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Abstract

Unsupervised pre-training of large neural mod-

elshas recently revolutionized Natural Language

Processing. By warm-starting from the pub-

licly released checkpoints, NLP practitioners

have pushed the state-of-the-art on multiple

benchmarks while saving significant amounts

of compute time. So far the focus has been

mainly on the Natural Language Understanding

tasks. In this paper, we demonstrate the efficacy

of pre-trained checkpoints for Sequence Gen-

eration. We developed a Transformer-based

sequence-to-sequence model that is compati-

ble with publicly available pre-trained BERT,

GPT-2, and RoBERTa checkpoints and con-

ductedan extensiveempirical study on the utility

of initializing our model, both encoder and

decoder, with these checkpoints. Our models

result in new state-of-the-art results on

Machine Translation, Text Summarization,

Sentence Splitting, and Sentence Fusion.

1 Introduction

Unsupervised and self-supervised pre-training

methods, such as ELMo (Peters et al., 2018),

ULMFiT (Howard and Ruder, 2018), and more

recently BERT (Devlin et al., 2019), GPT and

GPT-2 (Radford et al., 2018, 2019), XLNet

(Yang et al., 2019), and RoBERTa (Liu et al.,

2019) have established a qualitatively new level

of baseline performance for many widely used

Natural Language Understanding (NLU) bench-

marks including some of the most popular, like

GLUE (Williams et al., 2018) and SQuAD

(Rajpurkar et al., 2018).

The most appealing part about this massive

shift towards using large architectures pre-trained

on large collections of texts is that the pre-

trained checkpoints along with the inference code

are made freely available. This saves hundreds

of TPU/GPU hours, as warm-starting a model

from a pre-trained checkpoint typically requires

orders of magnitude fewer fine-tuning steps while

delivering significant performance boosts. More

importantly, the ability to bootstrap from a

state-of-the-art performing model such as BERT

(Devlin et al., 2019) motivates the community to

greatly speed up the progress towards developing

better and easily reusable NLU systems.
While we continue to observe an increasing

number of papers building on top of BERT and/or

GPT models reporting encouraging improvements

on GLUE, SQuAD, and other similar benchmarks,

very little attention has been paid to using these

pre-trained models to warm-start sequence-to-

sequence (seq2seq) models. It has been argued

that the pre-training objective used by BERT is not

well-suited for tasks that require decoding texts,

for example, conditional text generation in machine

translation and summarization (Yang et al., 2019).

Nevertheless, it remains unclear to what extent

using such large models pre-trained on large

collections of text can be beneficial to warm-start

seq2seq generation models.

In this paper, we report on a Transformer-based

seq2seq model that is compatible with publicly

availablepre-trained BERT, GPT-2, and RoBERTa

checkpoints. We aim to provide an empirical

answer to the following research question: What

is the best way to leverage publicly available pre-

trained checkpoints for warm-starting sequence

generation models? For example, one could

imagine using a BERT checkpoint to initialize

the encoder for better input understanding and

choosing GPT-2 model as the decoder for better

text generation. One of the main contributions of

this paper is that we rigorously experiment with

a large number of different settings to combine

BERT, GPT, and RoBERTa pre-trained check-

points to initialize our Transformer-based model.

We report results on three canonical conditional

text generation tasks of increasing complexity:

sentence-level fusion (DiscoFuse, Geva et al.,

2019) and splitting (WikiSplit, Botha et al., 2018),
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WMT14 En↔De machine translation using most

commonevalsets: newstest2014 and newstest2016,

and abstractive summarization using three data-

sets: Gigaword (Napoles et al., 2012), CNN and

DailyMail (Hermann et al., 2015), and BBC

extreme (Narayan et al., 2018a).
Our models report significant improvements

over randomly initialized models, demonstrating

the benefit of leveraging unsupervised pre-trained

models. More importantly, this simple strategy

results in new state-of-the-art results on machine

translation, text summarization, sentence splitting,

and sentence fusion. Our results also demonstrate

that a pre-trained encoder is an essential compo-

nent for sequence generation tasks and often these

tasks benefit from sharing the weights between

the encoder and the decoder. Overall, we have

run over 300 experiments spending thousands of

TPU v3 hours to better accommodate the language

modeling and understanding capabilities of these

pre-trained models for text generation. We believe

that NLP researchers and practitioners will derive

actionable insights from our findings when

tackling various seq2seq tasks.
The code to query our models and predictions on

various benchmarks will be available at https://

github.com/google-research/google-

research/tree/master/bertseq2seq.

2 Models and Pre-trained Checkpoints

BERT was primarily developed for encoding text

representations for NLU tasks (encoder-only

architecture), whereas GPT-2 (Radford et al.,

2019), was primarily developed as a decoder-only

architecture for language modeling. Our model

uses a seq2seq architecture with encoder and

decoder both composed of Transformer layers

(Vaswani et al., 2017). For the encoder, we inherit

the BERT Transformer layer implementations

(Devlin et al., 2019), which differs slightly from

the canonical Transformer layer (Vaswani et al.,

2017); BERT uses a GELU activation (Hendrycks

and Gimpel, 2016) rather than the standard RELU.

If not stated otherwise, the implementation of the

decoder layers are also identical to the BERT

implementation with two adjustments. First, the

self-attention mechanism is masked to look only

at the left context. Secondly, we add an encoder-

decoder attention mechanism. Note, that if the

model was randomly initialized, we found no

difference between a BERT compatible decoder

and a GPT-2 compatible decoder.

Most of the models use the base checkpoint and

therefore have 12 layers, a hidden size of 768,

filter size of 3,072, and 12 attention heads. We

chose the best-performing model and also collect

numbers using larger pre-trained checkpoints.

These models have 24 layers, a hidden size of

1,024, filter size of 4,096, and 16 attention heads.

All models were fine-tuned on the target task

using Adam with a learning rate of 0.05. We

used a linear learning rate warmup with 40k steps,

normalization by the square root of the hidden

size, and a square root decay. We did not perform

any tuning of these hyperparameters (except for

§5). The batch size and the number of training

steps will be reported for each task individually.

BERT Checkpoints. We tokenize our text

using the WordPiece (Wu et al., 2016) to match the

BERT pre-trained vocabulary. Depending on the

experiment, we use one of the following publicly

available checkpoints: BERT-Base Cased, BERT-

Base Uncased, BERT-Base Multilingual Cased

(Devlin et al., 2019).1 The first two checkpoints

have a vocabulary size of around ∼30k word-

pieces, whereas the multilingual checkpoint has

a much larger vocabulary size of ∼110k. BERT

also trains positional embeddings for up to 512

positions, which is the maximum input and output

length in all experiments.

GPT-2 Checkpoints. We tokenize our text

using the SentencePieces (Kudo and Richardson,

2018) to match the GPT-2 pre-trained vocab-

ulary.2 Note that, although the available check-

point is frequently called 117M, which suggests

the same number of parameters, we count 125M

parameters in the checkpoint. This is the smallest

architecture they trained, and the number of

layers, hidden size, and filter size are comparable

to BERT-Base. The model was trained mainly

on English data but does contain some foreign

language. The vocabulary size is ∼50k. While

GPT-2 has positional embeddings for up to 1,024

positions, we only use the first 512 to make the

results comparable with BERT.

RoBERTa Checkpoints. RoBERTa (Liu et al.,

2019) is trained using PyTorch, but we found

that the learned parameters are fully compatible

1BERT checkpoints are available at https://

github.com/google-research/bert.
2GPT-2 checkpoints are available at https://

github.com/openai/gpt-2.
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total embed. init. random

RND2RND 221M 23M 0 221M

BERT2RND 221M 23M 109M 112M

RND2BERT 221M 23M 109M 26M

BERT2BERT 221M 23M 195M 26M

BERTSHARE 136M 23M 109M 26M

ROBERTASHARE 152M 39M 125M 26M

GPT 125M 39M 125M 0

RND2GPT 238M 39M 125M 114M

BERT2GPT 260M 62M 234M 26M

ROBERTA2GPT 276M 78M 250M 26M

Table 1: The number of total trainable param-

eters, embedding parameters, and parameters

initialized from the checkpoint vs. randomly.

The BERT/GPT-2 embeddings have 23M/39M

parameters. The encoder-decoder attention ac-

counts for 26M parameters.

with the existing TensorFlow BERT architectures

with some minor adjustments.3 The vocabulary

treatment in RoBERTa is compatible with the

SentencePiece tokenization in GPT-2.4 As the

conceptual differences between BERT and

RoBERTa are minor, we might use BERT as a

hypernym to address both pretraining methods in

this paper.

3 Investigated Model Variants

In this section, we describe several combinations

of model initialization. The number of total train-

able parameters, the number of embedding para-

meters, and the number of parameters initialized

from the checkpoint vs. randomly are shown in

Table 1.
RND2RND A Transformer encoder-decoder

architecture with all weights initialized randomly.
BERT2RND A BERT-initialized encoder paired

with a randomly initialized decoder. Encoder and

decoder share the embedding matrix initialized

from a checkpoint.
RND2BERT A randomly initialized encoder

paired with a BERT-initialized decoder. To

perform autoregressive decoding, we mask the

3More specifically: a) the variable names have to be

adjusted; b) the weight and bias variables of the attention

mechanism have to be splitted into query, key, and values;

c) all variables except the embedding matrices have to be

transposed.
4RoBERTa checkpoints are available at https://

github.com/pytorch/fairseq.

bidirectional self-attention mechanism of BERT

to look only at the left context.

BERT2BERT A BERT-initialized encoder paired

with a BERT-initialized decoder. All weights are

initialized from a public BERT checkpoint. The

only variable that is initialized randomly is the

encoder-decoder attention.

BERTSHARE Like BERT2BERT, but the parameters

between encoder and decoder are shared. This

greatly reduces the memory footprint of the model

(136M vs. 221M parameters). Additionally, we

experimented with a layer-wise attention mech-

anism (He et al., 2018), but obtained nearly iden-

tical numbers on most tasks.

ROBERTASHARE Same as BERTSHARE, but the

shared encoder and decoder are initialized with

the public RoBERTa checkpoint.

GPT A decoder-only architecture. We treat the

input as a conditioning prefix of a language

model. The decoder is warm-started with a public

GPT-2 checkpoint. Similarly to BERTSHARE and

ROBERTASHARE, the memory footprint of this model

is smaller compared to an encoder-decoder setup

(125M parameters).

RND2GPT A randomly initialized encoder paired

with a GPT-2-compatible decoder. We warm-

start the decoder and the embedding matrix with

a public GPT-2 checkpoint.

BERT2GPT A BERT-compatible encoder paired

with a GPT-2-compatible decoder. We warm-

start both sides with the two separate, BERT

and GPT-2, public checkpoints. We use the BERT

vocabulary for the input and the GPT-2 vocabulary

for the output.

ROBERTA2GPT Same as BERT2GPT, but we use

a public RoBERTa checkpoint to warm-start the

encoder. RoBERTa was trained using the GPT-2

vocabulary so we can use it for input and output.

Note that although the vocabulary is shared, this

model still has two embeddings matrices, one for

the input and one for the output.

The pre-training objective in the BERT models

learns to predict a masked token using the

bidirectional representation of the input text

(Devlin et al., 2019; Liu et al., 2019). Our decoder,

even when initialized with the BERT or RoBERTa

checkpoints, always generates the output text

in an autoregressive fashion as in Tranformers

(Vaswani et al., 2017) and GPT-2 (Radford et al.,

2019).
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DiscoFuse 100% 10% 1%

Exact SARI SARI SARI

(Geva et al., 2019) 51.1 84.5 – –

Initialized with the base checkpoint (12 layers)

ROBERTA2GPT 65.6 89.9 87.1 80.3

ROBERTASHARE 65.3 89.7 86.9 81.2

BERT2BERT 63.9 89.3 86.1 81.2

BERT2RND 63.9 89.3 86.1 80.3

BERTSHARE 63.9 89.2 86.0 80.8

BERT2GPT 61.5 88.4 84.1 70.2

GPT 60.4 88.0 82.9 74.5

RND2BERT 60.0 87.6 82.1 72.8

RND2RND 58.3 86.9 81.5 69.3

RND2GPT 57.6 86.5 81.4 70.6

Initialized with the large checkpoint (24 layers)

ROBERTASHARE 66.6 90.3 87.7 81.5

BERTSHARE 65.3 89.9 86.6 81.4

Table 2: Results of different models and initiali-

zation techniques on DiscoFuse and subsampled

training sets. Blockwise sorted by SARI score on

100% of the training set.

We performed the bulk of our experiments

on the 12-layer checkpoints of BERT, GPT-2,

and RoBERTa, assuming that the findings will

also hold for the 24-layer checkpoints. We chose

BERTSHARE, ROBERTASHARE and ROBERTA to also

report numbers using the 24-layer public pre-

trained checkpoints. We also experimented with

the GPT setup with 24 layers and 345M parameters

but as we did not achieve any better results we

excluded this from the paper.

4 Experiments and Results

4.1 Sentence Fusion

Sentence Fusion is the problem of combining

multiple sentences into a single coherent sentence.

We use the ‘‘balanced Wikipedia’’ portion of the

DiscoFuse dataset (Geva et al., 2019) for our

experiments with 4.5M fusion examples in the

training set. The evaluation set has 50k examples.

Because of the size of this evaluation set, even

small changes are statistically significant. For this

reason, we have solely chosen this dataset for

additional experiments described at the end of the

paper.

Training was done for 300k steps with a global

batch size of 256. The input and output are padded

to a length of 128, which covers 100% of the

training, evaluation, and test data. We report SARI

WikiSplit Exact SARI BLEU

(Botha et al., 2018) 14.3 61.5 76.4

Initialized with the base checkpoint (12 layers)

BERTSHARE 16.3 63.5 77.2

ROBERTASHARE 16.1 63.4 77.1

BERT2BERT 15.6 63.2 77.0

ROBERTA2GPT 15.1 63.2 76.8

BERT2RND 15.9 63.1 76.9

BERT2GPT 14.6 62.4 76.5

RND2BERT 15.2 61.8 76.5

RND2RND 14.6 61.7 76.3

RND2GPT 14.2 61.3 76.2

GPT 14.2 61.1 75.8

Initialized with the large checkpoint (24 layers)

ROBERTASHARE 16.4 63.8 77.4

BERTSHARE 16.6 63.7 77.3

Table 3: Results of different models and initiali-

zation setups on WikiSplit. Blockwise sorted by

SARI score.

(Xu et al., 2016)5 and the exact match accuracy.

The results can be seen in Table 2. Previous

state-of-the-art results by Geva et al. (2019) used

the vanilla transformer model by Vaswani et al.

(2017), with only 7 layers. All models with initial-

ized encoders outperform the baseline by a large

margin, with a SARI score of 89.3 compared

with 86.9 (BERT2RND vs. RND2RND). To measure

the effect on smaller training sets, we randomly

subsample the training data down to 10% and 1%,

(i.e., 450k and 45k training examples, respec-

tively). First, we notice, that performance compa-

rable to the baseline is achieved even when training

on only 10% of the training data (ROBERTASHARE

vs. ROBERTASHARE). Secondly, when using only 1%

of the training data, setups with fewer randomly

initialized parameters (BERT2BERT vs. BERT2RND)

perform better. The best performing 12-layer setup

is ROBERTA2GPT with a SARI score of 89.9 only

outperformed by 24-layer setup of ROBERTASHARE

with a SARI score of 90.3.

4.2 Split and Rephrase

The reverse task of sentence fusion is the split-

and-rephrase task, which requires rewriting a long

5SARI is a lexical similarity metric that compares the

model’s output to multiple references and the input in order to

assess the model’s ability to add, delete, and keep an n-gram.

Its implementation is available at: https://github.

com/tensorflow/tensor2tensor/blob/master/

tensor2tensor/utils/sari hook.py.
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sentence into two or more coherent short sentences

(Narayan et al., 2017). We use the WikiSplit

dataset (Botha et al., 2018), which consists of 1M

examples of sentence splits extracted from the

Wikipedia edit history, and follow the training/test

split suggested by the authors. Training was done

for 300k steps with a global batch size of 256. The

input and output are padded to a length of 128,

which covers 100% of the training, evaluation,

and test data. As in Botha et al. (2018), we report

corpus-level BLEU,6 the exact match accuracy,

and SARI score. Previous state-of-the-art results

by Botha et al. (2018) used a bi-directional LSTM

with a copy mechanism (Aharoni and Goldberg,

2018). Analogous to the DiscoFuse task we

observe that initializing the encoder improves the

model the most (Table 3). The shared encoder-

decoder setup of BERTSHARE outperforms all other

setups. For the larger models with 24 layers, we

observed a small over-fitting after 100k steps (˜25

epochs), and therefore stop the training early.

BERTSHARE and ROBERTASHARE perform on par and

both outperform their 12-layer counterpart.

4.3 Machine Translation

We test our setups on the most common bench-

mark in machine translation—WMT 2014

English↔German task—using newstest2014 and

newstest2016 eval sets. We use the same hyper-

parameter settings as in the previous experiments.

We limit the input and output lengths to 128 tokens

each. We used a global batch size of 256 and train

for 30 epochs. Decoding was done with beam

size of 4 and the default value for the sentence

length penalty set to α = 0.6. We report uncased

BLEU-4 scores.7

In Table 4, we first report the baseline scores

for the original Transformer model Vaswani et al.

(2017) and our Transformer implementation8 with

6We use NLTK v3.2.2 with case-sensitive scoring to

estimate BLEU scores.
7We use a script from the Tensorflow Official Transformer

implementation https://github.com/tensorflow/

models/ tree/ master/ nlp/ transformer. Note

that, differently from the https://github.com/

tensorflow/ tensor2tensor/ blob/ master/

tensor2tensor/utils/get ende bleu.sh used

by Vaswani et al. (2017), this script does not split noun

compounds, but we normalize utf-8 quotes to ascii quotes as

we noted that our pre-processed training set contains only

ascii quotes.
8We use Transformer layers from the official BERT

implementation which have small differences from Vaswani

et al. (2017).

the same hyper parameters. In both cases, we use

the encoder and decoder with 6 layers and the 32k

wordpiece vocabulary extracted from the WMT14

training set. Our implementation obtains slightly

higher scores than the original implementation.

The middle section of Table 4 reports the

results for various initialization schema using

BERT and GPT-2 pre-trained checkpoints. Note

that here all models have encoders and decoders

with 12 layers. For BERT models, we use the

BERT-Base Multilingual Cased checkpoint to

initialize the encoder or the decoder or both,

as the task involves one non-English language.

This checkpoint has been pre-trained on 108

languages using a multilingual Wikipedia dump

with a vocabulary of 110k wordpieces. First, we

observe that initializing the model with the BERT

checkpoint is most beneficial on the encoder side;

our observation is in line with Yang et al. (2019).

Furthermore, models initialized with the BERT

checkpoint receive a significant boost: BERT2RND

compared to the no-initialization RND2RND setup

scores higher by +4 points on En→De and +3.6

points on De→En on newstest2014. Contrary to

the WikiSplit and DiscoFuse task, sharing the

encoder and decoder variables did not give an

additional boost. This is most likely because a)

model capacity is an important factor in MT and

b) encoder and decoder have to deal with different

grammar and vocabulary.

GPT-based models (RND2GPT, GPT, and

BERT2GPT) do not perform nearly as well, especially

when GPT is used as the decoder and the target

language is German. This is because the GPT

model comes with an English vocabulary and has

been pre-trained mainly on English text. Hence,

we report the scores for GPT in the En→De setting

in gray.

Customized BERT Checkpoint. For this

experiment we did not include RoBERTa, as the

public checkpoint is available for English only.

Instead, we train our own checkpoint. We also

observe that our implementation of the baseline

Transformer, as well as RND2RND setup, which

uses no initialization, more weakly weaker on

newstest2014 compared with the Transformer

baselines (with 6 layers and the 32k wordpiece

vocabulary) we report in the top section of Table 4.

We conjecture that the differences might be due

to the larger 110k wordpiece vocabulary trained

to handle 104 languages from Wikipedia dump,
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newstest2014 newstest2016

En→De De→En En→De De→En

(Vaswani et al., 2017) 27.3 – – –

Transformer (ours) 28.1 31.4 33.5 37.9

KERMIT(Chan et al., 2019) 28.7 31.4 – –

(Shaw et al., 2018) 29.2 – – –

(Edunov et al., 2018)* 35.0 (33.8) – – –

Initialized with public checkpoints (12 layers) and vocabulary

Transformer (ours) 23.7 26.6 31.6 35.8

RND2RND 26.0 29.1 32.4 36.7

BERT2RND 30.1 32.7 34.4 39.6

RND2BERT 27.2 30.4 33.2 37.5

BERT2BERT 30.1 32.7 34.6 39.3

BERTSHARE 29.6 32.6 34.4 39.6

GPT 16.4 21.5 22.4 27.7

RND2GPT 19.6 23.2 24.2 28.5

BERT2GPT 23.2 31.4 28.1 37.0

Initialized with a custom BERT checkpoint (12 layers) and vocabulary

BERT2RND 30.6 33.5 35.1 40.2

BERTSHARE 30.5 33.6 35.5 40.1

Initialized with a custom BERT checkpoint (24 layers) and vocabulary

BERT2RND 31.7 34.2 35.6 41.1

BERTSHARE 30.5 33.8 35.4 40.9

Table 4: Uncased BLEU-4 scores on WMT14 English ↔ German

newstest2014 and newstest2016 test sets. Models in the middle section

use the 110k wordpiece vocabulary that comes with the multilingual BERT

checkpoint. In the bottom section, we use the native 32k wordpiece vocabulary

extracted from WMT14 train set and a BERT checkpoint pre-trained only on

English and German subset of Wikipedia. * Leveraging a large number of

additional parallel sentence pairs obtained with back-translation; we include

this score as a reference to the highest achieved result on newstest2014. The

GPT-2 results for En→De (where the GPT-2 initialized decoder is used to

decode targets in De) are grayed out as they are a priori penalizing for GPT-2,

which was only pretrained on En texts.

which is suboptimal for WMT14 data and leads

to inferior results. To verify this conjecture, we

perform the following experiment: We use the

32k wordpiece vocabulary extracted from the

WMT14 En ↔ De training set (same as used

in the top section of Table 4) and pre-train a

BERT model on the English and German subset

of the Wikipedia dump in the same way as the

multilingual BERT checkpoint was obtained. We

initialize our best-performing setups, BERT2RND

and BERTSHARE, with this checkpoint (the third

block of Table 4). This provides a further +0.5

(En ↔ De) and +0.8 (De ↔ En) BLEU improve-

ments on newstest2014, and, +1.1 and +0.7 on

newstest2016, yielding an overall very strong

performance on the challenging WMT14 task.

Experiments with the larger models (the last block)

show further improvements of up to +1.1 BLEU

points.

Edunov et al. (2018) report better results when

they augment the training set with a massive

amount of back-translated sentence pairs. To the

best of our knowledge, among the approaches

that only leverage parallel data from WMT14, our

results are state-of-the-art on both newstest2014

and newstest2016.
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4.4 Abstractive Summarization

Document summarization is the task of producing

a short version of a document while preserving

its salient information content. We evaluate our

setups on three different summarization datasets of

varying characteristics: Gigaword (Napoles et al.,

2012), CNN and DailyMail (Hermann et al.,

2015), and BBC extreme (Narayan et al., 2018a).

The Gigaword dataset focuses on abstractive

sentence summarization with a total of 3.8M

sentence-summary training pairs. The other two

datasets focus on single-document summarization:

The CNN/DailyMail dataset consists of 287k

document–summary pairs, whereas the BBC

dataset consists of 204k document-summary pairs.

The CNN/DailyMail summaries are in the form of

bullet-point story highlights and exhibit a high

degree of extraction, requiring the models to

learn to copy from the source documents. The

BBC summaries, on the other hand, are extreme

in that the documents are summarized into

single-sentence summaries. These summaries

demonstrate a high level of abstractiveness, and

generating them automatically requires document-

level inference, abstraction, and paraphrasing.

In all three cases, we did not anonymize entities.

We worked on the original cased versions of the

CNN/DailyMail and BBC datasets. For Gigaword

we used the lowercased version to match the

requirements of the publicly available lowercased

test set. During training, the input documents were

truncated to 512 tokens for the CNN/DailyMail

and BBC, and to 128 tokens for Gigaword.

Similarly, the length of the summaries was limited

to 128 tokens for CNN/DailyMail, 64 for BBC,

and 32 for Gigaword. We used a global batch

size of 128 document–summary pairs for CNN/

DailyMail and BBC, and 256 document–

summary pairs for Gigaword. We adapted to

different number of training steps depending on

the training data sizes. Models were trained for

500k, 300k, and 200k steps for the Gigaword,

CNN/DailyMail, and BBC summarization data-

sets respectively. In all cases, we used the

standard publicly available test sets; these consists

of 1951 instances for Gigaword, 11,490 for

CNN/DailyMail, and 11,334 for BBC. We report

on the ROUGEF1 scores (Lin and Hovy, 2003); in

particular, we report on ROUGE-1 and ROUGE-2

for informativeness and ROUGE-L for fluency in

Table 5.

Document Understanding. All BERT

encoder-based setups (i.e., BERT2RND, BERTSHARE,

ROBERTASHARE, and BERT2BERT) outperform the

baseline RND2RND by a large margin. The improve-

ments of the RND2BERT setup, where only the

decoder is initialized, are narrow. These results

overall validate the significance of document

representation in the encoder-decoder framework

for summarization. On the BBC extreme summari-

zation in particular, these four models achieve on

average +6.85 point improvement in ROUGE-L

compared with the RND2RND setup. Our results

demonstrate that the models with better document

representations are better in generating extreme

summaries that require document-level inference

and abstraction. For the extractive highlights in

the CNN/DailyMail dataset, these models show

an improvement of +3.53 ROUGE-L points over

the RND2RND baseline. For Gigaword, where the

input is a single sentence, the improvements are

minimal (average of +1.02 ROUGE-L points).

The BERTSHARE setup with shared encoder and

decoder parameters achieves better performance

than BERT2BERT on all three datasets. The gains are

larger on the BBC dataset than on the Gigaword

and CNN/DailyMail datasets. This is probably

because the BBC summary sentences follow a

distribution that is similar to that of the sentences

in the document, whereas this is not necessarily

the case for the Gigaword headlines and the CNN/

DailyMail bullet-point highlights. ROBERTASHARE

performs superior to BERTSHARE on the CNN/

DailyMail and BBC datasets. ROBERTASHARE per-

forms competitively to BERTSHARE on the

Gigaword dataset where the task is to summarize

sentences.

Summarization with GPT Checkpoints. GPT

(decoder-only) performs better than RND2GPT,

BERT2GPT or ROBERTA2GPT (encoder-decoder mod-

els) by a large margin for generating CNN/

DailyMail extracts, but poorer for generating

BBC abstracts. The encoder–decoder architec-

ture where the input document is modeled

separately is better equipped for document-level

abstraction than the decoder-only architectures

where the input document is a conditioning prefix

of a language model. Initialization with different

checkpoints (e.g., encoder with BERT and

decoder with GPT in BERT2GPT) is not effective

for document summarization; BERT2GPT and

ROBERTA2GPT are inferior to RND2GPT on the
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Gigaword CNN/DailyMail BBC XSum

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Lead – – – 39.60 17.70 36.20 16.30 1.61 11.95

PtGen – – – 39.53 17.28 36.38 29.70 9.21 23.24

ConvS2S 35.88 17.48 33.29 – – – 31.89 11.54 25.75

MMN – – – – – – 32.00 12.10 26.00

Bottom-Up – – – 41.22 18.68 38.34 – – –

MASS 38.73 19.71 35.96 – – – – – –

TransLM – – – 39.65 17.74 36.85 – – –

UniLM – – – 43.47 20.30 40.63 – – –

Initialized with the base checkpoint (12 layers)

RND2RND 36.94 18.71 34.45 35.77 14.00 32.96 30.90 10.23 24.24

BERT2RND 37.71 19.26 35.26 38.74 17.76 35.95 38.42 15.83 30.80

RND2BERT 37.01 18.91 34.51 36.65 15.55 33.97 32.44 11.52 25.65

BERT2BERT 38.01 19.68 35.58 39.02 17.84 36.29 37.53 15.24 30.05

BERTSHARE 38.13 19.81 35.62 39.09 18.10 36.33 38.52 16.12 31.13

ROBERTASHARE 38.21 19.70 35.44 40.10 18.95 37.39 39.87 17.50 32.37

GPT 36.04 18.44 33.67 37.26 15.83 34.47 22.21 4.89 16.69

RND2GPT 36.21 18.39 33.83 32.08 8.81 29.03 28.48 8.77 22.30

BERT2GPT 36.77 18.23 34.24 25.20 4.96 22.99 27.79 8.37 21.91

ROBERTA2GPT 37.94 19.21 35.42 36.35 14.72 33.79 19.91 5.20 15.88

Initialized with the large checkpoint (24 layers)

BERTSHARE 38.35 19.80 35.66 39.83 17.69 37.01 38.93 16.35 31.52

ROBERTASHARE 38.62 19.78 35.94 40.31 18.91 37.62 41.45 18.79 33.90

Table 5: Summarization results of different models and their initialization setups. We

compare our setups (the bottom block) against both non-pre-trained (the top block) and

pre-trained (the middle block) models on various datasets: the Lead baseline, PtGen

(See et al., 2017), ConvS2S (Gehring et al., 2017), MMN (Kim et al., 2019), Bottom-Up

(Gehrmann et al., 2018), MASS (Song et al., 2019), TransLM (Khandelwal et al., 2019), and

UniLM (Dong et al., 2019). The Lead results for the CNN/DailyMail dataset is taken from

Narayan et al. (2018b), whereas Lead, PtGen, and ConvS2S results on the BBC dataset are

taken from Narayan et al. (2018a). Our best results are boldfaced and the best results on the

datasets are italicized.

BBC dataset and BERT2GPT to RND2GPT on the

CNN/DailyMail dataset. However, this is not the

case with the Gigaword dataset, which has 3.8M

training instances; BERT2GPT and ROBERTA2GPT

perform better than RND2GPT.
ROBERTASHARE performs the best and is on par

with the current state-of-the-art MASS model

(Song et al., 2019) on the Gigaword dataset. The

MASS model has an advantage of pre-training

encoder-decoder attention from scratch, our pro-

posed models use the publicly available pre-trained

checkpoints and only fine-tune on the target task.

It is not obvious how the masked seq2seq pre-

training objective for sentence generation in the

MASS model will be beneficial for tasks like doc-

ument summarization. Our proposed models pro-

vide a generic alternative and can be easily adapted

to various text generation tasks. The ROBERTASHARE

setup sets a new state-of-the-art, outperforming all

existing baselines by a large margin on the BBC

extreme summarization task. The best model on

the CNN/DailyMail dataset outperforms the

Pointer Generator network (See et al., 2017) and

the pre-trained single-decoder model with Trans-

formerLM (Khandelwal et al., 2019). Our model,

however, lags behind the Bottom-Up system
(Gehrmann et al., 2018) with a task-specific mod-

ule for content selection along with the copy
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mechanism (Gu et al., 2016) and the UniLM model

(Dong et al., 2019) with BERT-Large pre-trained

for bidirectional, unidirectional and seq2seq lan-

guage modeling objectives. The UniLM model is

also fine-tuned with an additional extractive sum-

marization objective to predict relevant sentences

in the document; this objective could be beneficial

to generate the CNN/DailyMail extracts.

5 Discussion on Ablation Studies

Combining Different Checkpoints. Combin-

ing BERT and GPT-2 into a single model

(BERT2GPT) did not work and often underper-

formed than a randomly initialized baseline. This

is presumably because the model has to learn two

different vocabularies. This argument is backed

by the fact that for MT, de→en the BERT2GPT setup

performed well. For this task the vocabulary set-

ting is in favor of this particular task, meaning

that two vocabularies have to be learned anyways

and the output is English, on which GPT-2 was

trained. Because RoBERTa and GPT-2 share the

same vocabulary, combining both into a single

model (ROBERTA2GPT) showed strong results on

several tasks but did not outperform a setup where

RoBERTa is used in the encoder and decoder.

Tuning GPT-2 Based Models. We were

surprised that setups using the GPT-2 checkpoint

performed relatively poorly given that it is trained

as a language model on a large corpus; our

intuition was that GPT-2 initialized decoders will

be strong natural language generators. To ensure

that this was not due to an unfortunate choice of

hyperparameters, we tuned the learning rate, the

warmup steps, and the optimizer ∈ {Adam,

Adafactor} for the GPT-2 based setups (RND2GPT,

GPT, BERT2GPT) on the DiscoFuse dataset.

Naturally, this gave us slightly higher numbers but

not at a magnitude that would suggest a previously

suboptimal setting. Specifically, we obtained a

SARI score of 88.8 compared with 88.4 for

BERT2GPT, 88.1 compared with 88.0 for GPT, and

87.7 compared with 86.5 for RND2GPT.

Initializing Only Embeddings. We want to

investigate the impact of the non-contextualized

BERT and GPT-2 embeddings. This means we

are initializing the transformer model with only

the embedding matrices. The advantage of this

setup would be that we could freely choose the

model architecture and size and adapt it to a

specific task. We found almost no improvement

over the fully randomly initialized model RND2RND.

Concretely, we compute a SARI score of 87.1

using the BERT embeddings and 87.0 using the

GPT-2 embeddings, compared with 86.9 of the

RND2RND baseline. We observe slightly higher

improvements of up to 2 percentage points when

training on only 10% of the training data.

Initializing Only Layers. Contrary to the previ-

ous paragraph, we want to investigate the effect

of initializing everything but the word embedding

matrix. The embedding matrix accounts for only

10% to 31% of all learnable parameters, and

sometimes the vocabulary given from a public

checkpoint might not be optimal for a certain task.

In these cases, it would be nice to redefine the

vocabulary while still leveraging the checkpoint.

First, we remove the embeddings matrices from

the warm-started variables and observe a drop

of 1.7 points using the BERTSHARE setup and 11

points using the GPT setup (Table 6). The latter

is probably due to the large vocab of the GPT-2

model, which now remains random-initialized.

We then train a new BPE model with 16k

tokens using the DiscoFuse training data (Kudo

and Richardson, 2018; Sennrich et al., 2016).

We observe almost no change on BERTSHARE,

suggesting that the BERT vocabulary was already

optimal for DiscoFuse. GPT, however, showed a

significant improvement using this much smaller

vocabulary but is still behind the fully initialized

setup. Finally, we experimented with a more

sensitive way of training the model, meaning that

we fix all warm-started variables for 100k steps.

During this pre-training phase, we only train the

new word embeddings. After the pre-training, we

fine-tune the entire model for another 300k steps.

This training scheme resulted in an improvement

of 0.5 for the BERTSHARE setup, but overall the

number is still considerably behind the fully

initialized setup. For GPT, this training scheme

did not result in a satisfying training curve.

Initializing a Subset of Layers. Motivated by

the results of using 24 layers, we want to investi-

gate whether only a subset of these 24 layers can

be used. To account for the larger hidden layer size

(1,024 vs. 768) and filter size (4,096 vs. 3,072),

we limit ourselves to using only 10 layers and the

embedding matrix of this model. This model still
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BERTSHARE GPT

DiscoFuse 89.3 88.0

- embeddings from checkpoint 87.5 77.0

+ task specific SentencePieces 87.5 84.2

+ pre-training SentencePieces 88.0 69.7

Table 6: SARI scores on the DiscoFuse

dataset when experimenting with different

embedding setups. Each row also includes

the setups of all previous rows.

has more parameters then the base model (324M

vs. 221M for BERT2BERT, 198M vs. 136M for

BERTSHARE) but can be trained with the same batch

size, in a comparable amount of time (3 min/1,000

iterations). As an initial experiment, we used the

first 10 layers out of the large BERT checkpoint

to initialize the BERTSHARE setup. This gave us

a SARI score of 88.2 on DiscoFuse, compared

with 89.3 when using the base checkpoint and

compared with 87.0 when using the embeddings

only (see Initializing Only Embeddings section).

We then performed a hyperparameter search on

the evaluation set using CMA-ES (Hansen, 2016)

to find an optimal subset of layers to use. The best

setup used the following layers: 9, 10, 13–18, 23,

24; and achieved a SARI score of 89.1. Although

this is a remarkable improvement over using the

first 10 layers, this setup is still outperformed by

the base BERT model.

6 Analysis of Abstractive Summaries

Finally, we present a qualitative analysis of these

models for text generation. In particular, we focus

on extreme summarization, which assesses mod-

els ability to do document-level inference and

abstraction. We evaluated summaries from aran-

domly initialized model (RND2RND) and from best

performing models initialized with GPT check-

points (RND2GPT), BERT checkpoints (BERTSHARE),

and RoBERTa checkpoints (ROBERTASHARE). We

also included GOLD summaries in our evaluation.

Results are presented in Table 7.

Human Assessment of Summary Quality. The

study was conducted on the Amazon Mechanical

Turk platform using Best-Worst Scaling, a less

labor-intensive alternative to paired comparisons

(Louviere and Woodworth, 1991; Louviere et al.,

2015). Our participants were presented with a

document and summaries generated from two out

Length Repetitions Quality

RND2RND 20.90 29.76 −0.103

RND2GPT 21.49 16.28 −0.303

BERTSHARE 20.71 27.03 −0.097

ROBERTASHARE 21.70 28.68 0.153

GOLD 24.61 4.66 0.347

Table 7: Qualitative and human evaluations

of BBC extreme summaries. The lowest

numbers for repetitions and the highest

numbers for quality are boldfaced. See the

text for details.

of five systems (four models and gold summaries)

and were asked to decide which summary was

better than the other in order of informativeness

(does the summary capture important information

in the document correctly and concisely?) and

fluency (is the summary written in well-formed

English?) We randomly selected 40 documents

from the XSum test set. We collected judgments

from three different participants for each compari-

son. The order of summaries was randomized

per document and the order of documents was

randomized per participant. The score of a system

was computed as the percentage of times it was

chosen as best minus the percentage of times it

was selected as worst. The scores range from

−1 (worst) to 1 (best). See Figure 1 for a few

sample predictions that were used in our human

evaluation.

Our participants found the ROBERTASHARE

summaries to be the best in terms of their overall

quality; the BERTSHARE summaries ranked second

after ROBERTASHARE. We further carried out

pairwise comparisons between all models to assess

whether system differences are statistically signi-

ficant.9 We did not observe significant differences

between RND2RND and RND2GPT, RND2RND and

BERTSHARE, and, ROBERTASHARE and GOLD. All

other differences were statistically significant.

Summary Lengths and Repetitions. All mod-

els generated summaries of comparable lengths;

the average length of summaries is 20.90 for

RND2RND, 21.49 for RND2GPT, 20.71 for BERTSHARE,

and 21.70 for ROBERTASHARE. ROBERTASHARE-

produced summaries were closest to the GOLD

summaries in terms of length (21.70 vs. 24.61).

9One-way ANOVA with post hoc Tukey HSD tests;

p < 0.01.
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Figure 1: Model generated and reference summaries used for human evaluation. Words in orange correspond to

incorrect or repeated information.

Finally, we estimated the percentage of sum-

maries with at least one repetition of rare or content

words. We discarded the 500 most common

words from the model generated and reference

summaries, the rest were considered as rare

or content words. BERTSHARE and ROBERTASHARE

summaries improve over the RND2RND summaries,

but have more repetitions than the RND2GPT sum-

maries. See examples in Figure 1 for redundant

repeated spans marked in orange.

Overall, BERTSHARE and ROBERTASHARE sum-

maries are unequivocally better than RND2GPT

summaries in terms of both automatic evalua-

tions (assessing ROUGE) and human evaluations

(assessing summary quality); there is still room

for improvements in these models (Dong et al.,

2019; Song et al., 2019; Lewis et al., 2019).

7 Related Work

Representation Learning. Starting around 2013,

word embeddings like word2vec (Mikolov et al.,

2013) or GloVe (Pennington et al., 2014)

became popular as they were easy to train in

an unsupervised fashion on raw text and they

improved several downstream tasks when used as

features. These word embeddings are invariant to

the context in which we the word. There has

been previously work to contextualize these

embeddings, mainly to account for synonyms

(e.g., Huang et al., 2012; Rothe and Schütze, 2015)

but only in 2018 did training of the contextualized

embeddings using large deep neural networks and

an unsupervised training scheme become popular.

274

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00313/1923422/tacl_a_00313.pdf by guest on 07 Septem
ber 2023



Whereas ELMo (Peters et al., 2018) and

ULMFiT (Howard and Ruder, 2018) are based

on LSTMs (Hochreiter and Schmidhuber, 1997),

BERT and GPT are based on the transformer archi-

tecture (Vaswani et al., 2017). This architecture

outperforms LSTMs on several NLP tasks and we

therefore concentrated on these two pre-trained

models. The contextualized embedding for each

input token is given by the corresponding output

of the last encoder layer.

Pre-training Models. One can also see these

models as pre-trained models (Dai and Le, 2015),

which are then fine-tuned for a downstream task.

This is the conceptual view we adopted for this

paper. Why unsupervised pre-training helps deep

learning was investigated by Erhan et al. (2010).

While the unsupervised pre-training strategies are

different from those used in our paper, we expect

the findings to still hold. They show that unsuper-

vised pre-training is not simply a way of getting

a good initial marginal distribution, that classical

regularization techniques cannot achieve the same

performance as unsupervised pre-training, and that

the effect of unsupervised pre-training does not go

away with more training data. An extensive study

of pre-training was done by Wang et al. (2019a).

This study compares single sentence classifica-

tion, sentence pair classification, seq2seq and

language modeling tasks for pre-training, and

measures the effect on GLUE. The primary results

support the use of language modeling. Peters et al.

(2019) explore whether it is preferable to fine-tune

the entire model on a specific task or to use the

learned representations as features (i.e., freezing

the pre-trained model). Their results suggest that

the relative performance of fine-tuning vs. fea-

ture extraction depends on the similarity between

the pre-training and the target tasks. Wang et al.

(2019b) propose a combination of both, where

first the model is trained with the BERT param-

eters being frozen and then the entire model is

fine-tuned. This is the training scheme we used in

the Initializing Only Layers section.

Pre-training for Sequence Generation. Pre-

training for seq2seq learning was first done by

Ramachandran et al. (2017). They used a language

model to pre-train the encoder and decoder of

an RNN seq2seq model. Their method improved

BLEU scores on newstest2014 by 3 points and

ROUGE-L on CNN/DailyMail also by 3 points.

However, theirBLEUscore of 24.7 on newstest2014

En→De, compared to 30.6 in this work, and 29.4

ROUGE-L on CNN/DailyMail, compared with

36.33, also show the superiority of the transformer

model as well as the masked language model

objective of BERT. MASS (Song et al., 2019) is

a BERT-inspired method of pre-training seq2seq

models. One advantage of this method is that,

in contrast to our setups (except for GPT), the

encoder–decoder attention mechanism is also pre-

trained. The downside of this approach is that

the pre-trained model is task-specific and not as

general as BERT or GPT-2. UniLM (Dong et al.,

2019) also unifies bidirectional, unidirectional,

and seq2seq language modeling. At the time of

writing, no public checkpoint was available to us.

We compare our work with their results in Table 5.

To overcome the issue that the encoder-decoder

attention is not pre-trained, Khandelwal et al.

(2019) pre-trained a single transformer language

model that encodes the source and generates the

target. This setup matches our GPT setup. Conneau

and Lample (2019) pre-train their model using

casual language modeling (like GPT), masked

language modeling (like BERT) and a third new

objective called translation language modeling to

improve cross-lingual pre-training.

Leveraging Public Checkpoints. BERT has

been used for various NLP tasks, such as question

answering on the SQuAD dataset (Rajpurkar et al.,

2018). It also achieved new state-of-the-art results

on the GLUE benchmark (Williams et al., 2018)

and grounded commonsense inference (SWAG,

Zellers et al., 2018). All of these tasks are a

form of classification or regression. Liu (2019)

fine-tuned BERT for extractive summarization.

An analysis of different layers of the BERT

model was performed by Tenney et al. (2019).

They found that the classical NLP pipeline appears

in the expected sequence. In the context of our

experiments in the Initializing a Subset of Layers

section, this would mean that the DiscoFuse

task profits the most from pre-trained informa-

tion about POS, constituents, dependencies, and

semantic roles. A similar study by Jawahar et al.

(2019) found that BERT captures phrase-level

information in the lower layers and linguistic

information in intermediate layers, with surface

features at the bottom, syntactic features in the

middle, and semantic features at the top.

GPT was also evaluated on natural language

inference tasks. In the extended version of GPT-2,
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the model was evaluated on more general natural

language processing tasks, like machine transla-

tion, reading comprehension, summarization, and

language modeling. GPT-2 achieved new state-

of-the-art results on several language modeling

datasets. On the other tasks, GPT-2 outperformed

some unsupervised baselines but is still far behind

supervised or task-specific approaches.

After we performed the majority of our experi-

ments, XLNet (Yang et al., 2019), an autoregres-

sive pre-training method based on Transformer

XL (Dai et al., 2019), was released. XLNet

achieved new state-of-the-art results on several

NLP tasks. We leave the experiments with their

public checkpoint for future work.

8 Conclusion

We performed an extensive study on leveraging

pre-trained checkpoints for sequence generation.

Our findings show that a pre-trained encoder is

an essential part. Most tasks also profit from

sharing the weights between the encoder and the

decoder, which additionally decreases the memory

footprint. While combing BERT and GPT-2 into a

single model often underperformed a randomly

initialized baseline, combining RoBERTa and

GPT-2 achieved strong results and shows the

importance of sharing the vocabulary. Training

a language-specific BERT model also improves

performance over using the multilingual version.
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