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Abstract

Open-domainquestionanswering (QA) involves

many knowledge and reasoning challenges,

but are successful QA models actually learning

such knowledge when trained on benchmark

QA tasks? We investigate this via several new

diagnostic tasks probing whether multiple-

choice QA models know definitions and taxo-

nomic reasoning—two skills widespread in

existing benchmarks and fundamental to more

complex reasoning. We introduce a methodo-

logy for automatically building probe datasets

from expert knowledge sources, allowing for

systematic control and a comprehensive evalua-

tion. We include ways to carefully control for

artifacts that may arise during this process.

Our evaluation confirms that transformer-

based multiple-choice QA models are already

predisposed to recognize certain types of

structural linguistic knowledge. However, it

also reveals a more nuanced picture: their

performance notably degrades even with a

slight increase in the number of ‘‘hops’’ in

the underlying taxonomic hierarchy, and with

more challenging distractor candidates. Fur-

ther, existing models are far from perfect when

assessed at the level of clusters of seman-

tically connected probes, such as all hypernym

questions about a single concept.

1 Introduction

Automatically answering questions, especially

in the open-domain setting where minimal or

no contextual knowledge is explicitly provided,

requires considerable background knowledge and

reasoning abilities. For example, answering the

two questions in the top gray box in Figure 1

requires identifying a specific ISA relation (that

‘cooking’ is a type of ‘learned behavior’) as well

as recalling a concept definition (that ‘global

warming’ is defined as a ‘worldwide increase

in temperature’).

Recent success in QA has been driven largely

by new benchmarks (Zellers et al., 2018; Talmor

et al., 2019b; Bhagavatula et al., 2020; Khot

et al., 2020) and advances in model pre-training

(Radford et al., 2018; Devlin et al., 2019). This

raises a natural question: Do state-of-the-art

multiple-choice QA (MCQA) models that excel

at standard benchmarks truly possess basic know-

ledge and reasoning skills expected in these tasks?

Answering this question is challenging because

of limited understanding of heavily pre-trained

complex models and the way existing MCQA

datasets are constructed. We focus on the second

aspect, which has two limitations: Large-scale

crowdsourcing leaves little systematic control

over question semantics or requisite background

knowledge (Welbl et al., 2017), while questions

from real exams tend to mix multiple challenges

in a single dataset, often even in a single question

(Clark et al., 2018; Boratko et al., 2018).

To address this challenge, we propose systema-

tically constructing model competence probes by

exploiting structured information contained in

expert knowledge sources such as knowledge

graphs and lexical taxonomies. Importantly, these

probes are diagnostic tasks, designed not to impart

new knowledge but to assess what models trained

on standard QA benchmarks already know; as

such, they serve as proxies for the types of

questions that a model might encounter in its

original task, but involve a single category of

knowledge under various controlled conditions

and perturbations.

Figure 1 illustrates our methodology. We start

with a set of standard MCQA benchmark tasks D
and a set of models M trained on D. Our goal is

to assess how competent these models are relative

to a particular knowledge or reasoning skillS (e.g.,

definitions) that is generally deemed important

for performing well on D. To this end, we
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Figure 1: An illustration of our experimental setup and

probing methodology. The gray box at the top shows

questions from existing open-domain QA benchmarks,

requiring background knowledge. The yellow box

shows simple examples of multiple-choice questions

in our proposed Definition and ISA probes.

systematically and automatically generate a set

of dataset probes PS from information available

in expert knowledge sources. Each probe is an

MCQA rendering of the target information (see

examples in Figure 1, yellow box). We then use

these probes PS to ask two empirical questions:

(1) How well do models in M already trained

on D perform on probing tasks PS? (2) With

additional nudging, can models be re-trained,

using only a modest amount of additional data,

to perform well on each probing task PS with

minimal performance loss on their original tasksD

(thus giving evidence of prior model competence

on S)?

While our methodology is general, our experi-

ments focus on probing state-of-the-art MCQA

models in the domain of grade-school level

science, which is considered particularly challeng-

ing with respect to background knowledge and

inference (Clark, 2015; Clark et al., 2019; Khot

et al., 2020). In addition, existing science bench-

marks are known to involve widespread use of

definition and taxonomic knowledge (see detailed

analysis by Clark et al. [2018], Boratko et al.

[2018]), which is also fundamental to deeper rea-

soning. Accordingly, we use the most widely used

lexical ontology WordNet (Miller, 1995) and

publicly available dictionaries as sources of expert

knowledge to construct our probes, WordNetQA

(Section 3.1) and DictionaryQA (Section 3.2).1

These probes measure competence in various

settings including hypernymy, hyponymy, and

synonymy detection, as well as word sense

disambiguation.

Our exploration is closely related to the recent

work of Talmor et al. (2019a). However, a key dif-

ference is that they study language models (LMs),

for which there is no clear a priori expectation of

specific knowledge or reasoning skills. In contrast,

we focus on models heavily trained for benchmark

QA tasks, where such tasks are known to require

certain types of knowledge and reasoning skills.

We probe whether such skills are actually learned

by QA models, either during LM pre-training or

when training for the QA tasks.

Recognizing the need for suitable controls

in any synthetic probing methodology (Hewitt

and Liang, 2019; Talmor et al., 2019a), we

introduce two controls: (a) the probe must be

challenging for any model that lacks contextual

embeddings, and (b) strong models must have a

low inoculation cost—that is, when fine-tuned on

a few probing examples, the model should mostly

retain its performance on its original task.2 This

ensures that the probe performance of a model,

even when lightly inoculated on probing data,

reflects its knowledge as originally trained for the

benchmark task, which is precisely what we aim to

uncover.

Constructing a wide range of systematic tests

is critical for having definitive empirical evidence

of model competence on any given phenomenon.

Such tests should cover a broad set of concepts and

question variations (i.e., systematic adjustments to

how the questions are constructed). When assess-

ing ISA reasoning, not only is it important to

recognize in the question in Figure 1 that cooking

is a learned behavior, but also that cooking is a

general type of behavior or, through a few more

inferential steps, a type of human activity. Our

automatic use of expert knowledge sources allows

constructing such high-coverage probes, circum-

venting pitfalls of solicitation bias and reporting

bias.

1All data and code are available at https://github.

com/allenai/semantic_fragments.
2Standard inoculation (Liu et al., 2019a) is known to

drop performance on the original task. We use a modified

objective (Richardson et al., 2020) to alleviate this issue.
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Our results confirm that transformer-based QA

models3 have a remarkable ability to recognize the

types of knowledge captured in our probes—even

without additional fine-tuning (i.e., in a zero-

shot setting). Such models can even outperform

strong task-specific non-transformer models

trained directly on our probing tasks (e.g., +26%

compared to a task-specific LSTM). We also show

that the same models can be effectively re-fine-

tuned on small samples (even 100 examples) of

probe data, and that high performance on the

probes tends to correlate with a smaller drop in

the model’s performance on the original QA task.

Our comprehensive assessment also reveals

important nuances to the positive trend. For

example, we find that the best models still perform

2–10% (absolute) below conservative estimates of

human performance (Section 3.1.3) on these tasks.

Further, the accuracy of even the best QA model

degrades substantially on our hyponym probes

(by 8–15%) when going from 1-hop hyponym

links to 2-hops. The accuracy on the WordNetQA

probe drops by 14–44% under our cluster-level

analysis (Section 3.1.1), which assesses whether a

model knows several facts about each individual

concept, rather than only answering correctly

isolated questions. This shows that state-of-the-

art QA models have much room to improve even

in some fundamental building blocks (definitions

and taxonomic hierarchies) of more complex

forms of reasoning.

2 Related Work

We follow recent work on constructing challenge

datasets for probing neural models, which has

primarily focused on the task of natural language

inference (NLI) (Glockner et al., 2018; McCoy

et al., 2019; Rozen et al., 2019; Warstadt et al.,

2019). Most of this work looks at constructing data

through adversarial generation methods, which

have also been found useful for creating stronger

models (Kang et al., 2018). There has also been

work on using synthetic data of the type we

consider in this paper (Poliak et al., 2018a; Geiger

et al., 2019; Yanaka et al., 2020; Clark et al., 2020).

We closely follow the methodology of Richardson

et al. (2020), who use hand-constructed linguistic

fragments to probe NLI models and study model

3Different from Talmor et al. (2019a), we find BERT

and RoBERTa based QA models to be qualitatively similar,

performing within 5% of each other on nearly all probes.

re-training using a variant of the inoculation

by fine-tuning strategy of Liu et al. [2019a].

In contrast, we focus on probing open-domain

MCQA models (see Si et al. (2019) for a study on

reading comprehension) as well as constructing

data from much larger sources of structured

knowledge.
Our main study focuses on probing the BERT

model and fine-tuning approach of Devlin et al.

(2019), and other variants thereof, which are all

based on the transformer architecture of Vaswani

et al. (2017). There have been recent studies

into the types of relational knowledge contained

in large-scale knowledge models (Schick and

Schütze, 2020; Petroni et al., 2019; Jiang et al.,

2019), which also probe models using structured

knowledge sources. These studies, however,

primarily focus on unearthing the knowledge

contained in the underlying language models as

is without further training, using simple (single

token) cloze-style probing tasks and templates.

Most of these results only provide a lower-bound

estimate of model performance, since the probing

templates being used potentially deviate from what

the model has observed during pre-training. In

contrast, we focus on understanding the know-

ledge contained in language models after they

have been trained for a QA end-task using bench-

mark datasets in which such knowledge is expec-

ted to be widespread. Further, our evaluation is

done before and after these models are fine-tuned

on our small samples of target data. This has

the advantage of allowing each model to become

informed about the format of each probe. We also

explore a more complex set of probing templates.

The use of lexical resources such as WordNet

to construct datasets has a long history, and has

recently appeared in work on adversarial attacks

(Jia and Liang, 2017) and general task construction

(Pilehvar and Camacho-Collados, 2019). In the

area of MCQA, there is related work on construct-

ing questions from tuples (Jauhar et al., 2016;

Talmor et al., 2019b), both of which involve stand-

ard crowd annotation to elicit question-answer

pairs (see also Seyler et al., 2017; Reddy et al.,

2017). In contrast to this work, we focus on

generating data in an entirely automatic and silver-

standard fashion (i.e., in a way that potentially

introduces a little noise), which obviates the need

for expensive annotation and gives us the flexi-

bility to construct much larger datasets that

control a rich set of semantic aspects of the
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target questions. Following standard practices in

MCQA dataset creation (e.g., Khot et al., 2020),

however, we perform crowd-sourcing to obtain

conservative (in the sense of Nangia and Bowman

[2019]) estimates of human performance on our

main evaluation sets, to compare against model

performance.
Although our probing methodology is amenable

to any domain, we focus on probing open-domain

QA models in the domain of grade-school level

science using a standard suite of benchmark QA

datasets (see Table 6). Our choice of this domain

is based on the following considerations: It is

well-studied qualitatively (Davis, 2016), making

it relatively easy to know the types of probes

and diagnostic tests to construct using existing

expert knowledge. For example, the manual

analysis of Mihaylov et al. (2018) found that

explicit definitional and ISA knowledge occurred

in around 20% and 18%, respectively, of the

questions sampled in one benchmark task. Clark

et al. (2013) and Boratko et al. (2018) provide

similar results involving other benchmarks used

in our study.
We also examined MCQA models trained on

closely related datasets tailored to commonsense

and situational reasoning (Zellers et al., 2018;

Talmor et al., 2019b; Bhagavatula et al., 2020;

Sap et al., 2019). However, there has been a

limited study of the kinds of knowledge needed in

this domain, as well as expert knowledge sources

for creating corresponding probes. MCQA models

trained in this domain exhibit lower performance

on our definition and ISA probes.

3 Dataset Probes and Construction

Our probing methodology starts by constructing

challenge datasets (Figure 1, yellow box) from a

target set of knowledge resources. Each probing

dataset consists of multiple-choice questions that

include a question q and a set of answer choices

or candidates {a1, ...aN}. This section describes

in detail the 5 datasets we build (grouped

into WordNetQA and DictionaryQA), drawn

from two publicly available resources: WordNet

(Miller, 1995) and the GNU Collaborative

International Dictionary of English (GCIDE).4

For convenience, we will describe each source

of expert knowledge as a directed, edge-labeled

graph G. The nodes of this graph are V = C∪

4See https://wordnet.princeton.edu/ and

http://gcide.gnu.org.ua/.

Set WordNet (WN) GCIDE

R {isa↑,isa↓, {def, ex, lemma}
def, ex, lemma}

C {WN synsets} {entry ids}
D {synset glosses} {unique defs}
S {synset sentences} {entry examples}
W {synset lemmas} {all words}

Atomic Triple Types Definition

Concept Senses and Definitions Td ⊆ {def} × C ×D

Concepts with Example Sentences Te ⊆ {ext} × C × S
Concepts with Words Tl ⊆ {lemma} × C ×W

ISA Relations (WN only) Ti ⊆ {isa↑,isa↓} × C × C

Table 1: A description of the different resources

used to construct the probes, represented as

abstract triples.

W ∪ S ∪ D, where C is a set of atomic concepts,

W a set of words, S a set of sentences, and D a set

of definitions (see Table 1 for details for WordNet

and GCIDE). Each edge of G is directed from an

atomic concept in C to another node in V , and

is labeled with a relation, such as hypernym or

isa↑, from a set of relations R (see Table 1).

When defining our probe question templates,

it will be useful to view G as a set of (relation,

source, target) triples T ⊆ R × C × V . Because

of their origin in an expert knowledge source,

such triples preserve semantic consistency. For

instance, when the relation in a triple is def,

the corresponding edge maps a concept in C to a

definition in D.

We rely on two heuristic functions, defined

below for each individual probe: GENQ(τ), which

generates gold question-answer pairs (q, a) from

a set of triples τ ⊆ T and question templates Q,

and DISTR(τ ′), which generates distractor answers

choices {a′1, ...a
′
N−1} based on another set of

triples τ ′ (where usually τ ⊂ τ ′). For brevity, we

will use GEN(τ) to denote GENQ(τ).

In generating our dataset probes, our general

strategy is to build automatic silver-standard train-

ing and developments sets, in the latter case at a

large scale to facilitate detailed and controlled

analysis of model performance. As discussed

below, we also provide estimates of human

performance on our test sets, and in some cases

introduce smaller gold-standard test sets to allow

for a direct comparison with model performance.

3.1 WordNetQA

WordNet is a publicly available English lexical

database consisting of around 117k concepts,

which are organized into groups of synsets that

each contain a gloss (i.e., a definition), a set

of representative English words (called lemmas),

and, in around 33k synsets, example sentences.
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In addition, many synsets have ISA links to

other synsets that express complex taxonomic

relations. Figure 2 shows an example and Table 1

summarizes how we formulate WordNet as a set

of triples T of various types. These triples together

represent a directed, edge-labeled graph G.

Our main motivation for using WordNet,

as opposed to a resource such as ConceptNet

(Havasi et al., 2007), is the availability of glosses

(D) and example sentences (S), which allows

us to construct natural language questions that

contextualize the types of concepts we want to

probe. For example, when probing whether a

model has knowledge of a concept such as bank

(a financial institution), we provide an example

sentence he cashed a check at the bank, to

help disambiguate the particular sense of bank

we are probing. Sentential contexts also provide

additional hints to models in cases of rare or

infrequent concepts.5 Because WordNet is the

most authoritative and widely used knowledge

resource in NLP, it also has the advantage of

having mappings into other knowledge resources

(Niles and Pease, 2001; Navigli and Ponzetto,

2010; Tandon et al., 2017), which allows for

easily extending our probes to other domains and

phenomena.

Example Generation GEN(τ). Webuild4 indivi-

dual datasets based on semantic relations native

to WordNet: hypernymy (i.e., generalization or

ISA reasoning up a taxonomy, ISA↑), hyponymy

(ISA↓), synonymy, and definitions. To

generate a set of questions in each case, we use

a number of rule templates Q that operate over

tuples. A subset of such templates is shown in

Table 2 and were designed to mimic naturalistic

(i.e., human-authored) questions we observed in

our science benchmarks.

For example, suppose we wish to create a

question q about the definition of a target concept

c ∈ C. We first select a question template from Q
that first introduces the concept c and its lemma l ∈
W in context using the example sentence context

s ∈ S , and then asks to identify the corresponding

WordNet gloss d ∈ D, which serves as the gold

answer a. The same is done for ISA reasoning;

5Given the open-domain nature of WordNet, not all

probed concepts may have explicitly been observed during

QA training. Nevertheless, unlike prior probing studies

(Petroni et al., 2019), we did not see a substantial performance

disparity between observed and unobserved concepts across

our models, perhaps owing to the provided contexts.

Figure 2: A portion of the WordNetISA graph (top) and

an example distractor function DISTR(τ) (bottom) used

to generate distractor choices {a′1, a
′
2} for a question q

based on information in the graph.

each question about a hypernym/hyponym relation

between two concepts c →↑/↓ c′ ∈ Ti (e.g.,

dog →↑/↓ animal/terrier) first introduces

a context for c and then asks for an answer that

identifies c′ (which is also provided with a gloss

so as to contain all available context).

In the latter case, the rules (isar, c, c′) ∈ Ti
in Table 2 cover only direct ISA links from c in

direction r ∈ {↑, ↓}. In practice, for each c and r,

we construct tests that cover the set HOPS(c, r)
of all direct as well as derived ISA relations of c:

HOPS(c, r):=
{

(isar, c, c′) ∈ Ti

}

∪ HOPS(c′, r)

This allows us to evaluate the extent to which

models are able to handle complex forms of

reasoning that require several inferential steps

or hops.6

Distractor Generation: DISTR(τ ′). Figure 2

shows an example of how distractors are genera-

ted, relying on similar principles as above. For

each concept c, we choose 4 distractor answers

that are close in the WordNet semantic space.

For example, when constructing hypernymy tests

for c from the set HOPS(c, ↑), we draw distractors

6In practice, most WordNet synsets have no more than 5

hops. We use this as a default limit when building datasets.
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Probe Type Triple Input τ Generation Templates from Q Example Questions and Answers (q, a)

Definitions: Defining

words in context.

(def, ci, d)
(ex, ci, s)
(word, ci, w)

q. In the sentence [s], the

word [w] is best defined as:

a. [d]

q. In the sentence The baby nestled her

head, the word nestled is best defined as: a.

position comfortably

Hypernymy: ISA↑ reason-

ing in context (symbolically

ci=>ci′ ).

(def, ci′ , d)
(isa↑, ci, ci′)
(ex, ci, s)
(word, ci, w)
(word, ci′ , w

′)

q. In [s], the word or concept

[w] is best described as a type

of a. [w′] defined as [d]

q. In The thief eluded the police, the word

or concept eluded is best described as a type

of a. escape event defined as to run away

from..

Hyponymy: ISA↓ reason-

ing given context. (symbol-

ically ci<=ci′ )

(def, ci′ , d)
(isa↓, ci, ci′)
(ex, ci, s)
(word, ci, w)
(word, ci, w

′)

q. Given the context [s],
which of the following word

or concept is a specific type

of [w] a. [w′] defined as [d]

q. Given the context they awaited her

arrival, which of the following word or

concept is a specific type of arrival? a. crash

landing, defined as an emergency landing

under circumstances where....’

Synonymy:

Related words.

(def, ci, d)
(word, ci, w1)
(word, ci, w2)

q. Which words best

correspond to [d]? a.

[{w1, w2, ...}]

q. Which set of words best corresponds

to the definition a grammatical category

in inflected languages governing agreement

....? a. gender,...

Table 2: Details of the GEN(τ) function used to construct gold question-answer pairs (q, a) from a triple

graph G.

Target Concept Example Question Inferences

(target answers in symbolic form)

trouser.n.01, gloss:

a garment extending

from the waist to

the knee or ankle

covering each leg..

q. In he had a sharp crease in his trousers, the

word/phrase trousers is best defined as a type of

trouser.n.01 => consumer goods.n.01

trouser.n.01 => garment.n.01

trouser.n.01 => commodity.n.01

trouser.n.01 => clothing.n.01

oppose.v.06, gloss: be

resistant to

q. In the sentence or expression The board

opposed his motion, the following is a more

specific type of opposed [or opposition]

oppose.v.06 <= protest.v.02

oppose.v.06 <= veto.v.01

oppose.v.06 <= demonstrate.v.04

poet laureate.n.01,

gloss: a poet who

is . . . holding an

honorary position...

q. Given the fragment he is the poet laureate of

Arkansas, poet laureate . . . is best described as

a type of

poet laureate.n.01=>poet.n.01

poet laureate.n.01=>communicator.n.01

poet laureate.n.01=>writer.n.01

Table 3: Semantic clusters for three target concepts, involving ISA reasoning.

from HOPS(c, ↓), as well as from the ℓ-deep sister

family of c, defined as follows. The 1-deep sister

family is simply c’s siblings or sisters (i.e., the

other children c̃ 6= c of the parent node c′ of c).

For ℓ > 1, the ℓ-deep sister family also includes

all descendants of each c̃ up to ℓ− 1 levels deep,

denoted HOPSℓ−1(c̃, ↓). Formally:

SISTERℓ(c):=
{

x ∈ HOPSℓ−1(c̃, ↓) |

(isa↑, c, c′) ∈ Ti,

(isa↑, c̃, c′) ∈ Ti, c̃ 6= c
}

For definitions and synonyms, we build

distractors from all of these sets (with a similar

depth limit for SISTER distractors), enabling a

systematic investigation via a wide range of

distractors.

3.1.1 Perturbations and Semantic Clusters

For each concept c (an atomic WordNet synset)

and probe type (definitions, hypernymy, etc.), we

have a wide variety of questions related to c that

manipulate (1) the complexity of reasoning that

is involved (e.g., the number of inferential hops)

and (2) the types of distractors (or distractor

perturbations) that are used. We call such sets

semantic clusters.

Table 3 shows three examples, capturing ISA

reasoning about the following target concepts:

trousers, opposing, and poet laureate. Such

clusters enable new types of evaluation of the

comprehensiveness and consistency of a model’s

knowledge of target concepts.
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Probe # Questions Cluster Size # Synsets

(Unique / w Perturb.) (Avg.) (or concepts)

Hypernymy 19,705 / 35,094 5 7,849

Hyponymy 6,697 / 35,243 11 3,452

Synonymy 28,254 / 91,069 6 15,632

Definitions 31,380 / 148,662 10 15,159

WordSense ∼7,000 / – 1 ∼7,000

Table 4: Details of our dataset probes, including

both the number of unique (q, a) pairs (for

WordNetQA) and the number of all questions

including distractor choice perturbations (w

Perturb.).

3.1.2 Summary of Probe Datasets

Details of the individual datasets, including

average cluster sizes, are summarized in Table 4.

From these sets, we follow Richardson et al.

(2020) in allocating a maximum of 3k examples

for inoculating the models in the manner described

in the next section (i.e., for continuing to train QA

models and introduce them to the format of our

probes), and reserve the rest for development and

testing. In particular, we build large development

sets, which are important for performing detailed

analysis and cluster-based evaluation.

3.1.3 Human Performance

We report human scores on the individual test sets

in WordNetQA (see bottom of Table 7). This is

done in two ways.

First, for our test sets generated for definitions

and synonyms that cover a large set of dis-

connected concepts in the WordNet graph and

where it is infeasible to annotate individual instan-

ces of concepts, we estimate human performance

by having crowd-workers on Amazon Mechanical

Turk answer a random sample of 500 test ques-

tions. Scores are computed by taking the majority

vote for each question among 5 annotators. This

follows exactly the evaluation protocol used by

Nangia and Bowman (2019) and is a conserva-

tive estimate in that crowd annotators received

virtually no training and no qualification exam

before participating in the task.

Second, for our hypernymy and hyponymy test

sets, which cover a smaller number of densely

connected concepts, we annotated smaller gold-

standard test sets that include a sample of

around 2,000 random questions that cover a large

proportion of the concepts being probed and that

have high human performance. To do this, we

GCIDE Dictionary Entries

word: gift, pos: n., definition: Anything

given; anything voluntarily transferred by

one person to another without compensa-

tion; a present; entry example: None.

word: gift, pos: n., definition: A bribe; any-

thing given to corrupt. entry example:

None.

word: gift, pos: n., definition: Some excep-

tion inborn quality or characteristic; a strik-

ing or special talent or aptitude;.. entry

example: the gift of wit; a gift for speaking.

Table 5: Example dictionary entries for the

word gift.

follow the annotation strategy described above,

and greedily apply filtering to remove questions

incorrectly answered by human annotators, which

follows prior work on building evaluation sets

for MCQA (Mihaylov et al., 2018; Talmor et al.,

2019b; Khot et al., 2020).

3.2 DictionaryQA

The DictionaryQA dataset is created from the

English dictionary GCIDE built largely from

the Webster’s Revised Unabridged Dictionary

(Webster, 1913), which has previously been used

in other NLP studies because of its large size

and public availability (Hill et al., 2016). Each

dictionary entry consists of a word, its part-of-

speech, its definition, and an optional example

sentence, as shown for an example in Table 5.

Overall, 33k entries (out of a total of 155k)

contain example sentences/usages. As with the

WordNet probes, we focus on this subset so

as to contextualize each word being probed.

Because GCIDE does not have ISA relations

or explicit synsets, we take each unique entry

to be a distinct sense. Our probe centers around

word-sense disambiguation.

To buildQA examples, we use the same

generation templates for definitions exemplified in

Table 2 for WordNetQA. To construct distractors,

we simply take alternative definitions for the target

words that represent a different word sense (e.g.,

the alternative definitions of gift in Table 5), and

randomly chosen definitions if needed to create

a 5-way multiple choice question. As above, we

reserve a maximum of 3k examples for training,

and use the same amount for development.
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Science Datasets #Questions N

OpenBookQA Mihaylov et al. 2018 4,957 4

SciQ Welbl et al. 2017 11,675 4

TextBookQA Kembhavi et al. 2017 7,611 4/5

ARC Dataset++ Clark et al. 2018 4,035 4/5

MCQL Liang et al. 2018 6,318 4

Science Collection (total) 34,596 5

Table 6: The MCQA training datasets used.

#Question denotes the number of training

samples in our version of each dataset, N the

number of choices.

Our initial attempts at building this dataset

via standard random splitting resulted in certain

systematic biases, revealed by high performance

of the choice-only model we used as a control.

Among other factors, we found the use of defini-

tions from entries without example sentences as

distractors (see again Table 5) to have a surprising

correlation with such biases. Filtering such dis-

tractors helped improve the quality of this probe.

For assessing human performance, we annota-

ted a smaller gold-standard test set consisting of

around 1,100 questions using the crowd-sourcing

elicitation setup described in Section 3.1.

4 Probing Methodology and Modeling

Given the probes above, we now can start to

answer the empirical questions posed at the

beginning. Our main focus is on looking at

transformer-based MCQA models trained on

science benchmarks in Table 6. We start with our

target MCQA models, as well as several control

baselines.

4.1 Task Definition and Modeling

Given a dataset D = {(q(d), {a
(d)
1 , . . . , a

(d)
N })}

|D|
d

consisting of pairs of questions stems qand answer

choices ai, the goal is to find the correct answer

ai∗ that correctly answers each q. Throughout this

paper, we look at 5-way multiple-choice problems

(i.e., where each N = 5).

Question+Answer Encoder. Our investigation

centers around the use of the transformer-based

BERT encoder and fine-tuning approach of Devlin

et al. (2019) (see also Radford et al., 2018). For

each question and individual answer pair q
(j)
ai , we

assume the following rendering of this input:

q(j)ai
:= [CLS] q(j) [SEP] a

(j)
i [SEP]

This is run through the pre-trained BERT en-

coder to generate a representation for q
(j)
ai using

the hidden state representation for CLS (i.e., the

classifier token): c
(j)
i = BERT(q

(j)
ai ) ∈ R

H . The

probability of a given answer p
(j)
i is then stan-

dardly computed using an additional classification

layer over cj , which is optimized (along with the

full transformer network) by taking the final loss

of the probability of each correct answer pi∗ over

all answer choices, i.e., L =
∑

d∈|D|− log p
(d)
i∗ .

We specifically use BERT-large uncased with

whole-word masking, as well as the RoBERTa-

large model from Liu et al. (2019b), which is a

more robustly trained version of the original BERT

model. Our system uses the implementations

provided in AllenNLP (Gardner et al., 2018) and

Huggingface (Wolf et al., 2019).

Baselines and Sanity Checks. When creating

synthetic datasets, it is important to ensure

that systematic biases, or annotation artifacts

(Gururangan et al., 2018), are not introduced into

the resulting probes and that the target datasets

are sufficiently challenging (or good, in the sense

of Hewitt and Liang [2019]). To test for this, we

use several of the MCQA baseline models first

introduced in Mihaylov et al. (2018), which take

inspiration from the LSTM-based models used

in Conneau et al. (2017) for NLI and various

partial-input baselines based on these models.

Following Mihaylov et al. (2018)’s notation, for

any sequence s of tokens in {q(j), a
(j)
1 , . . . , a

(j)
N } ∈

D, an encoding of s is given as the following:

h(j)
s = BiLSTM(EMBED(s)) ∈ R

|s|×2h,

where h is the dimension of the hidden state in

each directional network, and EMBED(·) assigns a

token-level embeddings to each token in s.7 A

contextual representation for each s is then built

by applying an element-wise max operation over

hs as follows:

r(j)s = max(h(j)
s ) ∈ R

2h

With these contextual representations, different

baseline models can be constructed. For example,

a Choice-Only model, a variant of the well-known

hypothesis-only baseline used in NLI (Poliak et al.,

7As in Mihaylov et al. (2018), we experiment with using

both GloVe (Pennington et al., 2014) and ELMo (Peters

et al., 2018) pre-trained embeddings for EMBED.
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2018b), scores each choice ci in the following way:

α
(j)
i = WT r

(j)
ci ∈ R for WT ∈ R

2h independently

of the question and assigns a probability to each

answer p
(j)
i ∝ eα

(j)
i .

A slight variant of this model, the Choice-

to-choice model, tries to single out a given

answer choice relative to other choices by scoring

all choice pairs α
(j)
i,i′ = ATT(r

(j)
ci , r

(j)
ci′ ) ∈ R using a

learned attention mechanism ATT and finding the

choice with the minimal similarity to other options

(for full details, see their original paper). In

using these partial-input baselines, which we

train directly on each target probe, we can

check whether systematic biases related to answer

choices were introduced into the data creation

process.

A Question-to-choice model, in contrast, uses

the contextual representations for each question

and individual choice and an attention model ATT

model to get a score α
(j)
q,i = ATT(r

(j)
q , r

(j)
ci ) ∈ R as

above. Here we also experiment with using ESIM

(Chen et al., 2017) to generate the contextual

representations for q, ci (which includes token-

wise attention), as well as a VecSimilarity

model that measures the average (cosine) vector

similarity between question and answer tokens:

α
(j)
q,i = SIM(EMBED(q(j)), EMBED(c

(j)
i )). These sets

of baselines, which have been shown to be weak

on other benchmark MCQA tasks, are primarily

used not as competitive models but to check for

artifacts between questions and answers that are

not captured in the partial-input baselines. This

helps ensure that the overall MCQA probing tasks

are sufficiently difficult.

4.2 Inoculation and Pre-training

Using the various models introduced above, we

train these models on benchmark tasks in the

science domain and look at model performance

on our probes with and without additional train-

ing on samples of probe data, building on the idea

of inoculation from Liu et al. (2019a). Model inoc-

ulation is the idea of continuing to train models

on new challenge tasks (in our cases, separately

for each probe) using only a small amount of

examples. Unlike in ordinary fine-tuning, the goal

is not to learn an entirely re-purposed model, but

to improve on (or vaccinate against) particular

phenomena (e.g., our synthetic probes) that poten-

tially deviate from a model’s original training

distribution.

Following a variant proposed by Richardson

et al. (2020), for each pre-trained (science) model

and architecture Ma we continue training the

model on k new probe examples (with a maximum

of k = 3,000) under a set of hyper-parameter

configurations {1, . . . , J} and identify, for each

k, the model M
a,k
∗ with the best aggregate

performance S on the original (orig) and new

task:

Ma,k
∗ = argmax

M∈{Ma,k
1 ,...,Ma,k

J
}

AVG

(

Snew(M), Sorig(M)

)

As in Richardson et al. (2020), we performed

comprehensive hyperparameter searches that

target especially learning rates and # training

iterations.

Using this methodology, we can see how much

exposure to new data it takes for a given model to

master a new task, and whether there are pheno-

mena that stress particular models (e.g., lead to

catastrophic forgetting of the original task). Given

the restrictions on the number of fine-tuning

examples, our assumption is that when models

are able to maintain good performance on their

original task during inoculation, the quickness with

which they are able to learn the inoculated task

provides evidence of prior competence, which is

precisely what we aim to probe. To measure past

performance, we define a model’s inoculation

cost as the difference in the performance of

this model on its original task before and after

inoculation, which serves as a control on the

target QA model.

We pre-train on an aggregated training set of

all benchmark science exams in Table 6.8

In line with our goal of obtaining insights into

the strongest QA models, we first pre-trained our

RoBERTa-large model on the RACE dataset

(Lai et al., 2017), a recipe used by several leading

models on science benchmarks. and created an

aggregate development set of ∼4k science ques-

tions for evaluating overall science performance

and inoculation cost. To handle a varying number

of answer choices in these sets, we made all

sets 5-way by adding empty answers as needed.

We also experimented with a slight variant of

inoculation, called add-some inoculation, which

involves balancing the inoculation training sets

8To save space, we do not report scores for each individual

science dataset, but we did verify that our best models achieve

results comparable to the state of the art for each dataset.
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WordNetQA DictionaryQA

Definitions Synonymy Hypernymy Hyponymy Word sense

Model (Dev/Test) (Dev/Test) (Dev/Test) (Dev/Test) (Dev/Test)

Group 1: Baselines (direct training on 3k probes)

Random 19.9 / 20.0 19.8 / 19.8 19.9 / 20.0 20.2 / 21.0 20.0 / 19.0

Choice-Only-GloVe 26.6 / 26.1 36.9 / 36.1 42.5 / 46.0 34.3 / 34.4 35.0 / 32.1

Choice-Only-BERT 22.9 / 23.2 41.1 / 39.4 63.8 / 54.4 35.7 / 35.1 36.6 / 31.7

Choice-Only-RoBERTa 26.8 / 28.6 40.9 / 40.1 62.3 / 57.3 37.8 / 37.5 38.0 / 31.7

Choice-to-Choice-GloVe 26.4 / 28.1 40.1 / 35.0 47.0 / 35.5 35.4 / 36.1 37.3 / 33.3

Question-to-Choice-VecSimilarity 33.4 / 32.1 31.7 / 30.7 28.9 / 33.0 26.2 / 28.8 29.5 / 33.1

Group 2: Task-Specific (non-transformer) Models

Question-to-Choice-GloVe 53.6 / 51.8 57.3 / 55.3 50.4 / 47.0 61.6 / 64.2 53.2 / 53.5

Question-to-Choice-ELMO 42.3 / 41.6 58.6 / 56.0 56.0 / 51.5 54.8 / 56.3 51.6 / 52.1

Group 3: Science Models (no fine-tuning or direct training on probes)

ESIM-GloVe 27.5 / 28.3 25.1 / 26.1 27.0 / 33.0 23.6 / 24.8 31.9 / 32.5

ESIM-ELMO 23.1 / 24.0 21.1 / 21.5 27.1 / 32.7 18.0 / 18.5 28.3 / 31.5

BERT 54.1 / 55.7 58.8 / 60.9 43.2 / 51.0 24.0 / 27.0 43.0 / 42.9

RoBERTa 74.1 / 77.1 61.1 / 64.2 53.2 / 71.0 48.5 / 58.6 53.0 / 55.1

Group 4: Science Models (best aggregate model M∗ fine-tuned on probes; inoculation cost is shown in parenthesis)

ESIM-GloVe 46.2 / 42.4 (−6.27) 50.4 / 47.3 (−6.84) 56.6 / 52.9 (−5.69) 59.1 / 61.1 (−5.10) 50.0 / 55.3 (−7.09)

BERT 84.0 / 84.1 (−1.15) 79.6 / 79.7 (−0.44) 73.8 / 82.7 (−0.49) 79.8 / 88.0 (−0.92) 75.6 / 79.1 (−2.84)

RoBERTa 89.0 / 89.3 (−1.33) 81.2 / 81.3 (−1.31) 77.7 / 87.7 (−0.74) 81.2 / 89.4 (−1.64) 80.0 / 85.9 (−2.23)

Human Performance (estimates) – / 91.2% – / 87.4% – / 96%† – / 95.5%† – / 95.6%†

Table 7: Instance-level accuracy (%) of all baselines (group 1), task-specific non-transformer QA

models (group 2), pre-trained MCQA models (zero-shot, group 3), and MCQA models after fine-tuning

on our probes (group 4). Human scores marked with † represent scores on gold-standard annotated test

sets.

with naturalistic science questions. We reserve

the MCQL dataset in Table 6 for this purpose, and

experiment with balancing each probe example

with one science example (x1 matching) and

adding twice as many science questions (x2

matching, up to 3k) for each new example.

4.3 Evaluating Model Competence

We use instance-level accuracy, the standard

overall accuracy of correct answer prediction (as in

Table 7). In addition, we also propose to measure a

model’s cluster-level (or strict cluster) accuracy,

which requires correctly answering all questions

in a semantic cluster (cf. Section 3.1.1).

Our cluster-based analysis is motivated by the

idea that if a model truly knows the meaning of a

given concept then it should be able to answer

arbitrary questions about this concept without

sensitivity to varied distractors. Although our strict

cluster metric is simplistic, it takes inspiration

from work on visual QA (Shah et al., 2019), and

allows us to evaluate a model’s consistency and

robustness across our different probes, and to

get insight into whether errors are concentrated

on a small set of concepts or widespread across

different clusters.

The ability of a model to answer several

questions about a single concept can be thought

of as a type of certificate (i.e., further justification

and demonstration) of general understanding of

that concept in the sense of Ranta (2017).

5 Results and Findings

We begin with an assessment to ensure that our

probes are sufficiently difficult to provide mean-

ingful insights into strong models (Section 5.1),

then assess the strength of pre-trained QA models

(Section 5.2) and whether they can be effectively

inoculated (Section 5.3), and finally present a

cluster-based consistency analysis (Section 5.4).

5.1 Are Our Probes Sufficiently Challenging?

Partial-input baseline models, Choice-Only and

Choice-to-Choice, generally performed poorly on

our probes (cf. Table 7, group 1), indicating

limited biases in distractor generation. Initial

versions of DictionaryQA had unforeseen biases

partly related to distractors sampled from entries

without example sentences (cf. Section 3.2), which

resulted in high (56%) Choice-Only-GloVe scores

before such distractors were filtered out.

One exception is our hypernymy probe where,

despite several attempts at filtering data and de-

duplicating splits (with respect to correct answer

and distractor types), the Choice-to-Choice-

BERT/RoBERTa models achieve over 60%

accuracy. The nature of the biases here remains

unclear, highlighting the importance of having

rigorous baselines as unintended biases in expert

knowledge can carry over to resulting datasets.

We also note the large gap between the BERT/

RoBERTa versus GloVe choice-only models,

emphasizing the need for using the best available

models even in partial-input baselines.
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Figure 3: Combined model accuracies on the different WordNetQA datasets (divided by 4 bold lines) broken

down (where possible) into number of hops k (rows) and types of distractor sets and hops k′ (rows) across the

different stages of inoculation (# ex.). The 4 dashed lines show some trends related to multi-hop inference.

A more conventional set of Task-Specific

QA models (i.e., the LSTM-based Question-to-

Choice models trained directly on the probes) is

not particularly strong on any of the datasets

(cf. Table 7, group 2), suggesting that our

probes are indeed sufficiently challenging and

largely immune from overt artifacts. The poor

performance of the VecSimilarity (which uses pre-

trained Word2Vec embeddings without additional

training) provides additional evidence of the

insufficiency of elementary lexical matching

strategies.

5.2 How Strong Are Pre-trained

QA Models?

Non-transformer science models, such as ESIM

with GloVe or ELMo, struggle with all probes

(cf. Table 7, group 3), often scoring near

random chance. In sharp contrast, the transformer

models have mixed results, the most striking

being RoBERTa QA models on the definitions,

synonymy and hypernymy test probes (achieving

77%, 64%, and 71% respectively), which sub-

stantially outperform even task-specific LSTM

models trained directly on the probes. Throughout

all of these results, however, model performance

is significantly behind human performance.

At first glance, these zero-shot results suggest

RoBERTa’s high competence on these pheno-

mena. A closer scrutiny enabled by our controlled

probes, however, provides a more subtle picture.

Each heat map in Figure 3 breaks down the

performance of an ESIM or RoBERTa QA model

based on the difficulty of the probe dataset (rows)

and the nature of the distractors (columns).

Across all datasets and number of hops in

the question (i.e., all rows), zero-shot model

performance for RoBERTa (bottom-left heat map)

is consistently highest among examples with

random distractors (the first column) and lowest

when distractors are closest in WordNet space

(e.g., sister and ISA, or up/down, distractors at

distance k′ = 1). For example, RoBERTa’s zero-

shot score drops from 88% to 64% when going

from random distractors to up/down distractors at

k′ = 1.

Further, model performance also clearly

degrades for hypernymy and hyponymy as k,

the number of hops in the question, increases

(see red dashed boxes). For example, the accuracy

on questions involving hyponym reasoning with

sister distractors of k′ = 1 (column 2) degrades

from 47% to only 15% as k increases from 1 to 4.

This general tendency persists despite additional

fine-tuning, providing evidence of the limited

ability of these models to perform multi-hop

inference.
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5.3 Can Models Be Effectively Inoculated?

How well probe generation templates align with

the science training distribution (which we know

little about) can significantly impact zero-shot

performance (Petroni et al., 2019). Zero-shot

results above thus provide a lower bound on

model competence on the probed phenomena.

We next consider a probe-specific fine-tuning

or inoculation step, allowing models to learn

target templates and couple this with knowledge

acquired during pre-training and science training.

Accuracy after inoculation on 3K probe

instances is shown (with inoculation cost in

parenthesis) in group 4 of Table 7, for the model

with the highest aggregate score on the original

task and new probe. Transformer-based models

again outperform non-transformer ones, and better

models correlate with lower inoculation costs. For

example, on synonymy, ESIM’s inoculation cost

is 7%, but only ∼1% for BERT and RoBERTa.

This emphasizes the high capacity of transformer

QA models to absorb new phenomena at minimal

cost, as observed earlier for NLI (Richardson

et al., 2020).

Figure 4 shows the corresponding learning

curves. Transformer QA models learn most tasks

quickly while maintaining constant scores on

their original tasks (flat dashed lines, plots 1–4),

providing evidence of high competence. For

BERT and RoBERTa, add-some inoculation (a)

improves scores on the probing tasks (solid black

and blue lines, plot 1) and (b) minimizes loss on

the original task (dashed blue and black lines,

plots 2–4).

ESIM behaves quite the opposite (plots 5–6),

generally unable to learn individual probes without

degrading on its original task. More science data

during inoculation confuses it on both tasks.

As the middle-bottom plot of Figure 3 shows,

RoBERTa’s performance improves significantly

(e.g., from 59% to 77% on 2-hop hyponymy with

random distractors) even after inoculation with a

mere 100 examples, providing strong evidence of

prior competence. After 3k examples, it performs

well on virtually all probes. However, results still

notably degrade with the number of hops and

distractor complexity, as discussed earlier, and we

still find its performance to be between 2% and

10% behind human performance.

Figure 4: Inoculation plots with accuracy on

challenge tasks (red/circle solid lines) and original

tasks (red/circle dashed lines) using the best aggregate

model M
a,k
∗ at each k challenge examples (x axis). The

effect of using add-some inoculation is shown in the

blue/square (x1 match) and black/triangle (x2 match)

lines.

Definitions Synonymy Hypernymy Hyponymy

Model Strict Cluster Accuracy (∆)

Choice-Only 14.7 (−12.0) 18.5 (−22.3) 34.6 (−27.6) 4.1 (−33.7)

ESIM 30.2 (−15.9) 23.3 (−26.9) 29.2 (−27.3) 15.2 (−43.8)

BERT 68.5 (−15.5) 58.1 (−21.5) 49.0 (−24.8) 34.0 (−45.4)

RoBERTa 75.0 (−13.9) 61.7 (−19.4) 54.0 (−23.2) 36.7 (−44.4)

Table 8: Cluster-level accuracies (%) on the

WordNetQA dev. sets for inoculated models and

best Choice-only model. ∆ show the absolute

difference in percentage points with instance-level

accuracies.

5.4 Are Models Consistent Across Clusters?

Table 8 shows mixed results for cluster-level

accuracy across the different WordNetQA probes.

Our best model is rather robust on the definitions

probe. RoBERTa QA’s cluster accuracy is 75%,

meaning it can answer all questions correctly

for 75% of the target concepts, and that errors

are concentrated on a small minority (25%) of

concepts. On synonymy and hypernymy, both

BERT and RoBERTa are less strong but appear

robust on a majority of concepts. In contrast,

our best model on hyponymy has an accuracy

of only 36%, indicating that the RoBERTa QA

models knows only partially about a vast majority
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of concepts, leaving substantial room for further

improvement.

We emphasize that these results only provide a

crude look into model consistency and robustness.

Recalling dataset details in Table 4, probes differ

in terms of the average size of clusters. For

example, hyponymy, in virtue of having many

more questions per cluster, might simply be a

much more difficult dataset for our cluster-based

evaluation. In addition, such a strict evaluation

does not take into account potentially erroneous

questions within clusters, which is an important

issue that we leave for future work.

6 Discussion

We presented a new methodology for automati-

cally building challenge datasets from knowledge

graphs and taxonomies. We introduced several

new silver-standard datasets for systematically

probing state-of-the-art open-domain QA models.

Although our focus was on probing definitions and

ISA reasoning, the methodology is amendable to

any target knowledge resource or QA domain. We

see synthetic datasets and our general methodo-

logy as an inexpensive supplement to recent

large-scale investment in naturalistic QA dataset

construction (Zellers et al., 2018; Sakaguchi et al.,

2020) to help better understand today’s models.

We found transformer-based QA models to

have a remarkable ability to reason with complex

forms of relational knowledge, both with and

without exposure to our new tasks. In the latter

case (zero-shot), a newer RoBERTa QA model

trained only on benchmark data outperforms

several task-specific LSTM-based models trained

directly on our probes. When inoculated using

small samples (e.g., 100 examples) of probing

data, RoBERTa masters many aspects of our

probes with virtually no performance loss on its

original QA task—which we use as a control on

the probing quality.

Because these models seem to already contain

considerable amounts of relational knowledge,

our simple inoculation strategy, which nudges

models to bring out this knowledge explicitly

while retaining performance on their original task

(hence allowing a fairer probe of its knowledge

by giving the model the opportunity to learn the

probe format), could serve as a simpler alternative

to designing new model architectures explicitly

encoding such knowledge (Peters et al., 2019).

Regarding our focus on preserving a model’s

performance on its original task, one might expect

that re-training on relevant knowledge should

improve performance. Following other work in

this area (Richardson et al., 2020; Yanaka et al.,

2020), we found that maintaining performance

after additional fine-tuning on specialized datasets

is already a tall order given that models are

susceptible to over-specialization; indeed, similar

issues have been noticed in recent work on large-

scale transfer learning (Raffel et al., 2019). We

believe that using inoculation for the sole purpose

of improving model performance, which is beyond

the scope of this paper, would likely require a more

sophisticated inoculation protocol. Devising more

complex loss functions extending our inoculation

strategy to help balance old and new information

could help in this endeavor.

The main appeal of automatically generated

probes is the ability to systematically manipulate

probe complexity, which in turn enables more

controlled experimentation as well as new forms

of evaluation. It allowed us to study in detail the

effect of different types of distractors and the

complexity of required reasoning. This study

showed that even the best QA models, despite

additional fine-tuning, struggle with harder cate-

gories of distractors and with multi-hop infer-

ences. For some probes, our cluster-based analysis

revealed that errors are widespread across concept

clusters, suggesting that models are not always

consistent and robust. These results, taken together

with our findings about the vulnerability of synthe-

tic datasets to systematic biases and comparison

with human scores, suggest that there is much

room for improvement and that the positive results

should be taken with a grain of salt. Developing

better ways to evaluate semantic clusters and

model robustness would be a step in this direction.

We emphasize that using synthetic versus

naturalistic QA data comes with important trade-

offs. Although we are able to generate large

amounts of systematically controlled data at

virtually no cost or need for manual annotation, it

is much harder to validate the quality of such

data at such a scale and such varying levels

of complexity. Conversely, with benchmark QA

datasets, it is much harder to perform the type of

careful manipulations and cluster-based analyses

we report here. While we assume that the expert

knowledge we use by virtue of being hand-curated

by human experts, is generally correct by design,
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we know that such resources are fallible and error-

prone. We propose measuring human performance

via small samples of probing data, and leave more

scalable methods of removing potential noise and

adding human annotation to future work.

One of the overarching goals of our approach

to model probing is to uncover whether black

box models are able to reason in a consistent and

correct manner. Our assumption, similar to Clark

et al. (2020), is that the ability of a model to

mimic the input-output behavior of data generated

using expert knowledge gives some evidence of

correctness in virtue of such data being correct by

construction (see discussion by Ranta (2017)). We

emphasize, however, that there are limits to how

much we can learn through this type of behavioral

testing, given that models are susceptible to

exploiting systematic biases in synthetic data and

the general difficulty of disentangling a model’s

knowledge acquired during pre-training versus

fine-tuning (Talmor et al., 2019a). We therefore

see efforts to combine behavioral testing with

various other analysis methods (Belinkov and

Glass, 2019) that aim to uncover correlations and

causal patterns between internal model represen-

tations and discrete structures (Chrupała and

Alishahi, 2019; Vig et al., 2020; Geiger et al.,

2020) as a promising direction for future work.

This, in combination with extending our probing

strategy to other forms of expert knowledge, could

prove to be an effective way to engage others

working on linguistics and other areas of AI in

state-of-the-art NLP research.
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