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Abstract

Pre-training by language modeling has become
a popular and successful approach to NLP
tasks, but we have yet to understand exactly
what linguistic capacities these pre-training
processes confer upon models. In this paper
we introduce a suite of diagnostics drawn from
human language experiments, which allow us
to ask targeted questions about information
used by language models for generating pre-
dictions in context. As a case study, we apply
these diagnostics to the popular BERT model,
finding that it can generally distinguish good
from bad completions involving shared cate-
gory or role reversal, albeit with less sensitiv-
ity than humans, and it robustly retrieves noun
hypernyms, but it struggles with challenging
inference and role-based event prediction—
and, in particular, it shows clear insensitivity
to the contextual impacts of negation.

1 Introduction

Pre-training of NLP models with a language mod-
eling objective has recently gained popularity
as a precursor to task-specific fine-tuning. Pre-
trained models like BERT (Devlin et al., 2019)
and ELMo (Peters et al., 2018a) have advanced
the state of the art in a wide variety of tasks,
suggesting that these models acquire valuable,
generalizable linguistic competence during the
pre-training process. However, though we have
established the benefits of language model pre-
training, we have yet to understand what exactly
about language these models learn during that
process.

This paper aims to improve our understanding
of what language models (LMs) know about lan-
guage, by introducing a set of diagnostics target-
ing a range of linguistic capacities drawn from
human psycholinguistic experiments. Because of

their origin in psycholinguistics, these diagnostics
have two distinct advantages: They are carefully
controlled to ask targeted questions about linguis-
tic capabilities, and they are designed to ask these
questions by examining word predictions in con-
text, which allows us to study LMs without any
need for task-specific fine-tuning.

Beyond these advantages, our diagnostics dis-
tinguish themselves from existing tests for LMs in
two primary ways. First, these tests have been
chosen specifically for their capacity to reveal
insensitivities in predictive models, as evidenced
by patterns that they elicit in human brain re-
sponses. Second, each of these tests targets a
set of linguistic capacities that extend beyond
the primarily syntactic focus seen in existing
LM diagnostics—we have tests targeting com-
monsense/pragmatic inference, semantic roles and
event knowledge, category membership, and ne-
gation. Each of our diagnostics is set up to sup-
port tests of both word prediction accuracy and
sensitivity to distinctions between good and bad
context completions. Although we focus on the
BERT model here as an illustrative case study,
these diagnostics are applicable for testing of any
language model.

This paper makes two main contributions. First,
we introduce a new set of targeted diagnostics
for assessing linguistic capacities in language
models.1 Second, we apply these tests to shed
light on strengths and weaknesses of the popular
BERT model. We find that BERT struggles with
challenging commonsense/pragmatic inferences
and role-based event prediction; that it is generally
robust on within-category distinctions and role
reversals, but with lower sensitivity than humans;
and that it is very strong at associating nouns with
hypernyms. Most strikingly, however, we find
that BERT fails completely to show generalizable

1All test sets and experiment code are made available
here: https://github.com/aetting/lm-diagnostics.
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understanding of negation, raising questions about
the aptitude of LMs to learn this type of meaning.

2 Motivation for Use of Psycholinguistic
Tests on Language Models

It is important to be clear that in using these diag-
nostics, we are not testing whether LMs are psy-
cholinguistically plausible. We are using these
tests simply to examine LMs’ general linguistic
knowledge, specifically by asking what informa-
tion the models are able to use when assigning
probabilities to words in context. These psycho-
linguistic tests are well-suited to asking this type
of question because a) the tests are designed for
drawing conclusions based on predictions in con-
text, allowing us to test LMs in their most natural
setting, and b) the tests are designed in a controlled
manner, such that accurate word predictions in
context depend on particular types of information.
In this way, these tests provide us with a natural
means of diagnosing what kinds of information
LMs have picked up on during training.

Clarifying the linguistic knowledge acquired
during LM-based training is increasingly relevant
as state-of-the-art NLP models shift to be predom-
inantly based on pre-training processes involving
word prediction in context. In order to understand
the fundamental strengths and limitations of these
models—and in particular, to understand what al-
lows them to generalize to many different tasks—
we need to understand what linguistic competence
and general knowledge this LM-based pre-training
makes available (and what it does not). The im-
portance of understanding LM-based pre-training
is also the motivation for examining pre-trained
BERT, as we do in the present paper, despite the
fact that the pre-trained form is typically used only
as a starting point for fine-tuning. Because it is the
pre-training that seemingly underlies the general-
ization power of the BERT model, allowing for
simple fine-tuning to perform so impressively, it is
the pre-trained model that presents the most impor-
tant questions about the nature of generalizable
linguistic knowledge in BERT.

3 Related Work

This paper contributes to a growing effort to
better understand the specific linguistic capacities
achieved by neural NLP models. Some approaches

use fine-grained classification tasks to probe in-
formation in sentence embeddings (Adi et al.,
2016; Conneau et al., 2018; Ettinger et al., 2018),
or token-level and other sub-sentence level infor-
mation in contextual embeddings (Tenney et al.,
2019b; Peters et al., 2018b). Some of this work
has targeted specific linguistic phenomena such
as function words (Kim et al., 2019). Much work
has attempted to evaluate systems’ overall level of
‘‘understanding’’, often with tasks such as seman-
tic similarity and entailment (Wang et al., 2018;
Bowman et al., 2015; Agirre et al., 2012; Dagan
et al., 2005; Bentivogli et al., 2016), and additional
work has been done to design curated versions
of these tasks to test for specific linguistic capa-
bilities (Dasgupta et al., 2018; Poliak et al.,
2018; McCoy et al., 2019). Our diagnostics
complement this previous work in allowing for
direct testing of language models in their natural
setting—via controlled tests of word prediction in
context—without requiring probing of extracted
representations or task-specific fine-tuning.

More directly related is existing work on analyz-
ing linguistic capacities of language models spe-
cifically. This work is particularly dominated by
testing of syntactic awareness in LMs, and often
mirrors the present work in using targeted evalua-
tions modeled after psycholinguistic tests (Linzen
et al., 2016; Gulordava et al., 2018; Marvin and
Linzen, 2018; Wilcox et al., 2018; Chowdhury and
Zamparelli, 2018; Futrell et al., 2019). These anal-
yses, like ours, typically draw conclusions based
on LMs’ output probabilities. Additional work has
examined the internal dynamics underlying LMs’
capturing of syntactic information, including test-
ing of syntactic sensitivity in different components
of the LM and at different timesteps within the
sentence (Giulianelli et al., 2018), or in individual
units (Lakretz et al., 2019).

This previous work analyzing language models
focuses heavily on syntacticcompetence—semantic
phenomena like negative polarity items are tested
insome studies (Marvin and Linzen, 2018; Jumelet
and Hupkes, 2018), but the tested capabilities in
these cases are still firmly rooted in the notion of
detecting structural dependencies. In the present
work we expand beyond the syntactic focus of the
previous literature, testing for capacities includ-
ing commonsense/pragmatic reasoning, semantic
role and event knowledge, category membership,
and negation—while continuing to use controlled,
targeted diagnostics. Our tests are also distinct

35

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00298/1923116/tacl_a_00298.pdf by guest on 07 Septem
ber 2023



in eliciting a very specific response profile in
humans, creating unique predictive challenges for
models, as described subsequently.

We further deviate from previous work ana-
lyzing LMs in that we not only compare word
probabilities—we also examine word prediction
accuracies directly, for a richer picture of models’
specific strengths and weaknesses. Some previous
work has used word prediction accuracy as a test of
LMs’ language understanding—the LAMBADA
dataset (Paperno et al., 2016), in particular, tests
models’ ability topredict the final word of a passage,
in cases where the final sentence alone is insuffi-
cient for prediction.However, although LAMBADA
presents a challenging prediction task, it is not
well-suited to ask targeted questions about types of
information used by LMs for prediction—unlike
our tests, LAMBADA is not controlled to isolate
and test the use of specific types of information
in prediction. Our tests are thus unique in taking
advantage of the additional information provided
by testing word prediction accuracy, while also
leveraging the benefits of controlled sentences
that allow for asking targeted questions.

Finally, our testing of BERT relates to a growing
literature examining linguistic characteristics of
the BERT model itself, to better understand what
underlies themodel’s impressive performance. Clark
et al. (2019) analyze the dynamics of BERT’s self-
attention mechanism, probing attention heads for
syntactic sensitivity and finding that individual
heads specialize strongly for syntactic and coref-
erence relations. Lin et al. (2019) also examine
syntactic awareness in BERT by syntactic probing
at different layers, and by examination of syntactic
sensitivity in the self-attention mechanism. Tenney
et al. (2019a) test a variety of linguistic tasks at dif-
ferent layers of the BERT model. Most similarly
to our work here, Goldberg (2019) tests BERT
on several of the targeted syntactic evaluations
described earlier for LMs, finding BERT to exhibit
very strong performance on these measures. Our
work complements these approaches in testing
BERT’s linguistic capacities directly via the word
prediction mechanism, and in expanding beyond
the syntactic tests used to examine BERT’s pre-
dictions in Goldberg (2019).

4 Leveraging Human Studies

The power in our diagnostics stems from their
origin in psycholinguistic studies—the items have

been carefully designed for studying specific
aspects of language processing, and each test has
been shown to produce informative patterns of
results when tested on humans. In this section
we provide relevant background on human lan-
guage processing, and explain how we use this
information to choose the particular tests used
here.

4.1 Background: Prediction in Humans
To study language processing in humans, psy-
cholinguists often test human responses to words
in context, in order to better understand the infor-
mation that our brains use to generate predictions.
In particular, there are two types of predictive
human responses that are relevant to us here:

Cloze Probability The first measure of human
expectation is a measure of the ‘‘cloze’’ response.
In a cloze task, humans are given an incomplete
sentence and tasked with filling their expected
word in the blank. ‘‘Cloze probability’’ of a word
w in context c refers to the proportion of people
who choose w to complete c. We will treat this
as the best available gold standard for human
prediction in context—humans completing the
cloze task typically are not under any time pres-
sure, so they have the opportunity to use all avail-
able information from the context to arrive at a
prediction.

N400 Amplitude The second measure of human
expectation is a brain response known as the
N400, which is detected by measuring electrical
activity at the scalp (by electroencephalography).
Like cloze, the N400 can be used to gauge how
expected a wordw is in a context c—the amplitude
of the N400 response appears to be sensitive to
fit of a word in context, and has been shown
to correlate with cloze in many cases (Kutas
and Hillyard, 1984). The N400 has also been
shown to be predicted by LM probabilities (Frank
et al., 2013). However, the N400 differs from
cloze in being a real-time response that occurs
only 400 milliseconds into the processing of a
word. Accordingly, the expectations reflected in
the N400 sometimes deviate from the more fully
formed expectations reflected in the untimed cloze
response.

4.2 Our Diagnostic Tests
The test sets that we use here are all drawn from
human studies that have revealed divergences
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Context Expected Inappropriate

He complained that after she kissed him, he couldn’t get the
red color off his face. He finally just asked her to stop wearing
that

lipstick mascara | bracelet

He caught the pass and scored another touchdown. There was
nothing he enjoyed more than a good game of

football baseball | monopoly

Table 1: Example items from CPRAG-102 dataset.

between cloze and N400 profiles—that is, for
each of these tests, the N400 response suggests a
level of insensitivity to certain information when
computing expectations, causing a deviation from
the fully informed cloze predictions. We choose
these as our diagnostics because they provide
built-in sensitivity tests targeting the types of
information that appear to have reduced effect
on the N400—and because they should present
particularly challenging prediction tasks, tripping
up models that fail to use the full set of available
information.

5 Datasets

Each of our diagnostics supports three types
of testing: word prediction accuracy, sensitivity
testing, and qualitative prediction analysis. Be-
cause these items are designed to draw conclusions
about human processing, each set is carefully
constructed to constrain the information relevant
for making word predictions. This allows us to
examine how well LMs use this target information.

For word prediction accuracy, we use the most
expected items from human cloze probabilities as
the gold completions.2 These represent predictions
that models should be able to make if they access
and apply all relevant context information when
generating probabilities for target words.

For sensitivity testing, we compare model prob-
abilities for good versus bad completions—
specifically, comparisons on which the N400
showed reduced sensitivity in experiments. This
allows us to test whether LMs will show sim-
ilar insensitivities on the relevant linguistic
distinctions.

Finally, because these items are constructed in
such a controlled manner, qualitative analysis of
models’ top predictions can be highly informative

2With one exception, NEG-136, for which we use
completion truth, as in the original study.

about information being applied for prediction.
We leverage this in our experiments detailed in
Sections 6–9.

In all tests, the target word to be predicted falls
in the final position of the provided context, which
means that these tests should function similarly for
either left-to-right or bidirectional LMs. Similarly,
because these tests require only that a model can
produce token probabilities in context, they are
equally applicable to the masked LM setting of
BERT as to a standard LM. In anticipation of
testing the BERT model, and to facilitate fair
future comparisons with the present results, we
filter out items for which the expected word is not
in BERT’s single-word vocabulary, to ensure that
all expected words can be predicted.

It is important to acknowledge that these are
small test sets, limited in size due to their origin
in psycholinguistic studies. However, because
these sets have been hand-designed by cognitive
scientists to test predictive processing in humans,
their value is in the targeted assessment that they
provide with respect to information that LMs use
in prediction.

We now we describe each test set in detail.

5.1 CPRAG-102: Commonsense and
Pragmatic Inference

Our first set targets commonsense and pragmatic
inference, and tests sensitivity to differences
within semantic category. The left column of
Table 1 shows examples of these items, each of
which consists of two sentences. These items come
from an influential human study by Federmeier
and Kutas (1999), which tested how brains would
respond to different types of context completions,
shown in the right columns of Table 1.

Information Needed for Prediction Accurate
prediction on this set requires use of commonsense
reasoning to infer what is being described in
the first sentence, and pragmatic reasoning to
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determine how the second sentence relates. For
instance, in Table 1, commonsense knowledge
informs us that red color left by kisses suggests
lipstick, and pragmatic reasoning allows us to
infer that the thing to stop wearing is related
to the complaint. As in LAMBADA, the final
sentence is generic, not supporting prediction
on its own. Unlike LAMBADA, the consistent
structure of these items allows us to target
specific model capabilities;3 additionally, none
of these items contain the target word in context,4

forcing models to use commonsense inference
rather than coreference. Human cloze probabilities
show a high level of agreement on appropriate
completions for these items—average cloze prob-
ability for expected completions is .74.

Sensitivity Test The Federmeier and Kutas
(1999) study found that while the inappropriate
completions (e.g., mascara, bracelet) had cloze
probabilities of virtually zero (average cloze
.004 and .001, respectively), the N400 showed
some expectation for completions that shared a
semantic category with the expected completion
(e.g., mascara, by relation to lipstick). Our
sensitivity test targets this distinction, testing
whether LMs will favor inappropriate completions
based on shared semantic category with expected
completions.

Data The authors of the original study make
available 40 of their contexts—we filter out six to
accommodate BERT’s single-word vocabulary,5

for a final set of 34 contexts, 102 total items.6

5.2 ROLE-88: Event Knowledge and
Semantic Role Sensitivity

Our second set targets event knowledge and se-
mantic role interpretation, and tests sensitivity to
impact of role reversals. Table 2 shows an example
item pair from this set. These items come from a
human experiment by Chow et al. (2016), which
tested the brain’s sensitivity to role reversals.

3To highlight this advantage, as a supplement for this test
set we provide specific annotations of each item, indicating
the knowledge/reasoning required to make the prediction.

4More than 80% of LAMBADA items contain the target
word in the preceding context.

5For a couple of items, we also replace an inappropriate
completion with another inappropriate completion of the same
semantic category to accommodate BERT’s vocabulary.

6Our ‘‘item’’ counts use all context/completion pairings.

Context Compl.

the restaurant owner forgot which
customer the waitress had

served

the restaurant owner forgot which
waitress the customer had

served

Table 2: Example items from ROLE-88
dataset. Compl = Context Completion.

Information Needed for Prediction Accurate
prediction on this set requires a model to inter-
pret semantic roles from sentence syntax, and
apply event knowledge about typical interactions
between types of entities in the given roles. The
set has reversals for each noun pair (shown in
Table 2) so models must distinguish roles for each
order.

Sensitivity Test The Chow et al. (2016) study
found that although each completion (e.g., served)
is good for only one of the noun orders and not
the reverse, the N400 shows a similar level of
expectation for the target completions regardless
of noun order. Our sensitivity test targets this
distinction, testing whether LMs will show similar
difficulty distinguishing appropriate continuations
based on word order and semantic role. Human
cloze probabilities show strong sensitivity to the
role reversal, with average cloze difference of
.233 between good and bad contexts for a given
completion.

Data The authors provide 120 sentences (60
pairs)—which we filter to 88 final items, removing
pairs for which the best completion of either
context is not in BERT’s single-word vocabulary.

5.3 NEG-136: Negation
Our third set targets understanding of the meaning
of negation, along with knowledge of category
membership. Table 3 shows examples of these
test items, which involve absence or presence of
negation in simple sentences, with two different
completions that vary in truth depending on the
negation. These test items come from a human
study by Fischler et al. (1983), which examined
how human expectations change with the addition
of negation.

Information Needed for Prediction Because
the negative contexts in these items are highly
unconstraining (A robin is not a ?), predic-
tion accuracy is not a useful measure for the
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Context Match Mismatch

A robin is a bird tree
A robin is not a bird tree

Table 3: Example items from NEG-136-
SIMP dataset.

negative contexts. We test prediction accuracy
for affirmative contexts only, which allows us
to test models’ use of hypernym information
(robin = bird). Targeting of negation happens
in the sensitivity test.

Sensitivity Test The Fischler et al. (1983)
study found that although the N400 shows more
expectation for true completions in affirmative
sentences (e.g., A robin is a bird), it fails to
adjust to negation, showing more expectation for
false continuations in negative sentences (e.g., A
robin is not a bird). Our sensitivity test targets
this distinction, testing whether LMs will show
similar insensitivity to impacts of negation. Note
that here we use truth judgments rather than cloze
probability as an indication of the quality of a
completion.

Data Fischler et al. provide the list of 18 subject
nouns and 9 category nouns that they use for their
sentences, which we use to generate a comparable
dataset, for a total of 72 items.7 We refer to these
72 simple sentences as NEG-136-SIMP. All target
words are in BERT’s single-word vocabulary.

Supplementary Items In a subsequent study,
Nieuwland and Kuperberg (2008) followed up
on the Fischler et al. (1983) experiment, creat-
ing affirmative and negative sentences chosen to
be more ‘‘natural ... for somebody to say’’, and
contrasting these with affirmative and negative
sentences chosen to be less natural. ‘‘Natural’’
items include examples like Most smokers find that
quitting is (not) very (difficult/easy), while items
designed to be less natural include examples like
Vitamins and proteins are (not) very (good/bad).
The authors share 16 base contexts, correspond-
ing to64 additional items, which we add to the orig-
inal 72 for additional comparison. All target words

7The one modification that we make to the original subject
noun list is a substitution of the word salmon for bass within
the category of fish—because bass created lexical ambiguity
that was not interesting for our purposes here.

are in BERT’s single-word vocabulary. We refer
to these supplementary 64 items, designed to test
effects of naturalness, as NEG-136-NAT.

6 Experiments

As a case study, we use these three diagnostics
to examine the predictive capacities of the pre-
trained BERT model (Devlin et al., 2019), which
has been the basis of impressive performance
across a wide range of tasks. BERT is a deep bi-
directional transformer network (Vaswani et al.,
2017) pre-trained on tasks of masked language
modeling (predicting masked words given bi-
directional context) and next-sentence prediction
(binary classification of whether two sentences
are a sequence). We test two versions of the pre-
trainedmodel:BERTBASE andBERTLARGE (uncased).
These versions have the same basic architecture,
but BERTLARGE has more parameters—in total,
BERTBASE has 110M parameters, and BERTLARGE

has 340M. We use the PyTorch BERT implemen-
tation with masked language modeling parameters
for generating word predictions.8

For testing, we process our sentence contexts to
have a [MASK] token—also used during BERT’s
pre-training—in the target position of interest. We
then measure BERT’s predictions for this [MASK]
token’s position. Following Goldberg (2019), we
also add a [CLS] token to the start of each sentence
to mimic BERT’s training conditions.

BERT differs from traditional left-to-right lan-
guage models, and from real-time human pre-
dictions, in being a bidirectional model able to
use information from both left and right context.
This difference should be neutralized by the fact
that our items provide all information in the left
context—however, in our experiments here, we do
allow one advantage for BERT’s bidirectionality:
We include a period and a [SEP] token after each
[MASK] token, to indicate that the target position
is followed by the end of the sentence. We do this
in order to give BERT the best possible chance of
success, by maximizing the chance of predicting a
single word rather than the start of a phrase. Items
for these experiments thus appear as follows:

[CLS] The restaurant owner forgot which cus-
tomer the waitress had [MASK] . [SEP]

8https://github.com/huggingface/pytorch-
pretrained-BERT.
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Orig Shuf Trunc Shuf + Trunc

BERTBASE k = 1 23.5 14.1 ± 3.1 14.7 8.1 ± 3.4
BERTLARGE k = 1 35.3 17.4 ± 3.5 17.6 10.0 ± 3.0
BERTBASE k = 5 52.9 36.1 ± 2.8 35.3 22.1 ± 3.2
BERTLARGE k = 5 52.9 39.2 ± 3.9 32.4 21.3 ± 3.7

Table 4: CPRAG-102 word prediction accuracies (with and without
sentence perturbations). Shuf = first sentence shuffled; Trunc =
second sentence truncated to two words before target.

Logits produced by the language model for
the target position are softmax-transformed to
obtain probabilities comparable to human cloze
probability values for those target positions.9

7 Results for CPRAG-102

First we report BERT’s results on the CPRAG-102
test targeting common sense, pragmatic reasoning,
and sensitivity within semantic category.

7.1 Word Prediction Accuracies

We define accuracy as percentage of items for
which the ‘‘expected’’ completion is among the
model’s top k predictions, with k = 1 and k = 5.

Table 4 (‘‘Orig’’) shows accuracies of
BERTBASE and BERTLARGE. For accuracy at k =
1, BERTLARGE soundly outperforms BERTBASE

with correct predictions on just over a third
of contexts. Expanding to k = 5, the models
converge on the same accuracy, identifying the
expected completion for about half of contexts.10

Because commonsense and pragmatic reason-
ing are non-trivial concepts to pin down, it is
worth asking to what extent BERT can achieve
this performance based on simpler cues like word
identities or n-gram context. To test importance
of word order, we shuffle the words in each item’s
first sentence, garbling the message but leaving all
individual words intact (‘‘Shuf’’ in Table 4). To
test adequacy of n-gram context, we truncate the
second sentence, removing all but the two words
preceding the target word (‘‘Trunc’’)—leaving

9Human cloze probabilities are importantly different from
true probabilities over a vocabulary, making these values
not directly comparable. However, cloze provides important
indication—the best indication we have—of how much a
context constrains human expectations toward a continuation,
so we do at times loosely compare these two types of values.

10Note that word accuracies are computed by context, so
these accuracies are out of the 34 base contexts.

Prefer good w/ .01 thresh

BERTBASE 73.5 44.1
BERTLARGE 79.4 58.8

Table 5: Percent of CPRAG-102 items with
good completion assigned higher probability
than bad.

generally enough syntactic context to identify the
part of speech, as well as some sense of semantic
category (on top of the thematic setup of the first
sentence), but removing other information from
that second sentence. We also test with both per-
turbations together (‘‘Shuf + Trunc’’). Because
different shuffled word orders give rise to differ-
ent results, for the ‘‘Shuf’’ and ‘‘Shuf + Trunc’’
settings we show mean and standard deviation
from 100 runs.

Table 4 shows the accuracies as a result of
these perturbations. One thing that is immediately
clear is that the BERT model is indeed making
use of information provided by the word order
of the first sentence, and by the more distant
content of the second sentence, as each of
these individual perturbations causes a notable
drop in accuracy. It is worth noting, however,
that with each perturbation there is a subset
of items for which BERT’s accuracy remains
intact. Unsurprisingly, many of these items are
those containing particularly distinctive words
associated with the target, such as checkmate
(chess), touchdown (football), and stone-washed
(jeans). This suggests that some of BERT’s suc-
cess on these items may be attributable to sim-
pler lexical or n-gram information. In Section 7.3
we take a closer look at some more difficult items
that seemingly avoid such loopholes.

7.2 Completion Sensitivity
Next we test BERT’s ability to prefer expected
completions over inappropriate completions of

40

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00298/1923116/tacl_a_00298.pdf by guest on 07 Septem
ber 2023



Context BERTLARGE predictions

Pablo wanted to cut the lumber he had bought to make
some shelves. He asked his neighbor if he could borrow
her

car, house, room, truck, apartment

The snow had piled up on the drive so high that they
couldn’t get the car out. When Albert woke up, his father
handed him a

note, letter, gun, blanket, newspaper

At the zoo, my sister asked if they painted the black and
white stripes on the animal. I explained to her that they
were natural features of a

cat, person, human, bird, species

Table 6: BERTLARGE top word predictions for selected CPRAG-102 items.

the same semantic category. We first test this
by simply measuring the percentage of items for
which BERT assigns a higher probability to the
good completion (e.g., lipstick from Table 1)
than to either of the inappropriate completions
(e.g., mascara, bracelet). Table 5 shows the
results. We see that BERTBASE assigns the highest
probability to the expected completion in 73.5% of
items, whereas BERTLARGE does so for 79.4%—a
solid majority, but with a clear portion of items
for which an inappropriate, semantically related
target does receive a higher probability than the
appropriate word.

We can make our criterion slightly more strin-
gent if we introduce a threshold on the prob-
ability difference. The average cloze difference
between good and bad completions is about .74
for the data from which these items originate,
reflecting a very strong human sensitivity to the
difference in completion quality. To test the pro-
portion of items in which BERT assigns more
substantially different probabilities, we filter to
items for which the good completion probability
is higher by greater than .01—a threshold chosen
to be very generous given the significant average
cloze difference. With this threshold, the sensi-
tivity drops noticeably—BERTBASE shows sen-
sitivity in only 44.1% of items, and BERTLARGE

shows sensitivity in only 58.8%. These results
tell us that although the models are able to prefer
good completions to same-category bad comple-
tions in a majority of these items, the difference
is in many cases very small, suggesting that this
sensitivity falls short of what we see in human
cloze responses.

7.3 Qualitative Examination of Predictions
We thus see that the BERT models are able to
identify the correct word completions in approx-

Orig -Obj -Sub -Both

BERTBASE k=1 14.8 12.5 12.5 9.1
BERTLARGE k=1 13.6 5.7 6.8 4.5
BERTBASE k=5 27.3 26.1 22.7 18.2
BERTLARGE k=5 37.5 18.2 21.6 14.8

Table 7: ROLE-88 word prediction accuracies
(with and without sentence perturbations). -Obj =
generic object; -Subj = generic subject; -Both =
generic object and subject.

imately half of CPRAG-102 items, and that the
models are able to prefer good completions to
semantically related inappropriate completions in
a majority of items, though with notably weaker
sensitivity than humans. To better understand the
models’ weaknesses, in this section we examine
predictions made when the models fail.

Table 6 shows three example items along
with the top five predictions of BERTLARGE. In
each case, BERT provides completions that are
sensible in the context of the second sentence,
but that fail to take into account the context
provided by the first sentence—in particular, the
predictions show no evidence of having been
able to infer the relevant information about the
situation or object described in the first sentence.
For instance, we see in the first example that
BERT has correctly zeroed in on things that one
might borrow, but it fails to infer that the thing to
be borrowed is something to be used for cutting
lumber. Similarly, BERT’s failure to detect the
snow-shoveling theme of the second item makes
for an amusing set of non sequitur completions.
Finally, the third example shows that BERT has
identified an animal theme (unsurprising, given
the words zoo and animal), but it is not applying
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≤.17 ≤.23 ≤.33 ≤.77

BERTBASE k=1 12.0 17.4 17.4 11.8
BERTLARGE k=1 8.0 4.3 17.4 29.4
BERTBASE k=5 24.0 26.1 21.7 41.1
BERTLARGE k=5 28.0 34.8 39.1 52.9

Table 8: Accuracy of predictions in unperturbed
ROLE-88 sentences, binned by max cloze of
context.

the phrase black and white stripes to identify
the appropriate completion of zebra. Altogether,
these examples illustrate that with respect to the
target capacities of commonsense inference and
pragmatic reasoning, BERT fails in these more
challenging cases.

8 Results for ROLE-88

Next we turn to the ROLE-88 test of semantic role
sensitivity and event knowledge.

8.1 Word Prediction Accuracies
We again define accuracy by presence of a top
cloze item within the model’s top k predictions.
Table 7 (‘‘Orig’’) shows the accuracies for
BERTLARGE and BERTBASE. For k = 1, accu-
racies are very low, with BERTBASE slightly out-
performing BERTLARGE. When we expand to
k = 5, accuracies predictably increase, and
BERTLARGE now outperforms BERTBASE by a
healthy margin.

To test the extent to which BERT relies on
the individual nouns in the context, we try
two different perturbations of the contexts: re-
moving the information from the object (which
customer the waitress ...), and removing the
information from the subject (which customer the
waitress...), in each case by replacing the noun
with a generic substitute. We choose one and
other as substitutions for the object and subject,
respectively.

Table 7 shows the results with each of these
perturbations individually and together. We ob-
serve several notable patterns. First, removing ei-
ther the object (‘‘-Obj’’) or the subject (‘‘-Sub’’)
has relatively little effect on the accuracy of
BERTBASE for either k = 1 or k = 5. This is quite
different from what we see with BERTLARGE, the
accuracy of which drops substantially when the
object or subject information is removed. These

Prefer good w/ .01 thresh

BERTBASE 75.0 31.8
BERTLARGE 86.4 43.2

Table 9: Percent of ROLE-88 items with good
completion assigned higher probability than
role reversal.

patterns suggest that BERTBASE is less dependent
upon the full detail of the subject-object structure,
instead relying primarily upon one or the other
of the participating nouns for its verb predictions.
BERTLARGE, on the other hand, appears to make
heavier use of both nouns, such that loss of either
one causes non-trivial disruption in the predictive
accuracy.

It should be noted that the items in this
set are overall less constraining than those in
Section 7—humans converge less clearly on the
same predictions, resulting in lower average cloze
values for the best completions. To investigate the
effect of constraint level, we divide items into four
bins by top cloze value per sentence. Table 8 shows
the results. With the exception of BERTBASE at
k = 1, for which accuracy in all bins is fairly
low, it is clear that the highest cloze bin yields
much higher model accuracies than the other three
bins, suggesting some alignment between how
constraining contexts are for humans and how
constraining they are for BERT. However, even
in the highest cloze bin, when at least a third
of humans converge on the same completion,
even BERTLARGE at k = 5 is only correct in
half of cases, suggesting substantial room for
improvement.11

8.2 Completion Sensitivity

Next we test BERT’s sensitivity to role reversals
by comparing model probabilities for a given
completion (e.g., served) in the appropriate versus
role-reversed contexts. We again start by testing
the percentage of items for which BERT assigns
a higher probability to the appropriate than to the
inappropriate completion. As we see in Table 9,
BERTBASE prefers the good continuation in
75% of items, whereas BERTLARGE does so
for 86.4%—comparable to the proportions for
CPRAG-102. However, when we apply our

11This analysis is made possible by the Chow et al. (2016)
authors’ generous provision of the cloze data for these items,
not originally made public with the items themselves.
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Context BERTBASE predictions BERTLARGE predictions

the camper reported which girl the
bear had

taken, killed, attacked, bitten,
picked

attacked, killed, eaten, taken,
targeted

the camper reported which bear the
girl had

taken, killed, fallen, bitten,
jumped

taken, left, entered, found,
chosen

the restaurant owner forgot which
customer the waitress had

served, hired, brought, been,
taken

served, been, delivered,
mentioned, brought

the restaurant owner forgot which
waitress the customer had

served, been, chosen, ordered,
hired

served, chosen, called,
ordered, been

Table 10: BERTBASE and BERTLARGE top word predictions for selected ROLE-88 sentences.

Accuracy

BERTBASE k = 1 38.9
BERTLARGE k = 1 44.4
BERTBASE k = 5 100
BERTLARGE k = 5 100

Table 11: Accuracy of word predictions in
NEG-136-SIMP affirmative sentences.

threshold of .01 (still generous given the average
cloze difference of .233), sensitivity drops more
dramatically than on CPRAG-102, to 31.8% and
43.2%, respectively.

Overall, these results suggest that BERT is,
in a majority of cases of this kind, able to use
noun position to prefer good verb completions
to bad—however, it is again less sensitive than
humans to these distinctions, and it fails to match
human word predictions on a solid majority
of cases. The model’s ability to choose good
completions over role reversals (albeit with weak
sensitivity) suggests that the failures on word
prediction accuracy are not due to inability to
distinguish word orders, but rather to a weakness
in event knowledge or understanding of semantic
role implications.

8.3 Qualitative Examination of Predictions

Table 10 shows predictions of BERTBASE and
BERTLARGE for some illustrative examples. For
the girl/bear items, we see that BERTBASE favors
continuations like killed and bitten with bear as
subject, but also includes these continuations with
girl as subject. BERTLARGE, by contrast, excludes
these continuations when girl is the subject.

In the second pair of sentences we see that the
models choose served as the top continuation

Affirmative Negative

BERTBASE 100 0.0
BERTLARGE 100 0.0

Table 12: Percent of NEG-136-SIMP items with
true completion assigned higher probability than
false.

under both word orders, even though for the
second word order this produces an unlikely
scenario. In both cases, the model’s assigned
probability for served is much higher for the
appropriate word order than the inappropriate
one—a difference of .6 for BERTLARGE and
.37 for BERTBASE—but it is noteworthy that no
more semantically appropriate top continuation is
identified by either model for which waitress the
customer had .

As a final note, although the continuations
are generally impressively grammatical, we see
exceptions in the second bear/girl sentence—
both models produce completions of questionable
grammaticality (or at least questionable use of
selection restrictions), with sentences like which
bear the girl had fallen from BERTBASE, and
which bear the girl had entered from BERTLARGE.

9 Results for NEG-136

Finally, we turn to the NEG-136 test of negation
and category membership.

9.1 Word Prediction Accuracies

We start by testing the ability of BERT to predict
correct category continuations for the affirmative
contexts in NEG-136-SIMP. Table 11 shows the
accuracy results for these affirmative sentences.
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Context BERTLARGE predictions

A robin is a bird, robin, person, hunter, pigeon
A daisy is a daisy, rose, flower, berry, tree
A hammer is a hammer, tool, weapon, nail, device
A hammer is an object, instrument, axe, implement, explosive
A robin is not a robin, bird, penguin, man, fly
A daisy is not a daisy, rose, flower, lily, cherry
A hammer is not a hammer, weapon, tool, gun, rock
A hammer is not an object, instrument, axe, animal, artifact

Table 13: BERTLARGE top word predictions for selected NEG-136-SIMP sentences.

Aff. NT Neg. NT Aff. LN Neg. LN

BERTBASE 62.5 87.5 75.0 0.0
BERTLARGE 75.0 100 75.0 0.0

Table 14: Percent of NEG-136-NAT with true
continuation given higher probability than false.
Aff = affirmative; Neg = negative; NT = natural;
LN = less natural.

We see that for k = 5, the correct category
is predicted for 100% of affirmative items,
suggesting an impressive ability of both BERT
models to associate nouns with their correct
immediate hypernyms. We also see that the
accuracy drops substantially when assessed on
k = 1. Examination of predictions reveals that
these errors consist exclusively of cases in which
BERT completes the sentence with a repetition of
the subject noun, e.g., A daisy is a daisy—which
is certainly true, but which is not a likely or
informative sentence.

9.2 Completion Sensitivity

We next assess BERT’s sensitivity to the meaning
of negation, by measuring the proportion of items
in which the model assigns higher probabilities to
true completions than to false ones.

Table 12 shows the results, and the pattern is
stark. When the statement is affirmative (A robin
is a ), the models assign higher probability
to the true completion in 100% of items. Even
with the threshold of .01—which eliminated many
comparisons on CPRAG-102 and ROLE-88—all
items pass but one (for BERTBASE), suggesting a
robust preference for the true completions.

However, in the negative statements (A robin is
not a ), BERT prefers the true completion in 0%
of items, assigning the higher probability to the

false completion in every case. This shows a strong
insensitivity to the meaning of negation, with
BERT preferring the category match completion
every time, despite its falsity.

9.3 Qualitative Examination of Predictions
Table 13 shows examples of the predictions
made by BERTLARGE in positive and negative
contexts. We see a clear illustration of the phe-
nomenon suggested by the earlier results: For
affirmative sentences, BERT produces generally
true completions (at least in the top two)—but
these completions remain largely unchanged after
negation is added, resulting in many blatantly
untrue completions.

Another interesting phenomenon that we can
observe in Table 13 is BERT’s sensitivity to the
nature of the determiner (a or an) preceding the
masked word. This determiner varies depending
on whether the upcoming target begins with a
vowel or a consonant (for instance, our mis-
matched category paired with hammer is insect)
and so the model can potentially use this cue
to filter the predictions to those starting with
either vowels or consonants. How effectively does
BERT use this cue? The predictions indicate that
BERT is for the most part extremely good at using
this cue to limit to words that begin with the right
type of letter. There are certain exceptions (e.g.,
An ant is not a ant), but these are in the minority.

9.4 Increasing Naturalness
The supplementary NEG-136-NAT items allow
us to examine further the model’s handling of
negation, with items designed to test the effect
of ‘‘naturalness’’. When we present BERT with
this new set of sentences, the model does show
an apparent change in sensitivity to the nega-
tion. BERTBASE assigns true statements higher
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Context BERTLARGE predictions

Most smokers find that quitting is very difficult, easy, effective, dangerous, hard
Most smokers find that quitting isn’t very effective, easy, attractive, difficult, succcessful
A fast food dinner on a first date is very good, nice, common, romantic, attractive
A fast food dinner on a first date isn’t very nice, good, romantic, appealing, exciting

Table 15: BERTLARGE top word predictions for selected NEG-136-NAT sentences.

probability than false for 75% of natural sentences
(‘‘NT’’), and BERTLARGE does so for 87.5% of
natural sentences. By contrast, the models each
show preference for true statements in only 37.5%
of items designed to be less natural (‘‘LN’’).
Table 14 shows these sensitivities broken down
by affirmative and negative conditions. Here we
see that in the natural sentences, BERT prefers
true statements for both affirmative and negative
contexts—by contrast, the less natural sentences
show the pattern exhibited on NEG-136-SIMP,
in which BERT prefers true statements in a high
proportion of affirmative sentences, and in 0%
of negative sentences, suggesting that once again
BERT is defaulting to category matches with the
subject.

Table 15 contains BERTLARGE predictions on
two pairs of sentences from the ‘‘Natural’’ sen-
tence set. It is worth noting that even when BERT’s
first prediction is appropriate in the context, the
top candidates often contradict each other (e.g.,
difficult and easy). We also see that even with
these natural items, sometimes the negation is not
enough to reverse the top completions, as with the
second pair of sentences, in which the fast food
dinner both is and isn’t a romantic first date.

10 Discussion

Our three diagnostics allow for a clarified picture
of the types of information used for predictions
by pre-trained BERT models. On CPRAG-102,
we see that both models can predict the best
completion approximately half the time (at k =
5), and that both models rely non-trivially on
word order and full sentence context. However,
successful predictions in the face of perturbations
also suggest that some of BERT’s success on
these items may exploit loopholes, and when
we examine predictions on challenging items,
we see clear weaknesses in the commonsense
and pragmatic inferences targeted by this set.
Sensitivity tests show that BERT can also prefer

good completions to bad semantically related
completions in a majority of items, but many
of these probability differences are very small,
suggesting that the model’s sensitivity is much
less than that of humans.

On ROLE-88, BERT’s accuracy in match-
ing top human predictions is much lower, with
BERTLARGE at only 37.5% accuracy. Perturba-
tions reveal interesting model differences, sug-
gesting that BERTLARGE has more sensitivity than
BERTBASE to the interaction between subject and
object nouns. Sensitivity tests show that both mod-
els are typically able to use noun position to prefer
good completions to role reversals, but the differ-
ences are on average even smaller than on CPRAG-
102, indicating again that model sensitivity to the
distinctions is less than that of humans. The mod-
els’ general ability to distinguish role reversals
suggests that the low word prediction accuracies
are not due to insensitivity to word order per se,
but rather to weaknesses in event knowledge or
understanding of semantic role implications.

Finally, NEG-136 allows us to zero in with
particular clarity on a divergence between BERT’s
predictive behavior and what we might expect
from a model using all available information about
word meaning and truth/falsity. When presented
with simple sentences describing category mem-
bership, BERT shows a complete inability to
prefer true over false completions for negative
sentences. The model shows an impressive ability
to associate subject nouns with their hypernyms,
but when negation reverses the truth of those
hypernyms, BERT continues to predict them
nonetheless. By contrast, when presented with
sentences that are more ‘‘natural’’, BERT does re-
liably prefer true completions to false, with or
without negation. Although these latter sentences
are designed to differ in naturalness, in all
likelihood it is not naturalness per se that drives
the model’s relative success on them—but rather
a higher frequency of these types of statements in
the training data.
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The latter result in particular serves to highlight
a stark, but ultimately unsurprising, observation
about what these pre-trained language models
bring to the table. Whereas the function of lan-
guage processing for humans is to compute
meaning and make judgments of truth, language
models are trained as predictive models—they
will simply leverage the most reliable cues in
order to optimize their predictive capacity. For
a phenomenon like negation, which is often not
conducive to clear predictions, such models may
not be equipped to learn the implications of this
word’s meaning.

11 Conclusion

In this paper we have introduced a suite of
diagnostic tests for language models to better
our understanding of the linguistic competencies
acquired by pre-training via language modeling.
We draw our tests from psycholinguistic studies,
allowing us to target a range of linguistic ca-
pacities by testing word prediction accuracies
and sensitivity of model probabilities to linguistic
distinctions. As a case study, we apply these tests
to analyze strengths and weaknesses of the popular
BERT model, finding that it shows sensitivity
to role reversal and same-category distinctions,
albeit less than humans, and it succeeds with
noun hypernyms, but it struggles with challenging
inferences and role-based event prediction—and it
shows clear failures with the meaning of negation.
We make all test sets and experiment code avail-
able (see Footnote 1), for further experiments.

The capacities targeted by these test sets are
by no means comprehensive, and future work can
build on the foundation of these datasets to expand
to other aspects of language processing. Because
these sets are small, we must also be conservative
in the strength of our conclusions—different for-
mulations may yield different performance, and
future work can expand to verify the generality
of these results. In parallel, we hope that the
weaknesses highlighted by these diagnostics can
help to identify areas of need for establishing
robust and generalizable models for language
understanding.
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