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Abstract

Recent works have shown that language mod-
els (LM) capture different types of knowledge
regarding facts or common sense. However,
because no model is perfect, they still fail to
provide appropriate answers in many cases. In
this paper, we ask the question, ‘‘How can we
know when language models know, with con-
fidence, the answer to a particular query?’’ We
examine this question from the point of view
of calibration, the property of a probabilistic
model’s predicted probabilities actually being
well correlated with the probabilities of cor-
rectness. We examine three strong generative
models—T5, BART, and GPT-2—and study
whether their probabilities on QA tasks are
well calibrated, finding the answer is a rela-
tively emphatic no. We then examine methods to
calibrate such models to make their confidence
scores correlate better with the likelihood of
correctness through fine-tuning, post-hoc pro-
bability modification, or adjustment of the pre-
dicted outputs or inputs. Experiments on a
diverse range of datasets demonstrate the ef-
fectiveness of our methods. We also perform
analysis to study the strengths and limitations
of these methods, shedding light on further
improvements that may be made in methods
for calibrating LMs. We have released the
code at https://github.com/jzbjyb
/lm-calibration.

1 Introduction

Language models (LMs; Church, 1988; Bengio
et al., 2003; Radford et al., 2019) learn to model
the probability distribution of text, and in doing
so capture information about various aspects of
the syntax or semantics of the language at hand.
Recent works have presented intriguing results
demonstrating that modern large-scale LMs also
capture a significant amount of knowledge, includ-

ing factual knowledge about real-world entities
(Petroni et al., 2019; Jiang et al., 2020b; Roberts
et al., 2020; Bouraoui et al., 2020), common-
sense knowledge (Trinh and Le, 2018; Kocijan
et al., 2019; Talmor et al., 2019a; Bosselut et al.,
2019), and simple numerical operations (Wallace
et al., 2019; Talmor et al., 2019a; Geva et al.,
2020). Notably, large models trained on massive
crawls of Internet text (such as T5 [Raffel et al.,
2019] and GPT-3 [Brown et al., 2020]) have been
shown to be able to perform quite sophisticated
knowledge-based tasks simply through prompting
the model to predict the next words given a par-
ticular cue.

However, at the same time, LMs are obviously
not omnipotent, and still fail to provide appropri-
ate answers in many cases, such as when dealing
with uncommon facts (Poerner et al., 2019; Jiang
et al., 2020a) or complex reasoning (Talmor et al.,
2019a). The high performance on datasets probing
factual or numerical knowledge might be achieved
through modeling superficial signals in the train-
ing data that are not generalizable to unseen test
cases (Poerner et al., 2019; Zhou et al., 2020;
Wallace et al., 2019; Talmor et al., 2019a). Thus,
if such models are to be deployed in real applica-
tions it is of crucial importance to determine the
confidence with which they can provide an answer.
This is especially true if these models are deployed
to safety-critical domains such as healthcare and
finance, where mistaken answers can have serious
consequences.1

In this paper, we ask the question, ‘‘How can we
know when language models know, with confi-
dence, the answer to a particular knowledge-based
query?’’ Specifically, we examine this from the

1For example, a mocked-up medical chatbot based on
GPT-3 answered the question of ‘‘should I kill myself?’’
with ‘‘I think you should’’ (Quach, 2020).
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Format Input Candidate Answers Original Calibrated

Multiple-choice
Oxygen and sugar are the products
of (A) cell division. (B) digestion.
(C) photosynthesis. (D) respiration.

cell division. 0.00 0.02
digestion. 0.00 0.01
photosynthesis. 0.00 0.83
respiration. 1.00 0.14

Extractive

What type of person can not be
attributed civil disobedience? Civil
disobedience is usually defined as
pertaining to a citizen’s relation ...

head of government 0.07 0.49
public official 0.91 0.26
head of government of a country 0.01 0.16
public officials 0.01 0.09

Table 1: LM calibration examples for the T5 model with correct answers in bold. ‘‘Original’’ and
‘‘Calibrated’’ indicate the normalized probability before and after fine-tuning to improve calibration.

point of view of calibration, whether the model’s
probability estimates are well-aligned with the
actual probability of the answer being correct.
We apply the largest publicly available LMs, T5,
BART, and GPT-2, over a wide range of question
answering (QA) datasets (Khashabi et al., 2020)
covering diverse domains. We first observe that
despite the models’ high performance (e.g., T5
eclipses other alternatives such as GPT-3 on some
datasets), the models tend to not be well cali-
brated; their probability estimates over candidates
have far-from-perfect correspondence with the
actual probability that the answer they provide is
correct. Some examples of this are demonstrated
in the ‘‘Original’’ column of Table 1.

To alleviate this problem, we propose methods
to make LMs’ confidence scores correlate bet-
ter with the likelihood of model prediction being
correct. We examined both fine-tuning methods
that modify LMs’ parameters and post-hoc meth-
ods that keep LMs fixed and only manipulate
the confidence values or inputs. Specifically, we
fine-tune the LM using softmax- or margin-based
objective functions based on multiple candidate
answers. For post-hoc calibration, we examine
temperature-based scaling and feature-based de-
cision trees that take prediction probability and
input-related features as input and produce cal-
ibrated confidence (Jagannatha and Yu, 2020;
Desai and Durrett, 2020; Kamath et al., 2020).
We also study the sensitivity of LMs’ confidence
estimation with respect to language variation by
paraphrasing candidate answers and augmenting
questions using retrieved context.

Experimental results demonstrate that both fine-
tuning and post-hoc methods can improve calibra-
tion performance without sacrificing accuracy. We
further perform analysis and ablation studies on
our methods, inspecting different aspects that may

affect calibration performance. We found that like
other neural models, LMs are over-confident much
of the time with confidence close to either 0 or
1. As a result, post-processing confidence with
temperature-based scaling and feature-based deci-
sion trees is universally helpful. We also found that
LMs become better calibrated if we phrase each
answer multiple ways and provide more evidence
through retrieval, indicating that current LMs are
sensitive to both input and output.

2 LM-based Question Answering

LMs are now a ubiquitous tool in not only natu-
ral language generation, but also natural language
understanding (NLU), where they are largely used
for unsupervised representation learning in pre-
trained models such as BERT (Devlin et al., 2019).
However, recent work has demonstrated that LMs
can also be used as-is to solve NLU tasks, by pre-
dicting the missing words in cloze-style questions
(Petroni et al., 2019), or by predicting the contin-
uation to prompts (Bosselut et al., 2019; Brown
et al., 2020).

Previous works that purport to calibrate LMs
(Desai and Durrett, 2020; Jagannatha and Yu,
2020; Kamath et al., 2020; Kong et al., 2020)
mainly focus on the former use case, using repre-
sentations learned by LMs to predict target classes
(for tasks such as natural language inference,
part-of-speech tagging, or text classification) or
identify answer spans (for tasks such as extrac-
tive QA). In contrast, we focus on the latter case,
calibrating LMs themselves by treating them as
natural language generators that predict the next
words given a particular input.

To make our observations and conclusions as
general as possible, we experiment over a diverse
range of QA datasets with broad domain coverage
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Format Datasets and Domains
Multi-choice ARC (science (Clark et al., 2018)),

AI2 Science Questions (science (Clark
et al., 2018)), OpenbookQA (science
(Mihaylov et al., 2018)), Winogrande
(commonsense (Sakaguchi et al., 2020)),
CommonsenseQA (commonsense (Talmor
et al., 2019b)), MCTest (fictional sto-
ries (Richardson et al., 2013)), PIQA
(physical (Bisk et al., 2020)), SIQA
(social (Sap et al., 2019)), RACE
(English comprehension (Lai et al.,
2017)), QASC (science (Khot et al.,
2020)), MT-test (mixed (Hendrycks
et al., 2020))

Extractive SQuAD 1.1 (wikipedia (Rajpurkar
et al., 2016)), SQuAD 2 (Wikipedia
(Rajpurkar et al., 2018)), NewsQA
(news (Trischler et al., 2017)), Quoref
(wikipedia (Dasigi et al., 2019)),
ROPES (situation understanding (Lin
et al., 2019))

Table 2: Datasets used in this paper and their
domains.

over questions regarding both factual and common
sense knowledge (Khashabi et al., 2020). We list
all the datasets we used in Table 2 along with their
corresponding domain. Since we focus on cali-
brating LMs as generators, we follow Khashabi
et al. (2020) in converting QA datasets of different
formats to a unified sequence-to-sequence format
that takes a question X as input and calculates the
probability of a continuation Y that corresponds
to the answer:

PLM(Y |X) =

|Y |∏

i=1

PLM(yi|X, y<i).

Specifically, we focus on two varieties of QA:
multiple-choice and extractive, with examples
shown in Table 1.2

Multiple-choice QA For multiple-choice QA,
we assume a question and a set of candidate

2We also considered using free-form (abstractive) QA
datasets, where the answers are not constrained to be one of
several choices and can instead be any text. However, we
found it hard to evaluate the correctness of generated outputs,
as paraphrases of the correct answer are still correct, so we
do not report results on these datasets in this paper. Solving
this evaluation problem and evaluating calibration on these
tasks is an enticing direction for future work.

answers I(X) = {Y (i)}i. Inputs X to LMs are
questions concatenated with multiple candidate
answers (with each answer prefaced by (A), (B),
etc.), and context such as a passage that can be
used to help answer the question if any exists. To
find the answer the model will return, we calculate
the highest-probability answer among the answer
candidates:

Ŷ = argmax
Y ′∈I(X)

PLM(Y
′|X).

We can also calculate the normalized probability

PN (Ŷ |X) =
PLM(Ŷ |X)∑

Y ′∈I(X) PLM(Y ′|X)
, (1)

which provides some idea of the confidence of
answer Ŷ with respect to the candidate list.

Extractive QA For extractive QA, inputs X to
LMs are questions concatenated with context pas-
sages from which the answer must be extracted.
In this case, every span within the passage is a
candidate answer in I(X). However, enumerat-
ing over all possible spans of the context pas-
sage is computationally costly. Thus, we follow
Jagannatha and Yu (2020) in using a manageable
set of candidate outputs to perform calibration.
Specifically, we develop a method to efficiently
calculate probabilities over promising spans that
exist in the input. First, we calculate the probabil-
ity of the first token in output Y ′, masking out any
tokens that are not included in the input passage
at all. Then, for the top R scoring tokens, we find
their location in the input passage, and calculate
the probability of all continuing spans up to a
certain length (e.g., 20 tokens). We finally keep
the top K spans as candidates I(X) and use all
candidates to calculate the probability in a manner
similar to that of multiple-choice QA.

3 Background on Calibration

A model is considered well calibrated if the confi-
dence estimates of its predictions are well-aligned
with the actual probability of the answer being
correct. Given an input X and true output Y , a
model output Ŷ , and a probability PN (Ŷ |X) cal-
culated over this output, a perfectly calibrated
model satisfies the following condition:

P (Ŷ = Y |PN (Ŷ |X) = p) = p, ∀p ∈ [0, 1].
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Figure 1: Reliability diagram of the T5 model
(top-left), the original UnifiedQA model (top-right),
the UnifiedQA model after calibration with Combo
(bottom-left), and Combo with oracle temperature
(bottom-right) on the MC-test datasets.

In practice, we approximate this probability
by bucketing predictions into M disjoint equally
sized interval bins based on confidence. Guo et al.
(2017) examined the calibration properties of neu-
ral network classifiers, and proposed a widely used
measure of calibration called expected calibration
error (ECE), which is a weighted average of the
discrepancy between each bucket’s accuracy and
confidence:

M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)|, (2)

where Bm is the m-th bucket containing samples
whose prediction confidence falls into the interval
(m−1

M , m
M ], acc(Bm) is the average accuracy of this

bucket, and conf(Bm) is the average confidence of
this bucket.The above equation can be visualized
using reliability diagrams (e.g., Figure 1 in the
experiments), where each bar corresponds to one
bucket, and the height is equal to the average accu-
racy. The diagram of a perfectly calibrated model
should have all bars aligned with the diagonal.

Unfortunately, we found that state-of-the-art
LM-based methods for question answering (such
as the UnifiedQA model of Khashabi et al. [2020])
were extraordinarily poorly calibrated, with the
normalized probability estimates barely being cor-
related with the likelihood of the outputs being

correct. For the two examples in Table 1, for in-
stance, we can see that the language model assigns
a very high probability to answers despite the fact
that they are wrong. This is particularly impor-
tant because with T5 (Raffel et al., 2019), GPT-3
(Brown et al., 2020), and others (Guu et al., 2020;
Lewis et al., 2020c) being provided as a potential
answer to complex knowledge-based tasks, for
models to actually be used in practical scenarios
they must also be able to know when they can-
not provide correct information. In the following
section, we examine methods to improve the cal-
ibration of pre-trained models through a number
of methods.

4 Calibrating LMs for Question
Answering

Our calibration methods can be grouped into two
categories: methods that fine-tune LMs and post-
hoc methods that keep LMs fixed and only mani-
pulate confidence or inputs.

4.1 Fine-tuning-based Calibration

Existing LMs mainly use maximal likelihood esti-
mation (MLE) during training, which maximizes
the probability of ground truth output given the in-
put. However, it is well attested that MLE-trained
language generators are biased, tending to prefer
short outputs (Murray and Chiang, 2018), or be-
ing biased towards more frequent vocabulary (Ott
et al., 2018). However, in the case where we know
a set of reasonable candidates I(X), one straight-
forward way to fine-tune LMs is to only consider
candidates in I(X) and directly tune PN (Ŷ |X)
to be a good probability estimate of the actual
outputs. We propose two fine-tuning objective
functions based on the candidate set.

Softmax-based objective functions model can-
didates in a one-vs-all setting, where we use the
softmax function to normalize the confidence of
candidates and maximize the probability corre-
sponding to the correct candidate. We use the
negative log likelihood as the loss function:

L(X,Y ) = − log
exp(s(Y ))∑

Y ′∈I(X) exp(s(Y
′))

,

where the ground truth Y is one of the candidates
in I(X), and s(·) is the logit of the corresponding
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output (omit condition X for simplicity), which is
computed as the log probabilities of all tokens in
the output: s(Y ) = logPLM(Y |X).

Margin-based objective functions try to maxi-
mize the confidence margin between ground truth
output and negative results. This is motivated by
the fact that non-probabilistic objectives such as
those used by support vector machines provide
reasonably good probabilistic estimates after ap-
propriate scaling and adjustment (Platt et al., 1999).
Specifically, we use the following objective:

L(X,Y ) =
∑

Y ′∈I(X)\Y
max(0, τ + s(Y ′)− s(Y )).

4.2 Post-hoc Calibration

Comparing to fine-tuning methods that optimize
the parameters in the model, post-hoc calibration
methods keep the model as-is and manipulate var-
ious types of information derived from the model
to derive good probability estimates (Guo et al.,
2017; Jagannatha and Yu, 2020; Desai and
Durrett, 2020). In this section, we consider two as-
pects of the model: model probabilities PN (Ŷ |X)
and features of the model inputs X or outputs Y .
We attempted two representative methods, namely,
temperature-based scaling (Guo et al., 2017) and
feature-based decision trees (Jagannatha and Yu,
2020), to study whether post-processing probabil-
ities is an effective method for calibration of LMs
in the context of QA.

Temperature-based scaling methods have been
proposed for classification tasks (Guo et al., 2017;
Desai and Durrett, 2020), where a positive scalar
temperature hyperparameter τ is introduced in
the final classification layer to make the proba-
bility distribution either more peaky or smooth:
softmax(z/τ). If τ is close to 0, the class with
the largest logit receives most of the probabil-
ity mass, while as τ approaches ∞, the probabil-
ity distribution becomes uniform. When applying
this method to our setting, we use log probabilities
of the candidates in I(X) as logits in computing
the softmax function: z = logPLM(Y

′|X), Y ′ ∈
I(X), and τ is optimized with respect to negative
log likelihood on the development split.

Feature-based decision tree methods explore
non-linear combinations of features to estimate

the confidence compared to temperature-based
scaling which only considers the raw confidence.
We follow previous works (Jagannatha and Yu,
2020; Dong et al., 2018) and use gradient-boosted
decision trees (Chen and Guestrin, 2016) as our
regressor to estimate the confidence based on fea-
tures. Besides the raw confidence, we consider the
following features and explain their intuitions:

• Model Uncertainty: We use the entropy of
the distribution over the candidate set I(X)
to inform the regressor of how uncertain the
LM is with respect to the question.

• Input Uncertainty: We use the perplexity
of the LM on the input to indicate the un-
certainty over the input. The intuition is that
high perplexity might indicate that the input
comes from a distribution different from the
training distribution of the LM.

• Input Statistics: We also use the length of
the input and output as features, motivated by
our hypothesis that longer text may provide
more information to LMs than shorter text.

We train the regressor on the development set sim-
ilarly to temperature-based scaling by minimizing
negative log likelihood.

4.3 LM-specific Methods

In addition to standard methods that are applica-
ble to most prediction models, we also examine
several methods that are specific to the fact that
we are using LMs for the task of QA.

Candidate Output Paraphrasing Motivated
by the fact that LMs are sensitive to language vari-
ation (Jiang et al., 2020b) in tasks like question
answering and factual prediction, we hypothesize
that one potential reason why the confidence esti-
mation of LMs is not accurate is that the candidate
output is not worded in such a way that the LM
would afford it high probability. As shown by
the example in Table 3, paraphrasing the correct
answer from ‘‘devoted’’ to ‘‘dedicated’’ increases
the probability from 0.04 to 0.94. Motivated by
this, we use a round-trip translation model to
paraphrase each candidate output Y ′ ∈ I(X) into
several other expressions by first translating it into
another language and then back-translating it to
generate a set of paraphrases para(Y ′). We then
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Input How would you describe Addison?
(A) excited (B) careless (C) devoted.
Addison had been practicing for the
driver’s exam for months. He finally
felt he was ready, so he signed up and
took the test.

Paraphrases & devoted (0.04), dedicated (0.94), com-
Probabilities mitment (0.11), dedication (0.39)

Table 3: An example question with the correct an-
swer in bold. Different paraphrases of the correct
answer have different probabilities.

calculate the probability of each candidate out-
put by summing the probability of all paraphrases
P (Y ′) =

∑
Q∈para(Y ′) PLM(Q|X) and normalize it

following Equation 1. By collectively considering
multiple paraphrases, the issue of sensitivity to the
wording can be alleviated somewhat, as there will
be a higher probability of observing a paraphrase
that is afforded high probability by the model.

Input Augmentation Previous work has found
that LMs’ factual predictions can be improved if
more context is provided (Petroni et al., 2020a),
which has inspired many retrieval-augmented
LMs that retrieve evidence from external resources
and condition the LMs’ prediction on this evi-
dence (Guu et al., 2020; Lewis et al., 2020a,c).
We hypothesize that retrieving extra evidence to
augment the input also has the potential to improve
the confidence estimation of LMs as it will provide
the model more evidence upon which to base both
its predictions and its confidence estimates. We
follow (Petroni et al., 2020a) to retrieve the most
relevant Wikipedia article using TF-IDF-based re-
trieval systems used in DrQA (Chen et al., 2017)
and append the first paragraph of the article to the
input.

5 Experiments

5.1 Experimental Settings

Datasets We evaluate the calibration perfor-
mance on both multiple-choice QA datasets and
extractive QA datasets listed in Table 2. To test
whether our calibration methods can generalize
to out-of-domain datasets, we use a subset of da-
tasets of multiple-choice/extractive QA to train
our methods, and the remaining subset of datasets

to evaluate the performance. Specifically, we use
ARC (easy), AI2 Science Question (elementary),
OpenbookQA, QASC, Winogrande, Common-
senseQA, and PhysicalIQA as the training subset
for multiple-choice QA (denoted as MC-train),
and SQuAD 1.1, NewsQA as the training subset
for extractive QA (denoted as Ext-train). The re-
maining subsets used for evaluation are denoted
as MC-test and Ext-test, respectively. We also in-
cluded a much harder multiple-choice QA dataset
(denoted as MT-test; Hendrycks et al. [2020])
regarding common sense in a number of genres,
in which the largest GPT-3 model and UnifiedQA
both display only low to moderate accuracy.
For fine-tuning methods, we use the train split
of MC-train/Ext-train to fine-tune the LMs. For
post-hoc methods like temperature-based scaling
and decision trees, we follow Guo et al. (2017) and
use the development split of MC-train/Ext-train to
optimize the parameters.3

LMs One clear trend of the past several years
is that the parameter size and training data size
of pre-trained models plays a significant role in
the accuracy of models; pre-trained LMs such as
BERT (Devlin et al., 2019) tend to underperform
more recently released larger LMs like Turing-
NLG4 and GPT-3 (Brown et al., 2020). Thus, we
use the largest publicly available LM, which at
the time of this writing is Raffel et al.’s (2019) T5
model. The T5 model is a sequence-to-sequence
model with both encoder and decoder using trans-
formers (Vaswani et al., 2017), and the largest
version has 11 billion parameters, allowing it to
realize state-of-the-art performance on tasks such
as question answering and natural language un-
derstanding (Roberts et al., 2020; Khashabi et al.,
2020).

Specifically, we use two varieties of this model.
The original T5 model is a sequence-to-sequence
model trained on a large corpus of Web text, spe-
cifically trained on a denoising objective that
generates missing tokens given inputs with some
tokens masked out. The UnifiedQA model uses
the initial T5 model and fine-tunes on a variety of
QA datasets by converting multiple-choice, ex-
tractive QA formats into a unified sequence-to-
sequence format, similar to the one that we show
in Table 1. We use the 3-billion version in our

3Since not all datasets in MC-test and Ext-test have a test
split, we report the performance on the development split.

4https://msturing.org/.
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main experiments in subsection 5.3 (for efficiency
purposes), but also report the performance of
the largest 11-billion version in ablation studies
subsection 5.5.

For comparison with LMs of different architec-
tures trained on different datasets, we also report
the performance of two other LMs in Section 5.5:
the 0.4-billion BART model (Lewis et al., 2020b),
which is a sequence-to-sequence model and the
0.7-billion GPT-2 large model (Radford et al.,
2019), which is a conventional language model.
We fine-tune them following the same recipe as
UnifiedQA (Khashabi et al., 2020).

Evaluation Metrics We use accuracy to mea-
sure the prediction performance of our methods,
and ECE to measure the calibration performance.
Accuracy is computed as the ratio of question-
answer pairs for which the correct answer has the
highest probability among all the candidates in
I(x). ECE is computed using Equation 2 by
bucketing all candidate answers in I(x) based on
confidence. For MC-test and Ext-test which in-
clude multiple datasets, we compute accuracy and
ECE on each dataset separately and average across
them to avoid the metrics being dominated by large
datasets.

Implementation Details We fine-tune
UnifiedQA-3B with a batch size of 16 for 3k steps
and UnifiedQA-11B with a batch size of 3 for 15k
steps on a v3-8 TPU. The maximal length of input
and output are set to 512 and 128 respectively,
following the setting of UnifiedQA (Khashabi
et al., 2020). For extractive QA datasets, we use
top R = 10 first tokens and finally K = 5 spans
are used as candidates. For the paraphrasing-based
method, we use the WMT-19 English-German
and German-English transformer models to per-
form back translation (Ng et al., 2019). The beam
size is set to 10 for both directions, which will
yield 10×10 = 100 paraphrases in the end. Since
some paraphrases are duplicated, we count the
frequency and use the top 5 unique paraphrases
in our main experiments subsection 5.3. We also
report the performance of using different num-
bers of paraphrases in subsection 5.5. For the
retrieval-based augmentation, we use the KILT
toolkit (Petroni et al., 2020b) to retrieve the most
relevant article from the Wikipedia dump, and
append the first three sentences of the first para-
graph of the retrieved article to the input. For

Method MC-test MT-test Ext-test
ACC ECE ACC ECE ACC ECE

T5 0.313 0.231 0.268 0.248 0.191 0.166
UnifiedQA 0.769 0.095 0.437 0.222 0.401 0.114

+ softmax 0.767 0.065 0.433 0.161 0.394 0.110
+ margin 0.769 0.057 0.431 0.144 0.391 0.112

Table 4: Performance of different fine-tuning
methods.

the feature-based decision trees model, we use
XGBoost (Chen and Guestrin, 2016) with logis-
tic binary objective, max depth of 4, number of
parallel trees of 5, and subsample ratio of 0.8.
We use Temp. to denote temperature-based scal-
ing, XGB to denote feature-based decision trees,
Para. to denote paraphrasing, Aug. to denote
input augmentation, and Combo to denote the
combination of Temp., Para., and Aug. in the ex-
perimental section. We use the model with the best
calibration performance in post-hoc calibration
experiments. For multiple-choice QA, we use the
UnifiedQA model after margin-based fine-tuning.
For extractive QA, we use the original UnifiedQA
model.

5.2 Are LM-based QA Models Well
Calibrated?

As shown in Table 4, our baseline models (i.e.,
T5 and UnifiedQA) are strong, achieving state-of-
the-art accuracy on a diverse range of QA datasets.
On the MT-test datasets, the UnifiedQA model
even outperforms the largest version of GPT-3
with 175 billions parameters (Hendrycks et al.,
2020). Despite the impressive performance, these
models are not well calibrated, with ECE higher
than 0.2 on the MT-test dataset. We found that
LMs tend to be over-confident about cases they do
not know, as shown in the confidence distribution
in the first row of Figure 2 that most predictions
have aggressive confidence being close to 0 or 1.
The UnifiedQA model assigns high confidence
to the wrong answer for examples in Table 1,
indicating that its confidence estimates are not
trustworthy.

5.3 Can LM-based QA Models be
Calibrated?

We calibrate the UnifiedQA model using both
fine-tuning-based methods and post-hoc methods
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Figure 2: The ratio of predictions with respect to confi-
dence of the T5 model (top-left), the UnifiedQA model
(top-right), the UnifiedQA model after temperature-
based calibration (bottom-left), and the UnifiedQA
model after feature-based calibration (bottom-right) on
the MC-test datasets.

and show their performance in Table 4 and Table 5
respectively.

Overall, on multi-choice QA datasets (i.e., MC-
test and MT-test), both fine-tuning-based methods
and post-hoc methods can improve ECE while
maintaining accuracy compared to the baseline
UnifiedQA model. The best-performing method
(i.e., Combo), which combines margin-based
fine-tuning, temperature-based scaling, paraphras-
ing, and input augmentation, improves ECE from
0.095 to 0.044—that is, by over 53%. As shown in
the reliability diagrams of the original UnifiedQA
model (top-right) and the UnifiedQA model cal-
ibrated with Combo (bottom-left) in Figure 1,
calibration using our methods makes the confi-
dence estimates of predictions better aligned with
their correctness. Comparing those two diagrams,
an interesting observation is that our method seems
to over-calibrate the LM, making over-estimated
bars on the right-hand side of the top-right diagram
(bars lower than the diagonal) under-estimated,
and vice versa. This is probably caused by the
temperature being too aggressive (i.e., too large),
making the distribution too flat. Note that the
datasets used to learn the temperature (MC-train)
and used in evaluation (MC-test) are different,
which we hypothesize is the reason why the tem-
perature is too aggressive. We verify this by
learning an oracle temperature on the evalua-
tion datasets (MC-test). The learned temperature

Method MC-test MT-test Ext-test
ACC ECE ACC ECE ACC ECE

Baseline 0.769 0.057 0.431 0.144 0.401 0.114
+ Temp. 0.769 0.049 0.431 0.075 0.401 0.107
+ XGB 0.771 0.055 0.431 0.088 0.402 0.103
+ Para. 0.767 0.051 0.429 0.122 0.393 0.114
+ Aug. 0.744 0.051 0.432 0.130 0.408 0.110
+ Combo 0.748 0.044 0.431 0.079 0.398 0.104

Table 5: Performance of different post-hoc meth-
ods using the UnifiedQA model after margin-based
fine-tuning or the original UnifiedQA model as the
baseline model. ‘‘+Combo’’ denotes the method
using both Temp., Para., and Aug.

indeed becomes smaller (1.35 → 1.13), and the
reliability diagram (bottom-right in Figure 1) is
almost perfectly aligned. This demonstrates the
challenge of calibrating LMs across different
domains.

However, on extractive QA datasets, the im-
provement brought by different calibration meth-
ods is smaller. We hypothesize that this is because
the candidate set I(X) generated by the span-
based decoding method for extractive QA are
harder to calibrate than the manually curated can-
didate answers for multiple-choice QA. We com-
pute the average entropy of the confidence of the
UnifiedQA model over I(X) on both extractive
QA (Ext-test) and multiple-choice QA datasets
(MC-test), and found that Ext-test indeed has
much higher entropy compared to MC-test (0.40
vs 0.13), which partially explains the difficulty of
calibration on extractive QA datasets.

5.4 Analysis of Individual Calibration
Methods

In this section, we discuss each method in detail
and analyze why they can improve calibration
performance.

Objective Function Matters. The original
UnifiedQA model is fine-tuned based on MLE,
which maximizes the probability of the gold an-
swer given the question. Both softmax-based and
margin-based fine-tuning, which explicitly com-
pare and adjust the probability of candidate an-
swers, can further improve ECE on multiple-choice
datasets. We argue that the softmax-based and
margin-based objective functions are better suited
for questions with potential candidates.
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Post-processing Confidence is Effective Univer-
sally. Post-processing the raw confidence either
solely based on confidence or other features is
effective across all datasets, which is consistent
with the conclusion on other tasks such as struc-
tured prediction and natural language inference
(Jagannatha and Yu, 2020; Desai and Durrett,
2020). We demonstrate the histogram of confi-
dence before and after applying temperature-based
scaling or feature-based decision trees in Figure 2.
LMs tend to be over-confident, with most pre-
dictions having either extremely high or low confi-
dence. Both methods can successfully re-scale the
confidence to reasonable ranges, thus improving
the calibration performance.

Paraphrasing Answers and Input Augmenta-
tion can Improve Confidence Estimation. The
improvement brought by using paraphrasing is
significant on multiple-choice datasets, demon-
strating that using diverse expressions can indeed
improve confidence estimation. To better un-
derstand under what circumstances paraphrasing
works, we group candidate answers into two cate-
gories: The first group includes candidate answers
that become better calibrated using paraphrases;
the second group includes candidate answers
whose confidence remains the same using para-
phrases. We say that a candidate becomes better
calibrated if its confidence increases/decreases by
20% if it is a correct or incorrect answer re-
spectively. We found that the average length of
questions for better calibrated candidates (187)
is much shorter than that of candidates without
improvement (320), indicating that paraphrasing
is useful mainly for short questions. We also
compute the diversity of word usage in para-
phrases using the number of unique words divided
by the total length of paraphrases. We found
that better calibrated candidates have slightly
higher diversity (0.35 vs 0.32), which is consistent
with our intuition. Retrieval-based augmentation
can also improve calibration performance on
multiple-choice datasets, which is probably be-
cause the retrieved documents can provide extra
evidence about the question, making LMs more
robust at confidence estimation.

Calibration Methods are Complementary.
By combining margin-based fine-tuning,
temperature-based scaling, paraphrasing, and in-
put augmentation, we achieve the best ECE on

Method BART GPT-2 large
ACC ECE ACC ECE

Original 0.295 0.225 0.272 0.244
+ UnifiedQA 0.662 0.166 0.414 0.243

+ softmax 0.658 0.097 0.434 0.177
+ margin 0.632 0.090 0.450 0.123

+ Temp. 0.632 0.064 0.450 0.067
+ XGB 0.624 0.090 0.440 0.080
+ Para. 0.624 0.084 0.436 0.104
+ Aug. 0.600 0.089 0.441 0.126
+ Combo 0.591 0.065 0.429 0.069

Table 6: Performance of different LMs on the
MC-test dataset. ‘‘Original’’ indicates the original
language model, and ‘‘+ UnifiedQA’’ indicates
fine-tuning following the recipe of UnifiedQA.

MC-test, demonstrating that these calibration
methods are complementary to each other.

5.5 Ablation Study

In this section, we perform an ablation study to
examine different aspects of LM calibration, in-
cluding calibration performance of different LMs,
across LMs with different sizes, using different
numbers of paraphrases, and across datasets with
potential domain shift.

Performance of Different LMs. We report the
performance of two other LMs in Table 6. Both the
BART and GPT-2 models are smaller than T5, thus
the overall accuracy and calibration performance
are lower than that of T5. Both fine-tuning and
post-hoc calibration methods can improve ECE,
indicating that our methods are applicable to LMs
trained with different datasets and architectures.

Performance of LMs with Different Sizes. We
conduct experiments using the largest version (i.e.,
11B) of the T5 and UnifiedQA model to analyze
how calibration performance varies with respect
to the size of the LM in Table 7. We found
that larger LMs usually achieve both higher ac-
curacy and better calibration performance, which
is contradictory to the observation in image clas-
sification (Guo et al., 2017) where larger models
such as ResNet (He et al., 2016) are no longer
well calibrated compared to smaller models like
LeNet (Lecun et al., 1998). Given the fact that the
size of both the pre-training corpus and LMs are

970

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00407/1962628/tacl_a_00407.pdf by guest on 07 Septem
ber 2023



Method MC-test MT-test
ACC ECE ACC ECE

T5 0.359 0.206 0.274 0.235
UnifiedQA 0.816 0.067 0.479 0.175

+ softmax 0.823 0.041 0.488 0.129
+ margin 0.819 0.034 0.485 0.107

+ Temp. 0.819 0.036 0.485 0.098
+ XGB 0.818 0.065 0.486 0.108
+ Para. 0.820 0.035 0.484 0.092
+ Aug. 0.812 0.031 0.493 0.090
+ Combo 0.807 0.032 0.494 0.085

Table 7: Performance of the 11B LMs.

Figure 3: ECE of the UnifiedQA model using different
numbers of paraphrases on the MC-test datasets.

extremely larger compared to previous practice,
we might have completely different observations
with respect to confidence estimation. Unlike
ResNet trained on CIFAR-100, the training of
LMs is not bottlenecked by the dataset, and larger
LMs have a stronger capacity to model text distri-
bution and memorize facts, which leads to better
calibration performance overall (Kaplan et al.,
2020). Overall, our methods can improve ECE
from 0.067 to 0.032 using the 11B UnifiedQA
model on the MC-test dataset, and from 0.175
to 0.085 on the MT-test dataset. However, com-
pared to the 3B version, improvement brought
by post-hoc calibration methods is smaller, which
is probably because the 11B version is better
optimized and more knowledgeable.

Performance using Different Numbers of Para-
phrases. In Figure 3, we experiment with differ-
ent numbers of paraphrases using the UnifiedQA
model on MC-test datasets. The overall trend is
that the more paraphrases we use, the better cali-
brated the LM, demonstrating that using different
variations to express the candidate answer can im-
prove confidence estimation. The improvements
using more than 10 paraphrases are subtle, so
5–10 paraphrases may represent a good trade-off
between computational cost and performance in
practical settings.

Method MC-train MC-test
ACC ECE ACC ECE

T5 0.334 0.228 0.313 0.231
UnifiedQA 0.727 0.133 0.769 0.095

+ softmax 0.735 0.084 0.767 0.065
+ margin 0.737 0.069 0.769 0.057

+ Temp. 0.737 0.051 0.769 0.049
+ XGB 0.737 0.074 0.771 0.055
+ Para. 0.742 0.053 0.767 0.051
+ Aug. 0.721 0.059 0.744 0.051
+ Combo 0.722 0.042 0.748 0.044

Table 8: Performance comparison between train-
ing and evaluation datasets.

Performance on Training and Evaluation
Datasets. As introduced in the experimental
section, we perform calibration on the MC-train
dataset and evaluate the final performance on
the MC-test dataset to study whether our cali-
bration methods can generalize to out-of-domain
dataset. We compare the performance on the train-
ing dataset and the evaluation dataset in Table 8.
We found that on both datasets, each individ-
ual method can improve ECE, indicating that our
method can generalize to out-of-domain datasets.
Note that the improvement on the training dataset
(0.133 → 0.042) is larger than on improvement on
the evaluation dataset (0.095 → 0.044), which is
probably caused by the domain shift between the
two datasets.

6 Related Work

Calibration Calibration is a well-studied topic
in other tasks such as medical diagnosis (Jiang
et al., 2012) and image recognition (Guo et al.,
2017; Lee et al., 2018). Previous works in NLP
have examined calibration in structured predic-
tion problems such as part-of-speech tagging and
named entity recognition (Jagannatha and Yu,
2020), natural language understanding tasks such
as natural language inference, paraphrase detec-
tion, extractive question answering, and text clas-
sification (Desai and Durrett, 2020; Kamath et al.,
2020; Kong et al., 2020). In contrast, we focus on
calibrating LMs themselves by treating them as
natural language generators that predict the next
words given a particular input.

LM Probing Previous works probe pre-trained
LMs with respect to syntactic and semantic prop-
erties (Hewitt and Manning, 2019; Tenney et al.,
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2019), factual knowledge (Petroni et al., 2019;
Poerner et al., 2019; Jiang et al., 2020b), common-
sense knowledge (Trinh and Le, 2018; Kocijan
et al., 2019), and other properties (Talmor et al.,
2019a). These works usually focus on what LMs
know, while in this paper we also consider the
cases when LMs do not know the answer with
confidence.

7 Conclusion

In this paper, we examine the problem of cal-
ibration in LMs used for QA tasks. We first
note that despite the impressive performance
state-of-the-art LM-based QA models tend to be
poorly calibrated in their probability estimates.
To alleviate this problem, we attempted several
methods to either fine-tune the LMs, or adjust
the confidence by post-processing raw probabili-
ties, augmenting inputs, or paraphrasing candidate
answers. Experimental results demonstrate the
effectiveness of these methods. Further analysis
reveals the challenges of this problem, shedding
light on future work on calibrating LMs.

Some future directions could be developing
calibration methods for LMs on a more fine-
grained level than simply holistic calibration
across the entire dataset. For example, there has
been significant interest in how models perform
across diverse subsets of the entire training data
(Hashimoto et al., 2018) and how they reflect
dataset biases (Rudinger et al., 2018), and the inter-
action of model confidence with these phenomena
is of significant interest. It is also interesting to
investigate the effect of calibration on users or
downstream tasks. For instance, providing users
with model confidences can influence downstream
decisions (Zhang et al., 2020), and users may want
to adjust required confidence thresholds on crit-
ical domains (e.g., health, safety, medicine). All
of these are interesting paths of inquiry for future
research.
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