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Abstract

Decoding for many NLP tasks requires an ef-
fective heuristic algorithm for approximating
exact search because the problem of searching
the full output space is often intractable, or
impractical in many settings. The default algo-
rithm for this job is beam search—a pruned
version of breadth-first search. Quite surpris-
ingly, beam search often returns better results
than exact inference due to beneficial search
bias for NLP tasks. In this work, we show that
the standard implementation of beam search
can be made up to 10x faster in practice. Our
method assumes that the scoring function is
monotonic in the sequence length, which
allows us to safely prune hypotheses that can-
not be in the final set of hypotheses early on.
We devise effective monotonic approxima-
tions to popular nonmonontic scoring functions,
including length normalization and mutual
information decoding. Lastly, we propose a
memory-reducedvariantofbest-firstbeamsearch,
which has a similar beneficial search bias in
terms of downstream performance, but runs in
a fraction of the time.

1 Introduction

Beam search is a common heuristic algorithm for
decoding structured predictors (e.g., neural ma-
chine translation models and transition-based
parsers). Because of the widespread adoption of
recurrent neural networks and other non-Markov
models, traditional dynamic programming solu-
tions, such as the Viterbi algorithm (Viterbi,
1967), are prohibitively inefficient; this makes
beam search a common component of many state-
of-the-art NLP systems. Despite offering no
formal guarantee of finding the highest-scoring
hypothesis under the model, beam search yields
impressive performance on a variety of tasks—

unexpectedly providing a beneficial search bias
over exact search for many tasks (Stahlberg and
Byrne, 2019).

Within NLP, most research on beam search has
focused on altering the log-probability scoring
function to return improved results, for example,
higher BLEU scores (Wu et al., 2016; Murray and
Chiang, 2018; Shu and Nakayama, 2018; Yang
et al., 2018) or a more diverse set of outputs
(Vijayakumar et al., 2016). However, little work
has been done to speed up beam search itself.
Filling this gap, this paper focuses on reform-
ulating beam search in order to make it faster.
We propose best-first beam search, a priori-
tized version of traditional beam search that is up
to an order of magnitude faster in practice while
still returning the same set of results. We add-
itionally discuss an even faster heuristic version
of our algorithm that further limits the number of
candidate solutions, leading to a smaller memory
footprint while still finding good solutions.

Concretely, we offer a novel interpretation of
beam search as an agenda-based algorithm where
traditional beam search is recovered by utilizing
a length-based prioritization scheme. We prove
that a specific best-first prioritization scheme, as
in classic A∗ search (Hart et al., 1968), allows
for the elimination of paths that will necessarily
fall off the beam; for many scoring functions,
including standard log-probability scoring, we can
still guarantee the same k hypotheses as traditional
beam search are returned. Indeed, our algorithm
returns beam search’s top hypothesis the first time
it encounters a complete hypothesis, allowing the
program to stop early. Further, we discuss the ap-
plication of best-first beam search to several
popular scoring functions in the literature (He et
al., 2016; Li et al., 2016); this demonstrates that we
have a general framework for adapting a variety
of rescoring methods and alternate objectives to
work with our algorithm.
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Empirically, we compare best-first beam search
to ordinary beam search on two NLP sequence-to-
sequence tasks: neural machine translation (NMT)
and abstractive summarization (AS). On NMT,
we find that our algorithm achieves roughly a
30% speed-up over traditional beam search with
increased gains for larger beams (e.g., ≈ 10x
for a beam of 500). We find similar results
hold for AS. Finally, we show that our memory-
reduced version, which limits the number of active
hypotheses, leads to additional speed-ups over
best-first beam search across beam sizes while
maintaining similar BLEU scores.

2 Sequence Transduction

A core operation in structured prediction models
is the determination of the highest-scoring output
for a given input under a learned scoring model.

y� def
= argmax

y∈Y(x)

score(x,y) (1)

where x is an input and Y(x) is a set of well-
formed outputs for the input. An important ex-
ample of (1) is maximum a posteriori (MAP),

yMAP def
= argmax

y∈Y(x)

p(y | x) (2)

Our work focuses on sequence-to-sequence
transduction: predicting an output sequence given
an input sequence. One such task is machine
translation, wherein a source-language sentence is
mapped (‘‘transduced’’) to a target-language sen-
tence. While our exposition focuses on sequence-
to-sequence prediction, our algorithms are directly
applicable to any sequential structured predic-
tion model, such as transition-based parsers (Nivre
et al., 2008) and sequence taggers (McCallum
et al., 2000; Lafferty et al., 2001).

Notation. Let x = 〈x1, . . . , xNx
〉 be an input

sequence of length Nx and, likewise, let y =
〈y1, . . . , yNy

〉 be an output sequence of length Ny.
Each yt is an element of V , the set of output
tokens. Finally, let Y(x) be the set of all valid
output sequences (i.e., complete hypotheses). For
the task of language generation, which we focus
on experimentally, this set is defined as

Y(x)
def
= {BOS ◦ v ◦ EOS | v ∈ V<nmax} (3)

where ◦ is string concatenation and V<nmax(x) is
the set of all subsets of V� of size < nmax(x). In

words, every valid sequence begins and ends with
distinguished tokens (BOS and EOS, respectively).1

Furthermore, each sequence has at most length
nmax(x)—which is typically dependent on x—a
restriction we impose to ensure termination. Some
applications may require a stronger coupling
between Y(x) and x (e.g., |x| = |y|). We drop the
dependence of Y and nmax on x when it is clear
from context.

Scoring. We consider a general additively de-
composable scoring model of the form

score(x,y) =

Ny∑
t=1

score(x,y<t ◦ yt) (4)

This framework covers a variety of modeling
methodologies including probabilistic transducers
(both globally and locally normalized) and non-
probabilistic models such as maximum-margin
techniques (Taskar et al., 2004). Most importantly,
(4) covers MAP decoding (2) of neural sequence-
to-sequence models à la Sutskever et al. (2014):2

scores2s(x,y<t ◦ yt) = log p(yt | y<t,x) (5)

We note that (5) is the scoring function used for
decoding many language generation models.

Beam search. The worst-case running time of
exactly computing (1) is exponential in nmax;
namely, O(|V|nmax).3 Beam search is a commonly
used approximation to (1) in NMT and language
generation tasks. It is used in many (if not most)
state-of-the-art NLP systems (Wu et al., 2016;
Serban et al., 2017; Edunov et al., 2018; Yang
et al., 2019). Beam search may be understood as a
pruned version of the classic path-search algo-
rithm, breadth-first search (BFS), where the breadth
is narrowed to the beam size k. Pseudocode is
given in (1).

Although, beam search does not solve (1)
exactly, it is a surprisingly useful approximation
for NLP models. In many settings, beam

1BOS and EOS are typically members of V . Often, EOS

counts towards the nmax length limit while BOS does not. This
is reflected in (3).

2To see why, apply exp (an order-preserving transforma-
tion): exp(scores2s(x,y)) =exp

(∑Ny

t=1 log p(yt |y<t,x)
)
=

∏Ny

t=1 p(yt | y<t,x) = p(y | x).
3This can be improved if, for example, score(·, ·) admits a

low-order Markov factorization (Viterbi, 1967; Vieira et al.,
2016). We do not discuss that setting in this paper because it
limits the scoring model’s expressive power.
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Algorithm 1 Standard beam search4

Input: x: source sentence
k: maximum beam size
nmax: maximum hypothesis length
score(·, ·): scoring function

1: B0 ← {〈0, BOS 〉}
2: for t ∈ {1, . . . , nmax−1} :
3: B ← ∅

4: for 〈s,y〉 ∈ Bt−1 :
5: if y.last() = EOS :
6: B.add(〈s,y〉)
7: continue
8: for y ∈ V :
9: s ← score(x,y ◦ y)

10: B.add(〈s,y ◦ y〉)
11: Bt ← B.top(k)
12: return B.max()

search outperforms exact methods in terms of
downstream evaluation (Koehn and Knowles,
2017; Stahlberg and Byrne, 2019). For the re-
mainder of this paper, we will pivot our attention
away from exact solutions to (1) to exact solutions
to the beam search output.

Definition 2.1. k-optimal hypothesis. We say that
a hypothesis is k-optimal if it is the top hypothesis
returned by beam search with beam size k.

3 A∗ Beam Search

We develop a meta-algorithm that is parameter-
ized by several choice points. Our general search
algorithm for decoding (Alg. 2) takes an arbitrary
prioritization function, stopping criterion, and
search heuristic. With certain values of these at-
tributes, we recover many common search algo-
rithms: greedy search, beam search, best-first
search (Dijkstra, 1959), and A∗ search (Hart et al.,
1968). We propose an alternate prioritization
function for beam search that allows for faster
decoding while still returning the same k-optimal
set of hypotheses.

4Often, the score function is additively decomposable in
t, such as (5). Implementations can exploit this fact to make
each score evaluation (line 9) O(1) rather than O(t). We
did not make this implementation detail explicit in Alg. 1 or
Alg. 2 for generality and simplicity.

Algorithm 2 General decoding scheme.4,5 High-
lighted sections are choice points in the algorithm
for which values determine the search strategy.
See § 3.1 for detailed explanation.
Input: x: source sentence

nmax: maximum hypothesis length
score(·, ·): scoring function
�: comparator 1
stop(·, ·): stopping criterion 2
k: maximum beam size 3
h(·, ·): heuristic function 4

1: Q ←priority queue(�)

2: Q.push(〈0, BOS〉)
3: POPS ← counter()
4: while not stop(Q) and not Q.empty() :
5: 〈sh,y〉 ← Q.pop()
6: if POPS[|y|] ≥ k or |y| > nmax :
7: continue
8: POPS[|y|] ← POPS[|y|] + 1

9: if y.last() = EOS :
10: Q.push(〈sh,y◦ EOS〉)
11: else:
12: for y ∈ V :
13: s ← score(x,y ◦ y)
14: sh ← s+ h(x,y ◦ y)
15: Q.push(〈sh,y ◦ y〉)
16: return Q.pop() if not Q.empty() else null

3.1 Choice Points of 2
Here we review the components of our meta
algorithm (the highlighted sections in Alg. 2) that
can be varied to recover different search strategies:

1 � : y×y → {True, False}. A priority queue
Q maintains the set of active hypotheses.
Elements in this set are ordered according to
a generic comparator �. When its peek() (or
pop()) methods are called, the first element
ordered by � is returned (or returned and
removed).

2 stop(·) : Collection〈y〉 → {True, False}.
The algorithm terminates according to
configurable stopping criterion based on the
current set of elements in Q.

5If the last token of y′ is the end symbol (e.g., EOS), then y′

is not expanded any further. One can either regard y′ as any
other hypothesis albeit with y′ ◦ yt = y′ or keep appending
EOS (i.e., y′ ◦ yt = y′ ◦ EOS ) so that time step and length can
be regarded as synonymous. We adopt the latter standard for
comparability with subsequent algorithms.
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Beam Search Best-First Beam Search A∗ Beam Search

1 〈sh,y〉 � 〈s′h,y′〉 ⇐⇒ |y| < |y|′ 〈sh,y〉 � 〈s′h,y′〉 ⇐⇒ sh > s′h 〈sh,y〉 � 〈s′h,y′〉 ⇐⇒ sh > s′h
or (|y| = |y|′ and sh ≥ s′h) or (sh = s′h and |y| < |y|′) or (sh = s′h and |y| < |y|′)

2 stop(Q) ⇐⇒ stop(Q) ⇐⇒ stop(Q) ⇐⇒
y.last() = EOS ∀y ∈ Q Q.peek().last() = EOS Q.peek().last() = EOS

3 k = beam size k = beam size k = beam size
4 0 0 any admissible heuristic

Breadth-First Search Best-First Search A∗ Search

1 〈sh,y〉 � 〈s′h,y′〉 ⇐⇒ |y| < |y|′ 〈sh,y〉 � 〈s′h,y′〉 ⇐⇒ sh > s′h 〈sh,y〉 � 〈s′h,y′〉 ⇐⇒ sh > s′h
or (|y| = |y|′ and sh ≥ s′h) or (sh = s′h and |y| < |y|′) or (sh = s′h and |y| < |y|′)

2 stop(Q) ⇐⇒ stop(Q) ⇐⇒ stop(Q) ⇐⇒
y.last() = EOS ∀y ∈ Q Q.peek().last() = EOS Q.peek().last() = EOS

3 k = ∞ k = ∞ k = ∞
4 0 0 any admissible heuristic

Table 1: Values at choice points for various search algorithms. Note that any admissible heuristic may
be used for variants of A∗ search.

3 k ∈ N>0. Only k paths of a given length
are considered. If the algorithm has already
encountered k paths of a given length,
subsequent paths of that length are not
evaluated. If we take k = ∞, we recover
unpruned search algorithms.

4 h(·, ·) : x × y → R. A heuristic function
h(x,y) can be used during search to change
the priority in which paths are evaluated.
We note that with pruning, a heuristic may
change the value of the k-optimal hypothesis
(see § 4.1).

Recovering Beam Search. To recover beam
search from Algorithm 2, we use the choice
points from Table 1. Explicitly, the comparator
prioritizes hypotheses from earlier time steps
first, but breaks ties with the hypotheses’ scores
under the model. We note that while the standard
algorithm for beam search does not prioritize by
score within a time step, variations of the algorithm
use this strategy so they can use early-stopping
strategies (Klein et al., 2017; Huang et al., 2017).
Beam search terminates once either all hypotheses
end in EOS or the queue is empty (i.e., when the
k beams have been extended nmax time steps but
none end in EOS). In the second case, no complete
hypothesis is found. Finally, choosing the heuris-
tic h(x,y) = 0 makes the algorithm a case of
standard best-first search.

Note that, while standard beam search returns a
set, Alg 2 only returns the k-optimal hypothesis.

This behavior is sufficient for the majority of
use cases for beam search. However, if the full
set of k hypotheses is desired, the stopping crite-
rion can be changed to evaluate true only when
k hypotheses are complete. Under the other beam
search settings, this would probably return the
same set as beam search (see § 4.1).

Recovering A∗. To recover the traditional A∗

search algorithm, we use the comparator that
prioritizes hypotheses with a higher score first; ties
are broken by hypothesis length. The algorithm
terminates when the first item of Q contains an
EOS. If we take k = ∞, best-first beam search
recovers A∗. Any admissible heuristic may be
used for h(x,y).

Definition 3.1. Admissible Heuristic. A heuristic
h is admissible if it never overestimates the future
cost—or underestimates the future reward—of
continuing down a path.

3.2 Best-First Beam Search

In its original form, A∗ search may traverse the
entire O(|V|nmax) graph, which as discussed ear-
lier, is intractable for many decoding problems.
While standard beam search addresses this prob-
lem by limiting the search space, it still has
computational inefficiencies—namely, we must
analyze k hypotheses of a given length (i.e., time
step), regardless of how poor their scores may
already be, before considering longer hypotheses.

798

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00346/1923790/tacl_a_00346.pdf by guest on 07 Septem
ber 2023



However, prioritization by length is not strictly
necessary for finding a k-optimal hypothesis. As
is done in A∗, we can use score as the prioritiza-
tion scheme and still guarantee optimality–or k-
optimality–of the paths returned by the algorithm.

We define A∗ beam search as the A∗ algorithm
where breadth is limited to size k. Further, we
define best-first beam search as the case of A∗

beam search when no heuristic is used (see Table 1
for algorithm settings). This formulation has two
large advantages over standard beam search: (1)
we gain the ability to remove paths from the
queue that are guaranteed to fall off the beam
and (2) we can terminate the algorithm the first
time a complete hypothesis is encountered. We
can therefore reduce the computation required for
decoding while still returning the same set of
results.

The mathematical property that makes this
short-circuiting of computation possible is the
monotonicity of the scoring function. Note that
not all scoring functions are monotonic, but many
important ones are, including log-probability (5).
We discuss effective approximations for popular
non-monotonic scoring functions in § 5.

Definition 3.2. Monotonicity. A scoring function
score(·, ·) is monotonic in t if for all x, y<t =
〈y1 . . . yt−1〉, yt ∈ V , 1 ≤ t ≤ nmax

score(x,y<t) ≥ score(x,y<t ◦ yt)

Clearly, (5) is a monotonic scoring function in
t because scores2s ≤ 0, that is, the score of a
partial hypothesis y<t can only decrease if we
extend it by another symbol yt. This implies we
can order our search according to score(x,y<t)
without fear of overlooking a hypothesis whose
score would increase over time. Furthermore, once
k hypotheses of a given length t have been
evaluated, we no longer need to consider any
hypothesis where |y| < t because such hypotheses
would necessarily fall off the beam. We can
therefore remove such hypotheses from the queue
and avoid wasting computational power on their
evaluation. We prove this formally in § 4.1.

Another implication of the monotonicity
property of score is that we may terminate best-
first beam search once a hypothesis containing
EOS is encountered (i.e., the end state is found). If
the full set of k complete hypotheses is desired,
then we simply continue until k hypotheses have

reached EOS. We prove the k-optimality of these
hypotheses under best-first beam search in § 4.1.

3.3 Implementation Details

Standard beam search forms a separate set of
active hypotheses for each time step, that is, each
Bt is its own set. OnceBt has been narrowed down
to the top k, the previous B<t can be forgotten.
However in best-first beam search, because hypo-
theses are not evaluated in order of time step, we
may need to keep Bt from several time steps at
any given point.

A naive implementation of best-first beam
search is to keep a single priority queue with
all the active hypotheses ordered by current score.
However, each push to the queue would then
require O(log(nmaxk|V|)) time. We can reduce
this runtime by instead keeping a priority queue
of beams, where the priority queue is ordered by
the highest-scoring hypothesis from each beam.
Further, each beam can be represented by a min-
max queue (Atkinson et al., 1986); this allows us
to limit the size of Bt to k: we can check in O(1)
time if a hypothesis is in the top-k before adding
it to Bt.

A potential inefficiency, which we avoid, comes
from updating Bt+1, which we must do when
evaluating a hypothesis from Bt. Because all
beams are stored in a queue, there is no guarantee
of the location in the queue of Bt+1. To avoid
O(nmax) lookup, we can keep a pointer to each
beam, indexed by t making the lookup O(1).
However, we acquire aO(log nmax) term to update
the queue of beams as Bt+1 may change priority.

Memory-Reduced Best-First Beam Search. A
major drawback of the A∗ algorithm is its memory
usage, which in the worst-case is O(bd) for
breadth width b and maximum depth d. In the
A∗ formulation of beam search, where the breadth
width is limited to the beam size, this amounts
to worst-case O(k · nmax) memory usage, where
standard beam search has O(k) memory usage.
Whereas in many settings the multiplicative factor
may be insignificant, for neural sequence models
it can be prohibitive; this is due to the large amount
of memory required to store each hypothesis (e.g.,
prior hidden states needed to compute subsequent
scores for scoring functions parameterized by
neural networks).
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We propose a variant of best-first beam search
that limits memory usage, that is, the queue
capacity. Specifically, if we reach the chosen
queue capacity, we remove the worst scoring
active hypothesis from the earliest active time
step. This can easily be done in O(1) time given
our pointer to each beam.

4 Algorithm Analysis

4.1 Correctness

We show the equivalence of the top hypothesis6

returned by beam search and best-first beam search
when score(·, ·) is monotonically decreasing in t,
length-based prioritization is used, and the beam
size k is the same for both algorithms. Without
loss of generality, we hold x constant in all the
following proofs.

Note that we take the terms pop and push
from queue terminology. Specifically, ‘‘popping
a hypothesis’’ refers to making it past line 7 of
Alg. 2, where a hypothesis y is expanded by
yt ∈ V . In path search terminology, this would
be equivalent to visiting a node and adding the
edges from that node as potential paths to explore.
Lastly, we refer to the priority queue used by beam
search and best-first beam search as QBS and QA∗ ,
respectively.

Lemma 4.1. Best-first beam search evaluates all
hypotheses of a given length t in order of their
score.

Proof. We prove the lemma by induction. The
lemma holds trivially for the base case of hy-
potheses of length 0 because the only hypothesis
of length 0 is 〈BOS〉.

Now, by the inductive hypothesis, suppose
Lemma 4.1 holds for all hypotheses of length
< t. We will show it must also hold for
hypotheses of length t. Consider two competing
hypotheses: y = y<t ◦ yt and y′ = y′

<t ◦ y′t.
Note that |y<t| = |y′

<t| = t − 1. Suppose
score(x,y′) < score(x,y).

Case 1: score(x,y′
<t) < score(x,y<t). Then

by induction, y<t popped first and y is pushed to
Q before y′. Because score(x,y′) < score(x,y),
y will be popped before y′.

6Best-first beam search is guaranteed to return the same
set of k hypotheses as beam search. We include the proof
for only the top hypothesis for simplicity. The proof for set
equality follows naturally.

Case 2: score(x,y<t) < score(x,y′
<t). Then

by induction, y′
<t is popped first and y′ is added

to Q before y. But, because score(x,y′) <
score(x,y) ≤ score(x,y<t) by monotonicity,
then y<t will be popped before y′. Consequently,
y will be pushed to Q before y′ is evaluated. By
the rules of the priority queue y will be evaluated
before y′.

Case 3: score(x,y′) = score(x,y). The lemma
holds if either y or y′ is popped first.

By the principle of induction, Lemmma 4.1
holds for all t ∈ N>0.

Lemma 4.2. The first hypothesis that best-first
beam search pops that ends in EOS is k-optimal.

Proof. Let y be the first hypothesis popped by
best-first beam search ending in EOS. By rules of
the priority queue, no other active hypothesis has a
higher score thany. Additionally, by monotonicity
of the scoring function, no other hypothesis can
subsequently have score greater than y. Therefore
y must be k-optimal.

Lemma 4.3. If best-first beam search pops a
hypothesis, then beam search necessarily pops
that same hypothesis.

Proof. We prove the lemma by induction on
hypothesis length. The base case holds trivially:
For hypotheses of length 0, both best-first beam
search and beam search must pop the 〈BOS〉 as it is
the only item in the queue after initialization.

By the inductive hypothesis, suppose Lemma 4.3
holds for hypotheses of length < t. Suppose best-
first beam search pops a hypothesis y = y<t ◦ yt
of length t.

Case 1: Best-first beam search pops k hypo-
theses of length t − 1 before popping y, which
is of length t. The sets of hypotheses of length
t − 1 that each algorithm pops are necessarily
the same by the inductive hypothesis and the fact
that they have the same cardinality. If best-first
beam search pops y, which is of length t, then it
must be in the top-k highest-scoring hypotheses of
length t in QA∗ by the rules of the priority queue.
Consequently, it must be in the top-k in QBS.

Case 2: Best-first beam search has popped
fewer than k hypotheses of length t − 1 before
popping y. Then, all remaining hypotheses of
length t − 1 in QA∗ must have score(x,y′

<t) <
score(x,y) by the rules of the priority queue.
By the monotonicity of the score function,
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all extensions of those y′
<t will also have

score(x,y′
<t ◦ y′t) < score(x,y). Because none

of y′
<t ◦ y′t has greater score than y, y must be

in Bt.

Corollary 4.3.1. Best-first beam search will never
pop more hypotheses than beam search.

Theorem 4.4. Once best-first beam search has
popped k hypotheses of length t, hypotheses from
time steps < t do not need to be popped.

Proof. This follows from Lemma 4.1. If k hypo-
theses of length t have been popped, then these
must be the top-k hypotheses from time step t.
Therefore no hypothesis from time step < t that is
still inQA∗ would be in the top-k at time step t.

Theorem 4.5. Let HBS and HA be the set of k
hypotheses returned by beam search and best-first
beam search, respectively. HBS = HA.

Proof. Because |HBS| = |HA| = k, we only need
to show y ∈ HBS =⇒ y ∈ HA.

Suppose, by way of contradiction, there exists a
hypothesis y ∈ HBS such that y �∈ HA. If y �∈ HA

then we must not pop the prefix y<t (where
y = y<t ◦ yt:|y|) for some time step t < |y|.

Case 1: At some time step t+ j (j ≥ 0), we pop
k partial hypotheses {y(1)

≤t+j , . . . ,y
(k)
≤t+j} where

y≤t+j �∈ {y(1)
≤t+j , . . . ,y

(k)
≤t+j}. By Lemma 4.1, it

must be that score(x,y(i)
≤t+j) > score(x,y≤t+j)

∀i ∈ 1, . . . , k. This implies that for beam search,
y≤t+j would not be in the top-k paths at
time step t + j since by Lemma 4.3, paths
{y(1)

≤t+j , . . . ,y
(k)
≤t+j} would also be evaluated by

beam search. Therefore y cannot be in HBS, which
is a contradiction.

Case 2: For no time step t + j (j ≥ 0) do we
pop k paths. This can only happen if the algorithm
stops early, namely, we have found k complete
hypotheses y(1), . . . ,y(k). If this is the case, then
by rules of the priority queue, each y(1), . . . ,y(k)

must have score greater than score(x,y<t). By
monotonicity of the score function, score(x,y(i))
> score(x,y). This implies y cannot be in HBS,
which is a contradiction.

Non-monotonic Scoring Functions. Non-
monotonic scoring functions (Definition 3.2)
break the assumptions of § 4.1, in which case
best-first beam search is not guaranteed to return a
k-optimal hypothesis. However, when the scoring

function is boundable from above, we can alter
the original stopping criterion ( 2 in Alg. 2) such
that k-optimality is again guaranteed.

Given our assumed restriction on the search
space—namely, |y� ∈ Y(x)| ≤ nmax(x)—we can
upper-bound the maximal score of any hypothesis
under the scoring function in use. Formally, for
any function score we have:

stop(Q) ⇐⇒
score(x, ŷ) ≥ score(x,y′) + U(x,y′)

∀y′ ∈ Q (6)

where ŷ is the best complete hypothesis found
so far and U(x,y′) is the score function-
dependent upper bound on how much the score
of y′ can increase as y′ is expanded further.7

In this situation, best-first beam search only
terminates once no other hypothesis in Q can
have a score greater than the best finished
hypothesis. We note that Huang et al. (2017) use a
similar scheme for optimal stopping with bounded
length normalization. We discuss examples of
non-monotonic scoring functions in § 5.

A Note on Heuristics. Our analysis shows the
equivalence of beam search and best-first beam
search, that is, when h(x,y) = 0. The analysis
does not hold for arbitrary admissible heuristics. A
poor heuristic (e.g., one that grossly overestimates
the future score of continuing down one path)
may cause other items to be pruned from best-first
beam search that otherwise would have remained
on the beam in standard beam search.

4.2 Runtime
Theorem 4.6. The runtime of best-first beam
search is O(nmaxk (|V| log(k) + log(nmax)))

Proof. We pop at most nmax · k items. Each
pop requires us to push |V| items. Each push
requires log(k) time when the priority queue is
implemented with a min–max heap (Atkinson
et al., 1986) and incrementally pruned so that it
has no more than k items. After pushing those
|V| items, we have to perform a percolation in the
priority queue of priority queues, which requires
log(nmax) time. This yieldsO(nmaxk (|V| log(k)+
log(nmax))) time.

Theorem 4.7. The runtime of standard beam
search is O(nmax k |V| log(k)).

7For monotonic scoring functions, we have U(x,y′) = 0.
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Proof. The proof is the same as Theorem 4.6,
but we can forgo the percolation step in the
queue of queues because standard beam search
proceeds in order of hypothesis length. This yields
O(nmaxk|V| log(k)).

Although the theoretical bound of best-first
beam search has an additional log factor compared
with standard beam search, we find this to be neg-
ligible in practice. Rather, we find number of calls
to score, the scoring function under our model
(e.g., a neural network), is often the bottleneck
operation when decoding neural networks (see § 6
for empirical evidence). In terms of this metric,
the beam search algorithm makes O(knmax) calls
to score, as score is called once for each active
hypothesis inB andB may evolve fornmax rounds.
The worst-case number of calls to score will be
the same as for beam search, which follows from
Lemma 4.3.

5 Scoring Functions

Even before the findings of Stahlberg and Byrne
(2019), it was well known that the best-scoring
hypothesis with respect to the traditional likeli-
hood objective can be far from ideal in practice
(Wu et al., 2016; Murray and Chiang, 2018;
Yang et al., 2018). For language generation tasks
specifically, the results returned by neural models
using the standard scoring function are often short
and default to high-frequency words (Vinyals and
Le, 2015; Shen et al., 2016).

To alleviate such problems, methods that revise
hypothesis scores to incorporate preferences for
longer, less repetitive, or more diverse options
have been introduced and are often used in prac-
tice. While most such techniques change the
scoring function such that it is no longer mono-
tonic, we can still guarantee the k-optimality
of the returned hypothesis for (upper) bounded
scoring functions using the methods discussed
in § 4.1. In the remainder of this section, we
present alternate scoring schemes adapted to work
with best-first beam search. Additionally, we
present several heuristics which, while breaking
the k-optimality guarantee, provide another set of
decoding strategies worth exploring.

Length Normalization. Length normalization
is a widely used hypothesis scoring method that
aims to counteract the propensity for shorter se-
quences to have higher scores under neural mod-

els; this is done by normalizing scores by
hypothesis length (see Murray and Chiang [2018]
for more detail).

For early stopping in beam search with length
normalization, Huang et al. (2017) propose bound-
ing the additive length reward as the minimum of
a pre-determined optimal sequence length ratio r
and the final sequence length Ny:

scoreLN(x,y) = score(x,y)

+ β ·min{r|x|, Ny}
(7)

where β is the scaling parameter for the reward.
We note, however, that the same can be done with
the maximum sequence length nmax such that the
traditional length reward used by He et al. (2016)
is recovered:

scoreLN(x,y) = score(x,y) + βmin{nmax, Ny}
= score(x,y) + βNy (8)

We formally propose two methods for length
normalization. We use the scoring functions in (7)
or (8) with either: (1) the following heuristic:

h(x,y) =

{
0 for y.last () = EOS

βmax{b− |y|, 0} for y.last () �= EOS

(9)

where b can be r|x| or nmax;8 or (2) stopping
criterion as in (6) albeit with scoring function
scoreLN and upper-bound function:

U(x,y) = βmax{0, b− |y|} (10)

Despite their similarities, these two methods are
not guaranteed to return the same results. Whereas
the second method will return the same k-optimal
hypotheses as beam search, using a heuristic
during pruned search means we can no longer
guarantee the k-optimality of the results with
respect to the scoring function as the heuristic
may push hypotheses off of the beam. We present
experimental results for both methods in § 6.

Mutual Information. Maximum mutual infor-
mation decoding (Li et al., 2016) aims to alleviate
the inherent preference of neural models for high-
frequency tokens when using the log-probability

8We enforce r|x| < nmax.
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decoding objective. Rather than choosing the
hypothesis y to maximize conditional probability
with respect to the input x, we instead choose y to
maximize pointwise mutual information (PMI):

PMI(x;y) = log
p(x,y)

p(x)p(y)
(11)

Note that (11) is equivalent to log p(y|x)
p(y) , which can

be rewritten as log p(y | x) − log p(y), making
the objective additive and thus (11) can conform
to (4).

From this last form, we can see how mutual
information decoding penalizes high-frequency
and generic outputs; the negative p(y) term, as Li
et al. (2016) point out, acts as an ‘‘anti-language
model.’’ One unfortunate side effect of this
objective is that ungrammatical and nonsensical
outputs, which have probabilities close to 0 under a
language model like p(y), end up with high scores
because of the second term in the score function.
To address this problem, and to upper-bound
the scoring function, we propose lower-bounding
the language model term by a hyperparameter
1 ≥ ε > 0. We additionally use the strength
hyperparameter λ employed by Li et al. (2016):

scorePMI(x,y) = log p(y | x)
− λ logmax{p(y), ε} (12)

Similarly to our methods for length normali-
zation, we can use the scoring function in (12)
either with the heuristic:

h(x,y) =

{
0 for y.last () = EOS

−λ log ε(nmax−|y|) for y.last () �= EOS

(13)

or with stopping criterion as in (6) albeit with
scorePMI and upper-bound function:

U(x,y) = −λ log ε(nmax − |y|) (14)

Because −λ log ε is the best possible score at any
given time step, clearly we can bound the increase
in scorePMI by the above function. However, as with
our length normalization strategy, we lose the k-
optimality guarantee with the heuristic method
for mutual information decoding. We present
experimental results for both methods in § 6.

6 Experiments

We run our algorithm on several language-related
tasks that typically use beam search for decoding:
NMT and AS. Specifically, experiments are per-
formed on IWSLT’14 De-En (Cettolo et al., 2012),
WMT’17 De-En (Bojar et al., 2017), MTTT Fr-En
(Duh, 2018), and CNN-DailyMail (Hermann et al.,
2015) using both Transformers (Vaswani et al.,
2017) and Convolutional sequence-to-sequence
models (Gehring et al., 2017).

For reproducibility, we use the data pre-processing
scripts provided by fairseq (Ott et al., 2019) and
follow their methods for training sequence trans-
duction models. Hyperparameters are set in accor-
dance with previous works. Specifically, on
IWSLT’14 and MTTT tasks, we follow the rec-
ommended Transformer settings for IWSLT’14 in
fairseq,9 which are based on Vaswani et al. (2017)
and Gehring et al. (2017). Hyperparameters for
models trained on the WMT task are set following
version 3 of the Tensor2Tensor toolkit (Vaswani
et al., 2018). We use byte-pair encoding (BPE;
Sennrich et al. 2016) for all languages. Vocabulary
sizes for WMT and IWSLT’14 are set from rec-
ommendations for the respective tasks in fairseq;
for the MTTT tasks, vocabulary sizes are tuned
on models trained with standard label-smoothing
regularization. Similarly, the CNN/DailyMail
dataset is pre-processed and uses BPE following
the same steps as (Lewis et al., 2019); model
hyperparameters are likewise copied. Details are
available on fairseq’s Web site.10

We use BLEU (Papineni et al., 2002) (evaluated
using SacreBLEU [Post, 2018]) for MT metrics
and ROUGE-L (Lin, 2004) for abstractive summar-
ization metrics. We build our decoding framework
in SGNMT.11

6.1 Running Time

In Table 2, we report values as the average number
of calls to the scoring function per input; we
do not use wall-clock time as this is heavily
dependent on hardware. See Fig. 1 for empirical
justification of the correlation between calls to the
scoring function and runtime on the hardware our

9https://github.com/pytorch/fairseq/tree
/master/examples/translation.

10https://github.com/pytorch/fairseq/blob
/master/examples/bart/README.cnn.md.

11https://github.com/ucam-smt/sgnmt.
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IWSLT’14 De-En MTTT Fr-En CNN-DailyMail
k=5 k=10 k=100 k=500 k=10 k=100 k=500 k=5 k=10 k=100
(35.6) (35.4) (34.7) (7.9) (33.0) (9.9) (1.2) (31.5) (30.9) (29.1)

BF beam search 93 (24%) 169 (36%) 1275 (79%) 1168 (736%) 184 (16%) 867 (138%) 885 (836%) 200 (33%) 305 (43%) 2960 (92%)

Beam search (ES) 107 (7%) 210 (9%) 2047 (12%) 7685 (27%) 196 (9%) 1310 (58%) 4182 (98%) 224 (19%) 357 (22%) 3942 (59%)

Beam search 115 229 2286 9770 214 2066 8281 266 435 5673

Table 2: Average number of calls (rounded to nearest whole digit) to score, the sequence transduction
model, per generated sequence when using different decoding algorithms. Green percentages are
performance improvements over standard beam search. Beam search (ES) refers to the OpenNMT
early-stopping method (Klein et al., 2017). All methods provably return the same solution and thus,
evaluation metrics (in dark blue) for a given beam size are identical.

Figure 1: Number of calls to scoring function score
vs. total sequence generation time. Each point is a
decoded sequence. Colors represent different model
architectures and shapes signify the decoding algorithm
used (beam sizes 3 and 10 are included for each). There
is no notable difference in the overhead (time-wise) of
best-first beam search and beam search.

experiments were run on. For reference, in our
experiments, the scoring function took on average
> 99% of the total computation time, even with
larger beam sizes, when overhead of the search
algorithm is most significant.

We find that best-first (BF) beam search leads to
significant speed-ups over both traditional beam
search and beam search with early stopping, with a
performance increase12 of ≈ 8x for a beam size of
500. We likewise find that best-first beam search
offers speed-ups over early stopping methods that
are not guaranteed to return the same results as
standard beam search (see Table 3).

6.2 Length Normalization

We experiment with both forms of length
normalization presented in § 5 and provide results

12Performance increase is defined as (old − new)/new.

IWSLT’14 De-En
k method search error BLEU # calls

10
shrinking 0% 35.4 229 (0%)
early 0% 35.4 225 (2%)
BF BS − 35.4 169 (36%)

100
shrinking 31.7% 13.2 2278 (0%)
early 31.7% 13.2 1738 (31%)
BF BS − 34.7 1275 (79%)

WMT’17 De-En

10
shrinking 0% 28.6 260 (0%)
early 0% 28.6 252 (3%)
BF BS − 28.6 230 (12%)

100
shrinking 1.7% 26.4 2587 (0%)
early 1.7% 26.4 2402 (8%)
BF BS − 26.9 2046 (26%)

Table 3: BLEU, search error, and average number
of calls to score for different stopping criterion.
‘‘shrinking’’ refers to the shrinking beam method
of Bahdanau et al. (2015) and ‘‘early’’ refers
to the stopping criterion of Huang et al. (2017).
Note that neither method is guaranteed to return
the same result as standard beam search. Search
error and performance increases are with respect
to standard beam search.

in Table 4. We find that both methods, that
is, changing the stopping criterion and using a
heuristic during search, provide improvements
over baseline BLEU scores albeit with different
hyperparameter settings; increases are similar to
improvements reported by Murray and Chiang
(2018). Notably, using a heuristic causes a large
percentage of search errors with respect to stand-
ard beam search using the same scoring function.
However, the difference in results appears to be
beneficial in terms of BLEU.
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IWSLT’14 De-En
k β b # calls search BLEU

error

Heuristic 5 0.8 |x| 115 (0%) 40.6% 33.9 +0.3
10 1.2 |x| 229 (0%) 54.7% 33.8 +0.5

Stopping Criterion 5 0.5 nmax 73 (58%) − 33.7 +0.1
10 0.5 nmax 130 (76%) − 33.7 +0.4

MTTT Fr-En

Heuristic 5 0.8 .7|x| 100 (8%) 16.2% 33.5 +0.2
10 1.0 .7|x| 196 (9%) 25.2% 33.6 +0.6

Stopping Criterion 5 1.0 nmax 65 (66%) − 34.1 +0.8
10 1.2 nmax 88 (143%) − 34.1 +1.1

Table 4: BLEU search error, and average number
of calls to score for output obtained with length
normalization scoring function on the IWSLT’14
De-En and MTTT Fr-En test sets. Increase in BLEU

is over baseline with no length normalization.
Search error and performance increases are with
respect to standard beam search decoding using
the same scoring function.

6.3 Mutual Information

We train a language model on the IWSLT dataset
and use it to calculate p(y) from (12) as margin-
alizing overy is intractable (see Li et al. [2016] for
further justification). We run experiments using
both of the methods discussed in § 5 and present
results in Table 5. We find that both methods
provide results of equivalent BLEU score compared
with the baseline output, namely, results obtained
with the unbounded PMI objective and beam
search. Again, despite the high search error rate
demonstrated by the heuristic method, evaluation
metrics are still comparable.

6.4 Memory Usage

We conduct a set of experiments where we limit
total queue capacity to k·γ for γ ∈ {1, . . . , nmax},
as described in § 3.3, and report the BLEU score of
the resulting set of hypotheses.

As shown in Table 6, we find that restricting
the queue capacity does not harm output quality
and, additionally, leads to even greater runtime
performance increase. For example, runtime for
decoding of IWSLT’14 with a beam size of
10 can be improved by > 3x while returning
results with better evaluation metrics. We find
that improvements are even more pronounced
for larger beam sizes. Across beam widths and
tasks, we find that search error (with respect to
standard beam search) is quite low for γ = 5.
Additionally, for smaller γ, the change in BLEU

k ε β # calls search BLEU

error

Baseline 5 − .05 115 − 33.2
10 − .05 229 − 33.0

Heuristic 5 .02 .05 129 (0%) 42.7% 33.2
10 .02 .05 256 (0%) 42.7% 33.0

Stopping Criterion 5 3e–4 .05 114 (1%) 29.2% 33.2
10 5e–5 .05 224 (2%) 26.6% 33.0

Table 5: BLEU scores with mutual information
scoring function on IWSLT’14 De-En. Baseline
is PMI decoding with unbounded p(y), that is,
ε = 0. Search error is with respect to beam search
decoding of baseline with same β.

IWSLT’14 De-En
k γ search BLEU # calls

error

5
2 22.7% 35.7 +0.1 43.8 (163%)
5 4.4% 35.8 +0.2 79.8 (44%)
nmax − 35.6 93.0 (24%)

10
2 22.6% 35.7 +0.3 48.4 (374%)
5 4.5% 35.6 +0.2 126.9 (81%)
nmax − 35.4 169.0 (36%)

WMT’17 De-En

5
2 29.0% 29.7 +0.2 77.5 (75%)
5 1.2% 29.5 +0.0 115.8 (12%)
nmax − 29.5 118.8 (10%)

10
2 36.6% 29.5 +0.2 97.3 (165%)
5 2.6% 29.3 +0.0 230.0 (12%)
nmax − 29.3 230.2 (12%)

Table 6: BLEU scores and the number of calls
to score on the IWSLT’14 De-En validation
set and WMT’17 De-En test set with queue
size restricted to nmax · k. Note that γ=nmax is
the standard best-first beam search algorithm.
Performance increases are over standard beam
search. Search error is with respect to beam
search with same beam width.

score demonstrates that search error in this context
does not necessarily hurt the quality of results.

7 Related Work

Our work is most similar to that of Zhou and
Hansen (2005), who propose beam stack search.
However, they are focused on exact inference and
still evaluate hypotheses in breadth-first order.
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Additionally, their algorithm requires O(nmaxk)
memory; although best-first beam search has
the same requirements, we introduce effective
methods for reducing them, namely, memory-
reduced best-first beam search.

Huang et al. (2017) propose and prove the
optimality of an early-stopping criterion for beam
search. The authors find in practice though that
reduction in computation from their algorithm was
generally not significant. We build on this work
and introduce additional methods for avoiding
unnecessary computation. Our method leads to
better performance, as shown in Table 2.

Klein and Manning (2003) use A∗ for PCFG
parsing; however, they use the un-pruned version
for exact search, which is not applicable for
NMT or AS as the memory requirements of
the algorithm are far too large for these tasks.
Subsequently, Pauls and Klein (2009) provide a
method for pruning this search algorithm, albeit
using a threshold rather than explicitly limiting
the state space. Huang et al. (2012) also adapt A∗

for a k-best decoding algorithm. Although their
methods differ notably from ours, they likewise
use pruning techniques that allow for substantial
speedups.

Stahlberg and Byrne (2019) create an exact
inference algorithm for decoding and use it
to analyze the output of neural NMT models.
Whereas they likewise utilize the monotonicity
of the scoring function to make their method
tractable, they do not focus on speed or mimicking
the results of standard beam search.

8 Conclusion

We propose best-first beam search, an algorithm
that allows for faster decoding while still
guaranteeing k-optimality. We provide results on
several sequence-to-sequence transduction tasks
that show the speed-ups that our algorithm
provides over standard beam search for decoding
neural models. We adapt several popular alternate
scoring functions to best-first beam search and
provide a framework that can be used to
adapt other scoring methods such as coverage
normalization (Wu et al., 2016) or diverse beam
search (Vijayakumar et al., 2016). We also provide
a memory-reduced version of our algorithm,
which returns competitive results in a fraction
of the time needed for standard beam search.
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