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Abstract

Machine translation (MT) technology has fa-
cilitated our daily tasks by providing acces-
sible shortcuts for gathering, processing, and
communicating information. However, it can
suffer from biases that harm users and society
at large. As a relatively new field of inquiry,
studies of gender bias in MT still lack cohesion.
This advocates for a unified framework to
ease future research. To this end, we: i) crit-
ically review current conceptualizations of bias
in light of theoretical insights from related
disciplines, ii) summarize previous analyses
aimed at assessing gender bias in MT, iii)
discuss the mitigating strategies proposed so
far, and iv) point toward potential directions
for future work.

1 Introduction

Interest in understanding, assessing, and mitigat-
ing gender bias is steadily growing within the
natural language processing (NLP) community,
with recent studies showing how gender dispar-
ities affect language technologies. Sometimes,
for example, coreference resolution systems fail
to recognize women doctors (Zhao et al., 2017;
Rudinger et al., 2018), image captioning mod-
els do not detect women sitting next to a com-
puter (Hendricks et al., 2018), and automatic
speech recognition works better with male voices
(Tatman, 2017). Despite a prior disregard for
such phenomena within research agendas (Cislak
et al., 2018), it is now widely recognized that
NLP tools encode and reflect controversial social
asymmetries for many seemingly neutral tasks,
machine translation (MT) included. Admittedly,
the problem is not new (Frank et al., 2004). A
few years ago, Schiebinger (2014) criticized the
phenomenon of ‘‘masculine default’’ in MT after
running one of her interviews through a commer-
cial translation system. In spite of several feminine

mentions in the text, she was repeatedly referred
to by masculine pronouns. Gender-related con-
cerns have also been voiced by online MT users,
who noticed how commercial systems entrench
social gender expectations, for example, translat-
ing engineers as masculine and nurses as feminine
(Olson, 2018).

With language technologies entering wide-
spread use and being deployed at a massive scale,
their societal impact has raised concern both
within (Hovy and Spruit, 2016; Bender et al.,
2021) and outside (Dastin, 2018) the scientific
community. To take stock of the situation, Sun
et al. (2019) reviewed NLP studies on the topic.
However, their survey is based on monolingual
applications, whose underlying assumptions and
solutions may not be directly applicable to lan-
guages other than English (Zhou et al., 2019;
Zhao et al., 2020; Takeshita et al., 2020) and
cross-lingual settings. Moreover, MT is a multi-
faceted task, which requires resolving multiple
gender-related subtasks at the same time (e.g., co-
reference resolution, named entity recognition).
Hence, depending on the languages involved and
the factors accounted for, gender bias has been
conceptualized differently across studies. To date,
gender bias in MT has been tackled by means
of a narrow, problem-solving oriented approach.
While technical countermeasures are needed, fail-
ing to adopt a wider perspective and engage with
related literature outside of NLP can be detri-
mental to the advancement of the field (Blodgett
et al., 2020).

In this paper, we intend to put such literature
to use for the study of gender bias in MT. We
go beyond surveys restricted to monolingual NLP
(Sun et al., 2019) or that are more limited in
scope (Costa-jussà, 2019; Monti, 2020), and
present the first comprehensive review of gender
bias in MT. In particular, we 1) offer a unified
framework that introduces the concepts, sources,
and effects of bias in MT, clarified in light of
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relevant notions on the relation between gender
and different languages; and 2) critically discuss
the state of the research by identifying blind spots
and key challenges.

2 Bias Statement

Bias is a fraught term with partially overlapping,
or even competing, definitions (Campolo et al.,
2017). In cognitive science, bias refers to the
possible outcome of heuristics, that is, mental
shortcuts that can be critical to support prompt
reactions (Tversky and Kahneman, 1973, 1974).
AI research borrowed from such a tradition (Rich
and Gureckis, 2019; Rahwan et al., 2019) and
conceived bias as the divergence from an ideal or
expected value (Glymour and Herington, 2019;
Shah et al., 2020), which can occur if models
rely on spurious cues and unintended shortcut
strategies to predict outputs (Schuster et al., 2019;
McCoy et al., 2019; Geirhos et al., 2020). Since
this can lead to systematic errors and/or adverse
social effects, bias investigation is not only a sci-
entific and technical endeavor but also an ethi-
cal one, given the growing societal role of NLP
applications (Bender and Friedman, 2018). As
Blodgett et al. (2020) recently called out, and has
been endorsed in other venues (Hardmeier et al.,
2021), analyzing bias is an inherently normative
process that requires identifying what is deemed
as harmful behavior, how, and to whom. Here, we
stress a human-centered, sociolinguistically moti-
vated framing of bias. By drawing on the definition
by Friedman and Nissenbaum (1996), we consider
as biased an MT model that systematically and
unfairly discriminates against certain individuals
or groups in favor of others. We identify bias per
a specific model’s behaviors, which are assessed
by envisaging their potential risks when the model
is deployed (Bender et al., 2021) and the harms
that could ensue (Crawford, 2017), with people
in focus (Bender, 2019). Since MT systems are
used daily by millions of individuals, they could
impact a wide array of people in different ways.

As a guide, we rely on Crawford (2017), who
defines two main categories of harms produced
by a biased system: i) Representational harms
(R) (i.e., detraction from the representation of
social groups and their identity, which, in turn,
affects attitudes and beliefs); and ii) Allocational
harms (A) (i.e., a system allocates or withholds

opportunities or resources to certain groups). Con-
sidering the so-far reported real-world instances
of gender bias (Schiebinger, 2014; Olson, 2018)
and those addressed in the MT literature reviewed
in this paper, (R) can be further distinguished into
under-representation and stereotyping.

Under-representation refers to the reduction
of the visibility of certain social groups through
language by i) producing a disproportionately
low representation of women (e.g., most feminine
entities in a text are misrepresented as male in
translation); or ii) not recognizing the existence
of non-binary individuals (e.g., when a system
does not account for gender neutral forms). For
such cases, the misrepresentation occurs in the
language employed to talk ‘‘about’’ such groups.1

Also, this harm can imply the reduced visibility of
the language used ‘‘by’’ speakers of such groups
by iii) failing to reflect their identity and commu-
nicative repertoires. In these cases, an MT flattens
their communication and produces an output that
indexes unwanted gender identities and social
meanings (e.g., women and non-binary speakers
are not referred to by their preferred linguistic
expressions of gender).

Stereotyping regards the propagation of nega-
tive generalizations of a social group, for example,
belittling feminine representation to less presti-
gious occupations (teacher (Feminine) vs. lecturer
(Masculine)), or in association with attractiveness
judgments (pretty lecturer (Feminine)).

Such behaviors are harmful as they can directly
affect the self-esteem of members of the target
group (Bourguignon et al., 2015). Additionally,
they can propagate to indirect stakeholders. For
instance, if a system fosters the visibility of the
way of speaking of the dominant group, MT
users can presume that such a language represents
the most appropriate or prestigious variant2—at
the expense of other groups and communicative
repertoires. These harms can aggregate, and the
ubiquitous embedding of MT in Web applications
provides us with paradigmatic examples of how
the two types of (R) can interplay. For example, if
women or non-binary3 scientists are the subjects
of a query, automatically translated pages run the

1See also the classifications by Dinan et al. (2020).
2For an analogy on how technology shaped the perception

of feminine voices as shrill and immature, see Tallon (2019).
3Throughout the paper, we use non-binary as an umbrella

term for referring to all gender identities between or outside
the masculine/feminine binary categories.
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risk of referring to them via masculine-inflected
job qualifications. Such misrepresentations can
lead readers to the experience of feelings of iden-
tity invalidation (Zimman et al., 2017). Also,
users may not be aware of being exposed to MT
mistakes due to the deceptively fluent output of
a system (Martindale and Carpuat, 2018). In the
long run, stereotypical assumptions and preju-
dices (e.g., only men are qualified for high-level
positions) will be reinforced (Levesque, 2011;
Régner et al., 2019).

Regarding (A), MT services are consumed by
the general public and can thus be regarded as
resources in their own right. Hence, (R) can di-
rectly imply (A) as a performance disparity across
users in the quality of service, namely, the overall
efficiency of the service. Accordingly, a woman
attempting to translate her biography by relying
on an MT system requires additional energy and
time to revise incorrect masculine references. If
such disparities are not accounted for, the MT
field runs the risk of producing systems that pre-
vent certain groups from fully benefiting from
such technological resources.

In the following, we operationalize such cate-
gories to map studies on gender bias to their moti-
vations and societal implications (Tables 1 and 2).

3 Understanding Bias

To confront bias in MT, it is vital to reach out
to other disciplines that foregrounded how the
socio-cultural notions of gender interact with lan-
guage(s), translation, and implicit biases. Only
then can we discuss the multiple factors that
concur to encode and amplify gender inequalities
in language technology. Note that, except for
Saunders et al. (2020), current studies on gender
bias in MT have assumed an (often implicit) bi-
nary vision of gender. As such, our discussion is
largely forced into this classification. Although
we also describe bimodal feminine/masculine
linguistic forms and social categories, we empha-
size that gender encompasses multiple biosocial
elements not to be conflated with sex (Risman,
2018; Fausto-Sterling, 2019), and that some indi-
viduals do not experience gender, at all, or in
binary terms (Glen and Hurrell, 2012).

3.1 Gender and Language

The relation between language and gender is
not straightforward. First, the linguistic structures

used to refer to the extra-linguistic reality of
gender vary across languages (§3.1.1). Moreover,
how gender is assigned and perceived in our
verbal practices depends on contextual factors as
well as assumptions about social roles, traits, and
attributes (§3.1.2). Lastly, language is conceived
as a tool for articulating and constructing personal
identities (§3.1.3).

3.1.1 Linguistic Encoding of Gender
Drawing on linguistic work (Corbett, 1991; Craig,
1994; Comrie, 1999; Hellinger and Bußman,
2001, 2002, 2003; Corbett, 2013; Gygax et al.,
2019) we describe the linguistic forms (lexical,
pronominal, grammatical) that bear a relation with
the extra-linguistic reality of gender. Following
Stahlberg et al. (2007), we identify three language
groups:

Genderless languages (e.g., Finnish, Turkish).
In such languages, the gender-specific repertoire
is at its minimum, only expressed for basic lexical
pairs, usually kinship or address terms (e.g., in
Finnish sisko/sister vs. veli/brother).

Notional gender languages4 (e.g., Danish,
English). On top of lexical gender (mom/dad),
such languages display a system of pronomi-
nal gender (she/he, her/him). English also hosts
some marked derivative nouns (actor/actress)
and compounds (chairman/chairwoman).

Grammatical gender languages (e.g., Arabic,
Spanish). In these languages, each noun pertains
to a class such as masculine, feminine, and neu-
ter (if present). Although for most inanimate
objects gender assignment is only formal,5 for
human referents masculine/feminine markings are
assigned on a semantic basis. Grammatical gen-
der is defined by a system of morphosyntactic
agreement, where several parts of speech beside
the noun (e.g., verbs, determiners, adjectives)
carry gender inflections.

In light of this, the English sentence ‘‘He/She
is a good friend’’ has no overt expression of
gender in a genderless language like Turkish
(‘‘O iyi bir arkadaş’’), whereas Spanish spreads
several masculine or feminine markings (‘‘El/la

4Also referred to as natural gender languages. Follow-
ing McConnell-Ginet (2013), we prefer notional to avoid
terminological overlapping with ‘‘natural’’, i.e., biologi-
cal/anatomical sexual categories. For a wider discussion on
the topic, see Nevalainen and Raumolin-Brunberg (1993);
Curzan (2003).

5E.g., ‘‘moon’’ is masculine in German, feminine in
French, and neuter in Greek.
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es un/a buen/a amigo/a’’). Although general, such
macro-categories allow us to highlight typologi-
cal differences across languages. These are cru-
cial to frame gender issues in both human and
machine translation. Also, they exhibit to what
extent speakers of each group are led to think and
communicate via binary distinctions,6 as well as
underline the relative complexity in carving out
a space for lexical innovations that encode non-
binary gender (Hord, 2016; Conrod, 2020). In this
sense, while English is bringing the singular they
in common use and developing neo-pronouns
(Bradley et al., 2019), for grammatical gender
languages like Spanish neutrality requires the
development of neo-morphemes (‘‘Elle es une
buene amigue’’).

3.1.2 Social Gender Connotations
To understand gender bias, we have to grasp not
only the structure of different languages, but also
how linguistic expressions are connoted, deployed,
and perceived (Hellinger and Motschenbacher,
2015). In grammatical gender languages, fem-
inine forms are often subject to a so-called
semantic derogation (Schulz, 1975), for example,
in French, couturier (fashion designer) vs.
couturière (seamstress). English is no exception
(e.g., governor/governess).

Moreover, bias can lurk underneath seemingly
neutral forms. Such is the case of epicene (i.e.,
gender neutral) nouns where gender is not gram-
matically marked. Here, gender assignment is
linked to (typically binary) social gender, that is,
‘‘the socially imposed dichotomy of masculine
and feminine role and character traits’’ (Kramarae
and Treichler, 1985). As an illustration, Danish
speakers tend to pronominalize dommer (judge)
with han (he) when referring to the whole occu-
pational category (Gomard, 1995; Nissen, 2002).
Social gender assignment varies across time and
space (Lyons, 1977; Romaine, 1999; Cameron,
2003) and regards stereotypical assumptions
about what is typical or appropriate for men
and women. Such assumptions impact our percep-
tions (Hamilton, 1988; Gygax et al., 2008; Kreiner
et al., 2008) and influence our behavior (e.g.,
leading individuals to identify with and fulfill
stereotypical expectations; Wolter and Hannover,

6Outside of the Western paradigm, there are cultures
whose languages traditionally encode gender outside of the
binary (Epple, 1998; Murray, 2003; Hall and O’Donovan,
2014).

2016; Sczesny et al., 2018) and verbal commu-
nication (e.g., women are often misquoted in the
academic community; Krawczyk, 2017).

Translation studies highlight how social gen-
der assignment influences translation choices
(Jakobson, 1959; Chamberlain, 1988; Comrie,
1999; Di Sabato and Perri, 2020). Primarily, the
problem arises from typological differences across
languages and their gender systems. Nonetheless,
socio-cultural factors also influence how trans-
lators deal with such differences. Consider the
character of the cook in Daphne du Maurier’s
Rebecca, whose gender is never explicitly stated in
the whole book. In the lack of any available infor-
mation, translators of five grammatical gender
languages represented the character as either a man
or a woman (Wandruszka, 1969; Nissen, 2002).
Although extreme, this case can illustrate the sit-
uation of uncertainty faced by MT: the mapping
of one-to-many forms in gender prediction. But,
as discussed in §4.1, mistranslations occur when
contextual gender information is available as well.

3.1.3 Gender and Language Use

Language use varies between demographic groups
and reflects their backgrounds, personalities, and
social identities (Labov, 1972; Trudgill, 2000;
Pennebaker and Stone, 2003). In this light, the
study of gender and language variation has re-
ceived much attention in socio- and corpus lin-
guistics (Holmes and Meyerhoff, 2003; Eckert
and McConnell-Ginet, 2013). Research conducted
in speech and text analysis highlighted several
gender differences, which are exhibited at the
phonological and lexical-syntactic level. For ex-
ample, women rely more on hedging strategies
(‘‘it seems that’’), purpose clauses (‘‘in order
to’’), first-person pronouns, and prosodic excla-
mations (Mulac et al., 2001; Mondorf, 2002;
Brownlow et al., 2003). Although some corre-
spondences between gender and linguistic features
hold across cultures and languages (Smith, 2003;
Johannsen et al., 2015), it should be kept in mind
that they are far from universal7 and should not
be intended in a stereotyped and oversimplified

7It has been largely debated whether gender-related
differences are inherently biological or cultural and social
products (Mulac et al., 2001). Currently, the idea that they
depend on biological reasons is largely rejected (Hyde,
2005) in favor of a socio-cultural or performative perspective
(Butler, 1990).
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manner (Bergvall et al., 1996; Nguyen et al.,
2016; Koolen and van Cranenburgh, 2017).

Drawing on gender-related features proved use-
ful for building demographically informed NLP
tools (Garimella et al., 2019) and personalized MT
models (Mirkin et al., 2015; Bawden et al., 2016;
Rabinovich et al., 2017). However, using personal
gender as a variable requires a prior understand-
ing of which categories may be salient, and a
critical reflection on how gender is intended and
ascribed (Larson, 2017). Otherwise, if we assume
that the only relevant categories are ‘‘male’’ and
‘‘female’’, our models will inevitably fulfill such
a reductionist expectation (Bamman et al., 2014).

3.2 Gender Bias in MT
To date, an overview of how several factors may
contribute to gender bias in MT does not exist.
We identify and clarify concurring problematic
causes, accounting for the context in which
systems are developed and used (§2). To this aim,
we rely on the three overarching categories of bias
described by Friedman and Nissenbaum (1996),
which foreground different sources that can lead
to machine bias. These are: pre-existing bias—
rooted in our institutions, practices and attitudes
(§3.2.1); technical bias—due to technical con-
straints and decisions (§3.2.2); and emergent bias
—arising from the interaction between systems
and users (§3.2.3). We consider such categories
as placed along a continuum, rather than being
discrete.

3.2.1 Pre-existing Bias
MT models are known to reflect gender dispari-
ties present in the data. However, reflections on
such generally invoked disparities are often over-
looked. Treating data as an abstract, monolithic
entity (Gitelman, 2013)—or relying on ‘‘overly
broad/overloaded terms like training data bias’’8

(Suresh and Guttag, 2019)—do not encourage
reasoning on the many factors of which data
are the product: first and foremost, the historical,
socio-cultural context in which they are generated.

A starting point to tackle these issues is
the Europarl corpus (Koehn, 2005), where
only 30% of sentences are uttered by women
(Vanmassenhove et al., 2018). Such an imbalance
is a direct window into the glass ceiling that

8See Johnson (2020a) and Samar (2020) for a discussion
on how such narrative can be counterproductive for tackling
bias.

has hampered women’s access to parliamentary
positions. This case exemplifies how data might
be ‘‘tainted with historical bias’’, mirroring an
‘‘unequal ground truth’’ (Hacker, 2018). Other
gender variables are harder to spot and quantify.

Empirical linguistics research pointed out that
subtle gender asymmetries are rooted in lan-
guages’ use and structure. For instance, an im-
portant aspect regards how women are referred
to. Femaleness is often explicitly invoked when
there is no textual need to do so, even in lan-
guages that do not require overt gender marking.
A case in point regards Turkish, which differen-
tiates cocuk (child) and kiz cocugu (female child)
(Braun, 2000). Similarly, in a corpus search,
Romaine (2001) found 155 explicit female mark-
ings for doctor (female, woman, or lady doctor),
compared with only 14 male doctor. Feminist
language critique provided extensive analysis of
such a phenomenon by highlighting how referents
in discourse are considered men by default unless
explicitly stated (Silveira, 1980; Hamilton, 1991).
Finally, prescriptive top–down guidelines limit
the linguistic visibility of gender diversity, for
example, the Real Academia de la Lengua Es-
pañola recently discarded the official use of non-
binary innovations and claimed the functionality
of masculine generics (Mundo, 2018; López et al.,
2020).

By stressing such issues, we are not condoning
the reproduction of pre-existing bias in MT.
Rather, the above-mentioned concerns are the
starting point to account for when dealing with
gender bias.

3.2.2 Technical Bias
Technical bias comprises aspects related to data
creation, model design, and training and testing
procedures. If present in training and testing sam-
ples, asymmetries in the semantics of language use
and gender distribution are respectively learned
by MT systems and rewarded in their evaluation.
However, as just discussed, biased representations
are not merely quantitative, but also qualitative.
Accordingly, straightforward procedures (e.g.,
balancing the number of speakers in existing
datasets) do not ensure a fairer representation
of gender in MT outputs. Since datasets are a
crucial source of bias, it is also crucial to advo-
cate for a careful data curation (Mehrabi et al.,
2019; Paullada et al., 2020; Hanna et al., 2021;
Bender et al., 2021), guided by pragmatically
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and socially informed analyses (Hitti et al., 2019;
Sap et al., 2020; Devinney et al., 2020) and
annotation practices (Gaido et al., 2020).

Overall, while data can mirror gender inequal-
ities and offer adverse shortcut learning oppor-
tunities, it is ‘‘quite clear that data alone rarely
constrain a model sufficiently’’ (Geirhos et al.,
2020) nor explain the fact that models over-
amplify (Shah et al., 2020) such inequalities in
their outputs. Focusing on models’ components,
Costa-jussà et al. (2020b) demonstrate that archi-
tectural choices in multilingual MT impact the
systems’ behavior: Shared encoder-decoders re-
tain less gender information in the source embed-
dings and less diversion in the attention than
language-specific encoder-decoders (Escolano
et al., 2021), thus disfavoring the genera-
tion of feminine forms. While discussing the
loss and decay of certain words in translation,
Vanmassenhove et al. (2019, 2021) attest to the
existence of an algorithmic bias that leads under-
represented forms in the training data (as it may
be the case for feminine references) to further de-
crease in the MT output. Specifically, Roberts et al.
(2020) prove that beam search (unlike sampling)
is skewed toward the generation of more frequent
(masculine) pronouns, as it leads models to an ex-
treme operating point that exhibits zero variability.

Thus, efforts towards understanding and mit-
igating gender bias should also account for the
model and its algorithmic implications. To date,
this remains largely unexplored.

3.2.3 Emergent Bias
Emergent bias may arise when a system is used
in a different context than the one it was designed
for—for example, when it is applied to another
demographic group. From car crash dummies
to clinical trials, we have evidence of how not
accounting for gender differences brings to the
creation of male-grounded products with dire
consequences (Liu and Dipietro Mager, 2016;
Criado-Perez, 2019), such as higher death and
injury risks in vehicle crashes and less effective
medical treatments for women. Similarly, unbe-
knownst to their creators, MT systems that are
not intentionally envisioned for a diverse range
of users will not generalize for the feminine seg-
ment of the population. Hence, in the interaction
with an MT system, a woman will likely be mis-
gendered or not have her linguistic style pre-
served (Hovy et al., 2020). Other conditions

of user/system mismatch may be the result of
changing societal knowledge and values. A case
in point regards Google Translate’s historical
decision to adjust its system for instances of
gender ambiguity. Since its launch twenty years
ago, Google had provided only one translation for
single-word gender-ambiguous queries (e.g., pro-
fessor translated in Italian with the masculine pro-
fessore). In a community increasingly conscious
of the power of language to hardwire stereotyp-
ical beliefs and women’s invisibility (Lindqvist
et al., 2019; Beukeboom and Burgers, 2019),
the bias exhibited by the system was confronted
with a new sensitivity. The service’s decision
(Kuczmarski, 2018) to provide a double
feminine/masculine output (professor→profes-
soressa|professore) stems from current demands
for gender-inclusive resolutions. For the recogni-
tion of non-binary groups (Richards et al., 2016),
we invite studies on how such modeling could be
integrated with neutral strategies (§6).

4 Assessing Bias

First accounts on gender bias in MT date back to
Frank et al. (2004). Their manual analysis pointed
out how English-German MT suffers from a dearth
of linguistic competence, as it shows severe diffi-
culties in recovering syntactic and semantic infor-
mation to correctly produce gender agreement.

Similar inquiries were conducted on other target
grammatical gender languages for several com-
mercial MT systems (Abu-Ayyash, 2017; Monti,
2017; Rescigno et al., 2020). While these studies
focused on contrastive phenomena, Schiebinger
(2014)9 went beyond linguistic insights, call-
ing for a deeper understanding of gender bias.
Her article on Google Translate’s ‘‘masculine
default’’ behavior emphasized how such a phe-
nomenon is related to the larger issue of gender
inequalities, also perpetuated by socio-technical
artifacts (Selbst et al., 2019). All in all, these
qualitative analyses demonstrated that gender
problems encompass all three MT paradigms
(neural, statistical, and rule-based), preparing the
ground for quantitative work.

To attest the existence and scale of gender bias
across several languages, dedicated benchmarks,
evaluations, and experiments have been designed.

9See also Schiebinger’s project Gendered Innovations:
http://genderedinnovations.stanford.edu
/case-studies/nlp.html.
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Study Benchmark Gender Harms
(Prates et al., 2018) Synthetic, U.S. Bureau of Labor Statistics b R: under-rep, stereotyping
(Cho et al., 2019) Synthetic equity evaluation corpus (EEC) b R: under-rep, stereotyping
(Gonen and Webster, 2020) BERT-based perturbations on natural sentences b R: under-rep, stereotyping
(Stanovsky et al., 2019) WinoMT b R: under-rep, stereotyping
(Vanmassenhove et al., 2018) Europarl (generic) b A: quality
(Hovy et al., 2020) Trustpilot (reviews with gender and age) b R: under-rep

Table 1: For each Study, the Table shows on which Benchmark gender bias is assessed, how Gender
is intended (here only in binary (b) terms). Finally, we indicate which (R)epresentational—under-
representation and stereotyping—or (A)llocational Harm—as reduced quality of service—is addressed
in the study.

We first discuss large scale analyses aimed at
assessing gender bias in MT, grouped according
to two main conceptualizations: i) works focus-
ing on the weight of prejudices and stereotypes
in MT (§4.1); and ii) studies assessing whether
gender is properly preserved in translation (§4.2).
In accordance with the human-centered approach
embraced in this survey, in Table 1 we map each
work to the harms (see §2) ensuing from the biased
behaviors they assess. Finally, we review exist-
ing benchmarks for comparing MT performance
across genders (§4.3).

4.1 MT and Gender Stereotypes
In MT, we record prior studies concerned with
pronoun translation and coreference resolution
across typologically different languages account-
ing for both animate and inanimate referents
(Hardmeier and Federico, 2010; Le Nagard and
Koehn, 2010; Guillou, 2012). For the specific
analysis on gender bias, instead, such tasks are
exclusively studied in relation to human entities.

Prates et al. (2018) and Cho et al. (2019) de-
sign a similar setting to assess gender bias. Prates
et al. (2018) investigate pronoun translation from
12 genderless languages into English. Retrieving
∼1,000 job positions from the U.S. Bureau of
Labor Statistics, they build simple constructions
like the Hungarian ‘‘ö egy mérnök’’ (‘‘he/she
is an engineer’’). Following the same template,
Cho et al. (2019) extend the analysis to Korean-
English including both occupations and sentiment
words (e.g., kind). As their samples are ambiguous
by design, the observed predictions of he/she
pronouns should be random, yet they show a
strong masculine skew.10

10Cho et al. (2019) highlight that a higher frequency of
feminine references in the MT output does not necessarily
imply a bias reduction. Rather, it may reflect gender

To further analyze the under-representation of
she pronouns, Prates et al. (2018) focus on 22
macro-categories of occupation areas and com-
pare the proportion of pronoun predictions against
the real-world proportion of men and women
employed in such sectors. In this way, they find
that MT not only yields a masculine default, but
it also underestimates feminine frequency at a
greater rate than occupation data alone suggest.
Such an analysis starts by acknowledging pre-
existing bias (see §3.2.1)—for example, low rates
of women in STEM—to attest the existence of
machine bias, and defines it as the exacerbation
of actual gender disparities.

Going beyond word lists and simple syn-
thetic constructions, Gonen and Webster (2020)
inspect the translation into Russian, Spanish,
German, and French of natural yet ambiguous
English sentences. Their analysis on the ratio and
type of generated masculine/feminine job titles
consistently exhibits social asymmetries for target
grammatical gender languages (e.g., lecturer mas-
culine vs. teacher feminine). Finally, Stanovsky
et al. (2019) assess that MT is skewed to the point
of actually ignoring explicit feminine gender
information in source English sentences. For
instance, MT systems yield a wrong masculine
translation of the job title baker, although it is
referred to by the pronoun she. Aside from over-
looking of overt gender mentions, the model’s
reliance on unintended (and irrelevant) cues for
gender assignment is further confirmed by the

stereotypes, as for hairdresser that is skewed toward
feminine. This observation points to the tension between
frequency count, suitable for testing under-representation,
and qualitative-oriented analysis on bias conceptualized in
terms of stereotyping.
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fact that adding a socially connoted (but for-
mally epicene) adjective (the pretty baker) pushes
models toward feminine inflections in translation.

We observe that the propagation of stereotypes
is a widely researched form of gender asymmetries
in MT, one that so far has been largely narrowed
down to occupational stereotyping. After all,
occupational stereotyping has been studied by dif-
ferent disciplines (Greenwald et al., 1998) attested
across cultures (Lewis and Lupyan, 2020), and it
can be easily detected in MT across multiple lan-
guage directions with consistent results. Current
research should not neglect other stereotyping
dynamics, as in the case of Stanovsky et al. (2019)
and Cho et al. (2019), who include associations
to physical characteristics or psychological traits.
Also, the intrinsically contextual nature of socie-
tal expectations advocates for the study of culture-
specific dimensions of bias. Finally, we signal
that the BERT-based perturbation method by
Webster et al. (2019) identifies other bias-
susceptible nouns that tend to be assigned to
a specific gender (e.g., fighter as masculine).
As Blodgett (2021) underscores, however, ‘‘the
existence of these undesirable correlations is not
sufficient to identify them as normatively unde-
sirable’’. It should thus be investigated whether
such statistical preferences can cause harms (e.g.,
by checking if they map to existing harmful
associations or quality of service disparities).

4.2 MT and Gender Preservation

Vanmassenhove et al. (2018) and Hovy et al.
(2020) investigate whether speakers’ gender11 is
properly reflected in MT. This line of research is
preceded by findings on gender personalization of
statistical MT (Mirkin et al., 2015; Bawden et al.,
2016; Rabinovich et al., 2017), which claim that
gender ‘‘signals’’ are weakened in translation.

Hovy et al. (2020) conjecture the existence
of age and gender stylistic bias due to models’
under-exposure to the writings of women and
younger segments of the population. To test this
hypothesis, they automatically translate a corpus
of online reviews with available metadata about
users (Hovy et al., 2015). Then, they compare
such demographic information with the predic-
tion of age and gender classifiers run on the

11Note that these studies distinguish speakers into
female/male. As discussed in §3.1.3, we invite a reflection on
the appropriateness and use of such categories.

MT output. Results indicate that different com-
mercial MT models systematically make authors
‘‘sound’’ older and male. Their study thus con-
cerns the under-representation of the language
used ‘‘by’’ certain speakers and how it is per-
ceived (Blodgett, 2021). However, the authors
do not inspect which linguistic choices MT over-
produces, nor which stylistic features may char-
acterize different socio-demographic groups.

Still starting from the assumption that
demographic factors influence language use,
Vanmassenhove et al. (2018) probe MT’s abil-
ity to preserve speaker’s gender translating from
English into ten languages. To this aim, they
develop gender-informed MT models (see § 5.1)
whose outputs are compared with those obtained
by their baseline counterparts. Tested on a set for
spoken language translation (Koehn, 2005), their
enhanced models show consistent gains in terms
of overall quality when translating into grammati-
cal gender languages, where speaker’s references
are often marked. For instance, the French transla-
tion of ‘‘I’m happy’’ is either ‘‘Je suis heureuse‘‘
or ‘‘Je suis hereux’’ for a female/male speaker,
respectively. Through a focused cross-gender
analysis (carried out by splitting their English-
French test set into 1st person male vs. female
data) they assess that the largest margin of im-
provement for their gender-informed approach
concerns sentences uttered by women, since the
results of their baseline disclose a quality of ser-
vice disparity in favor of male speakers. As well
as morphological agreement, they also attribute
such improvement to the fact that their enhanced
model produces gendered preferences in other
word choices. For instance, it opts for think rather
than believe, which is in concordance with corpus
studies claiming a tendency for women to use less
assertive speech (Newman et al., 2008). Note that
the authors rely on manual analysis to ascribe per-
formance differences to gender-related features. In
fact, global evaluations on generic test sets alone
are inadequate to pointedly measure gender bias.

4.3 Existing Benchmarks

MT outputs are typically evaluated against ref-
erence translations employing standard metrics
such as BLEU (Papineni et al., 2002) or TER
(Snover et al., 2006). This procedure poses two
challenges. First, these metrics provide coarse-
grained scores for translation quality, as they treat
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all errors equally and are rather insensitive to
specific linguistic phenomena (Sennrich, 2017).
Second, generic test sets containing the same
gender imbalance present in the training data can
reward biased predictions. Here, we describe the
publicly available MT Gender Bias Evaluation
Testsets (GBETs) (Sun et al., 2019), that is, bench-
marks designed to probe gender bias by isolating
the impact of gender from other factors that may
affect systems’ performance. Note that differ-
ent benchmarks and metrics respond to different
conceptualizations of bias (Barocas et al., 2019).
Common to them all in MT, however, is that
biased behaviors are formalized by using some
variants of averaged performance12 disparities
across gender groups, comparing the accuracy
of gender predictions on an equal number of
masculine, feminine, and neutral references.

Escudé Font and Costa-jussà (2019) devel-
oped the bilingual English-Spanish Occupations
test set. It consists of 1,000 sentences equally
distributed across genders. The phrasal structure
envisioned for their sentences is ‘‘I’ve known
{her|him|<proper noun>} for a long time, my
friend works as {a|an}<occupation>’’. The eval-
uation focuses on the translation of the noun friend
into Spanish (amigo/a). Since gender information
is present in the source context and sentences
are the same for both masculine/feminine partic-
ipants, an MT system exhibits gender bias if it
disregards relevant context and cannot provide
the correct translation of friend at the same rate
across genders.

Stanovsky et al. (2019) created WinoMT by
concatenating two existing English GBETs for
coreference resolution (Rudinger et al., 2018;
Zhao et al., 2018a). The corpus consists of 3,888
Winogradesque sentences presenting two human
entities defined by their role and a subsequent
pronoun that needs to be correctly resolved to
one of the entities (e.g., ‘‘The lawyer yelled
at the hairdresser because he did a bad job’’).
For each sentence, there are two variants with
either he or she pronouns, so as to cast the referred
annotated entity (hairdresser) into a proto- or anti-
stereotypical gender role. By translating WinoMT
into grammatical gender languages, one can thus
measure systems’ ability to resolve the anaphoric

12This is a value-laden option (Birhane et al., 2020), and
not the only possible one (Mitchell et al., 2020). For a broader
discussion on measurement and bias we refer the reader also
to Jacobs (2021); Jacobs et al. (2020).

relation and pick the correct feminine/masculine
inflection for the occupational noun. On top of
quantifying under-representation as the difference
between the total amount of translated feminine
and masculine references, the subdivision of the
corpus into proto- and anti-stereotypical sets also
allows verifying if MT predictions correlate with
occupational stereotyping.

Finally, Saunders et al. (2020) enriched the orig-
inal version of WinoMT in two different ways.
First, they included a third gender-neutral case
based on the singular they pronoun, thus paving
the way to account for non-binary referents. Sec-
ond, they labeled the entity in the sentence which
is not coreferent with the pronoun (lawyer). The
latter annotation is used to verify the shortcomings
of some mitigating approaches as discussed in §5.

The above-mentioned corpora are known as
challenge sets, consisting of sentences created ad
hoc for diagnostic purposes. In this way, they can
be used to quantify bias related to stereotyping and
under-representation in a controlled environment.
However, since they consist of a limited variety of
synthetic gender-related phenomena, they hardly
address the variety of challenges posed by real-
world language and are relatively easy to overfit.
As recognized by Rudinger et al. (2018) ‘‘they
may demonstrate the presence of gender bias in
a system, but not prove its absence’’.

The Arabic Parallel Gender Corpus (Habash
et al., 2019) includes an English-Arabic test
set13 retrieved from OpenSubtitles natural lan-
guage data (Lison and Tiedemann, 2016). Each
of the 2,448 sentences in the set exhibits a first
person singular reference to the speaker (e.g.,
‘‘I’m rich’’). Among them, ∼200 English sen-
tences require gender agreement to be assigned
in translation. These were translated into Arabic
in both gender forms, obtaining a quantitatively
and qualitatively equal amount of sentence pairs
with annotated masculine/feminine references.
This natural corpus thus allows for cross-gender
evaluations on MT production of correct speaker’s
gender agreement.

MuST-SHE (Bentivogli et al., 2020) is a natu-
ral benchmark for three language pairs (English-
French/Italian/Spanish). Built on TED talks data
(Cattoni et al., 2021), for each language pair
it comprises ∼1,000 (audio, transcript, transla-

13Overall, the corpus comprises over 12,000 annotated
sentences and 200,000 synthetic sentences.
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Approach Authors Benchmark Gender Harms
Gender tagging Vanmassenhove et al. Europarl (generic) b R: under-rep, A: quality
(sentence-level) Elaraby et al. Open subtitles (generic) b R: under-rep, A: quality
Gender tagging Saunders et al. expanded WinoMT nb R: under-rep, stereotyping
(word-level) Stafanovičs et al. WinoMT b R: under-rep, stereotyping
Adding context Basta et al. WinoMT b R: under-rep, stereotyping
Word-embeddings Escudé Font and Costa-jussà Occupation test set b R: under-rep
Fine-tuning Costa-jussà and de Jorge WinoMT b R: under-rep, stereotyping
Black-box injection Moryossef et al. Open subtitles (selected sample) b R: under-rep, A: quality
Lattice-rescoring Saunders and Byrne WinoMT b R: under-rep, steretoyping
Re-inflection Habash et al.; Alhafni et al. Arabic Parallel Gender Corpus b R: under-rep, A: quality

Table 2: For each Approach and related Authors, the Table shows on which Benchmark it is tested,
if Gender is intended in binary terms (b), or including non-binary (nb) identities. Finally, we indicate
which (R)epresentational—under-representation and stereotyping—or (A)llocational Harm—as re-
duced quality of service—the approach attempts to mitigate.

tion) triplets, thus allowing evaluation for both MT
and speech translation (ST). Its samples are bal-
anced between masculine and feminine phenom-
ena, and incorporate two types of constructions:
i) sentences referring to the speaker (e.g., ‘‘I was
born in Mumbai’’), and ii) sentences that present
contextual information to disambiguate gender
(e.g., ‘‘My mum was born in Mumbai’’). Since
every gender-marked word in the target language
is annotated in the corpus, MuST-SHE grants
the advantage of complementing BLEU- and
accuracy-based evaluations on gender translation
for a great variety of phenomena.

Unlike challenge sets, natural corpora quantify
whether MT yields reduced feminine represen-
tation in authentic conditions and whether the
quality of service varies across speakers of dif-
ferent genders. However, as they treat all gender-
marked words equally, it is not possible to
identify if the model is propagating stereotypical
representations.

All in all, we stress that each test set and
metric is only a proxy for framing a phenomenon
or an ability (e.g., anaphora resolution), and an
approximation of what we truly intend to gauge.
Thus, as we discuss in §6, advances in MT should
account for the observation of gender bias in
real-world conditions to avoid a situation in which
achieving high scores on a mathematically for-
malized estimation could lead to a false sense of
security. Still, benchmarks remain valuable tools
to monitor models’ behavior. As such, we remark
that evaluation procedures ought to cover both
models’ general performance and gender-related
issues. This is crucial to establish the capabilities
and limits of mitigating strategies.

5 Mitigating Bias

To attenuate gender bias in MT, different strate-
gies dealing with input data, learning algorithms,
and model outputs have been proposed. As attested
by Birhane et al. (2020), since advancements are
oftentimes exclusively reported in terms of val-
ues internal to the machine learning field (e.g.,
efficiency, performance), it is not clear how such
strategies are meeting societal needs by reducing
MT-related harms. In order to conciliate technical
perspectives with the intended social purpose, in
Table 2 we map each mitigating approach to the
harms (see §2) they are meant to alleviate, as
well as to the benchmark their effectiveness is
evaluated against. Complementarily, we hereby
describe each approach by means of two cat-
egories: model debiasing (§5.1) and debiasing
through external components (§5.2).

5.1 Model Debiasing

This line of work focuses on mitigating gender bias
through architectural changes of general-purpose
MT models or via dedicated training procedures.

Gender Tagging. To improve the generation of
speaker’s referential markings, Vanmassenhove
et al. (2018) prepend a gender tag (M or F) to each
source sentence, both at training and inference
time. As their model is able to leverage this addi-
tional information, the approach proves useful to
handle morphological agreement when translating
from English into French. However, this solution
requires additional metadata regarding the speak-
ers’ gender that might not always be feasible to
acquire. Automatic annotation of speakers’ gen-
der (e.g., based on first names) is not advisable,
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as it runs the risk of introducing additional bias
by making unlicensed assumptions about one’s
identity.

Elaraby et al. (2018) bypass this risk by defin-
ing a comprehensive set of cross-lingual gender
agreement rules based on POS tagging. In this
way, they identify speakers’ and listeners’ gender
references in an English-Arabic parallel corpus,
which is consequently labeled and used for train-
ing. The idea, originally developed for spoken
language translation in a two-way conversational
setting, can be adapted for other languages and
scenarios by creating new dedicated rules. How-
ever, in realistic deployment conditions where
reference translations are not available, gender
information still has to be externally supplied as
metadata at inference time.

Stafanovičs et al. (2020) and Saunders et al.
(2020) explore the use of word-level gender tags.
While Stafanovičs et al. (2020) just report a gender
translation improvement, Saunders et al. (2020)
rely on the expanded version of WinoMT to iden-
tify a problem concerning gender tagging: It intro-
duces noise if applied to sentences with references
to multiple participants, as it pushes their transla-
tion toward the same gender. Saunders et al. (2020)
also include a first non-binary exploration of neu-
tral translation by exploiting an artificial dataset,
where neutral tags are added and gendered inflec-
tions are replaced by placeholders. The results
are inconclusive, however, most likely due to the
small size and synthetic nature of their dataset.

Adding Context. Without further information
needed for training or inference, Basta et al. (2020)
adopt a generic approach and concatenate each
sentence with its preceding one. By providing
more context, they attest a slight improvement in
gender translations requiring anaphoric corefer-
ence to be solved in English-Spanish. This finding
motivates exploration at the document level, but it
should be validated with manual (Castilho et al.,
2020) and interpretability analyses since the added
context can be beneficial for gender-unrelated
reasons, such as acting as a regularization factor
(Kim et al., 2019).

Debiased Word Embeddings. The two above-
mentioned mitigations share the same intent: sup-
ply the model with additional gender knowledge.
Instead, Escudé Font and Costa-jussà (2019)
leverage pre-trained word embeddings, which
are debiased by using the hard-debiasing method

proposed by Bolukbasi et al. (2016) or the
GN-GloVe algorithm (Zhao et al., 2018b). These
methods respectively remove gender associa-
tions or isolate them from the representations of
English gender-neutral words. Escudé Font and
Costa-jussà (2019) employ such embeddings on
the decoder side, the encoder side, and both sides
of an English-Spanish model. The best results are
obtained by leveraging GN-GloVe embeddings
on both encoder and decoder sides, increasing
BLEU scores and gender accuracy. The authors
generically apply debiasing methods developed
for English also to their target language. How-
ever, with being Spanish a grammatical gen-
der language, other language-specific approaches
should be considered to preserve the quality of
the original embeddings (Zhou et al., 2019; Zhao
et al., 2020). We also stress that it is debatable
whether depriving systems of some knowledge
and diminish their perceptions is the right path
toward fairer language models (Dwork et al.,
2012; Caliskan et al., 2017; Gonen and Goldberg,
2019; Nissim and van der Goot, 2020). Also,
Goldfarb-Tarrant et al. (2020) find that there is no
reliable correlation between intrinsic evaluations
of bias in word-embeddings and cascaded effects
on MT models’ biased behavior.

Balanced Fine-tuning. Costa-jussà and de Jorge
(2020) rely on Gebiotoolkit (Costa-jussà et al.,
2020c) to build gender-balanced datasets (i.e.,
featuring an equal amount of masculine/feminine
references) based on Wikipedia biographies. By
fine-tuning their models on such natural and more
even data, the generation of feminine forms is
overall improved. However, the approach is not
as effective for gender translation on the anti-
stereotypical WinoMT set. As discussed in §3.2.2,
they employ a straightforward method that aims
to increase the number of Wikipedia pages cover-
ing women in their training data. However, such
coverage increase does not mitigate stereotyping
harms, as it does not account for the qualitative
different ways in which men and women are
portrayed (Wagner et al., 2015).

5.2 Debiasing through External Components

Instead of directly debiasing the MT model, these
mitigating strategies intervene in the inference
phase with external dedicated components. Such
approaches do not imply retraining, but introduce
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the additional cost of maintaining separate mod-
ules and handling their integration with the MT
model.

Black-box Injection. Moryossef et al. (2019)
attempt to control the production of feminine
references to the speaker and numeral inflec-
tions (plural or singular) for the listener(s) in an
English-Hebrew spoken language setting. To this
aim, they rely on a short construction, such as
‘‘she said to them’’, which is prepended to the
source sentence and then removed from the MT
output. Their approach is simple, it can handle two
types of information (gender and number) for mul-
tiple entities (speaker and listener), and improves
systems’ ability to generate feminine target forms.
However, as in the case of Vanmassenhove
et al., 2018 and Elaraby et al. (2018), it requires
metadata about speakers and listeners.

Lattice Re-scoring. Saunders and Byrne
(2020) propose to post-process the MT output
with a lattice re-scoring module. This module
exploits a transducer to create a lattice by map-
ping gender marked words in the MT output to
all their possible inflectional variants. Developed
for German, Spanish, and Hebrew, all the sen-
tences corresponding to the paths in the lattice
are re-scored with another model, which has been
gender-debiased but at the cost of lower generic
translation quality. Then, the sentence with the
highest probability is picked as the final out-
put. When tested on WinoMT, such an approach
leads to an increase in the accuracy of gender
forms selection. Note that the gender-debiased
system is created by fine-tuning the model on an
ad hoc built tiny set containing a balanced number
of masculine/feminine forms. Such an approach,
also known as counterfactual data augmentation
(Lu et al., 2020), requires one to create identical
pairs of sentences differing only in terms of gender
references. In fact, Saunders and Byrne (2020)
compile English sentences following this schema:
‘‘The <profession> finished <his|her> work’’.
Then, the sentences are automatically translated
and manually checked. In this way, they obtain
gender-balanced parallel corpus. Thus, to imple-
ment their method for other language pairs, the
generation of new data is necessary. For the
fine-tuning set, the effort required is limited as
the goal is to alleviate stereotypes by focusing
on a pre-defined occupational lexicon. However,
data augmentation is very demanding for complex
sentences that represent a rich variety of gender

agreement phenomena14 such as those occurring
in natural language scenarios.

Gender Re-inflection. Habash et al. (2019)
and Alhafni et al. (2020) confront the problem
of speaker’s gender agreement in Arabic with a
post-processing component that re-inflects first
person references into masculine/feminine forms.
In Alhafni et al. (2020), the preferred gender of the
speaker and the translated Arabic sentence are fed
to the component, which re-inflects the sentence
in the desired form. In Habash et al. (2019) the
component can be: i) a two-step system that first
identifies the gender of first person references in an
MT output, and then re-inflects them in the oppo-
site form; or ii) a single-step system that always
produces both forms from an MT output. Their
method does not necessarily require speakers’
gender information: If metadata are supplied, the
MT output is re-inflected accordingly; otherwise,
both feminine/masculine inflections are offered
(leaving to the user the choice of the appropriate
one). The implementation of the re-inflection
component was made possible by the Arabic
Parallel Gender Corpus (see §4.3), which de-
manded an expensive work of manual data cre-
ation. However, such corpus grants research
on English-Arabic the benefits of a wealth of
gender-informed natural language data that have
been curated to avoid hetero-centrist interpreta-
tions and preconceptions (e.g., proper names and
speakers of sentences like ‘‘that’s my wife’’ are
flagged as gender-ambiguous). Along the same
line, Google Translate also delivers two outputs
for short gender-ambiguous queries (Johnson,
2020b). Among languages with grammatical gen-
der, the service is currently available only for
English-Spanish.

In light of the above, we remark that there is no
conclusive state-of-the-art method for mitigating
bias. The discussed interventions in MT tend to
respond to specific aspects of the problem with
modular solutions, but if and how they can be
integrated within the same MT system remains
unexplored. As we have discussed through the
survey, the umbrella term ‘‘gender bias’’ refers to
a wide array of undesirable phenomena. Thus, it
is unlikely that a one-size-fits-all solution will be

14Zmigrod et al. (2019) proposed an automatic approach
for augmenting data into morphologically rich languages, but
it is only viable for simple constructions with one single
entity.
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able tackle problems that differ from one another,
as they depend on, for example, how bias is
conceptualized, the language combinations, the
kinds of corpora used. As a result, we believe that
generalization and scalability should not be the
only criteria against which mitigating strategies
are valued. Conversely, we should make room
for openly context-aware interventions. Finally,
gender bias in MT is a socio-technical problem.
We thus highlight that engineering interventions
alone are not a panacea (Chang, 2019) and should
be integrated with long-term multidisciplinary
commitment and practices (D’Ignazio and Klein,
2020; Gebru, 2020) necessary to address bias in
our community, hence in its artifacts, too.

6 Conclusion and Key Challenges

Studies confronting gender bias in MT are rapidly
emerging; in this paper we presented them within
a unified framework to critically overview cur-
rent conceptualizations and approaches to the
problem. Since gender bias is a multifaceted and
interdisciplinary issue, in our discussion we inte-
grated knowledge from related disciplines, which
can be instrumental to guide future research and
make it thrive. We conclude by suggesting several
directions that can help this field going forward.

Model De-biasing. Neural networks rely
on easy-to-learn shortcuts or ‘‘cheap tricks’’
(Levesque, 2014), as picking up on spurious cor-
relations offered by training data can be easier for
machines than learning to actually solve a specific
task. What is ‘‘easy to learn’’ for a model depends
on the inductive bias (Sinz et al., 2019; Geirhos
et al., 2020) resulting from architectural choices,
training data and learning rules. We think that
explainability techniques (Belinkov et al., 2020)
represent a useful tool to identify spurious cues
(features) exploited by the model during inference.
Discerning them can provide the research com-
munity with guidance on how to improve models’
generalization by working on data, architectures,
loss functions and optimizations. For instance,
data responsible for spurious features (e.g.,
stereotypical correlations) might be recognized
and their weight at training time might be lowered
(Karimi Mahabadi et al., 2020). Additionally,
state-of-the-art architectural choices and algo-
rithms in MT have mostly been studied in terms
of overall translation quality without specific anal-
yses regarding gender translation. For instance,

current systems segment text into subword units
with statistical methods that can break the mor-
phological structure of words, thus losing relevant
semantic and syntactic information in morphologi-
cally rich languages (Niehues et al., 2016; Ataman
et al., 2017). Several languages show complex
feminine forms, typically derivative and created
by adding a suffix to the masculine form, such
as Lehrer/Lehrerin (de), studente/studentessa (it).
It would be relevant to investigate whether, com-
pared to other segmentation techniques, statistical
approaches disadvantage (rarer and more com-
plex) feminine forms. The MT community should
not overlook focused hypotheses of such kind, as
they can deepen our comprehension of the gender
bias conundrum.

Non-textual Modalities. Gender bias for non-
textual automatic translations (e.g., audiovisual)
has been largely neglected. In this sense, ST rep-
resents a small niche (Costa-jussà et al., 2020a).
For the translation of speaker-related gender phe-
nomena, Bentivogli et al. (2020) prove that direct
ST systems exploit speaker’s vocal characteris-
tics as a gender cue to improve feminine trans-
lation. However, as addressed by Gaido et al.
(2020), relying on physical gender cues (e.g.,
pitch) for such task implies reductionist gender
classifications (Zimman, 2020) making systems
potentially harmful for a diverse range of users.
Similarly, although image-guided translation has
been claimed useful for gender translation since it
relies on visual inputs for disambiguation (Frank
et al., 2018; Ive et al., 2019), it could bend toward
stereotypical assumptions about appearance. Fur-
ther research should explore such directions to
identify potential challenges and risks, by draw-
ing on bias in image captioning (van Miltenburg,
2019) and consolidated studies from the fields
of automatic gender recognition and human–
computer interaction (HCI) (Hamidi et al., 2018;
Keyes, 2018; May, 2019).

Beyond Dichotomies. Besides a few notable
exceptions for English NLP tasks (Manzini et al.,
2019; Cao and Daumé III, 2020; Sun et al., 2021)
and one in MT (Saunders et al., 2020), the discus-
sion around gender bias has been reduced to the
binary masculine/feminine dichotomy. Although
research in this direction is currently hampered
by the absence of data, we invite considering
inclusive solutions and exploring nuanced dimen-
sions of gender. Starting from language practices,
Indirect Non-binary Language (INL) overcomes

857

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00401/1957705/tacl_a_00401.pdf by guest on 07 Septem
ber 2023



gender specifications (e.g., using service, human-
kind rather than waiter/waitress or mankind).15

Although more challenging, INL can be
achieved also for grammatical gender languages
(Motschenbacher, 2014; Lindqvist et al., 2019),
and it is endorsed for official EU documents
(Papadimoulis, 2018). Accordingly, MT mod-
els could be brought to avoid binary forms
and move toward gender-unspecified solutions,
for example, adversarial networks including a
discriminator that classifies speaker’s linguistic
expression of gender (masculine or feminine)
could be employed to ‘‘neutralize’’ speaker-
related forms (Li et al., 2018; Delobelle et al.,
2020). Conversely, Direct Non-binary Language
(DNL) aims at increasing the visibility of non-
binary individuals via neologisms and neomor-
phemes (Bradley et al., 2019; Papadopoulos,
2019; Knisely, 2020). With DNL starting to circu-
late (Shroy, 2016; Santiago, 2018; López, 2019),
the community is presented with the opportunity
to promote the creation of inclusive data.

Finally, as already highlighted in legal and
social science theory, discrimination can arise
from the intersection of multiple identity cate-
gories (e.g., race and gender) (Crenshaw, 1989)
which are not additive and cannot always be
detected in isolation (Schlesinger et al., 2017).
Following the MT work by Hovy et al. (2020),
as well as other intersectional analyses from
NLP (Herbelot et al., 2012; Jiang and Fellbaum,
2020) and AI-related fields (Buolamwini and
Gebru, 2018), future studies may account for
the interaction of gender attributes with other
sociodemographic classes.

Human-in-the-Loop. Research on gender bias
in MT is still restricted to lab tests. As such,
unlike other studies that rely on participatory
design (Turner et al., 2015; Cercas Curry et al.,
2020; Liebling et al., 2020), the advancement of
the field is not measured with people’s experience
in focus or in relation to specific deployment
contexts. However, these are fundamental consid-
erations to guide the field forward and, as HCI
studies show (Vorvoreanu et al., 2019), to propel
the creation of gender-inclusive technology. In
particular, representational harms are intrinsically
difficult to estimate and available benchmarks
only provide a rough idea of their extent. This is

15INL suggestions have also been recently implemented
within Microsoft text editors (Langston, 2020).

an argument in favor of focused studies16 on their
individual or aggregate effects in everyday life.
Also, we invite the whole development process to
be paired with bias-aware research methodology
(Havens et al., 2020) and HCI approaches (Stumpf
et al., 2020), which can help to operationalize sen-
sitive attributes like gender (Keyes et al., 2021).
Finally, MT is not only built for people, but also
by people. Thus, it is vital to reflect on the implicit
biases and backgrounds of the people involved in
MT pipelines at all stages and how they could be
reflected in the model. This means starting from
bottom-level countermeasures, engaging with
translators (De Marco and Toto, 2019; Lessinger,
2020) and annotators (Waseem, 2016; Geva
et al., 2019), and considering everyone’s subjec-
tive positionality—and, crucially, also the lack
of diversity within technology teams (Schluter,
2018; Waseem et al., 2020).

Acknowledgments

We would like to thank the anonymous reviewers
and the TACL Action Editors. Their insight-
ful comments helped us improve on the current
version of the paper.

References

Emad A. S. Abu-Ayyash. 2017. Errors and
non-errors in english-arabic machine transla-
tion of gender-bound constructs in technical
texts. Procedia Computer Science, 117:73–80.
https://doi.org/10.1016/j.procs
.2017.10.095

Bashar Alhafni, Nizar Habash, and Houda
Bouamor. 2020. Gender-aware reinflection
using linguistically enhanced neural models.
In Proceedings of the Second Workshop on
Gender Bias in Natural Language Processing,
pages 139–150, Online. Association for Com-
putational Linguistics.

Duygu Ataman, Matteo Negri, Marco Turchi,
and Marcello Federico. 2017. Linguistically

16To the best of our knowledge, the Gender-Inclusive
Language Models Survey is the first project of this kind
that includes MT. At time of writing it is available at:
https://docs.google.com/forms/d/e/1FAIpQL
SfKenp4RKtDhKA0WLqPflGSBV2VdBA9h3F8MwqRex
4kiCf9Q/viewform.

858

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00401/1957705/tacl_a_00401.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1016/j.procs.2017.10.095
https://doi.org/10.1016/j.procs.2017.10.095
https://docs.google.com/forms/d/e/1FAIpQLSfKenp4RKtDhKA0WLqPflGSBV2VdBA9h3F8MwqRex_4kiCf9Q/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfKenp4RKtDhKA0WLqPflGSBV2VdBA9h3F8MwqRex_4kiCf9Q/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfKenp4RKtDhKA0WLqPflGSBV2VdBA9h3F8MwqRex_4kiCf9Q/viewform


motivated vocabulary reduction for neural
machine translation from Turkish to English.
The Prague Bulletin of Mathematical Linguis-
tics, 108(1)331–342. https://doi.org/10
.1515/pralin-2017-0031

David Bamman, Jacob Eisenstein, and Tyler
Schnoebelen. 2014. Gender identity and lexical
variation in social media. Journal of Socio-
linguistics, 18(2):135–160. https://doi
.org/10.1111/josl.12080

Solon Barocas, Moritz Hardt, and Arvind
Narayanan. 2019. Fairness and Machine
Learning. fairmlbook.org. http://www
.fairmlbook:org.

Christine Basta, Marta R. Costa-jussà, and José
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Marta R. Costa-jussà. 2019. An analysis of gen-
der bias studies in natural language process-
ing. Nature Machine Intelligence, 1:495–496.
https://doi.org/10.1038/s42256
-019-0105-5
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European Language Resources Association
(ELRA).

Katherine A. Liu and Natalie A. Dipietro Mager.
2016. Women’s involvement in clinical trials:
Historical perspective and future implications.
Pharmacy Practice, 14(1):708. https://
doi.org/10.18549/PharmPract.2016
.01.708, PubMed: 27011778
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