g.,
Liu and Hwa, 2019), and focused only on spe-
cific PIE patterns, such as verb-noun compounds
(Taslimipoor et al., 2018). Overall, available re-
search for this task only disambiguates a given
phrase. In contrast, we do not assume any knowl-
edge of the PIE being detected; given a sentence,
we detect whether there is a PIE and disambiguate
its use.

PIEs being special types of MWEs, our task is
related to MWE extraction and MWE identifica-
tion (Baldwin and Kim, 2010). As with idioms,
MWE extraction takes a text corpus as input and
produces a list of new MWEs (e.g., Fazly et al.,
2009; Evert and Krenn, 2001; Pearce, 2001;
Schone and Jurafsky, 2001). MWE identifica-
tion takes a text corpus as input and locates
all occurrences of MWEs in the text at the token
level, differentiating between their figurative and
literal use (Baldwin, 2005; Katz and Giesbrecht,
2006; Hashimoto et al., 2006; Blunsom, 2007;
Sporleder and Li, 2009; Fazly et al., 2009; Savary
et al., 2017); the identified MWEs may or may not
be known beforehand. Constant et al. (2017) group
main MWE-related tasks into MWE discovery and
MWE identification: MWE discovery is identical
to MWE extraction, while the MWE identification
here, different from Baldwin and Kim’s definition,
identifies only known MWEs. Our task is identi-
cal to Baldwin and Kim’s (2010) MWE identi-
fication and Savary et al.’s (2017) verbal MWE
identification while focusing only on PIEs, and
we aim to both detect the presence of PIEs and
localize IE positions (boundaries), regardless of
whether the PIEs were previously seen or not.
Besides, like idiom type classification and MWE
extraction, our approach also works for identifying
new idiomatic expressions.

Approaches to MWE identification fall into two
broad types. (1) A tree-based approach by first
constructing a syntactic tree of the sentence and
then traversing a selective set of candidate subse-
quences (at a node) to identify idioms (Liu et al.,
2017). However, since the construction of a syn-
tactic tree is itself affected by the presence of idi-
oms (Nasr et al., 2015; Green et al., 2013), the
nodes may not correspond to an entire idiomatic
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expression, which in turn can affect even a perfect
classifier’s ability to identify idioms precisely. (2)
Framing the problem as a sequence labeling prob-
lem for token-level idiomatic/literal labeling, sim-
ilar to prior work (Jang et al., 2015; Mao et al.,
2019; Gong et al., 2020; Kumar and Sharma,
2020; Su et al., 2020) on metaphor detection that
label each token as a metaphor or a non-metaphor
and Schneider and Smith’s (2015) approach to
MWE identification by tagging tokens from a
MWE with the same supersense tag. This tagging
approach provides finer control over subsequence
extraction and is unrestricted by factors that could
impact a tree-based approach, and does not re-
quire the traversal of all possible subsequences
in search of the candidate phrases. Our approach
is similar to this in spirit but focused on PIEs.
In particular, Schneider and Smith (2015) aim
to tag all MWEs while making no distinction
for the non-compositional phrases, whereas our
work aims to only identify IEs from sentences
containing PIEs.

Semantic Compatibility. Exploiting SC for
processing idioms has been considered in rather
restricted settings, where the identity of a PIE
(and hence its position) is known. For instance,
Liu and Hwa (2019) used SC to classify a given
phrase in its context as literal/idiomatic. A cor-
pus of annotated phrases was used to train a
linear classification layer to discriminate between
phrases’ contextualized and literal embeddings.
Peng and Feldman (2016) directly check the com-
patibility between the word embeddings of a PIE
with the embeddings of its context words to per-
form the literal/idiomatic classification. Jang et al.
(2015) used SC and the global discourse context
to detect the figurative use of a small list of can-
didate metaphor words. Gong et al. (2017) treated
the phrase’s respective context as vector spaces
and modeled the distance of the phrase from the
vector space as an index of SC. We extend these
prior efforts to identify both the presence and the
position of an IE using only a sentence as input
without knowing the PIE.

3 Method

In line with studies on MWE identification
mentioned above, we frame the identification of
idiomatic subsequences as a token-level tagging
problem, where we perform literal/idiomatic clas-

sification for every token in the sentence. A sim-
ple post-processing step finally extracts the PIE
subsequence used in the idiomatic sense.

Task Definition. Given an input sentence S =
w1, w2, . . . , wL, where wi for i ∈ [1, L] are the
tokenized units and L is the number of tokens
in S, the task is to label the individual token
wi with a label ci ∈ {idiomatic, literal} so that
the final output is a sequence of classifications
C = c1, c2, . . . , cL. For a correct prediction, the
phrasewi:j inS is idiomatic and the corresponding
ci:j are classified into the ‘idiom’ class, while the
rest are the ‘literal’ class; or the phrase wi:j in S is
literal and the corresponding c1:L are all classified
into the ‘literal’ class.

Overview of Proposed Approach. The overall
workflow and model architecture of DISC are il-
lustrated in Figure 1. The model can be roughly
divided into three distinct phases: (1) the embed-
ding phase, (2) the attention phase, and (3) the
prediction phase. In the embedding phase, the in-
put sequenceS is tokenized and both the contextu-
alized and static word embeddings are generated
and supplemented with character-level informa-
tion. Furthermore, POS tag embeddings of the
input tokens are generated to provide syntactic in-
formation. In the attention phase, an attention flow
layer combines the POS tag embeddings with the
static word embeddings, yielding an enhanced lit-
eral representation for every word. Then, a second
attention flow layer fuses the contextualized and
the enriched literal representations by attending to
the rich features of each token in the tokenized
input sequence. Finally, the prediction phase fur-
ther encodes the sequence of feature vectors and
performs token-level literal/idiomatic classifica-
tion to produce the predicted sequence C.

Embedding Phase. Here the input sentence S
is tokenized in two ways—one for the pre-trained
language model and the other for the pre-trained
static word embedding layer—resulting in two
tokenized sequences T c and T s, such that |T c| =
M and |T s| = N . Since the two tokenizers are not
necessarily the same, N and M may be unequal.

Next, T c is fed to a pre-trained language model
to produce a sequence of contextualized word em-
beddings, Econ ∈ R

M×Dcon , where Dcon is the
embedding vector dimension. A pre-trained word
embedding layer takes T s to produce a sequence
of static word embeddings, Es ∈ R

N×Ds , where
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Figure 1: Overview of the DISC framework.

Ds is the embedding vector dimension. The con-
textualized embeddings capture the semantic con-
tent of the phrases within the specific context,
while the static word embeddings capture the com-
positional meaning of the phrases, both of which
allow the model to check SC.

Additionally, informed by the finding that
character-level information alleviates the problem
of morphological variability in idiom detection
(Liu et al., 2017), character sequences C ∈
R
N×Wt are generated from T s, and their character-

level embeddings, Echar ∈ R
N×Dchar obtained

using a 1-D Convolutional Neural Network (CNN)
followed by a max-pooling layer over the maxi-
mum width of the tokens, Wt. Then, Echar and
Es are combined via a two-layer highway net-
work (Srivastava et al., 2015) which yields
Ês ∈ R

N×(Dchar+Ds).
Lastly, to capture shallow syntactic informa-

tion, a POS embedding layer generates a sequence
of POS tags for T s and a simple linear embedding
layer produces a sequence of POS tag embed-
dings, Epos ∈ R

N×Dpos , where Dpos is the POS
embedding vector dimension.

In effect, the embedding layer encodes four lev-
els of information: character-level, phrase-internal
and implicit context (static word embedding),
phrase-external and explicit context (contextual
embedding), and shallow syntactic information
(POS tag).

To perform an initial feature extraction from
the raw embeddings and unify the different em-

bedding vector dimensions, we apply a Bidirec-
tional LSTM (BiLSTM) layer for each embedding
sequence resulting in ˜Econ ∈ R

M×Demb , Ẽs ∈
R
N×Demb , and ˜Epos ∈ R

N×Demb , where Dembed/2
is the hidden dimension of the BiLSTM layers.

Attention Phase. The attention phase mainly
consists of two attention flow layers. In its na-
tive application (i.e., reading comprehension), the
attention flow layer linked and fused informa-
tion from the context word sequence and the
query word sequence (Seo et al., 2017), producing
query-aware vector representations of the context
words while propagating the word embeddings
from the previous layer. Analogously, for our task,
the attention flow layer fuses information from
the two embedding sequences encoding differ-
ent kinds of information. More specifically, given
two sequences Sa ∈ R

L×D and Sb ∈ R
K×D of

lengthsL andK, the attention flow layer computes
H ∈ R

L×K using, Hij = W�
0

[
Sa
:i;S

b
:j ;S

a
:i ◦ Sb

:j

]
,

where Hij is the attended, merged embedding of
the i-th token in Sa and the j-th token in Sb, W0 is
a trainable weight matrix, Sa

:i is the i-th column of
Sa, Sb

:j is the j-th column of Sb, [; ] is vector con-
catenation, and ◦ is the Hadamard product. Next,
the attentions are computed from both Sa-to-Sb

and Sb-to-Sa. The Sa-to-Sb attended representa-
tion is computed as S̃b

:i =
∑

j aijS
b
:j , where ai =

softmax (Hi:); ai ∈ R
K and

∑
aij = 1; S̃b ∈

R
2D×L. The Sb-to-Sa attended representation
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is computed as S̃a
:i =

∑
i biS

a
:i, where b =

softmax (maxcol(H)), b ∈ R
L, and S̃a ∈ R

2D×L.
Finally, the attention flow layer outputs a com-
bined vector U ∈ R

8D×L, where U:i = [Sa
:i; S̃

b
:i;

Sa
:i ◦ S̃b

:i;S
a
:i ◦ S̃a

:i].
The two attention flow layers serve different

purposes. The first one fuses the static word em-
beddings and the POS tag embeddings resulting
in token representations that encode information
from a given word’s POS and that of its neighbors.
The POS information is useful because different
idioms often follow common syntactic structures
(e.g., verb-noun idioms), which can be used to
recognize idioms unseen in the training data based
on their similarity in syntactic structures (and thus
aid generalizability). In all, the first attention flow
layer yields enriched static embeddings that more
effectively capture the literal representation of the
input sequence. The second attention flow layer
combines the contextualized and literal embed-
dings so that the resulting representation encodes
the SC between the literal and contextualized
representations of the PIEs. This is informed by
prior findings that the SC between the static and
the contextualized representation of a phrase is
a good indicator of its idiomatic usage (Liu and
Hwa, 2019). In addition, this attention flow layer
permits working with contextualized and static
embedding sequences of differing lengths using
model-appropriate tokenizers for the pre-trained
language model and the word embedding layer
without having to explicitly map the tokens from
the different tokenizers.

Prediction Phase. The prediction phase consists
of a single BiLSTM layer and a linear layer.
The BiLSTM layer further processes and encodes
the rich representations from the attention phase.
The linear layer that follows uses a log softmax
function to predict the probability of each token
over the five target classes idiomatic, literal, start,
end, and padding. This architecture is inspired
by the RNN-HG model from (Mao et al., 2019)
with the difference that our BiLSTM has only one
layer. During training, the token-level negative
log-likelihood loss is computed and backpropagated
to update the model parameters.

Implementation Details. In our implementa-
tion, the tokenizer for the language model uses the
WordPiece algorithm (Schuster and Nakajima,
2012) prominently used in BERT (Devlin et al.,

2019), whereas the static word embedding layer
used Python’s Natural Language Toolkit (NLTK)
(Loper and Bird, 2002).

The pre-trained language model is the uncased
base BERT from Huggingface’s Transformers
package (Wolf et al., 2020) with an embedding
dimension of Dcon = 768. The pre-trained word
embedding layer is the cased Common Crawl ver-
sion of GloVE, which has a vocabulary of 2.2 M
words and the embedding vectors are of dimen-
sion Ds = 300 (Pennington et al., 2014). Both
the BERT and GloVE models are frozen dur-
ing training. We use NLTK’s POS tagger for the
POS tags.

For the character embedding layer, the input
embedding dimension is 64 and the number of
CNN output channels isDchar = 64. The highway
network has two layers. The POS tag embedding
is of dimension Dpos = 64. All the BiLSTM
layers have a hidden dimension of 256, and thus
Demb = 512.

4 Experiments

Datasets. We use the following three of the
largest available datasets of idiomatic expres-
sions to evaluate the proposed model alongside
other baselines. MAGPIE (Haagsma et al., 2020):
MAGPIE is a recent, the largest-to-date corpus of
PIEs in English. It consists of 1,756 PIEs across
different syntactic patterns along with the sen-
tences in which they occur (56,622 annotated data
instances with an average of 32.24 instances per
PIE), where the sentences are drawn from a di-
verse set of genres, such as news and science,
collected from resources such as the British Na-
tional Corpus (BNC) (BNC Consortium, 2007).
For our experiments, we only considered the com-
plete sentences of up to 50 words in length that
contain the unambiguously labelled PIEs (as indi-
cated by the perfect confidence score).

SemEval5B (Korkontzelos et al., 2013): This set
has 60 PIEs unrestricted by syntactic pattern ap-
pearing in 4,350 sentences from the ukWaC corpus
(Baroni et al., 2009). As in MAGPIE, we only
consider the sentences with the annotated phrases.
VNC (Cook et al., 2008): Verb Noun Combina-
tions (VNC) dataset is a popular benchmark data-
set that contains expert-curated 53 PIE types that
are only verb-noun combinations and around 2,500
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Dataset Split Size (pct. idiomatic) # of idioms Avg. idiom occ Std. idiom occ
Train Test Train Test Train Test Train Test

MAGPIE Random 32,162 (76.63%) 4,030 (76.48%) 1,675 1,072 19.2 3.76 24.82 3.65
Type-aware 32,155 (77.90%) 4,050 (70.54%) 1,411 168 22.79 24.11 29.96 32.05

SemEval5B Random 1,420 (50.56%) 357 (50.70%) 10 10 142 35.7 51.25 12.69
Type-aware 1,111 (58.74%) 341 (58.65%) 31 9 35.81 37.89 28.84 30.12

VNC Random 2,285 (79.52%) 254 (70.47%) 53 50 43.11 5.08 25.89 2.93
Type-aware 2,191 (79.69%) 348 (71.84%) 47 6 46.62 58 27.99 27.77

Table 2: Statistics of the datasets in our experiments showing the size of training and testing sets,
proportion of instances having a figurative PIE (pct. idiomatic), the size of the PIE set (# of idioms),
the average number of occurrences per PIE (avg. idiom occ), and standard deviation of the number of
occurrences per PIE (std. idiom occ).

sentences containing them either in a figurative
or literal sense—all extracted from the BNC. Be-
cause VNC does not mark the location of the
idiom, we manually labeled them.
Together, the datasets account for a wide variety
of PIEs, making this the largest available study on
a wide variety of PIE categories.

Baseline Models. We use the following six
baseline models for our experiments. We note
that because our method is similar to idiom type
classification only in its end goal and not in setting,
we exclude SOTA models for idiom classification
from this comparison, but include the more recent
MWE extraction methods.

Gazetteer is a naı̈ve baseline that looks up a PIE
in a lexicon. In our experiments, to make the Gaz-
etteer method independent of the algorithm and
lexicon, we present the theoretical performance
upper bound for any Gazetteer-based algorithm as
follows. We assume that the Gazetteer perfectly
detects the idiom boundaries in sentences and,
in turn, predicts all PIEs to be idiomatic. We
point out that since the idiomatic class is the most
frequent-class in all of our benchmark datasets,
this also turns out to be the majority-class baseline
for the case of sentence-level, binary idiomatic
and literal classification, that is, it predicts every
sentence in a dataset to be idiomatic for binary
idiom detection.

BERT-LSTM has a simple architecture that com-
bines the pre-trained BERT and a linear layer
to perform a binary classification at each token
and was used in Kurfalı and Östling (2020) for
disambiguating PIEs.

Seq2Seq has an encoder-decoder structure and
is commonly used in sequence tagging tasks

(Filippova et al., 2015; Malmi et al., 2019; Dong
et al., 2019). It first uses the pre-trained BERT
to generate contextualized embeddings and then
sends them to a BiLSTM encoder-decoder model
to tag each token as literal/idiomatic. Although
not commonly used in idiom processing tasks, the
encoder-decoder framework serves as a simple
yet effective baseline for our tagging based idiom
identification.

BERT-BiLSTM-CRF (Huang et al., 2015) is an
established model for sequence tagging (and the
state-of-the-art for name entity recognition in dif-
ferent languages [Huang et al., 2015; Hu and
Verberne, 2020]), which uses a BiLSTM to encode
the sequence information and then performs se-
quence tagging with a conditional random field
(CRF).

RNN-MHCA (Mao et al., 2019) is a recent
state-of-the-art model for metaphor detection on
the benchmark VUA dataset that uses GloVe and
ELMo embeddings with a multi-head contextual
attention.

IlliniMET (Gong et al., 2020) is one of the most
recent models for metaphor detection, achieving
state-of-the-art performance on VUA (Steen et al.,
2010) and the TOEFL (Beigman Klebanov et al.,
2018) dataset. It uses RoBERTa and a set of lin-
guistic features to perform token level metaphor
tagging.

Experimental Setup. For a fair comparison
across the models, we use a pre-trained BERT
model in place of the linear embedding layers,
ELMo, and RoBERTa model respectively in the
last three baselines. The pre-trained BERT model
is also frozen for all the baseline model and DISC.
Owing to a lack of a good fine-tuning strategy
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that fits all baselines, we leave to future work
exploring improved performance via end-to-end
BERT fine-tuning.

In order to test the models’ ability to identify
unseen idioms, each dataset was split into train
and test set in two ways: random and type-aware.
In the random split, the sentences are randomly
divided and the same PIE can appear in both sets,
whereas in the type-aware split, the idioms in
the test set and the train set do not overlap. For
MAGPIE and SemEval5B, we use their respec-
tive random/type-aware and train/test splits. For
VNC, to create the type-aware split, we randomly
split the idiom types by a 90/10 ratio, leaving
47 idiom types in train set and 6 idiom types in
test set. For every dataset split, we trained ev-
ery model for 600 epochs with a batch size of
64, an initial learning rate of 1e − 4, using the
Adam optimizer.

The checkpoints with the best test set perfor-
mance during training are recorded later in the
result tables. For models with BiLSTMs, we used
the same specifications as in our model with a
hidden dimension of 256 and a single layer, ex-
cept for BiLSTM-CRF, where we used a stacked
two-layer BiLSTM. For the linear layers, we set a
dropout rate of 0.2 during training. For Seq2Seq,
we used a teacher forcing ratio of 0.7 during train-
ing and brute force search during inference. The
same pre-trained BERT model from Hugging-
face’s Transformers package was used as a frozen
embedding layer in all models. All the other hy-
perparameters were in their default values.

All training and testing were done on a single
machine with an Intel Core i9-9900K processor
and a single NVIDIA GeForce RTX 2080 Ti
graphics card.

Evaluation Metrics. We use two metrics to
evaluate the performance of the models. (1) Clas-
sification F1 score (F1) measures the binary idiom
detection performance at the sequence level with
the presence of idioms being the positive class.
(2) Sequence accuracy (SA) computes the idiom
identification performance at the sentence level,
where a sequence is considered as being classified
correctly if and only if all its tokens are tagged
correctly. We point out that the performance in
terms of F1 score is essentially analogous to the
performance of the idiom token classification task
(see Section 2), the primary difference being
whether the idiom is specified or not. Because

SA is stricter than F1, we regard it to be the most
relevant metric for idiom detection and span lo-
calization. Here we consider SA to be the primary
evaluation metric with F1 providing additional
performance references.

5 Results and Analyses

IE Identification Performance. A comparative
evaluation of the models on the MAGPIE, Sem-
Eval5B, and VNC datasets is shown in Table 3.

Overall, DISC is the best performing model
among all baseline models. Specifically, DISC
and RNN-MHCA show competitive results in all
random split settings, however, DISC has stronger
performance on type-aware settings, indicating
that the SC check enables DISC to recognize the
non-compositionality of idioms permitting it to
generalize better to idioms unseen in the training
set. Therefore, while RNN-MHCA might be as
good as DISC when it comes to identifying (and
potentially memorizing) known idioms, DISC is
more capable of identifying unseen idioms since
it better leverages the SC property of idioms in
addition to memorization.

In the random setting, DISC performs on par
with RNN-MHCA and BERT-BiLSTM-CRF in
terms of F1 and SA for MAGPIE while outper-
forming all baselines using the other datasets. It
is notable that even with the ability to perfectly
localize PIEs, Gazetteer has a low SA compared
to the other top-performing models due to its in-
ability to use the context to determine if the PIE is
used idiomatically. In the type-aware setting, the
F1 of DISC is comparable to that of RNN-MHCA
and BERT-BiLSTM. However, in terms of SA,
DISC outperforms all models across all datasets.
We also observe that for all datasets, achieving
high F1 scores is much easier than achieving high
SA. This is especially salient in the MAGPIE
type-aware split where all the models achieve
similar F1s, whereas DISC outperforms the oth-
ers in terms of SA by margins ranging from 7%
to 30.8% absolute points. Moreover, Gazetteer is
unable to perform PIE localization at all in this
setting on accounts of its being limited to the
instances available in an idiom lexicon.

For MAGPIE random split, it is notable that
all the models (including Gazetteer with its
majority-class prediction) achieve at least 86%
F1 score. For MAGPIE type-aware split, DISC
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Data Split Model Magpie SemEval5B VNC
F1 SA F1 SA F1 SA

Random

Gazetteer 86.67 76.47 67.29 50.70 82.68 70.47
BERT 87.16 37.10 92.51 76.47 93.09 50.00
Seq2Seq 92.70 83.21 94.41 ∗94.12 95.21 86.61
BERT-BiLSTM-CRF 94.22 ∗87.71 93.29 92.44 95.45 85.03
RNN-MHCA 95.51 ∗86.82 ∗94.94 93.56 ∗96.15 91.33
IlliniMET 86.54 37.97 92.59 78.15 93.55 59.45
DISC 95.02 ∗87.47 ∗95.80 ∗95.23 ∗96.97 93.31

Type-aware

Gazetteer 82.73 0.00 73.94 0.00 83.61 0.00
BERT 86.27 39.70 73.37 35.19 86.85 50.86
Seq2Seq 83.81 63.42 50.35 44.28 88.80 73.56
BERT-BiLSTM-CRF 80.47 61.78 57.82 44.57 83.30 65.52
RNN-MHCA 86.34 61.42 56.25 42.23 ∗88.74 79.02
IlliniMET 83.58 39.68 69.49 41.94 87.97 54.60
DISC 87.78 70.47 58.82 55.71 ∗89.02 80.46

Table 3: Performance of models on the MAGPIE, SemEval5B, and VNC Dataset as evaluated by
Classification F1 score (F1;%) and Sequence Accuracy (SA;%); best performances are boldfaced;
performances marked with asterisks are comparable in their differences are not statistically significant
at p = 0.05 using bootstrapped samples that are estimated 105 times.

is decisively the best performing model with ab-
solute gains of at least 7.1% in SA and at least
1.4% in F1. For SemEval5B type-aware split,
DISC is the best performing model in terms of
SA with gains of at least 11.1%. Note that in
terms of F1, although BERT outperforms DISC
by 14.6%, Gazetteer outperforms all methods. We
believe this is due to a combination of factors, in-
cluding the insufficiency of the training instances
(there were only 1,111 instances) and the number
of idioms (there were only 31 unique idioms in
the train set), and the distributional dissimilarity
between the train and test sets with respect to
the semantic and the syntactic properties of the
PIEs in the SemEval5B dataset, for example,
unlike VNC where both the train and test id-
ioms were verb-noun constructions, SemEval5B
idioms are of more diverse syntactic structures, yet
SemEval5B has fewer training instances and total
number of idioms. However, DISC outperforms
BERT by 20.5% in SA, which shows that DISC
has the best idiom identification ability. For VNC,
DISC and RNN-MHCA perform competitively
in all evaluation metrics in both random- and
type-aware settings. In terms of SA, DISC has a
> 1% gain over RNN-MHCA in both random and
type-aware settings.

Tgt. Domain Models F1 SA

SemEval5B RNN-MHCA 81.35 54.72
DISC 77.70 61.80

VNC RNN-MHCA 85.01 69.74
DISC 83.57 72.55

Table 4: The performance of idiom identifica-
tion in a cross-domain setting where models are
trained on MAGPIE random and tested on target
domains (Tgt. Domain) SemEval5B random and
VNC random. The performance is measured by
Classification F1 score (F1;%) and Sequence
Accuracy (SA;%).

Idiom identification Cross-domain Performance
across Datasets. To check the cross-domain
performance of the best performing models (DISC
and RNN-MHCA), we train them on the MAGPIE
train set (as it contains the largest number of in-
stances) and test on the VNC and the SemEval5B
test sets in a random-split setting. As shown in
Table 4, both models show a performance drop
due to the change of the sentence source between
SemEval5B and MAGPIE, and the small over-
lap between VNC and MAGPIE (only 4 common
idioms). RNN-MHCA obtains F1 scores that are
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3.6% and 1.44% higher than that of DISC on
SemEval5B and VNC respectively, indicating its
better ability to detect PIEs in this cross-domain
setting. However, DISC is able to detect and lo-
cate the idioms more precisely, yielding SA gains
of 7.8% and 2.81% over those of RNN-MHCA
on SemEval5B and VNC, respectively. We argue
that this demonstrates DISC’s ability to identify id-
ioms with a higher precision and that DISC’s gain
in SA outweighs its loss in F1, given that the gain
is generally higher than the loss and SA is a more
reliable measure of identification performance.

We now evaluate the performance by pay-
ing specific attention to one specific property
of PIEs that makes them challenging to NLP
applications—syntactic flexibility (fixedness)
(Constant et al., 2017).

Effect of Idiom Fixedness. We analyze the id-
iom identification performance with respect to
the idiom fixedness levels. Following the defini-
tions given by Sag et al. (2002) for lexicalized
phrases, we categorized idioms into three fixed-
ness levels: (1) fixed (e.g., with respect to)—fully
lexicalized with no morphosyntactic variation or
internal modification, (2) semi-fixed (e.g., keep up
with)—permit limited lexical variations (kept up
with) such as inflection and determiner selection,
while adhering to strict constraints on word or-
der and composition, and (3) syntactically flexible
(e.g., serve someone right)—largely retain basic
word order and permit a wide range of syntac-
tic variability such that the internal words of the
idioms are subject to change. The authors (both
near-native English speakers, one with linguis-
tics background) manually labeled the PIEs in the
MAGPIE test set into these 3 levels by first in-
dependently labeling 35 per level. Seeing that the
agreement was 91%, all the remaining idioms were
labeled by one researcher. We note that the high-
est level is occupied by verbal MWEs (VMWEs)
that are characterized by complex structures, dis-
continuities, variability, and ambiguity (Savary
et al., 2017).

We use this labeled set to compute the DISC
performance for each fixedness level in terms of
classification F1 and SA. As shown in Table 5,
although the fixed idioms obtain the best perfor-
mance as expected, the performance difference
between semi-fixed and syntactically flexible id-
ioms suggests that DISC can reliably detect idi-
oms from different fixedness levels.

Metric Idiom fixedness level
Fixed Semi-fixed Syntactically-flexible

SA 93.11 88.25 87.57
F1 94.75 92.10 92.66

Table 5: Performance of DISC on MAGPIE ran-
dom split dataset as evaluated by Classification
F1 score (F1;%) and Sequence Accuracy (SA;%)
for each idiom fixedness level.

Error Analysis. Next, we analyze DISC’s per-
formance and its errors on the MAGPIE dataset to
gain further insights into DISC’s idiom identifica-
tion abilities and its shortcomings.

A closer inspection of the results showed that
65.9% of the 1,071 idiom types from the MAGPIE
random split test set have perfect average SA (i.e.,
100%), indicating that DISC successfully learned
to recognize the SC of the vast majority of the
idiom types from the training set.

In order to gain insights related to DISC’s
ability to memorize the instances of known PIEs
to perform identification on the known ones, we
analyze the relationship between the average SA
and the number of training samples on a per PIE
basis in the MAGPIE random split using Pearson
correlation. A correlation of 0.1857 with a p <
0.05 indicates a weak relationship between the
number of training instances and the performance.
This, taken together with the strong type-aware
performance, suggests that DISC’s identification
ability relies on more than just memorizing known
PIE instances.

Visualizing the attention matrices (matrix H
as described in Section 3) for a sample of in-
stances showed that the model attends to only the
correct idiom (in relatively shorter sentences) or
to many phrases in a sentence (longer or those
with literal phrases). In the sentence but they’d
had a thorough look through his life and just to
be sure and hit the jackpot entirely by chance, un-
derlined phrases are those with high attention and
hit the jackpot was correctly selected as the out-
put.2 In some instances of incorrect prediction, that
is, incompletely identified IE tokens or wrongly
predicting the sentence to be literal, we found
that the model still attended to the correct phrase.
We hypothesize that the two attention flow layers
have a hierarchical relation in their functions: The

2Owing to space constraints we were unable to present
detailed illustrations of attention matrices to make our point.
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Case # Error Type (Pct.) Sentence with PIE Prediction
1 Alternative (9.7%) But an on-the-ball whisky shop could make a killing with its

special ec-label malt scotch at £27.70 a bottle.
make a killing

2 Partial (29.3%) Dragons can lie for dark centuries brooding over their treasures,
bedding down on frozen flames that will never see the light
of day.

of day

3 Meaningful (4.3%) Given a method, we can avoid mistaken ideas which, confirmed
by the authority of the past, have taken deep root, like weeds in
men’s minds.

weeds in men’s minds

4 Literal (8.0%) If you must jump out of the loop, you should use until true to
‘‘pop’’ the stack.

out of the loop

5 Missing (42.3%) We have friends in high places, they said. Empty string
6 Other (6.3%) With the chips down, we had to dig down. With down

Table 6: Case studies on the DISC’s idiom identification. The ground truth PIEs are in italic and
colored green in sentences. The Error Type column lists the name of the error and their percentage
(Pct.) in parenthesis. The percentage is obtained by manually categorizing 300 incorrect samples.

first attention flow layer, using static word em-
beddings and their POS tags, identifies candidate
phrases that could have idiomatic meanings, and
the second attention flow layer, by checking for
SC, identifies the idiomatic expression’s span if
it exists. Hence, accurate span prediction requires
the model to (1) attend to the right tokens, (2)
generate/extract meaningful token representations
(from the attention phase), and then (3) correctly
classify the tokens. Based on the fact that the
model is attending to the phrases correctly, future
studies should improve upon the prediction phase
using models that more efficiently leverage the
features for improved token classification.

Moreover, we present case studies on the
wrongly predicted instances from the MAGPIE
type-aware split. Toward this, we randomly sam-
ple 25% of incorrectly predicted instances by
DISC (300 instances), and group them into 6 case
types: (1) alternative, (2) partial, (3) meaningful,
(4) literal, (5) missing, and (6) other. These are
shown in Table 6 and we discuss them below.

Case 1 is the ‘‘alternative’’ case, which is a
common ‘mis-identification’ where DISC only
identifies one of the IEs when multiple IEs are pre-
sent; hence, the model detects the alternative IE
to the IE originally labeled as the ground truth.
Strictly speaking, this is not a limitation of our
method but rather an artifact of the available
dataset; all the datasets used in our experiments
only label at most one PIE for each sentence
even when there may be more than one. Case 2
is the ‘‘partial’’ case, which is another common
wrong prediction where only a portion of the id-
iom span is recognized, namely, the boundary of

the entire idiom is not precisely localized. Case 3
is the ‘‘meaningful’’ case in which DISC identi-
fies figurative expressions instead of the ground
truth idiom (and in this sense relates to Case 1
above). As an example, when the ground truth is
taken deep root, DISC identifies weeds in men’s
minds, which is clearly used metaphorically and
so could have been an acceptable answer. Since
the idioms are unknown to DISC during test time,
we argue that, as in Case 1, the identification is
still meaningful, although the detected phrases are
not exactly the same as the ground truth. Case 4 is
the ‘‘literal’’ case in which DISC identifies a PIE
that is actually used in the literal sense. Case 5, the
‘‘missing’’ case, is the opposite of Case 4, where
DISC fails to recognize the presence of an idiom
completely and returns only an empty string. Case
6 is the final error type ‘‘other’’ in which DISC
returns words or phrases that are not meaningful
or figurative, nor part of any PIEs.

After categorizing the 300 incorrect instances
according to the above definitions, we found that
42.3% of them are of the ‘‘missing’’ case and
around 43.4% are samples with partially correct
predictions or meaningful alternative predictions.
Their detailed breakdown is listed in Table 6.
Tackling the erroneous cases will be a fruitful
future endeavor.

6 Conclusion and Future Work

In this work, we studied how a neural architecture
that fuses multiple levels of syntactic and seman-
tic information of words can effectively perform
idiomatic expression identification. Compared to
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competitive baselines, the proposed model yielded
state-of-the-art performance on PIEs that varied
with respect to syntactic patterns, degree of com-
positionality and syntactic flexibility. A salient
feature of the model is its ability to generalize to
PIEs unseen in the training data.

Although the exploration in this work is limited
to IEs, we made no idiom-specific assumptions
in the model. Future directions should extend the
study to nested and syntactically flexible PIEs
(verbal MWEs) and other figurative/literal con-
structions such as metaphors—categories that were
not sufficiently represented in the datasets con-
sidered in this study. Other concrete research
directions include performing the task in cross-
and multi-lingual settings.
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Monti, Lonneke Van Der Plas, Carlos Ramisch,
Michael Rosner, and Amalia Todirascu. 2017.
Multiword expression processing: A survey.
Computational Linguistics, 43(4):837–892.
https://doi.org/10.1162/COLI a 00302

Paul Cook, Afsaneh Fazly, and Suzanne
Stevenson. 2008. The VNC-tokens dataset. In
Proceedings of the LREC Workshop Towards
a Shared Task for Multiword Expressions
(MWE 2008), pages 19–22.

Silvio Cordeiro, Carlos Ramisch, Marco Idiart,
and Aline Villavicencio. 2016. Predicting
the compositionality of nominal compounds:
Giving word embeddings a hard time. In Pro-
ceedings of the 54th Annual Meeting of the
Association for Computational Linguistics
(Volume 1: Long Papers), pages 1986–1997.
https://doi.org/10.18653/v1/P16
-1187

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of

1557

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00442/1979744/tacl_a_00442.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1016/j.csl.2005.02.004
https://doi.org/10.1016/j.csl.2005.02.004
https://doi.org/10.1007/s10579-009-9081-4
https://doi.org/10.1007/s10579-009-9081-4
https://doi.org/10.18653/v1/N18-2014
https://doi.org/10.18653/v1/N18-2014
https://doi.org/10.1145/3366423.3380198
https://doi.org/10.1145/3366423.3380198
https://doi.org/10.3758/BF03198118
https://doi.org/10.3758/BF03198118
https://pubmed.ncbi.nlm.nih.gov/24214567
https://doi.org/10.1162/COLI_a_00302
https://doi.org/10.18653/v1/P16-1187
https://doi.org/10.18653/v1/P16-1187


the Association for Computational Linguistics:
Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh,
and Jackie Chi Kit Cheung. 2019. EditNTS:
An neural programmer-interpreter model for
sentence simplification through explicit edit-
ing. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational
Linguistics, pages 3393–3402, Florence, Italy.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/P19
-1331

Stefan Evert and Brigitte Krenn. 2001. Methods
for the qualitative evaluation of lexical asso-
ciation measures. In Proceedings of the 39th
annual meeting of the association for compu-
tational linguistics, pages 188–195. https://
doi.org/10.3115/1073012.1073037

Marzieh Fadaee, Arianna Bisazza, and Christof
Monz. 2018. Examining the tip of the iceberg:
A data set for idiom translation. In Proceedings
of the Eleventh International Conference on
Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Afsaneh Fazly, Paul Cook, and Suzanne
Stevenson. 2009. Unsupervised type and token
identification of idiomatic expressions. Compu-
tational Linguistics, 35(1):61–103. https://
doi.org/10.1162/coli.08-010-R1-07
-048

Afsaneh Fazly and Suzanne Stevenson. 2006.
Automatically constructing a lexicon of verb
phrase idiomatic combinations. In 11th Confer-
ence of the European Chapter of the Associa-
tion for Computational Linguistics.

Anna Feldman and Jing Peng. 2013. Automatic
detection of idiomatic clauses. In International
Conference on Intelligent Text Processing and
Computational Linguistics, pages 435–446.
Springer. https://doi.org/10.1007/978
-3-642-37247-6 35

Katja Filippova, Enrique Alfonseca, Carlos A.
Colmenares, Łukasz Kaiser, and Oriol Vinyals.
2015. Sentence compression by deletion with
LSTMs. In Proceedings of the 2015 Confer-

ence on Empirical Methods in Natural Lan-
guage Processing, pages 360–368. https://
doi.org/10.18653/v1/D15-1042

Richard Fothergill and Timothy Baldwin. 2012.
Combining resources for MWE-token classifi-
cation. In Proceedings of the First Joint Confer-
ence on Lexical and Computational Semantics,
*SEM2012, June 7–8, 2012, Montréal, Canada,
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