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Abstract
While argument mining has achieved sig-
nificant success in classifying argumentative
relations between statements (support, attack,
and neutral), we have a limited computa-
tional understanding of logical mechanisms
that constitute those relations. Most recent
studies rely on black-box models, which are
not as linguistically insightful as desired. On
the other hand, earlier studies use rather
simple lexical features, missing logical rela-
tions between statements. To overcome these
limitations, our work classifies argumenta-
tive relations based on four logical and
theory-informed mechanisms between two
statements, namely, (i) factual consistency,
(ii) sentiment coherence, (iii) causal relation,
and (iv) normative relation. We demonstrate
that our operationalization of these logical
mechanisms classifies argumentative relations
without directly training on data labeled with
the relations, significantly better than several
unsupervised baselines. We further demon-
strate that these mechanisms also improve
supervised classifiers through representation
learning.

1 Introduction

There have been great advances in argument
mining—classifying the argumentative relation
between statements as support, attack, or neutral.
Recent research has focused on training complex
neural networks on large labeled data. However,
the behavior of such models remains obscure,
and recent studies found evidence that those
models may rely on spurious statistics of training
data (Niven and Kao, 2019) and superficial
cues irrelevant to the meaning of statements,
such as discourse markers (Opitz and Frank,
2019). Hence, in this work, we turn to
an interpretable method to investigate logical

relations between statements, such as causal
relations and factual contradiction. Such relations
have been underemphasized in earlier studies
(Feng and Hirst, 2011; Lawrence and Reed,
2016), possibly because their operationalization
was unreliable then. Now that computational
semantics is fast developing, our work takes a first
step to computationally investigate how logical
mechanisms contribute to building argumentative
relations between statements and to classification
accuracy with and without training on labeled data.

To investigate what logical mechanisms gov-
ern argumentative relations, we hypothesize that
governing mechanisms should be able to classify
the relations without directly training on relation-
labeled data. Thus, we first compile a set of rules
specifying logical and theory-informed mecha-
nisms that signal the support and attack relations
(§3). The rules are grouped into four mechanisms:
factual consistency, sentiment coherence, causal
relation, and normative relation. These rules
are combined via probabilistic soft logic (PSL)
(Bach et al., 2017) to estimate the optimal
argumentative relations between statements. We
operationalize each mechanism by training seman-
tic modules on public datasets so that the modules
reflect real-world knowledge necessary for rea-
soning (§4). For normative relation, we build
a necessary dataset via rich annotation of the
normative argumentation schemes argument from
consequences and practical reasoning (Walton
et al., 2008), by developing a novel and reliable
annotation protocol (§5).

Our evaluation is based on arguments from
kialo.com and debatepedia.org. We first demon-
strate that the four logical mechanisms explain
the argumentative relations between statements
effectively. PSL with our operationalization of
the mechanisms can classify the relations without
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direct training on relation-labeled data, outper-
forming several unsupervised baselines (§7). We
analyze the contribution and pitfalls of individual
mechanisms in detail. Next, to examine whether
the mechanisms can further inform supervised
models, we present a method to learn vector
representations of arguments that are ‘‘cognizant
of’’ the logical mechanisms (§8). This method
outperforms several supervised models trained
without concerning the mechanisms, as well as
models that incorporate the mechanisms in differ-
ent ways. We illustrate how it makes a connection
between logical mechanisms and argumentative
relations. Our contributions are:

• An interpretable method based on PSL to in-
vestigate logical and theory-informed mech-
anisms in argumentation computationally.

• A representation learning method that incor-
porates the logical mechanisms to improve
the predictive power of supervised models.

• A novel and reliable annotation protocol,
along with a rich schema, for the argumen-
tation schemes argument from consequences
and practical reasoning. We release our
annotation manuals and annotated data.1

2 Related Work

There has been active research in NLP to under-
stand different mechanisms of argumentation
computationally. Argumentative relations have
been found to be associated with various statis-
tics, such as discourse markers (Opitz and Frank,
2019), sentiment (Allaway and McKeown, 2020),
and use of negating words (Niven and Kao, 2019).
Further, as framing plays an important role in
debates (Ajjour et al., 2019), different stances for
a topic emphasize different points, resulting in
strong thematic correlations (Lawrence and Reed,
2017).

Such thematic associations have been exploited
in stance detection and dis/agreement classifica-
tion. Stance detection (Allaway and McKeown,
2020; Stab et al., 2018; Xu et al., 2018) aims to
classify a statement as pro or con with respect to
a topic, while dis/agreement classification (Chen
et al., 2018; Hou and Jochim, 2017; Rosenthal
and McKeown, 2015) aims to decide whether two

1The annotations, data, and source code are available at:
https://github.com/yohanjo/tacl arg rel.

statements are from the same or opposite stance(s)
for a given topic. Topics are usually discrete, and
models often learn thematic correlations between
a topic and a stance (Xu et al., 2019). Our work
is slightly different as we classify the direct
support or attack relation between two natural
statements.

The aforementioned correlations, however, are
byproducts rather than core mechanisms of argu-
mentative relations. In order to decide whether a
statement supports or attacks another, we can-
not ignore the logical relation between them.
Textual entailment was found to inform argumen-
tative relations (Choi and Lee, 2018) and used
to detect arguments (Cabrio and Villata, 2012).
Similarly, there is evidence that the opinions of
two statements toward the same concept constitute
their argumentative relations (Gemechu and Reed,
2019; Kobbe et al., 2020). Causality between
events also received attention, and causality graph
construction was proposed for argument analysis
(Al-Khatib et al., 2020). Additionally, in argumen-
tation theory, Walton’s argumentation schemes
(Walton et al., 2008) specify common reasoning
patterns people use to form an argument. This
motivates our work to investigate logical mecha-
nisms in four categories: factual consistency, sen-
timent coherence, causal relation, and normative
relation.

Logical mechanisms have not been actively
studied in argumentative relation classification.
Models based on hand-crafted features have used
relatively simple lexical features, such asn-grams,
discourse markers, and sentiment agreement and
word overlap between two statements (Stab and
Gurevych, 2017; Habernal and Gurevych, 2017;
Persing and Ng, 2016; Rinott et al., 2015).
Recently, neural models have become dominant
approaches (Chakrabarty et al., 2019; Durmus
et al., 2019; Eger et al., 2017). Despite their high
accuracy and finding of some word-level interac-
tions between statements (Xu et al., 2019; Chen
et al., 2018), they provide quite limited insight
into governing mechanisms in argumentative rela-
tions. Indeed, more and more evidence suggests
that supervised models learn to overly rely on
superficial cues, such as discourse markers (Optiz
and Frank, 2019), negating words (Niven
and Kao, 2019), and sentiment (Allaway and
McKeown, 2020) behind the scenes. We instead
use an interpretable method based on PSL to
examine logical mechanisms (§7) and then show
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evidence that these mechanisms can inform
supervised models in intuitive ways (§8).

Some research adopted argumentation schemes
as a framework, making comparisons with dis-
course relations (Cabrio et al., 2013) and collecting
and leveraging data at varying degrees of gran-
ularity. At a coarse level, prior studies annotated
the presence of particular argumentation schemes
in text (Visser et al., 2020; Lawrence et al., 2019;
Lindahl et al., 2019; Reed et al., 2008) and devel-
oped models to classify different schemes (Feng
and Hirst, 2011). However, each scheme often
accommodates both support and attack relations
between statements, so classifying those relations
requires semantically richer information within
the scheme than just its presence. To that end,
Reisert et al. (2018) annotated individual compo-
nents within schemes, particularly emphasizing
argument from consequences. Based on the logic
behind this scheme, Kobbe et al. (2020) developed
an unsupervised method to classify the support
and attack relations using syntactic rules and lexi-
cons. Our work extends these studies by including
other normative schemes (practical reasoning and
property-based reasoning) and annotating richer
information.

3 Rules

We first compile rules that specify evidence for
the support and attack relations between claim
C and statement S (Table 1).2 These rules are
combined via PSL (Bach et al., 2017) to estimate
the optimal relation between C and S.3

We will describe individual rules in four cate-
gories: factual consistency, sentiment coherence,
causal relation, and normative relation, followed
by additional chain rules.

3.1 Factual Consistency

A statement that supports the claim may present
a fact that naturally entails the claim, while
an attacking statement often presents a fact

2We do not assume that claim-hood and statement-hood
are intrinsic features of text spans; we follow prevailing
argumentation theory in viewing claims and statements as
roles determined by virtue of relationships between text
spans.

3Predicates in the rules are probability scores, and PSL
aims to estimate the scores of Support(S,C), Attack(S,C),
and Neutral(S,C) for all (S,C). The degree of satisfaction
of the rules are converted to a loss, which is minimized via
maximum likelihood estimation.

Rules

Fa
ct

ua
l

C
on

si
st

. R1 FactEntail(S,C) → Support(S,C)
R2 FactContradict(S,C) → Attack(S,C)
R3 FactConflict(S,C) → Attack(S,C)

Se
nt

i
C

oh
e. R4 SentiConflict(S,C) → Attack(S,C)

R5 SentiCoherent(S,C) → Support(S,C)

C
au

sa
l

R
el

at
io

n CAUSE-TO-EFFECT REASONING
R6 Cause(S,C) → Support(S,C)
R7 Obstruct(S,C) → Attack(S,C)

EFFECT-TO-CAUSE REASONING
R8 Cause(C,S) → Support(S,C)
R9 Obstruct(C,S) → Attack(S,C)

N
or

m
at

iv
e

R
el

at
io

n ARGUMENT FROM CONSEQUENCES
R10 BackingConseq(S,C) → Support(S,C)
R11 RefutingConseq(S,C) → Attack(S,C)

PRACTICAL REASONING
R12 BackingNorm(S,C) → Support(S,C)
R13 RefutingNorm(S,C) → Attack(S,C)

R
el

at
io

n
C

ha
in

R14 Support(S, I) ∧ Support(I, C) → Support(S,C)
R15 Attack(S, I) ∧Attack(I, C) → Support(S,C)
R16 Support(S, I) ∧Attack(I, C) → Attack(S,C)
R17 Attack(S, I) ∧ Support(I, C) → Attack(S,C)

C
on

st
-

ra
in

ts C1 Neutral(S,C) = 1
C2 Support(S,C)+Attack(S,C)+Neutral(S,C) = 1

Table 1: PSL rules. (S: statement, C: claim).

contradictory or contrary to the claim. For
example:

Claim: Homeschooling deprives chil-
dren and families from interacting with
people with different religions, ideolo-
gies, or values.
Support Statement: Homeschool stu-
dents have few opportunities to meet
diverse peers they could otherwise see
at normal schools.
Attack Statement: Homeschool stu-
dents can interact regularly with
other children from a greater diver-
sity of physical locations, allowing
them more exposure outside of their
socio-economic group.

This logic leads to two rules:

R1: FactEntail(S,C) → Support(S,C),

R2: FactContradict(S,C) → Attack(S,C)

s.t. FactEntail(S,C) = P (S entails C),

FactContradict(S,C) = P (S contradicts C).

In our work, these probabilities are computed by
a textual entailment module (§4.1).
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In argumentation, it is often the case that an
attacking statement and the claim are not strictly
contradictory nor contrary, but the statement
contradicts only a specific part of the claim,
as in:

Claim: Vegan diets are healthy.
Attack Statement: Meat is healthy.

Formally, let (AS
i,0, A

S
i,1, · · · ) denote the ith

relation tuple in S, and (AC
j,0, A

C
j,1, · · · ) the jth

relation tuple in C. We formulate the conflict
rule:

R3: FactConflict(S,C) → Attack(S,C)

s.t. FactConflict(S,C) =

max
i,j,k

P (AS
i,k contradictsAC

j,k)
∏

k′ �=k

P (AS
i,k′ entailsAC

j,k′).

We use Open IE 5.1 to extract relation tuples, and
the probability terms are computed by a textual
entailment module (§4.1).

3.2 Sentiment Coherence
When S attacks C, they may express opposite
sentiments toward the same target, whereas they
may express the same sentiment if S supports C
(Gemechu and Reed, 2019). For example:

Claim: Pet keeping is morally justified.
Attack Statement: Keeping pets is
hazardous and offensive to other people.
Support Statement: Pet owners can
provide safe places and foods to pets.

Let (tSi , s
S
i ) be the ith expression of sentiment

sSi ∈ {pos, neg, neu} toward target tSi in S, and
(tCj , s

C
j ) the jth expression in C. We formulate

two rules:

R4: SentiConflict(S,C) → Attack(S,C),

R5: SentiCoherent(S,C) → Support(S,C)

s.t. SentiConflict(S,C) =

max
i,j

P (tSi = tCj )
{
P (sSi = pos)P (sCj = neg)

+P (sSi = neg)P (sCj = pos)
}
,

SentiCoherent(S,C) =

max
i,j

P (tSi = tCj )
{
P (sSi = pos)P (sCj = pos)

+P (sSi = neg)P (sCj = neg)
}
.

In this work, targets are all noun phrases and verb
phrases in C and S. P (tSi = tCj ) is computed
by a textual entailment module (§4.1), and P (sSi )
and P (sCj ) by a target-based sentiment classifier
(§4.2).

3.3 Causal Relation

Reasoning based on causal relation between events
is used in two types of argumentation: argument
from cause to effect and argument from effect
to cause (Walton et al., 2008). In cause-to-effect
(C2E) reasoning, C is derived from S because
the event in S may cause that in C. If S causes
(obstructs) C then S is likely to support (attack)
C. For example:

Claim: Walmart’s stock price will rise.
Support Statement: Walmart gener-
ated record revenue.
Attack Statement: Walmart had low
net incomes.

This logic leads to two rules:

R6: Cause(S,C) → Support(S,C),

R7: Obstruct(S,C) → Attack(S,C),

s.t. Cause(S,C) = P (S causes C),

Obstruct(S,C) = P (S obstructs C).

Effect-to-cause (E2C) reasoning has the
reversed direction; S describes an observation
and C is a reasonable explanation that may have
caused it. If C causes (obstructs) S, then S is
likely to support (attack) C, as in:

Claim: St. Andrew Art Gallery is closing
soon.
Support Statement: The number of
paintings in the gallery has reduced by
half for the past month.
Attack Statement: The gallery recently
bought 20 photographs.

R8: Cause(C, S) → Support(S,C),

R9: Obstruct(C, S) → Attack(S,C).

The probabilities are computed by a causality
module (§4.3).
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3.4 Normative Relation
In argumentation theory, Walton’s argumentation
schemes specify common reasoning patterns used
in arguments (Walton et al., 2008). We focus
on two schemes related to normative arguments,
whose claims suggest that an action or situation
be brought about. Normative claims are one of the
most common proposition types in argumentation
(Jo et al., 2020) and have received much attention
in the literature (Park and Cardie, 2018).

Argument from Consequences: In this scheme,
the claim is supported or attacked by a positive or
negative consequence, as in:

Claim: Humans should stop eating ani-
mal meat.
Support Statement: The normalizing
of killing animals for food leads to a
cruel mankind. (S1)
Attack Statement: Culinary arts devel-
oped over centuries may be lost.

(S2)

In general, an argument from consequences may
be decomposed into two parts: (i) whether S is
a positive consequence or a negative one; and
(ii) whether the source of this consequence is
consistent with or facilitated by C’s stance (S2),
or is contrary to or obstructed by it (S1).

Logically,S is likely to supportC by presenting
a positive (negative) consequence of a source
that is consistent with (contrary to) C’s stance.
In contrast, S may attack C by presenting a
negative (positive) consequence of a source that
is consistent with (contrary to) C’s stance. Given
that S describes consequence Q of source R, this
logic leads to:

R10: BackingConseq(S,C) → Support(S,C),

R11: RefutingConseq(S,C) → Attack(S,C)

s.t. BackingConseq(S,C) =

P (S is a consequence)×
{P (Q is positive) · P (R consistent with C)

+ P (Q is negative) · P (R contrary to C)} ,
RefutingConseq(S,C) =

P (S is a consequence)×
{P (Q is negative) · P (R consistent with C)

+ P (Q is positive) · P (R contrary to C)} .

Practical Reasoning: In this scheme, the
statement supports or attacks the claim by
presenting a goal to achieve, as in:

Claim: Pregnant people should have
the right to choose abortion.
Support Statement: Women should
be able to make choices about their
bodies.

(S3)
Attack Statement: Our rights do not
allow us to harm the innocent lives of
others. (S4)

The statements use a normative statement as a
goal to justify their stances. We call their target of
advocacy or opposition (underlined above) a norm
target. Generally, an argument of this scheme
may be decomposed into: (i) whether S advocates
for its norm target (S3) or opposes it (S4), as if
expressing positive or negative sentiment toward
the norm target; and (ii) whether the norm target
is a situation or action that is consistent with or
facilitated by C’s stance, or that is contrary to or
obstructed by it.4

Logically,S is likely to supportC by advocating
for (opposing) a norm target that is consistent with
(contrary to) C’s stance. In contrast, S may attack
C by opposing (advocating for) a norm target that
is consistent with (contrary to) C’s stance. Given
that S has norm target R, this logic leads to:

R12: BackingNorm(S,C) → Support(S,C),

R13: RefutingNorm(S,C) → Attack(S,C)

s.t. BackingNorm(S,C) =

P (S is normative)×
{P (S advocates for R) · P (R consistent with C)

+ P (S opposes R) · P (R contrary to C)} ,
RefutingNorm(S,C) =

P (S is normative)×
{P (S opposes R) · P (R consistent with C)

+ P (S advocates for R) · P (R contrary to C)} .

The probabilities are computed by modules trained
on our annotation data (§5).

4Both harming innocent lives and making choices about
their bodies are facilitated by the right to choose abortion
(‘consistent’).
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3.5 Relation Chain
A chain of argumentative relations across argu-
ments may provide information about the plau-
sible relation within each argument. Given three
statements S, I , and C, we have four chain rules:

R14: Support(S, I)∧Support(I, C)→Support(S,C),

R15: Attack(S, I) ∧ Attack(I, C) → Support(S,C),

R16: Support(S, I) ∧ Attack(I, C) → Attack(S,C),

R17: Attack(S, I) ∧ Support(I, C) → Attack(S,C).

For each data split, we combine two neighboring
arguments where the claim of one is the statement
of the other, whenever possible. The logical
rules R1–R13 are applied to these ‘‘indirect’’
arguments.

3.6 Constraints
C and S are assumed to have the neutral relation
(or the attack relation for binary classification) if
they do not have strong evidence from the rules
mentioned so far (Table 1 C1). In addition, the
probabilities of all relations should sum to 1 (C2).

4 Modules

In this section, we discuss individual modules
for operationalizing the PSL rules. For each
module, we fine-tune the pretrained uncased
BERT-base (Devlin et al., 2019). We use the
Transformers library v3.3.0 (Wolf et al., 2020) for
high reproducibility and low development costs.
But any other models could be used instead.

Each dataset used is randomly split with a ratio
of 9:1 for training and test. Cross-entropy and
Adam are used for optimization. To address the
imbalance of classes and datasets, the loss for each
training instance is scaled by a weight inversely
proportional to the number of its class and dataset.

4.1 Textual Entailment
A textual entailment module is used for rules
about factual consistency and sentiment coherence
(R1–R5). Given a pair of texts, it computes
the probabilities of entailment, contradiction, and
neutral.

Our training data include two public datasets:
MNLI (Williams et al., 2018) and AntSyn
(Nguyen et al., 2017) for handling antonyms
and synonyms. An NLI module combined with
the word-level entailment handles short phrases
better without hurting accuracy for sentence-level

Dataset (Classes, N ) Accuracy

T
ex

tu
al

E
nt

ai
lm

en
t

(R
1–

R
5) 1 MNLI (ent/con/neu, 412,349) F1=82.3

2 AntSyn (ent/con, 15,632) F1=90.2
3 Neu50K (neu, 50,000) R=97.5

4 MicroAvg (ent/con/neu, 477,981) F1=84.7

Se
nt

im
en

t
C

la
ss

if
ic

at
io

n
(R

4–
R

5)

5 SemEval17 (pos/neg/neu, 20,632) F1=64.5
6 Dong (pos/neg/neu, 6,940) F1=71.4
7 Mitchell (pos/neg/neu, 3,288) F1=62.5
8 Bakliwal (pos/neg/neu, 2,624) F1=69.7
9 Norm (pos/neg, 632) F1=100.0

10 MicroAvg (pos/neg/neu, 34,116) F1=69.2

C
au

sa
lit

y
(R

6–
R

9)

11 PDTB (cause/else, 14,224) F1=68.1
12 PDTB-R (cause/else 1,791) F1=75.7
13 BECauSE (cause/obstruct, 1,542) F1=46.1
14 BECauSE-R (else, 1,542) R=86.5
15 CoNet (cause, 50,420) R=88.6
16 CoNet-R (else, 50,420) R=91.7
17 WIQA (cause/obstruct, 31,630) F1=88.2
18 WIQA-P (else, 31,630) R=90.2

19 MicroAvg (cause/obstr/else, 183,119) F1=87.7

N
or

m
at

iv
e

R
el

at
io

n
(R

10
–R

13
) 20 JustType (conseq/norm, 1,580) F1=90.2

21 ConseqSenti (pos/neg, 824) F1=71.8
22 NormType (adv/opp, 758) F1=91.1
23 RC-Rel (consist/contra/else, 1,924) F1=70.1

Table 2: F1-scores and recall of modules.

entailment. Since AntSyn does not have the neutral
class, we add 50K neutral word pairs by randomly
pairing two words among the 20K most frequent
words in MNLI; without them, a trained model
can hardly predict the neutral relation between
words. The accuracy for each dataset is in Table 2
rows 1–4.

4.2 Target-Based Sentiment Classification

A sentiment classifier is for rules about sentiment
coherence (R4–R5). Given a pair of texts T1 and
T2, it computes the probability of whether T1 has
positive, negative, or neutral sentiment toward T2.

Our training data include five datasets for
target-based sentiment classification: SemEval17
(Rosenthal et al., 2017), entities (Dong et al.,
2014), open domain (Mitchell et al., 2013), Irish
politics (Bakliwal et al., 2013), and our anno-
tations of positive/negative norms toward norm
targets (§5.1). These annotations highly improve
classification of sentiments expressed through
advocacy and opposition in normative statements.
Pretraining on general sentiment resources–
subjectivity lexicon (Wilson et al., 2005) and sen-
timent140 (Go et al., 2009)–also helps (Table 2
rows 5–10).
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Corpus Corpus-Specific Labels Our Label (N )

PDTB Temporal.Asynchronous Cause (1,255)
Temporal.Synchrnonous Cause (536)
Comparison, Expansion Else (12,433)

PDTB-R† Temporal.Asynchronous Else (536)
Temporal.Synchronous Cause (1,255)

BECauSE Promote Cause (1,417)
Inhibit Obstruct (142)

BECauSE-R† Promote, Inhibit Else (1,613)

WIQA RESULTS IN Cause (12,652)
NOT RESULTS IN Obstruct (18,978)

WIQA-P‡ RESULSTS IN,
NOT RESULTS IN

Else (31,630)

ConceptNet Causes, CausesDesire, Cause (50,420)
HasFirstSubevent,
HasLast-Subevent,
HasPrerequisite

ConceptNet-R† Causes, CausesDesire,
HasFirstSubevent,
HasLast-Subevent,
HasPrerequisite

Else (50,420)

Table 3: Mapping between corpus-specific labels
and our labels for the causality module. †The order
of two input texts are reversed. ‡The second input
text is replaced with a random text in the corpus.

4.3 Causality

A causality module is used for rules regarding
causal relations (R6–R9). Given an input pair of
texts T1 and T2, it computes the probability of
whether T1 causes T2, obstructs T2, or neither.

Our training data include four datasets about
causal and temporal relations between event texts.
PDTB 3.0 (Webber et al., 2006) is WSJ articles
annotated with four high-level discourse relations,
and we map the sub-relations of ‘Temporal’ to our
classes.5 BECauSE 2.0 (Dunietz et al., 2017) is
news articles annotated with linguistically marked
causality. WIQA (Tandon et al., 2019) is scien-
tific event texts annotated with causality between
events. ConceptNet(Speer et al., 2017) is a knowl-
edge graph between phrases, and relations about
causality are mapped to our classes. To prevent
overfitting to corpus-specific characteristics, we
add adversarial data by swapping two input texts
(PDTB-R, BECauSE-R, ConceptNet-R) or pairing
random texts (WIQA-P). The mapping between
corpus-specific labels and ours is in Table 3, and
the module accuracy in Table 2 rows 11–19.

5We use explicit relations only for pretraining, since they
often capture linguistically marked, rather than true, relations
between events. We also exclude the Contingency relations
as causal and non-causal relations (e.g., justification) are
mixed.

4.4 Normative Relation
All the modules here are trained on our annotations
of normative argumentation schemes (§5).

P (S is a consequence / norm) (R10–R13):
Given a statement, one module computes the
probability that it is a consequence, and another
module the probability of a norm. Both modules
are trained on all claims and statements in our
annotations, where all claims are naturally norms,
and each statement is annotated as either norm or
consequence (Table 2 row 20).

P (Q is positive / negative) (R10–R11): Given
a statement assumed to be a consequence, this
module computes the probability of whether it is
positive or negative. It is trained on all statements
annotated as consequence (Table 2 row 21).

P (S advocates / opposes) (R12–R13): Given
a statement assumed to be a norm, this module
computes the probability of whether it is advo-
cacy or opposition. It is trained on all claims, plus
statements annotated as norm (Table 2 row 22).

P (R consistent / contrary to C) (R10–R13):
For a pair of S and C, the module computes the
probability of whether R (the norm target or the
source of consequence in S) and C’s stance are
consistent, contrary, or else. In our annotations,
R and C are ‘consistent’ if both (1a and 3a in
Figure 1) are advocacy or opposition, and ‘con-
trary’ otherwise. To avoid overpredicting the two
classes, we add negative data by pairing C with
a random statement in the annotations. The mod-
ule is pretrained on MNLI and AntSyn (Table 2
row 23).

5 Annotation of Normative
Argumentation Schemes

In this section, we discuss our annotation of the
argumentation schemes argument from conse-
quences and practical reasoning (Figure 1). The
resulting annotations are used to train the modules
in §4.4 that compute the probability terms in
R10–R13.

For each pair of normative claim C and state-
ment S, we annotate the following information:
(1a) Whether C advocates for or opposes its norm
target, and (1b) the norm target T (Figure 1 TASK
1); (2a) Whether S uses a norm, consequence, or
property for justification, and (2b) the justification
J (Figure 1 TASK 2); (3a) Whether J’s focus is on
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Figure 1: Example annotations (checks and italic)
of the normative argumentation schemes. It
depends on the argument whether S supports or
attacks C.

advocating for T or opposing T , and (3b) whether
J is positive or negative (Figure 1 TASK 3).6

Our annotation schema is richer than existing
ones (Lawrence and Reed, 2016; Reisert et al.,
2018). Due to the increased complexity, however,
our annotation is split into three pipelined tasks.
For this annotation, we randomly sampled 1,000
arguments from Kialo whose claims are normative
(see §6 and Table 4 for details).

5.1 Task 1. Norm Type/Target of Claim
For each C, we annotate: (1a) the norm
type—advocate, oppose, or neither—toward its
norm target; and (1b) the norm target T . Advocacy
is often expressed as ‘‘should/need T’’, whereas
opposition as ‘‘should not T’’, ‘‘T should be
banned’’; ‘neither’ is noise (2.8%) to be discarded.
T is annotated by rearranging words inC (Figure 1
TASK 1).

There are 671 unique claims in the annotation
set. The first author of this paper wrote an
initial manual and trained two undergraduate
students majoring in economics, while resolving
disagreements through discussion and revising
the manual. In order to verify that the annotation
can be conducted systematically, we measured
inter-annotator agreement (IAA) on 200 held-out
claims. The annotation of norm types achieved

6This annotation schema provides enough information for
the classifiers in §4.4. P (S is a consequence / norm) is from
(2a), and both P (Q is positive / negative) and P (S advocates
/ opposes) are from (3b). P (R consistent / contrary to C) can
be obtained by combining (1a) and (3a): ‘consistent’ if both
advocate or both oppose, and ‘contrary’ otherwise.

Kialo Debatepedia

Annotation Fit Val Test Fit Val Test

N
or

m
at

iv
e Sup 480 4,621 1,893 6,623 6,598 229 356

Att 520 5,383 2,124 7,623 4,502 243 351
Neu – 9,984 4,000 14,228 – – –

N
on

-n
or

m
at

iv
e Sup – 4,953 10,135 21,138 3,302 243 178

Att – 5,043 9,848 20,197 3,278 253 152
Neu – 10,016 20,000 40,947 – – –

Table 4: Numbers of arguments in datasets.

Krippendorff’s α of 0.81. To measure IAA for
annotation of T , we first aligned words between
each annotation and the claim, obtaining a binary
label for each word in the claim (1 if included
in the annotation). As a result, we obtained two
sequences of binary labels of the same length from
the two annotators and compared them, achieving
an F1-score of 0.89. The high α and F1-score
show the validity of the annotations and annotation
manual. All disagreements were resolved through
discussion afterward.7

5.2 Task 2. Justification Type of Premise
For each pair of C and S, we annotate: (2a)
the justification type of S—norm, consequence,
property, or else; and (2b) the justification J . The
justification types are defined as follows:

• Norm: J states that some situation or action
should be achieved (practical reasoning).

• Consequence: J states a potential or past
outcome (argument from consequences).

• Property: J states a property that
(dis)qualifies C’s stance (argument from
consequence).

The difference between consequence and prop-
erty is whether the focus is on extrinsic outcomes
or intrinsic properties, such as feasibility, moral
values, and character (e.g., ‘‘Alex shouldn’t be
the team leader because he is dishonest’’). We
consider both as argument from consequences

7These annotations are used for the sentiment classifiers
in §4.2, too. For example, ‘‘the lottery should be banned’’
is taken to express negative sentiment toward the lottery.
Such examples are underrepresented in sentiment datasets,
resulting in inaccurate sentiment classification for normative
statements.
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because property-based justification has almost
the same logic as consequence-based justification.
The ‘else’ type is rare (3.4%) and discarded after
the annotation.

The process of annotation and IAA measure-
ment is the same as Task 1, except that IAA was
measured on 100 held-out arguments due to a
need for more training. For justification types,
Krippendorff’s α is 0.53—moderate agreement.
For justification J , the F1-score is 0.85. The rela-
tively low IAA for justification types comes from
two main sources. First, a distinction between
consequence and property is fuzzy by nature, as
in ‘‘an asset tax is the most fair system of taxing
citizens’’. This difficulty has little impact on our
system, however, as both are treated as argument
from consequences.

Second, some statements contain multiple jus-
tifications of different types. If so, we asked
the annotators to choose one that they judge to
be most important (for training purposes). They
sometimes chose different justifications, although
they usually annotated the type correctly for the
chosen one.

5.3 Task 3. Justification Logic of Statement

Given C with its norm target T , and S with its jus-
tification J , we annotate: (3a) whether the conse-
quence, property, or norm target of J is regarding
advocating for T or opposing T ; and (3b) whether
J is positive or negative. J is positive (negative)
if it’s a positive (negative) consequence/property
or expresses advocacy (opposition).

This task was easy, so only one annotator
worked with the first author. Their agree-
ment measured on 400 heldout arguments is
Krippendorff’s α of 0.82 for positive/negative
and 0.78 for advocate/oppose.

5.4 Analysis of Annotations

We obtained 962 annotated arguments with claims
of advocacy (70%) and opposition (30%), and
statements of consequence (54%), property (32%),
and norm (14%). Supporting statements are more
likely to use a positive justification (62%), while
attacking statements a negative one (68%), with
significant correlations (χ2 = 87, p < .00001).
But 32–38% of the time, they use the opposite
sentiment, indicating that sentiment alone cannot
determine argumentative relations.

6 Data

6.1 Kialo

Our first dataset is from kialo.com, a collaborative
argumentation platform covering contentious
topics. Users contribute to the discussion of a
topic by creating a statement that either supports
or attacks an existing statement, resulting in an
argumentation tree for each topic. We define
an argument as a pair of parent and child
statements, where the parent is the claim and the
child is the support or attack statement. Each
argument is labeled with support or attack by
users and is usually self-contained, not relying on
external context, anaphora resolution, or discourse
markers.

We scraped arguments for 1,417 topics and
split into two subsets. Normative arguments
have normative claims suggesting that a situation
or action be brought about, while non-normative
arguments have non-normative claims. This dis-
tinction helps us understand the two types of
arguments better. We separated normative and
non-normative claims using a BERT classifier
trained on Jo et al.’s (2020) dataset of different
types of statements (AUC=98.8%), as binary clas-
sification of normative statement or not. A claim
is considered normative (non-normative) if the
predicted probability is higher than 0.97 (lower
than 0.4); claims with probability scores between
these thresholds (total 10%) are discarded to
reduce noise.

In practice, an argument mining system may
also need to identify statements that seem related
but do not form any argument. Hence, we add
the same number of ‘‘neutral arguments’’ by
pairing random statements within the same topic.
To avoid paired statements forming a reasonable
argument accidentally, we constrain that they be at
least 9 statements apart in the argumentation tree,
making them unlikely to have any support or attack
relation but still topically related to each other.

Among the resulting arguments, 10K are
reserved for fitting; 20% or 30% of the rest
(depending on the data size) are used for valida-
tion and the others for test (Table 4). We increase
the validity of the test set by manually discarding
non-neutral arguments from the neutral set. We
also manually inspect the normativity of claims,
and if they occur in the fitting or validation sets
too, the corresponding arguments are assigned to
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the correct sets according to the manual judg-
ments. For normative arguments, we set aside
1,000 arguments for annotating the argumentation
schemes (§5).

The data cover the domains economy (13%),
family (11%), gender (10%), crime (10%), rights
(10%), God (10%), culture (10%), entertainment
(7%), and law (7%), as computed by LDA. The
average number of words per argument is 49 (45)
for normative (non-normative) arguments.

6.2 Debatepedia

The second dataset is Debatepedia arguments
(Hou and Jochim, 2017). A total of 508 topics are
paired with 15K pro and con responses, and we
treat each pair as an argument and each topic and
response as claim and statement, respectively.

One important issue is that most topics are in
question form, either asking if you agree with a
stance (‘‘yes’’ is pro and ‘‘no’’ is con) or asking
to choose between two options (the first is pro and
the second is con). Since our logical mechanisms
do not handle such questions naturally, we convert
them to declarative claims as follows. The first
type of questions are converted to a claim that
proposes the stance (e.g., ‘‘Should Marijuana be
legalized?’’ to ‘‘Marijuana should be legalized’’),
and the second type of questions to a claim
that prefers the first option (e.g., ‘‘Mission to
the Moon or Mars?’’ to ‘‘Mission to the Moon
is preferred to Mars’’). The first author and an
annotator converted all topics independently and
then resolved differences.

We split the arguments into normative and
non-normative sets as we do for Kialo, manually
verifying all claims. There is no neutral relation.
We use the original train, validation, and test
splits (Table 4). Debatepedia claims are shorter
and less diverse than Kialo claims. They focus
mostly on valuation, while Kialo includes mostly
factual claims.

7 Experiment 1. Probabilistic Soft Logic

The goal here is to see how well the logical
mechanisms alone can explain argumentative
relations.

7.1 PSL Settings

We use the PSL toolkit v2.2.1.8 The initial weights
of the logical rules R1–R13 are set to 1. The impor-
tance of the chain rules R14–R17 may be different,
so we explore {1, 0.5, 0.1}. The weight of C1
serves as a threshold for the default relation (i.e.,
neutral for Kialo and attack for Debatepedia), and
we explore {0.2, 0.3}; initial weights beyond this
range either ignore or overpredict the default rela-
tion. C2 is a hard constraint. The optimal weights
are selected by the objective value on the valida-
tion set (this does not use true relation labels).

7.2 Baselines

We consider three baselines. Random assigns
a relation to each argument randomly. Senti-
ment assigns a relation based on the claim and
statement’s agreement on sentiment: support if
both are positive or negative, attack if they have
opposite sentiments, and neutral otherwise. We
compute a sentiment distribution by averaging
all target-specific sentiments from our sentiment
classifier (§4.2). Textual entailment assigns sup-
port (attack) if the statement entails (contradicts)
the claim, and neutral otherwise (Cabrio and
Villata 2012). We use our textual entailment
module (§4.1). For Debatepedia, we choose
between support and attack whichever has a
higher probability.

7.3 Results

Tables 5a and 5b summarize the accuracy of all
models for Kialo and Debatepedia, respectively.
Among the baselines, sentiment (row 2) generally
outperforms textual entailment (row 3), both sig-
nificantly better than random (row 1). Sentiment
tends to predict the support and attack relations
aggressively, missing many neutral arguments,
whereas textual entailment is conservative and
misses many support and attack arguments. PSL
with all logical rules R1–R13 (row 4) significantly
outperforms all the baselines with high margins,
and its F1-scores are more balanced across the
relations.

To examine the contribution of each logical
mechanism, we conducted ablation tests (rows
5–8). The most contributing mechanism is clearly
normative relation across all settings, without
which F1-scores drop by 2.6–4.8 points (row 8).

8https://psl.linqs.org/wiki/2.2.1/.
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Normative Arguments Non-normative Arguments

ACC AUC F1 F1sup F1att F1neu ACC AUC F1 F1sup F1att F1neu

1 Random 33.5 50.2 32.6 27.8 30.1 39.9 33.4 49.9 32.5 28.7 28.8 40.0
2 Sentiment 40.8 64.1 40.7 40.6 39.1 42.4 43.7 61.1 42.2 40.0 35.2 51.5
3 Text Entail 51.8 61.8 36.7 12.8 30.4 67.0 52.1 62.8 38.6 18.4 31.0 66.4

4 PSL (R1–R13) 54.0‡ 73.8‡ 52.1‡ 47.0‡ 43.6‡ 65.7‡ 57.0‡ 76.0‡ 54.0‡ 50.1‡ 42.6‡ 69.3‡

5 \ Fact 55.1‡ 74.3‡ 52.4‡ 47.1‡ 41.6‡ 68.4‡ 58.6‡ 77.1‡ 55.1‡ 50.5‡ 42.2‡ 72.7‡

6 \ Sentiment 62.1‡ 77.6‡ 57.5‡ 49.1‡ 45.8‡ 77.7‡ 61.3‡ 77.8‡ 56.7‡ 50.3‡ 44.1‡ 75.7‡

7 \ Causal 54.4‡ 73.1‡ 52.3‡ 45.4‡ 45.4‡ 66.0‡ 57.6‡ 76.1‡ 54.3‡ 48.7‡ 43.4‡ 70.7‡

8 \ Normative 51.8‡ 68.6‡ 49.4‡ 44.3‡ 40.4† 63.4‡ 54.7‡ 70.3‡ 51.4‡ 47.0‡ 40.3‡ 66.8‡

9 \ Sentiment + Chain 61.9‡ 77.7‡ 57.7‡ 49.3‡ 46.2‡ 77.6‡ 61.5‡ 78.0‡ 57.2‡ 50.8‡ 44.7‡ 76.1‡

(a) Kialo

Normative Arguments Non-normative Arguments

ACC AUC F1 F1sup F1att ACC AUC F1 F1sup F1att

1 Random 47.7 49.4 50.2 49.0 51.4 53.0 54.6 52.4 53.7 51.1
2 Sentiment 59.3 63.9 59.2 61.0 57.4 69.1 73.4 68.5 72.7 64.3
3 Text Entail 52.2 55.8 49.4 37.6 61.2 70.6 74.2 70.5 69.0 72.0

4 PSL (R1–R13) 63.9� 68.3� 63.9� 63.8 64.0† 73.0 76.1 73.0 74.2 71.7
5 \ Fact 63.4� 67.1 63.4� 64.0 62.7� 71.8 75.6 71.7 73.2 70.3
6 \ Sentiment 63.1� 67.2 63.1� 62.7 63.5� 70.9 74.0 70.9 71.6 70.2
7 \ Causal 62.4� 66.3 62.1� 58.6 65.5� 74.5 78.7 74.5 75.4 73.6
8 \ Normative 61.0 64.7 61.0 60.3 61.6� 68.2 72.4 68.2 68.3 68.1

(b) Debatepedia

Table 5: PSL accuracy. p < {0.05�, 0.01†, 0.001‡} with paired bootstrap compared to the best baseline.

This indicates that our operationalization of argu-
ment from consequences and practical reasoning
can effectively explain a prevailing mechanism of
argumentative relations.

Quite surprisingly, normative relation is highly
informative for non-normative arguments as well
for both datasets. To understand how this mech-
anism works for non-normative arguments, we
analyzed arguments for which it predicted the cor-
rect relations with high probabilities. It turns out
that even for non-normative claims, the module
often interprets negative sentiment toward a target
as an opposition to the target. For the following
example,

Claim: Schooling halts individual
development.
Attack Statement: Schooling, if done
right, can lead to the development of
personal rigor ...

the module implicitly judges the ‘‘schooling’’
in the claim to be opposed and thus judges the
‘‘schooling’’ in the statement (the source of conse-
quence) to be contrary to the claim’s stance while
having positive sentiment (i.e., R11 applies). This

behavior is reasonable, considering how advocacy
and opposition are naturally mapped to positive
and negative norms in our annotation schema
(§5.3).

The utility of normative relation for non-
normative arguments is pronounced for Debate-
pedia. Excluding this mechanism leads to a
significant drop of F1-scores by 4.8 points
(Table 5b row 8). One possible reason is that
most claims in the non-normative set of Debate-
pedia are valuation; that is, they focus on whether
something is good or bad, or preferences between
options. As discussed above, valuation can be
handled by this mechanism naturally. And in such
arguments, causal relation may provide only little
and noisy signal (row 7).

Sentiment coherence is the second most con-
tributing mechanism. For Kialo, including it in the
presence of normative relation is rather disruptive
(Table 5a row 6). This may be because the two
mechanisms capture similar (rather than comple-
mentary) information, but sentiment coherence
provides inaccurate information conflicting with
that captured by normative relation. Without nor-
mative relation, however, sentiment coherence
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contributes substantially more than factual con-
sistency and causal relation by 4.4–5.9 F1-score
points (not in the table). For Debatepedia, the
contribution of sentiment coherence is clear even
in the presence of normative relation (Table 5b
row 6).

Factual consistency and causal relation have
high precision and low recall for the support and
attack relations. This explains why their contri-
bution is rather small overall and even obscure
for Kialo in the presence of normative relation
(Table 5a rows 5 and 7). However, without nor-
mative relation they contribute 0.7–1.1 F1-score
points for Kialo (not in the table). For Debatepe-
dia, factual consistency contributes 0.5–1.3 points
(Table 5b row 5), and causal relation 1.8 points to
normative arguments (row 7). Their contributions
show different patterns in a supervised setting,
however, as discussed in the next section.

To apply the chain rules (R14–R17) for Kialo,
we built 16,328 and 58,851 indirect arguments
for the normative and non-normative sets, respec-
tively. Applying them further improves the best
performing PSL model (Table 5a row 12). It
suggests that there is a relational structure among
arguments, and structured prediction can reduce
noise in independent predictions for individual
arguments.

There is a notable difference in the performance
of models between the three-class setting (Kialo)
and the binary setting (Debate). The binary set-
ting makes the problem easier for the baselines,
reducing the performance gap with the logical
mechanisms. When three relations are considered,
the sentiment baseline and the textual entailment
baseline suffer from low recall for the neutral and
support/attack relations, respectively. But if an
argument is guaranteed to belong to either support
or attack, these weaknesses seem to disappear.

7.4 Error Analysis

We conduct an error analysis on Kialo. For the
mechanism of normative relation, we examine
misclassifications in normative arguments by
focusing on the 50 support arguments and 50
attack arguments with the highest probabilities
of the opposite relation. Errors are grouped into
four types: R-C consistency/contrary (60%), con-
sequence sentiment (16%), ground-truth relation
(8%), and else (16%). The first type is mainly
due to the model failing to capture antonymy

relations, such as collective presidency ↔ unitary
presidency and marketplace of ideas↔ deliver the
best ideas. Integrating advanced knowledge may
rectify this issue. The second type of error often
arises when a statement has both positive and neg-
ative words, as in ‘‘student unions could prevent
professors from intentionally failing students due
to personal factors’’.

For the other mechanisms, we examine non-
normative arguments that each mechanism judged
to have strong signal for a false relation. To that
end, for each predicate in R1–R9, we choose
the top 20 arguments that have the highest
probabilities but were misclassified. Many errors
were simply due to the misclassification of the
classification modules, which may be rectified
by improving the modules’ accuracy. But we
also found some blind spots of each predicate.
For instance, FactEntail often fails to handle
concession and scoping.

Claim: Fourth wave feminists espouse
belief in equality.
Attack Statement: It is belief in
equality of outcome not opportunity that
fourth wave feminists are espousing with
quotas and beneficial bias.

For SentiConsist, a statement can have the same
ground of value as the claim without supporting
it:

Claim: The education of women is an
important objective to improve the overall
quality of living.
Attack Statement: Education of both
men and women will have greater effects
than that of women alone. Both must
play a role in improving the quality of
life of all of society’s members.

The statement attacks the claim while express-
ing the same sentiment toward the same target
(underlined).

8 Experiment 2. Representation Learning

Supervised models are good at capturing various
associations between argumentative relations and
data statistics. Here, we examine if our logical me-
chanisms can further inform them. We describe
a simple but effective representation learning
method, followed by baselines and experiment
results.
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8.1 Method

Our logical mechanisms are based on textual
entailment, sentiment classification, causality
classification, and four classification tasks for
normative relation (§4). We call them logic tasks.
We combine all minibatches across the logic tasks
using the same datasets from §4 except the heuris-
tically made negative datasets. Given uncased
BERT-base, we add a single classification layer
for each logic task and train the model on the
minibatches for five epochs in random order.
After that, we fine-tune it on our fitting data
(Table 4), where the input is the concatenation of
statement and claim. Training stops if AUC does
not increase for 5 epochs on the validation data.
We call our model LogBERT.

8.2 Baselines

The first goal of this experiment is to see if the log-
ical mechanisms improve the predictive power of a
model trained without concerning them. Thus, our
first baseline is BERT fine-tuned on the main task
only. This method recently yielded the (near) best
accuracy in argumentative relation classification
(Durmus et al., 2019; Reimers et al., 2019).

In order to see the effectiveness of the repre-
sentation learning method, the next two baselines
incorporate logical mechanisms in different ways.
BERT+LX uses latent cross (Beutel et al., 2018)
to directly incorporate predicate values in R1–R13
as features; we use an MLP to encode the predicate
values, exploring (i) one hidden layer with D=768
and (ii) no hidden layers. BERT+LX consistently
outperforms a simple MLP without latent cross.
BERT+MT uses multitask learning to train the
main and logic tasks simultaneously.

Lastly, we test two recent models from stance
detection and dis/agreement classification. TGA
Net (Allaway and McKeown, 2020) takes a
statement-topic pair and predicts the statement’s
stance. It encodes the input using BERT and
weighs topic tokens based on similarity to other
topics. In our task, claims serve as ‘‘topics’’.
We use the published implementation, exploring
{50, 100, 150, 200} for the number of clusters
and increasing the max input size to the BERT
input size. Hybrid Net (Chen et al., 2018) takes
a quote-response pair and predicts whether the
response agrees or disagrees with the quote. It
encodes the input using BiLSTM and uses self-
and cross-attention between tokens. In our task,

claims and statements serve as ‘‘quotes’’ and
‘‘responses’’, respectively.

8.3 Results

Tables 6a (Kialo) and 6b (Debatepedia) sum-
marize the accuracy of each model averaged
over 5 runs with random initialization. For
non-normative arguments, the causality task is
excluded from all models as it consistently hurts
them for both datasets.

Regarding the baselines, TGA Net (row 1) and
Hybrid Net (row 2) underperform BERT (row 3).
TGA Net, in the original paper, handles topics
that are usually short noun phrases. It weighs
input topic tokens based on other similar topics,
but this method seems not as effective when topics
are replaced with longer and more natural claims.
Hybrid Net encodes input text using BiLSTM,
whose performance is generally inferior to BERT.

BERT trained only on the main task is com-
petitive (row 3). BERT+LX (row 4), which
incorporates predicate values directly as fea-
tures, is comparable to or slightly underperforms
BERT in most cases. We speculate that predicate
values are not always accurate, so using their
values directly can be noisy. LogBERT (row 6)
consistently outperforms all models except for
non-normative arguments in Debatepedia (but it
still outperforms BERT). While both BERT+MT
and LogBERT are trained on the same logic tasks,
BERT+MT (row 5) performs consistently worse
than LogBERT. The reason is likely that logic
tasks have much larger training data than the main
task, so the model is not optimized enough for
the main task. On the other hand, LogBERT is
optimized solely for the main task after learning
useful representations from the logic tasks, which
seem to lay a good foundation for the main task.

We examined the contribution of each logic
task using ablation tests (not shown in the
tables). Textual entailment has the strongest
contribution across settings, followed by senti-
ment classification. This contrasts the relative-
ly small contribution of factual consistency in
Experiment 1. Moreover, the tasks of norma-
tive relation have the smallest contribution for
normative arguments and the causality task for
non-normative arguments in both datasets. Three
of the normative relation tasks take only a state-
ment as input, which is inconsistent with the main
task. This inconsistency might cause these tasks
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Normative Arguments Non-normative Arguments

ACC AUC F1 F1sup F1att F1neu ACC AUC F1 F1sup F1att F1neu

1 TGA Net 71.5 88.3 62.2 43.5 54.3 88.7 76.6 90.8 69.8 62.9 53.9 92.5
2 Hybrid Net 66.8 78.2 56.2 42.9 42.4 83.4 71.8 82.2 65.7 55.6 51.4 90.2

3 BERT 79.5 92.4 73.3 60.5 65.2 94.2 83.8 94.6 79.2 72.3 68.8 96.6
4 BERT+LX 79.2 92.1 72.7 58.7 65.6� 93.8 83.7 94.6 79.2 70.8 69.9‡ 96.9‡

5 BERT+MT 79.3 92.6� 73.4 63.8‡ 63.6 92.7 83.6 94.7 79.2 71.8 69.7‡ 96.1

6 LogBERT 80.0‡ 92.8‡ 74.3‡ 63.6‡ 66.2‡ 93.2 84.3‡ 95.0‡ 80.2‡ 73.1‡ 71.4‡ 96.1

(a) Kialo

Normative Arguments Non-normative Arguments

ACC AUC F1 F1sup F1att ACC AUC F1 F1sup F1att

1 TGA Net 66.1 75.0 65.4 69.8 60.9 66.5 74.3 65.9 70.1 61.7
2 Hybrid Net 67.2 70.1 67.2 68.1 66.3 59.7 62.6 58.8 64.5 53.2

3 BERT 79.1 88.3 79.4 79.8 79.0 80.7 87.6 80.7 81.4 79.9
4 BERT+LX 78.4 88.1 78.4 79.2 77.5 81.6 88.8 81.5 82.3 80.8
5 BERT+MT 79.6 88.2 79.6 80.0 79.1 77.6 86.3 77.5 78.9 76.0

6 LogBERT 81.0� 88.8 80.7� 81.1� 80.4� 81.2 88.3 80.8 81.7 80.0

(b) Debatepedia

Table 6: Accuracy of supervised models. p < {0.05�, 0.001‡} with paired bootstrap compared to BERT.

Figure 2: Pearson correlation coefficients between
argumentative relations and logic tasks from
LogBERT. All but underlined values have p <
0.0001.

to have only small contributions in representation
learning. The small contribution of the causal-
ity task in both Experiments 1 and 2 suggests
large room for improvement in how to effectively
operationalize causal relation in argumentation.

To understand how LogBERT makes a
connection between the logical relations and
argumentative relations, we analyze ‘‘difficult’’
arguments in Kialo that BERT misclassified but

LogBERT classified correctly. If the correct
decisions by LogBERT were truly informed
by its logic-awareness, the decisions may have
correlations with its (internal) decisions for the
logic tasks as well, for example, between attack
and textual contradiction. Figure 2 shows the
correlation coefficients between the probabilities
of argumentative relations and those of the
individual classes of the logic tasks, computed
simultaneously by LogBERT (using the pretrained
classification layers for the logic tasks). For
sentiment, the second text of an input pair is the
sentiment target, so we can interpret each class
roughly as the statement’s sentiment toward the
claim. For normative relation, we computed the
probabilities of backing (R10+R12) and refuting
(R11+R13).

The correlations are intuitive. The support
relation is positively correlated with textual entail-
ment, positive sentiment, ‘cause’ of causality, and
‘backing’ of normative relation, whereas the
attack relation is positively correlated with tex-
tual contradiction, negative sentiment, ‘obstruct’
of causality, and ‘refuting’ of normative rela-
tion. The neutral relation is positively correlated
with the neutral classes of the logic tasks. The
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only exception is the normative relation for non-
normative arguments. A possible reason is that
most claims in non-normative arguments do not
follow the typical form of normative claims, and
that might affect how the tasks of normative
relation contribute for these arguments.

LogBERT’s predictive power comes from its
representation of arguments that makes strong
correlations between the logical relations and
argumentative relations. Though LogBERT uses
these correlations, it does not necessarily derive
argumentative relations from the logic rules. It
is still a black-box model with some insightful
explainability.

9 Conclusion

We examined four types of logical and theory-
informed mechanisms in argumentative relations:
factual consistency, sentiment coherence, causal
relation, and normative relation. To operational-
ize normative relation, we built rich annotation
schema and data for the argumentation schemes
argument from consequences and practical
reasoning, too.

Evaluation on arguments from Kialo and
Debatepedia revealed the importance of these
mechanisms in argumentation, especially nor-
mative relation and sentiment coherence. Their
utility was further verified in a supervised set-
ting via our representation learning method. Our
model learns argument representations that make
strong correlations between logical relations and
argumentative relations in intuitive ways. Textual
entailment was found to be particularly helpful in
the supervised setting.

Some promising future directions are to probe
fine-tuned BERT to see if it naturally learns logical
mechanisms and to improve PSL with more rules.
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