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Abstract

We introduce Morse, a recurrent encoder-
decoder model that produces morphological
analyses of each word in a sentence. The
encoder turns the relevant information about
the word and its context into a fixed size
vector representation and the decoder gen-
erates the sequence of characters for the
lemma followed by a sequence of individ-
ual morphological features. We show that
generating morphological features individu-
ally rather than as a combined tag allows the
model to handle rare or unseen tags and to out-
perform whole-tag models. In addition, gen-
erating morphological features as a sequence
rather than, for example, an unordered set
allows our model to produce an arbitrary
number of features that represent multiple
inflectional groups in morphologically com-
plex languages. We obtain state-of-the-art
results in nine languages of different mor-
phological complexity under low-resource,
high-resource, and transfer learning settings.
We also introduce TrMor2018, a new high-
accuracy Turkish morphology data set. Our
Morse implementation and the TrMor2018
data set are available online to support future
research.1

1 Introduction

Morse is a recurrent encoder-decoder model that
takes sentences in plain text as input and produces
both lemmas and morphological features of each
word as output. Table 1 presents an example:
The ambiguous Turkish word ‘‘masalı’’ has three

∗Equal contribution.
†Corresponding author.
1See https://github.com/ai-ku/Morse.jl

for a Morse implementation in Julia/Knet (Yuret, 2016)
and https://github.com/ai-ku/TrMor2018 for
the new Turkish data set.

possible morphological analyses: the accusative
and possessive forms of the stem ‘‘masal’’ (tale)
and the +With form of the stem ‘‘masa’’ (table),
all expressed with the same surface form (Oflazer,
1994). Morse attempts to output the correct
analysis of each word based on its context in
a sentence.

Accurate morphological analysis and disam-
biguation are important prerequisites for further
syntactic and semantic processing, especially in
morphologically complex languages. Many lan-
guages mark case, number, person, and so on.
using morphology, which helps discover the
correct syntactic dependencies. In agglutinative
languages, syntactic dependencies can even be
between subword units. For example, Oflazer
et al. (1999) observes that words in Turkish can
have dependencies to any one of the inflectional
groups of a derived word: in ‘‘mavi masalı oda’’
(room with a blue table) the adjective ‘‘mavi’’
(blue) modifies the noun root ‘‘masa’’ (table)
even though the final part of speech of ‘‘masalı’’
is an adjective. This dependency would be dif-
ficult to represent without a detailed analysis of
morphology.

We combined the following ideas to attack
morphological analysis in the Morse model:

• Morse does not require an external rule-based
analyzer or dictionary, avoiding the parallel
maintenance of multiple systems.

• Morse performs lemmatization and tagging
jointly by default; we also report on sepa-
rating the two tasks.

• Morse outputs morphological tags one fea-
ture at a time, giving it the ability to learn
unseen/rare tags.

• Morse generates features as a variable size
seqeunce rather than a fixed set, allowing it
to represent derivational morphology.
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Context & analysis of ‘‘masalı’’
masalı yaz. (write the tale.)
masal+Noun+A3sg+Pnon+Acc
babamın masalı (my father’s tale)
masal+Noun+A3sg+P3sg+Nom
mavi masalı oda (room with a blue table)
masa+Noun+A3sg+Pnon+NomˆDB+Adj+With

Table 1: Morphological analyses for Turkish word
masalı. An example context and its translation is
given before each analysis.

We evaluated our model on several Turkish data
sets (Yuret and Türe, 2006; Yıldız et al., 2016) and
eight languages from the Universal Dependencies
data set (UD; Nivre et al., 2016) in low-resource,
high-resource, and transfer learning settings for
comparison with existing work. We realized that
existing Turkish data sets either had low inter-
annotator agreement or small test sets, which made
model comparison difficult because of noise and
statistical significance problems. To address these
issues we also created a new Turkish data set,
TrMor2018, which contains 460 K tagged tokens
and has been verified to be 96% accurate by
trained annotators. We report our results on this
new data set as well as previously available data
sets.

The main contributions of this work are:

• A new encoder-decoder model that performs
joint lemmatization and morphological tag-
ging which can handle unknown words, un-
seen tag sequences, and multiple inflectional
groups.

• State-of-the-art results on nine languages of
varying morphological complexity in low-
resource, high-resource, and transfer learning
settings.

• Release of a new morphology data set for
Turkish.

We discuss related work in Section 2, detail our
model’s input output representation and individual
components in Section 3, describe our data sets and
introduce our new Turkish data set in Section 4,
present our experiments and results in Section 5,
and conclude in Section 6.

2 Related Work

Morphological word analysis has been typically
performed by solving multiple subproblems. In

one common approach the subproblems of
lemmatization (e.g., finding the stem ‘‘masal’’
for the first two examples in Table 1 and
‘‘masa’’ for the third) and morphological tagging
(e.g., producing +Noun+A3sg+Pnon+Acc in
the first example) are attacked separately. In
another common approach a language-dependent
rule-based morphological analyzer outputs all
possible lemma+tag analyses for a given word,
and a statistical disambiguator picks the correct
one in a given context. Even though Morse
attacks these problems jointly, the prior work is
best presented within these traditional divisions,
contrasting various approaches with Morse where
appropriate.

2.1 Lemmatization and Tagging

Early work in this area typically performed
lemmatization and tagging separately. For ex-
ample, the Shortest Edit Script (SES) approach
to lemmatization classifies lemmas based on the
mimimum sequence of operations that converts
a wordform into a lemma (Chrupala, 2006).
MarMoT (Mueller et al., 2013) predicts the se-
quence of morphological tags in a sentence using
a pruned higher-order conditional random field.

SES was later extended to do joint
lemmatization and morphological tagging in
Morfette (Chrupala et al., 2008), where two
separate maximum entropy models are trained for
predicting the lemma and the morphological tag
and a third model returns a probability distribution
over lemma-tag pairs. MarMoT was extended
to Lemming (Müller et al., 2015), which used
a joint log-linear model of lemmatization and
tagging and provided empirical evidence that
jointly modeling morphological tags and lemmata
is mutually beneficial.

We chose to perform lemmatization and
tagging jointly in Morse partly for linguistic
reasons: as Table 1 shows, a tag like +Noun+
A3sg+Pnon+Acc can be correct with respect to
one lemma (masal) and not another (masa). For
comparison with some of the earlier work, we did
train Morse to only generate the morphological tag
and observed some improvement in low-resource
and transfer-learning settings, but no significant
improvement in high-resource experiments.

More recent work started experimenting with
deep learning models. Heigold et al. (2017)
outperformed MarMoT in morphological tagging
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Language 100sent 1000sent
Swedish 9.19 1.02
Bulgarian 14.38 2.68
Hungarian 15.78 3.93
Portuguese 6.04 0.82

Table 2: Percentage of tags in the test data that
have been observed fewer than 5 times in the
training data for four languages and two training
sizes (100 and 1000 sentences).

using a character-based recurrent neural network
encoder similar to Morse, combined with a whole-
tag classifier. To address the data sparseness
problem this work was extended in Cotterell and
Heigold (2017) with transfer learning, improving
performance on low resource languages by up to
30% using a related-high resource language.

Morse uses a character-based encoder that turns
the relevant features of the word and its context
into fixed-size vector representations similar to
Heigold et al. (2017). Our main contribution
is the sequence decoder that generates the
characters of the lemma and/or morphological
features sequentially one at a time. This is similar
to the way rule-based systems such as finite
state transducers output morphological analyses.
One advantage of generating features one at a
time (e.g., +Acc) rather than as a combined
tag (e.g., +Noun+A3sg+Pnon+Acc) is sample
efficiency. Table 2 shows the percentage of tags
in the test data that have been observed rarely
in the training data for several languages. In low
resource experiments, we show that our sequence
decoder significantly outperforms a variant that is
trained to output full tags similar to Heigold et al.
(2017), especially with unseen or rare tags.

Malaviya et al. (2018) also avoid the data
sparsity problem associated with whole tags
using a neural factor graph model to predict a
set of features, improving the transfer learning
performance. In contrast with Malaviya et al.
(2018), Morse generates a variable number of
features as a sequence rather than a fixed set. This
allows it to adequately represent derivations in
morphologically complex words. For example, in
the last analysis in Table 1, morphological features
of the word ‘‘masalı’’ consist of two inflectional
groups (IGs), a noun group and an adjective
group, separated by a derivational boundary
denoted by ‘‘ˆDB’’. In ‘‘mavi masalı oda’’ (room
with a blue table) the adjective ‘‘mavi’’ (blue)

Figure 1: Multiple inflectional groups in a word may
have independent syntactic relationships. Figure from
Eryiğit and Oflazer (2006).

modifies the noun root ‘‘masa’’ (table) even
though the final part of speech of ‘‘masalı’’ is an
adjective. In general, each IG in a morphologically
complex word may have independent syntactic
dependencies, as shown in Figure 1. Thus, for
languages like Turkish, it is linguistically essential
to be able to represent multiple IGs with a variable
number of features (Eryiğit et al., 2008). The
sequence-decoder approach of Morse outperforms
the neural factor graph model of Malaviya et al.
(2018) in both low-resource and transfer learning
settings.

2.2 Analysis and Disambiguation

Morphological analysis is the task of producing
all possible morphological parses for a given
word. For morphologically simple languages like
English, a dictionary is typically sufficient for this
task (Baayen et al., 1995). For morphologically
complex languages like Turkish, the analysis can be
performed by language dependent rule-based sys-
tems such as finite-state transducers that encode mor-
phophonemics and morphotactics (Koskenniemi,
1981, 1983; Karttunen and Wittenburg, 1983). The
first rule-based analyzer for Turkish was devel-
oped in Oflazer (1994), we used an updated ver-
sion of this analyzer (Oflazer, 2018) when creating
our new Turkish data set.

Morphological disambiguation systems take
the possible parses for a given word from an
analyzer and predict the correct one in a given
context using rule-based (Karlsson et al., 1995;
Oflazer and Kuruöz, 1994; Oflazer and Tür,
1996; Daybelge and Çiçekli, 2007; Daoud, 2009),
statistical (Hakkani-Tür et al., 2002; Yuret and
Türe, 2006; Hajič et al., 2007), or neural network
based (Yıldız et al., 2016; Shen et al., 2016; Toleu
et al., 2017) techniques. Hakkani-Tür et al. (2018)
provide a comprehensive summary for Turkish
disambiguators.
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Morse performs morphological analysis and
disambiguation with a joint model partly to
avoid using a separate morphological analyzer
or dictionary. Having a single system combining
morphological analysis and disambiguation is
easier to use and maintain. The additional con-
straints brought by an external morphological
analyzer or dictionary are certainly beneficial, but
the benefit appears to be limited with sufficient
data: In our experiments, (1) we outperform earlier
systems that use separate morphological analysis
and disambiguation components, and (2) when
we use Morse only to disambiguate among the
analyses generated by a rule-based analyzer, the
accuracy gain is less than 1% compared with
generating analyses from scratch.

3 Model

Morse produces the morphological analysis
(lemma plus morphological features) for each
word in a given sentence. It is loosely based on the
sequence-to-sequence encoder-decoder network
approach proposed by Sutskever et al. (2014)
for machine translation. However, we use three
distinct encoders to create embeddings of various
input features. First, a word encoder creates an
embedding for each word based on its characters.
Second, a context encoder creates an embedding
for the context of each word based on the word
embeddings of all words to the left and to the
right. Third, an output encoder creates an output
embedding using the morphological features of
the last two words. These embeddings are fed
to the decoder, which produces the lemma and
the morphological features of a target word
one character/feature at a time. In the following
subsections, we explain each component in detail.

3.1 Input Output

The input to the model consists of an N word sen-
tence S = [w1, . . . , wN ], where wi is the i’th word
in the sentence. Each word is input as a sequence
of characters wi = [wi1, . . . , wiLi ], wij ∈ A
where A is the set of alphanumeric characters and
Li is the number of characters in word wi.

The output for each word consists of a lemma,
a part-of-speech tag and a set of morphologi-
cal features—for example, [m, a, s, a, l, Noun,
A3sg, P3sg, Nom] for ‘‘masalı’’. The lemma is
produced one character at a time, and the mor-
phological information is produced one feature at

a time. A sample output for a word looks like
[si1, . . . , siRi , fi1, . . . , fiMi ] where sij ∈ A is an
alphanumeric character in the lemma, Ri is the
length of the lemma, Mi is the number of features,
and fij ∈ T is a morphological feature from a fea-
ture set such as T = {Noun,Adj,Nom,A3sg, . . .}.

We have experimented with other input-
output formats, as described in Section 5: We
found that jointly producing the lemma and the
morphological features is more difficult than
producing only morphological features in low-
resource settings but gives similar performance
in high-resource settings. We also found that
generating the morphological tag one feature at a
time rather than as a complete tag is advantageous,
more so in morphologically complex languages
and in low-resource settings.

3.2 Word Encoder

We map each character wij to an A dimensional
character embedding vector aij ∈ R

A. The word
encoder takes each word and processes the
character embeddings from left to right producing
hidden states [hi1, . . . , hiLi ] where hij ∈ R

H .
The final hidden state ei = hiLi is used as the
word embedding for word wi. The top left box
in Figure 2 depicts the word encoder. We also
experimented with external word embeddings but
did not observe any significant improvement.

hij = LSTM(aij , hij−1) (1)

hi0 = 0 (2)

ei = hiLi (3)

3.3 Context Encoder

We use a bidirectional long short-term memory
network (LSTM) for the context encoder. The
inputs are the word embeddings e1, · · · , eN
produced by the word encoder. The context
encoder processes them in both directions and
constructs a unique context embedding for each
target word in the sentence. For a word wi

we define its corresponding context embedding
ci ∈ R

2H as the concatenation of the forward
�ci ∈ R

H and the backward ←−c i ∈ R
H hidden

states that are produced after the forward and
backward LSTMs process the word embedding ei.
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Figure 2: Model illustration for the sentence "Sonra gülerek elini kardeşinin omzuna koydu" (Then he laughed and
put his hand on his brother’s shoulder) and target word ‘‘elini’’ (his hand). We use the morphological features of the
words preceding the target as input to the output encoder: ‘‘Sonra+Adv gül+Verb+PosˆDB+Adverb+ByDoingSo’’.

The bottom left box in Figure 2 depicts creation
of the context vector for the target word ‘‘elini’’.

�c i = LSTMf (ei,�ci−1) (4)

←−c i = LSTMb(ei,
←−c i+1) (5)

�c 0 = ←−c N+1 = 0 (6)

c i = [�ci;
←−c i] (7)

3.4 Output Encoder

The output encoder captures information about
the morphological features of words processed
prior to each target word. For example, in order
to assign the correct possessive marker to the
word ‘‘masalı’’ (tale) in ‘‘babamın masalı’’ (my
father’s tale), it would be useful to know that the
previous word ‘‘babamın’’ (my father’s) has a
genitive marker. During training we use the gold
morphological features, during testing we use the
output of the model.

The output encoder only uses the morphological
features, not the lemma characters, of the previous
words as input: [f11, . . . , f1M1

, f21, . . . , fi−1,Mi−1
].

We map each morphological feature fij to a
B dimensional feature embedding vector bij ∈
R
B . A unidirectional LSTM is run over the

morphological features of the last two words to
produce hidden states [t11, . . . , ti−1,Mi−1

] where
tij ∈ R

H . The final hidden state preceding the
target word oi = ti−1,Mi−1

is used as the output

embedding for word wi. The middle left box in
Figure 2 depicts the output encoder.

tij = LSTM(bij , tij−1) (8)

ti0 = ti−1,Mi−1
(9)

oi = ti−1,Mi−1
(10)

3.5 Decoder

The decoder is implemented as a 2-layer LSTM
network that outputs the correct lemma+tag for a
single target word.2 By conditioning on the three
encoder embeddings and its own hidden state, the
decoder learns to generate yi = [yi1, . . . , yiKi ]
where yi is the correct sequence for the target
word wi in sentence S, yij ∈ A ∪ T represents
both lemma characters and morphological feature
tokens, and Ki is the total number of output
tokens (lemma + features) for word wi. The first
layer of the decoder is initialized with the context
embedding ci.

d1i0 = relu(Wd × ci ⊕Wdb) (11)

d1ij = LSTM(yij−1, d
1
ij−1) (12)

where Wd ∈ R
H×2H , Wdb ∈ R

H , and ⊕ is
element-wise summation. We initialize the second

2We also experimented with two variants of our
model: MorseTag only outputs morphological features, and
MorseDisamb uses the decoder to rank probabilities of a set
of analyses provided by a rule-based system.
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lang train dev test |T| |F| |R| lang train dev test |T| |F| |R|
DA 80378 10332 10023 159 44 0.03% SV 66645 9797 20377 211 40 0.06%
RU 75964 11877 11548 734 39 0.27% BG 124336 16089 15724 439 45 0.03%
FI 162621 18290 21041 2243 93 0.68% HU 20166 11418 10448 716 73 1.03%
ES 384554 37349 12069 404 46 0.03% PT 211820 11158 10468 380 47 0.03%

Table 3: Data statistics of UD Version 2.1 Treebanks. The values in the {train, dev, test} columns are
the number of tokens in the splits. |T | gives the number of distinct tags (pos + morphological features),
|F | the number of distinct feature values. |R| gives the unseen tag percentage in the test set.

layer with the word and output embeddings after
combining them by element-wise summation.

d2i0 = ei + oi (13)

d2ij = LSTM(d1ij , d
2
ij−1) (14)

We parameterize the distribution over possible
morphological features and characters at each time
step as

p(yij |d2ij) = softmax(Ws × d2ij ⊕Wsb) (15)

where, Ws ∈ R
|Y|×H , and Wsb ∈ R

|Y| where
Y = A ∪ T is the set of characters and
morphological features in output vocabulary. The
right side of Figure 2 depicts the decoder.

4 Data Sets

We evaluate Morse on several different languages
and data sets. First we describe the multilingual
data sets we used from the UD data sets (Nivre
et al., 2016). We then describe two existing data
sets for Turkish and introduce our new data set
TrMor2018.

4.1 Universal Dependency Data Sets
We tested Morse on eight languages selected from
the UD data sets Version 2.1 (Nivre et al., 2016).
In Table 3, we summarize the corpus statistics.
Specifically, we use the CoNLL-U format3 for
the input files, take column 2 (FORM) as input,
and predict columns 3 (LEMMA), 4 (UPOSTAG),
and 6 (FEATS). We show the number of distinct
features with |F |, the number of distinct composite
tags with |T |, and the unseen composite tag
percentage with |R| to indicate the morphological
complexity of a language.

4.2 Turkish Data Sets
For Turkish we evaluate our model on three data
sets described in Table 4. These data sets contain

3http://universaldependencies.org/format.html

Dataset Ambig Unamb Total
TrMor2006Train 398290 439234 837524
TrMor2006Test 379 483 862
TrMor2016Test 9460 9802 19262
TrMor2018 216803 243866 460669

Table 4: Number of ambiguous, unambiguous,
and all tokens for data sets TrMor2006 (Yuret
and Türe, 2006), TrMor2016 (Yıldız et al.,
2016) (which shares the same training set), and
TrMor2018 (introduced in this paper).

derivational as well as inflectional morphology
represented by multiple inflectional groups as
described in the Introduction. In contrast, the UD
data sets only preserve information in the last
inflectional group.

The first data set, TrMor2006, was provided
by Kemal Oflazer and published in Yuret and
Türe (2006) based on a Turkish newspaper data
set. The training set was disambiguated semi-
automatically and has limited accuracy. The test
set was hand-tagged but is very small (862 tokens)
to reliably distinguish between models with sim-
ilar accuracy. We randomly extracted 100 sen-
tences from the training set and used them as the
development set while training our model.

The second data set, TrMor2016, was prepared
by Yıldız et al. (2016). The training set is the
same as TrMor2006 but they manually retagged
a subset of the training set containing roughly
20,000 tokens to be used as a larger test set.
Unfortunately they did not exclude the sentences
in the test set from the training set in their
experiments. Furthermore, they do not provide
any inter-annotator agreement results on the new
test set.

Given the problems associated with these data
sets, we decided to prepare a new data set,
TrMor2018, that we release with this paper. Our
goal is to provide a data set with high inter-
annotator agreement that is large enough to allow
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dev/test sets of sufficient size to distinguish model
performances in a statistically significant manner.
The new data set consists of 34,673 sentences and
460,669 tokens in total from different genres of
Turkish text.

TrMor2018 was annotated semi-automatically
in multiple passes. The initial pass was performed
automatically by a previous state-of-the-art model
(Yuret and Türe, 2006). The resulting data were
spot checked in multiple passes for mistakes
and inconsistencies by annotators, prioritizing
ambiguous high-frequency words. Any systematic
errors discovered were corrected by hand-written
scripts.

In order to monitor our progress, we randomly
selected a subset and disambiguated all of it
manually. This subset contains 2,090 sentences
and 26,819 words. Two annotators annotated each
word independently and we assigned the final
morphological tag of each word based on the
adjudication by a third. Taking this hand-tagged
subset as the gold standard, we measure the noise
level in the corresponding semi-automatic results
after every pass. Importantly, the hand-tagged
subset is only used for evaluating the noise level
of the main data set (i.e., we do not use it for
training or testing, and we do not use the identity
of the mistakes to inform our passes). Our current
release of TrMor2018 has a disagreement level of
4.4% with the hand-tagged subset, which is the
current state-of-the-art for Turkish morphological
data sets.

5 Experiments and Results

In this section we describe our training procedure,
give experimental results, compare with related
models, and provide an ablation analysis.
The results demonstrate that Morse, generating
analyses with its sequence decoder, significantly
outperforms the state of the art in low-resource,
high-resource, and transfer-learning experiments.
We also experimented with two variants of our
model for more direct comparisons: MorseTag
which only predicts tags without lemmas, and
MorseDisamb which chooses among the analyses
generated by a rule-based morphological analyzer.

5.1 Training

All LSTM units have H = 512 hidden units in our
experiments. The size of the character embedding
vectors are A = 64 in the word encoder. In the

decoder part, the size of the output embedding
vectors is B = 256. We initialized model
parameters with Xavier initialization (Glorot and
Bengio, 2010).

Our networks are trained using back-
propagation through time with stochastic gradient
descent. The learning rate is set to lr = 1.6 and is
decayed based on the development accuracy. We
apply learning rate decay by a factor of 0.8 if the
development set accuracy is not improved after
5 consecutive epochs. Likewise, early-stopping
is forced if the development set accuracy is not
improved after 10 consecutive epochs, returning
the model with the best dev accuracy. To reduce
overfitting, dropout is applied with the rates of 0.5
for low-resource and 0.3 in high-resource settings
for each of the LSTM units as well as embedding
layers.

5.2 Multilingual Results
For comparison with existing work, we evaluated
our model on four pairs of high/low resource lan-
guage pairs: Danish/Swedish (DA/SV), Russian/
Bulgarian (RU/BG), Finnish/Hungarian (FI/HU),
and Spanish/Portuguese (ES/PT). Table 5 com-
pares the accuracy and Table 6 compares the F1
scores of four related models:4 (1) Cotterell: a
classification-based model with a similar encoder
that predicts whole tags rather than individual fea-
tures (Cotterell and Heigold, 2017), (2) Malaviya:
a neural factor graph model that predicts a fixed
number of morphological features rather than
variable length feature sequences (Malaviya et al.,
2018), (3) Morse: our model with joint prediction
of the lemma and the tag (the lemma is ignored
in scoring), and (4) MorseTag: a version of our
model that predicts only the morphological tag
without the lemma (Cotterell and Malaviya only
predict tags). We compare results in three different
settings: (1) LR100 and LR1000 columns show
the low-resource setting where we experiment
with 100 and 1000 sentences of training data in
Swedish, Bulgarian, Hungarian, and Portuguese,
(2) XFER100 and XFER1000 columns show the
transfer learning setting where the related high,
resource language is used to help improve the
results of the low-resource language (which has
only 100/1000 sentences), and (3) HR column

4Accuracy is for the whole-tag ignoring the lemma.
The F1 score is based on the precision and recall of
each morphological feature ignoring the lemma, similar to
Malaviya et al. (2018).
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HR/LR Model LR100 XFER100 LR1000 XFER1000 HR

DA/SV

Cotterell 15.11 66.06 68.64 82.26 91.79
Malaviya 29.47 63.22 71.32 77.43
Morse 62.45(0.69) 72.70(0.59) 86.44(0.17) 87.55(0.22) 92.68(0.19)
MorseTag 66.19(1.23) 76.70(0.72) 88.31(0.17) 88.97(0.54) 93.35(0.23)

RU/BG

Cotterell 29.05 52.76 59.20 71.90 82.02
Malaviya 27.81 46.89 39.25 67.56
Morse 59.82(1.65) 69.27(0.54) 87.71(0.26) 88.70(0.16) 85.43(0.12)
MorseTag 66.97(1.34) 75.78(0.26) 88.96(0.41) 90.52(0.21) 86.51(0.36)

FI/HU

Cotterell 21.97 51.74 50.75 61.80 85.25
Malaviya 33.32 45.41 45.90 63.93
Morse 49.58(1.27) 54.84(0.71) 72.28(0.74) 71.33(1.83) 91.24(0.28)
MorseTag 54.87(0.72) 57.12(0.36) 73.55(0.72) 73.86(1.28) 91.42(0.84)

ES/PT

Cotterell 18.91 79.40 74.22 85.85 93.09
Malaviya 58.82 77.75 76.26 85.02
Morse 70.57(0.54) 80.01(0.38) 86.29(0.31) 87.51(0.27) 92.95(0.21)
MorseTag 70.80(1.14) 81.60(0.16) 86.24(0.28) 88.01(0.13) 92.89(0.18)

Table 5: Accuracy comparisons for UDv2.1 data sets. Table 6 gives F1 comparisons which are similar.
LR is the low-resource language, HR is the high-resource language, XFER represents HR to LR transfer
learning. 100/1000 indicate the number of sentences in the training set for low-resource experiments.
Morse and MorseTag rows give the average of 5 experiments with standard deviation in parentheses.
Statistically significant leaders (p < 0.05) are marked in bold. Some experiments have multiple leaders
marked when their difference is not statistically significant.

HR/LR Model LR100 XFER100 LR1000 XFER1000 HR

DA/SV

Cotterell 08.36 73.95 76.36 87.88 94.18
Malaviya 54.09 78.75 84.42 87.56
Morse 72.77(0.74) 81.39(0.27) 91.52(0.07) 92.42(0.15) 95.18(0.11)
MorseTag 74.91(1.26) 84.27(0.48) 92.39(0.26) 93.04(0.35) 95.50(0.21)

RU/BG

Cotterell 14.32 58.41 67.22 77.89 90.63
Malaviya 40.97 64.46 60.23 82.06
Morse 68.90(1.36) 76.86(0.41) 92.38(0.13) 93.12(0.21) 93.08(0.03)
MorseTag 75.52(1.16) 83.60(0.06) 93.08(0.37) 94.24(0.11) 93.55(0.13)

FI/HU

Cotterell 13.30 68.15 58.68 75.96 90.54
Malaviya 54.88 68.63 74.05 85.06
Morse 65.17(1.17) 71.77(0.42) 85.96(0.42) 85.91(0.86) 95.34(0.20)
MorseTag 72.21(0.67) 74.17(0.14) 87.17(0.38) 87.39(0.53) 95.37(0.52)

ES/PT

Cotterell 07.10 86.03 81.62 91.91 96.57
Malaviya 73.67 88.42 87.13 92.35
Morse 80.06(0.73) 88.11(0.25) 92.43(0.28) 93.31(0.20) 96.52(0.10)
MorseTag 80.07(0.92) 88.99(0.42) 92.29(0.28) 93.56(0.14) 96.44(0.13)

Table 6: F1 comparisons for UDv2.1 data sets. See Table 5 for column descriptions.

gives the high-resource setting where we use the
full training data with the high resource languages
Danish, Russian, Finnish, and Spanish.5

For transfer experiments we use a simple
transfer scheme: training with the high-resource
language for 10 epochs and using the resulting

5Malaviya is missing from the HR column because we
could not train it with large data sets in a reasonable amount
of time. For Cotterell we used the SPECIFIC model given in
Malaviya et al. (2018) in all experiments.

model to initialize the compatible weights of the
model for the low-resource language. All LSTM
weights and embeddings for identical tokens are
transferred exactly, new token embeddings are
initialized randomly.

In all low-resource, transfer-learning, and high-
resource experiments, Morse and MorseTag per-
form significantly better than the two related models
(with the single exception of the high-resource
experiment on Spanish, a morphologically simple
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Method TrMor2006 TrMor2016 TrMor2018
(Yuret and Türe, 2006) 95.82 - -
(Sak et al., 2007) 96.28 - -
(Yıldız et al., 2016) - 92.20 -
(Shen et al., 2016) 96.41 - -
Morse 95.94 92.63 97.67
MorseDisamb 96.52 92.82 98.59

Table 7: Test set lambda+tag accuracy of several models on Turkish data sets: TrMor2006 (Yuret and
Türe, 2006), TrMor2016 (Yıldız et al., 2016), TrMor2018 (published with this paper).

language, where the difference with Cotterell is
not statistically significant). This supports the
hypothesis that the sequence decoder of Morse is
more sample-efficient than a whole-tag model or
a neural factor graph model.

Tag-only prediction in MorseTag generally
outperforms joint lemma-tag prediction in Morse
but the difference decreases or disappears with
more training data and in simpler languages. In
half of the high-resource experiments, their differ-
ence is not statistically significant. The difference
is also insignificant in most of the experiments,
with the morphologically simplest language pair
Spanish/Portuguese.

5.3 Turkish Results

Table 7 shows the lemma+tag test accuracy of
several systems for different Turkish data sets.
We masked digits and Prop (proper noun) tags
in our evaluations. The older models use a hand-
built morphological analyzer (Oflazer, 1994) that
gives a list of possible lemma+tag analyses and
trains a disambiguator to pick the correct one in
the given context. Standard Morse works without
a list of analyses, the decoder can generate the
lemma+tag from scratch. Older disambiguators
always obtain 100% accuracy on unambiguous
tokens with a single analysis, whereas Morse may
fail to generate the correct lemma+tag pair. In
order to make a fair comparison we also tested
a version of Morse that disambiguates among a
given set of analyses by comparing the probability
assigned to them by the decoder (MorseDisamb).

MorseDisamb gives the best results across
all three data sets. The best scores are printed
in bold where the difference is statistically
significant. None of the differences in TrMor2006
are statistically significant because of the small
size of the test set. In TrMor2016 both Morse
and MorseDisamb give state of the art results.
The TrMor2018 results were obtained using an

Method A U T
word 94.38 98.70 96.72
word+context 96.21 98.52 97.69
word+context+output 96.43 98.80 97.79

Table 8: Ablation analysis test set performances
on the TrMor2018 data set. A: Ambiguous Accu-
racy, U: Unambiguous accuracy, T: Total accuracy.

average of 5 random splits into 80%, 10%, and
10% for training, validation, and test sets.

Note that the numbers for the three data sets
are significantly different. Each result naturally
reflects the remaining errors and biases in the
corresponding data set, which might result in
the true accuracy figure being higher or lower.
Despite of these imperfections, we believe the
new TrMor2018 data set will allow for better
comparison of different models in terms of learn-
ing efficiency thanks to its larger size and lower
noise level.

5.4 Ablation Analysis

In this section, the contributions of the individual
components of the full model are analyzed. In the
following three ablation studies, we disassemble
or change individual modules to investigate the
change in the performance of the model. We use
the TrMor2018 data set in the first two experi-
ments and UD data sets in the last experiment.
Table 8 presents the results.

We start our ablation studies by removing both
the context encoder and the output encoder, leav-
ing only the word encoder. The resulting model
(word) is a standard sequence-to-sequence model
that only uses the characters in the target word
without any context information. This gives us a
baseline and shows that more than 95% of the
wordforms can be correctly tagged ignoring the
context.
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count=0 count<100 count≥100
Lang Tok Tag Seq Tok Tag Seq Tok Tag Seq
SV 12 0.0 8.33 844 81.28 82.82 19521 94.49 94.65
BG 4 0.0 0.0 910 81.32 83.41 14810 96.62 97.37
HU 108 0.0 20.37 2333 53.54 59.24 8007 78.24 80.67
PT 3 0.0 0.0 207 63.29 67.63 9991 93.04 92.25

Table 9: Test accuracy for tags that were observed 0, < 100, and ≥ 100 times in the 1000 sentence
training sets. Tok is the number of tokens with the specified count, Tag is the accuracy using a
whole-tag classifier, Seq is the accuracy using a sequence decoder.

count=0 count<5 count≥5
Dataset Tok Acc Tok Acc Tok Acc
TRMor2006 30 86.67 16 100.0 816 98.9
TRMor2016 79 2.53 579 93.78 18570 98.48
TRMor2018 0 - 1702 82.78 45119 99.48
UD-DA 1019 71.84 1023 94.72 7981 98.93
UD-ES 593 79.26 627 95.37 10780 99.36
UD-FI 2279 61.34 1802 88.85 16989 98.21
UD-RU 1656 77.48 1587 94.39 8305 99.22

Table 10: Test accuracy for lemmas that were observed 0, < 5, and ≥ 5 times in the TRMor and UD
data sets. Tok is the number of tokens with the specified count, Acc is the accuracy using Morse.

We then improve the model by adding the con-
text encoder (word+context). We observe a 1.83%
increase in ambiguous word accuracy and 0.97%
in overall accuracy. This version is capable of
learning more than only a single morphologic anal-
ysis of each wordform. As an example, the lemma
‘‘röportaj’’ (interview) has 5 distinct wordforms
observed in the training set. We tested both models
on the never before seen wordform ‘‘röportajı’’
in ‘‘Benden bu röportajı yalanlamamı rica etti.’’
(I was asked to deny the interview). Whereas
(word) failed by selecting the most frequently
occurring tag of ‘‘röportaj’’ in the training set
(Noun+A3sg+Pnon+Nom), word+context dis-
ambiguated the target wordform successfully
(+Noun+A3sg+Pnon+Acc), demonstrating the
ability to generalize to unseen wordforms.

Finally, we add the output encoder to re-
construct the full Morse model (word+context+
output). We observe a further 0.22% increase in
ambiguous word accuracy and 0.10% increase in
overall accuracy. These experiments show that
each of the model components have a positive
contribution to the overall performance.

We believe our ablation models have several
advantages over a standard sequence-to-sequence
model: Both the input and the output of the system
needs to be partly character based to analyze
morphology and to output lemmas. This leads

to long input and output sequences. By running
the decoder separately for each word, we avoid
the necessity to squeeze the information in the
whole input sequence into a single vector. A
standard sequence-to-sequence model would also
be more difficult to evaluate as it may produce
zero or multiple outputs for a single input token or
produce outputs that are out of order. A per-word
decoder avoids these alignment problems as well.

To compare our approach to whole-tag
classifiers like Heigold et al. (2017), we created
two versions of the (word+context) model, one
with a sequence decoder and one with a whole-tag
classifier. We trained these models on Turkish and
UD data sets to test unseen/rare tag and lemma
generation. Table 9 shows the accuracy of each
model on three sets of tags: unseen tags, tags
that were seen less than 100 times and tags that
were seen at least 100 times in the training set. The
sequence decoder generally performs better across
different frequency ranges. In particular, results
confirm that the sequence decoder can generate
some unseen tags correctly while the whole-tag
classifier in principle cannot. We observe that
the advantage is smaller for more frequent tags,
in fact the whole-tag classifier performs better
with the most frequent tags in Portuguese, a
morphologically simple language. A similar trend
is observed in Table 10 for lemma generation:
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Morse is able to generate a significant percent of
the unseen/rare lemmas correctly.

6 Conclusion

In this paper, we presented Morse, a language-
independent character-based encoder-decoder
architecture for morphological analysis, and
TrMor2018, a new Turkish morphology data set
manually confirmed to have 96% inter-annotator
agreement. The Morse encoder uses two different
unidirectional LSTMs to obtain word and output
embeddings and a bidirectional LSTM to obtain
the context embedding of a target word. The
Morse decoder outputs the lemma of the word one
character at a time followed by the morphological
tag, one feature at a time. We evaluated Morse
on nine different languages, and obtained state-
of-the-art results on all of them. We provided
empirical evidence that producing morphological
features as a sequence outperforms methods that
produce whole tags or feature sets, and the
advantage is more significant in low-resource
settings.

To our knowledge, Morse is the first deep
learning model that performs joint lemmatization
and tagging, performs well with unknown and
rare wordforms and tags, and can produce a
variable number of features in multiple inflectional
groups to represent derivations in morphologically
complex languages.

Acknowledgments

We would like to thank Kemal Oflazer and
all student annotators for their help in creating
the TrMor2018 data set, and the editors and
anonymous reviewers for their many helpful
comments. This work was supported by the
Scientific and Technological Research Council
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Květoň. 2007. The best of two worlds: Coop-
eration of statistical and rule-based taggers
for Czech. In Proceedings of the Workshop
on Balto-Slavonic Natural Language Pro-
cessing: Information Extraction and Enabling
Technologies, pages 67–74.

Dilek Zeynep Hakkani-Tür, Kemal Oflazer, and
Gökhan Tür. 2002. Statistical morphological
disambiguation for agglutinative languages.
Computers and the Humanities, 36(4):381–410.

Dilek Zeynep Hakkani-Tür, Murat Saraçlar,
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