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Abstract
We quantify the linguistic complexity of dif-
ferent languages’ morphological systems. We
verify that there is a statistically significant
empirical trade-off between paradigm size and
irregularity: A language’s inflectional paradigms
may be either large in size or highly irregular,
but never both. We define a new measure of
paradigm irregularity based on the conditional
entropy of the surface realization of a paradigm—
how hard it is to jointly predict all the word
forms in a paradigm from the lemma. We
estimate irregularity by training a predictive
model. Our measurements are taken on large
morphological paradigms from 36 typologi-
cally diverse languages.

1 Introduction

What makes an inflectional system ‘‘complex’’?
Linguists have sometimes considered measur-
ing this by the size of the inflectional paradigms
(McWhorter, 2001). The number of distinct in-
flected forms of each word indicates the number
of morphosyntactic distinctions that the language
makes on the surface. However, this gives only
a partial picture of complexity (Sagot, 2013).
Some inflectional systems are more irregular:
It is harder to guess how the inflected forms
of a word will be spelled or pronounced, given
the base form. Ackerman and Malouf (2013)
hypothesize that there is a limit to the irregu-
larity of an inflectional system. We refine this
hypothesis to propose that systems with many
forms per paradigm have an even stricter limit
on irregularity per distinct form. That is, the two
dimensions interact: A system cannot be complex
along both axes at once. In short, if a language
demands that its speakers use a lot of distinct
forms, those forms must be relatively predictable.

In this work, we develop information-theoretic
tools to operationalize this hypothesis about the
complexity of inflectional systems. We model
each inflectional system using a tree-structured
directed graphical model whose factors are neural
networks and whose structure (topology) must
be learned along with the factors. We explain our
approach to quantifying two aspects of inflectional
complexity and, in one case, approximate our
metric using a simple variational bound. This al-
lows a data-driven approach by which we can mea-
sure the morphological complexity of a given
language in a clean manner that is more theory-
agnostic than previous approaches.

Our study evaluates 36 diverse languages,
using collections of paradigms represented ortho-
graphically. Thus, we are measuring the complex-
ity of each written language. The corresponding
spoken language would have different complexity,
based on the corresponding phonological forms.
Importantly, our method does not depend upon
a linguistic analysis of words into constituent
morphemes (e.g., hoping 7→ hope+ing). We find
support for the complexity trade-off hypothesis.
Concretely, we show that the more unique forms
an inflectional paradigm has, the more predictable
the forms must be from one another—for example,
forms in a predictable paradigm might all be
related by a simple change of suffix. This intuition
has a long history in the linguistics community, as
field linguists have often noted that languages with
extreme morphological richness, for example,
agglutinative and polysynthetic languages, have
virtually no exceptions or irregular forms. Our
contribution lies in mathematically formulating
this notion of regularity and providing a means to
estimate it by fitting a probability model. Using
these tools, we provide a quantitative verification
of this conjecture on a large set of typologically
diverse languages, which is significant with
p < 0.037.
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2 Morphological Complexity

2.1 Word-Based Morphology

We adopt the framework of word-based morphol-
ogy (Aronoff, 1976; Spencer, 1991). An inflected
lexicon in this framework is represented as a set
of word types. Each word type is a triple of

• a lexeme ` (an arbitrary integer or string that
indexes the word’s core meaning and part of
speech)

• a slot σ (an arbitrary integer or object that
indicates how the word is inflected)

• a surface form w (a string over a fixed
phonological or orthographic alphabet Σ)

A paradigm m is a map from slots to surface
forms.1 We use dot notation to access elements
of this map. For example, m.past denotes the
past-tense surface form in paradigmm.

An inflected lexicon for a language can be
regarded as defining a map M from lexemes to
their paradigms. Specifically,M(`).σ = w iff the
lexicon contains the triple (`, σ, w).2 For example,
in the case of the English lexicon, if ` is the English
lexeme walkVerb, then M(`).past = walked. In
linguistic terms, we say that in `’s paradigmM(`),
the past-tense slot is filled (or realized) by walked.

Nothing in our method requires a Bloomfieldian
structuralist analysis that decomposes each word
into underlying morphs; rather, this paper is
a-morphous in the sense of Anderson (1992).

More specifically, we will work within the
UniMorph annotation scheme (Sylak-Glassman,
2016). In the simplest case, each slot σ specifies
a morphosyntactic bundle of inflectional features
such as tense, mood, person, number, and gender.
For example, the Spanish surface form pongas
(from the lexeme poner ‘to put’) fills a slot that
indicates that this word has the features [TENSE=
PRESENT, MOOD=SUBJUNCTIVE, PERSON=2, NUMBER=SG].
We postpone a discussion of the details of
UniMorph until §7.1, but it is mostly compatible
with other, similar schemes.

1See Baerman (2015, Part II) for a tour of alternative
views of inflectional paradigms.

2We assume that the lexicon never contains distinct triples
of the form (`, σ,w) and (`, σ,w′), so that M(`).σ has a
unique value if it is defined at all.

2.2 Defining Complexity

Ackerman and Malouf (2013) distinguish two
types of morphological complexity, which we
elaborate on below. For a more general overview
of morphological complexity, see Baerman et al.
(2015).

2.2.1 Enumerative Complexity

The first type, enumerative complexity (e-complexity),
measures the number of surface morphosyntactic
distinctions that a language makes within a part of
speech.

Given a lexicon, our present paper will measure
the e-complexity of the verb system as the average
of the verb paradigm size |M(`)|, where ` ranges
over all verb lexemes in domain(M). Importantly,
we define the size |m| of a paradigm m to be
the number of distinct surface forms in the
paradigm, rather than the number of slots. That is,
|m| def

= |range(m)| rather than |domain(m)|.
Under our definition, nearly all English verb

paradigms have size 4 or 5, giving the English verb
system an e-complexity between 4 and 5. If m =
M(walkVerb), then |m| = 4, since range(m) =
{walk,walks,walked,walking}. The manually
constructed lexicon may define separate slotsσ1 =
[TENSE=PRESENT, PERSON=1, NUMBER=SG ] and
σ2 = [TENSE=PRESENT, PERSON=2, NUMBER=SG ],
but in this paradigm, those slots are not distin-
guished by any morphological marking: m.σ1 =
m.σ2 = walk. Nor is the past tense walked dis-
tinguished from the past participle. This phenom-
enon is known as syncretism.

Why might the creator of a lexicon choose to
define two slots for a syncretic form, rather than
a single merged slot? Perhaps because the slots
are not always syncretic: in the example above,
one English verb, be, does distinguish σ1 and σ2.3

But an English lexicon that did choose to merge
σ1 and σ2 could handle be by adding extra slots
that are used only with be. A second reason is that
the merged slot might be inelegant to describe
using the feature bundle notation: English verbs
(other than be) have a single form shared by
the bare infinitive and all present tense forms
except 3rd-person singular, but a single slot for
this form could not be easily characterized by a
single feature bundle, and so the lexicon creator

3This verb has a paradigm of size 8: {be, am, are, is, was,
were, been, being}.
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might reasonably split it for convenience. A third
reason might be an attempt at consistency across
languages: In principle, an English lexicon is free
to use the same slots as Sanskrit and thus list dual
and plural forms for every English noun, which
just happen to be identical in every case (complete
syncretism).

The point is that our e-complexity metric is
insensitive to these annotation choices. It focuses
on observable surface distinctions, and so does not
care whether syncretic slots are merged or kept
separate. Later, we will construct our i-complexity
metric to have the same property.

The notion of e-complexity has a long history
in linguistics. The idea was explicitly discussed as
early as Sapir (1921). More recently, Sagot (2013)
has referred to this concept as counting com-
plexity, referencing comparison of the complexity
of creoles and non-creoles by McWhorter (2001).

For a given part of speech, e-complexity appears
to vary dramatically over the languages of the
world. Whereas the regular English verb paradigm
has 4–5 slots in our annotation, the Archi verb will
have thousands (Kibrik, 1998). However, does
this make the Archi system more complex, in
the sense of being more difficult to describe or
learn? Despite the plethora of forms, it is often the
case that one can regularly predict one form from
another, indicating that few forms actually have
to be memorized for each lexeme.

2.2.2 Integrative Complexity
The second notion of complexity is integrative
complexity (i-complexity), which measures how
regular an inflectional system is on the surface.
Students of a foreign language will most certainly
have encountered the concept of an irregular
verb. Pinning down a formal and workable cross-
linguistic definition is non-trivial, but the intuition
that some inflected forms are regular and others
irregular dates back at least to Bloomfield (1933,
pp. 273–274), who famously argued that what
makes a surface form regular is that it is the
output of a deterministic function. For an in-depth
dissection of the subject, see Stolz et al. (2012).

Ackerman and Malouf (2013) build their defini-
tion of i-complexity on the information-theoretic
notion of entropy (Shannon, 1948). Their intuition
is that a morphological system should be con-
sidered complex to the extent that its forms are
unpredictable. They say, for example, that the
nominative singular form is unpredictable in a

language if many verbs express it with suffix -o
while many others use -∅. In §5, we will propose
an improvement to their entropy-based measure.

2.3 The Low-Entropy Conjecture

The low-entropy conjecture, as formulated by
Ackerman and Malouf (2013, p. 436), ‘‘is the
hypothesis that enumerative morphological com-
plexity is effectively unrestricted, as long as the
average conditional entropy, a measure of inte-
grative complexity, is low.’’ Indeed, Ackerman
and Malouf go so far as to say that there need be no
upper bound on e-complexity, but the i-complexity
must remain sufficiently low (as is the case for
Archi, for example). Our hypothesis is subtly
different in that we postulate that morphological
systems face a trade-off between e-complexity
and i-complexity: a system may be complex under
either metric, but not under both. The amount of
e-complexity permitted is higher when i-complexity
is low.

This line of thinking harks back to the equal
complexity conjecture of Hockett, who stated: ‘‘ob-
jective measurement is difficult, but impression-
istically it would seem that the total grammatical
complexity of any language, counting both the
morphology and syntax, is about the same as
any other’’ (Hockett, 1958, pp. 180–181). Similar
trade-offs have been found in other branches of
linguistics (see Oh [2015] for a review). For exam-
ple, there is a trade-off between rate of speech and
syllable complexity (Pellegrino et al., 2011): This
means that even though Spanish speakers utter
many more syllables per second than Chinese,
the overall information rate is quite similar as
Chinese syllables carry more information (they
contain tone information).

Hockett’s equal complexity conjecture is contro-
versial: some languages (such as Riau Indonesian)
do seem low in complexity across morphology
and syntax (Gil, 1994). This is why Ackerman
and Malouf instead posit that a linguistic system
has bounded integrative complexity—it must not
be too high, though it can be low, as indeed it is
in isolating languages like Chinese and Thai.

3 Paradigm Entropy

3.1 Morphology as a Distribution

Following Dreyer and Eisner (2009) and Cotterell
et al. (2015), we identify a language’s inflectional
system with a probability distribution p(M = m)
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over possible paradigms.4 Our measure of
i-complexity will be related to the entropy of
this distribution.

For instance, knowing the behavior of the
English verb system essentially means knowing a
joint distribution over 5-tuples of surface forms
such as (run, runs, ran, run, running). More pre-
cisely, one knows probabilities such as
p(M .pres = run,M .3s = runs,M .past =
ran,M .pastp = run,M .presp = running).

We do not observe p directly, but each observed
paradigm (5-tuple) can help us estimate it. We
assume that the paradigms m in the inflected
lexicon were drawn independently and identically
distributed (IID) from p. Any novel verb paradigm
in the future would be drawn from p as well. The
distribution p represents the inflectional system
because it describes what regular paradigms and
plausible irregular paradigms tend to look like.

The fact that some paradigms are used more
frequently than others (more tokens in a corpus)
does not mean that they have higher probability
under the morphological system p(m). Rather,
their higher usage reflects the higher probability of
their lexemes. That is due to unrelated factors—the
probability of a lexeme may be modeled separately
by a stick-breaking process (Dreyer and Eisner,
2011), or may reflect the semantic meaning asso-
ciated to that lexeme. The role of p(m) in the
model is only to serve as the base distribution
from which a lexeme type ` selects the tuple of
strings m = M(`) that will be used thereafter to
express `.

We expect the system to place low probability
on implausible paradigms: For example, p(run,

, , run, running) is close to zero. More-
over, we expect it to assign high conditional
probability to the result of applying highly regular
processes: For example, for p(M .presp |M .3s)
in English, we have p(wugging | wugs) ≈
p(running | runs) ≈ 1, where wug is a novel
verb. Nonetheless, our estimate of p(M .presp =
w | M .3s = wugs) will have support over
w ∈ Σ∗ × · · · × Σ∗, due to smoothing. The

4Formally speaking, we assume a discrete sample space
in which each outcome is a possible lexeme ` equipped
with a paradigm M(`). Recall that a random variable is
technically defined as a function of the outcome. Thus, M
is a paradigm-valued random variable that returns the whole
paradigm. M .past is a string-valued random expression that
returns the past slot, so π(M .past = ran) is a marginal
probability that marginalizes over the rest of the paradigm.

model is thus capable of evaluating arbitrary
wug-formations (Berko, 1958), including irregular
ones.

3.2 Paradigm Entropy

The distribution p gives rise to the paradigm
entropy H(M), also written as H(p). This is
the expected number of bits needed to represent
a paradigm drawn from p, under a code that is
optimized for this purpose. Thus, it may be related
to the cost of learning paradigms or the cost of
storing them in memory, and thus relevant to
functional pressures that prevent languages from
growing too complex. (There is no guarantee,
of course, that human learners actually estimate
the distribution p, or that its entropy actually
represents the cognitive cost of learning or storing
paradigms.)

Our definition of i-complexity in §5 will (roughly
speaking) divide H(M) by the e-complexity, so
that the i-complexity is measured in bits per
distinct surface form. This approach is inspired
by Ackerman and Malouf (2013); we discuss the
differences in §6.

3.3 A Variational Upper Bound on Entropy

We now review how to estimate H(M) by esti-
mating p by a model q. We do not actually
know the true distribution p. Furthermore, even
if we knew p, the definition of H(M) involves
a sum over the infinite set of n-tuples (Σ∗)n,
which is intractable for most distributions p. Thus,
following Brown et al. (1992), we will use a
probability model to define a good upper bound
for H(M) and held-out data to estimate that
bound.

For any distribution p, the entropy H(p) is
upper-bounded by the cross-entropy H(p, q),
where q is any other distribution over the same
space:5∑
m

p(m)[− log p(m)] ≤
∑
m

p(m)[− log q(m)]

(1)

(Throughout this paper, log denotes log2.) The
gap between the two sides is the Kullback-Leibler
divergence D(p || q), which is 0 iff p = q.

Maximum-likelihood training of a probability
model q ∈ Q is an attempt to minimize this

5The same applies for conditional entropies as used in §5.
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Figure 1: A specific Spanish verb paradigm as it would be generated by two different tree-structured Bayesian
networks. The nodes in each network represent the slots dictated by the paradigm’s shape (not labeled). The
topology in (a) predicts all forms from the lemma. The topology in (b), on the other hand, makes it easier to predict
some of the forms given the others: pongas is predicted from pongo, with which it shares a stem. Qualitatively,
the structure selection algorithm in §4.4 finds trees like (b).

gap by minimizing the right-hand side. More
precisely, it minimizes the sampling-based esti-
mate

∑
m p̂train(m)[− log q(m)], where p̂train is

the empirical distribution of a set of training
examples that are assumed to be drawn IID
from p.

Because the trained q may be overfit to the
training examples, we must make our final esti-
mate of H(p, q) using a separate set of held-out
test examples, as

∑
m p̂test(m)[− log q(m)]. We

then use this as our (upwardly biased) estimate of
the paradigm entropy H(p). In our setting, both
the training and the test examples are paradigms
from a given inflected lexicon.

4 A Generative Model of the Paradigm

To fit q given the training set, we need a tractable
family Q of joint distributions over paradigms,
with parameters θ. The structure of the model and
the number of parameters θ will be determined
automatically from the training set: A language
with more slots overall or more paradigm shapes
will require more parameters. This means that Q
is technically a semi-parametric family.

4.1 Paradigm Shapes
We say that two paradigms m,m′ have the same
shape if they define the same slots (that is,
domain(m) = domain(m′)) and the same pairs
of slots are syncretic in both paradigms (that is,

m.σ = m.σ′ iff m′.σ = m′.σ′). Notice that
paradigms of the same shape must have the same
size (but not conversely). Most English verbs use
one of 2 shapes: In 4-form verbs such as regular
sprint and irregular stand, the past participle is
syncretic with the past tense, whereas in irregular
5-form verbs such as eat, that is not so. There are
also a few other English verb paradigm shapes:
For example, run has only 4 distinct forms, but in
its paradigm, the past participle is syncretic with
the present tense. The verb be has a shape of its
own, with 8 distinct forms. The extra slots needed
for be might be either missing in other shapes, or
present but syncretic.

Our model qθ says that the first step in gen-
erating a paradigm is to pick its shape s. This uses
a distribution qθ(S = s), which we estimate by
maximum likelihood from the training set. Thus,
s ranges over the set S of shapes that appear in
the training set.

4.2 A Tree-Structured Distribution

Next, conditioned on the shape s, we follow
Cotterell et al. (2017b) and generate all the forms
of the paradigm using a tree-structured Bayesian
network—a directed graphical model in which the
form at each slot is generated conditionally on the
form at a single parent slot. Figure 1 illustrates
two possible tree structures for Spanish verbs.

Each paradigm shape s has its own tree struc-
ture. If slot σ exists in shape s, we denote its
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parent in our shape s model by pas(σ). Then our
model is6

qθ(m | s) =
∏
σ∈s

qθ(m.σ |m.pas(σ), S=s)

(2)
For the slot σ at root of the tree, pas(σ) is

defined to be a special slot empty with an empty
feature bundle, whose form is fixed to be the
empty string. In the product above, σ does not
range over empty.

4.3 Neural Sequence-to-Sequence Model

We model all of the conditional probability fac-
tors in equation (2) using a neural sequence-to-
sequence model with parameters θ. Specifically,
we follow Kann and Schütze (2016) and use a long
short-term memory–based sequence-to-sequence
(seq2seq) model (Sutskever et al., 2014) with
attention (Bahdanau et al., 2015). This is the
state of the art in morphological reinflection (i.e.,
the conversion of one inflected form to another
[Cotterell et al., 2016]).

For example, in German, qθ(M .nompl =
Hände | M .nomsg = Hand, S = 3) is given
by the probability that the seq2seq model assigns
to the output sequence H ä n d e when given
the input sequence

H a n d S=3 IN=NOM IN=SG OUT=NOM OUT=PL

The input sequence indicates the parent slot
(nominative singular) and the child slot (nomi-
native plural), by using special characters to spec-
ify their feature bundles. This tells the seq2seq
model what kind of inflection to do. The input
sequence also indicates the paradigm shape s.
Thus, we are able to use only a single seq2seq
model, with parameters θ, to handle all of the
conditional distributions in the entire model. Shar-
ing parameters across conditional distributions is
a form of multi-task learning and may improve
generalization to held-out data.

As a special case, if σ and σ′ are syncretic
within shape s, then we define qθ(M .σ = w |
M .σ′ = w′, S = s) to be 1 if w = w′ and 0

6Below, we will define the factors so that the generatedm
does—usually—have shape s. We will ensure that if two slots
are syncretic in shape s, then their forms are in fact equal in
m. But non-syncretic slots will also have a (tiny) probability
of equal forms, so the model qθ(m | s) is deficient—it sums
to slightly < 1 over the paradigms m that have shape s.

otherwise. The seq2seq model is skipped in such
cases: It is only used on non-syncretic parent-child
pairs. As a result, if shape s has 5 slots that are
all syncretic with one another, 4 of these slots can
be derived by deterministic copying. As they are
completely predictable, they contribute log 1 = 0
bits to the paradigm entropy. The method in the
next section will always favor a tree structure that
exploits copying. As a result, the extra 4 slots will
not increase the i-complexity, just as they do not
increase the e-complexity (recall §2.2.1).

We train the parameters θ on all non-syncretic
slot pairs in the training set. Thus, a paradigm with
n distinct forms contributes n2 training examples:
Each form in the paradigm is predicted from each
of the n − 1 other forms, and from the empty
form. We use maximum-likelihood training (see
§7.2).

4.4 Structure Selection

Given a model qθ, we can decompose its
entropyH(qθ) into a weighted sum of conditional
entropies

H(M) = H(S) +
∑
s∈S

p(S=s)H(M | S=s)

(3)
where

H(M | S=s) =
∑
σ∈s

H(M .σ |M .pas(σ), S=s)

(4)

The cross-entropy H(p, qθ) has a similar de-
composition. The only difference is that all of
the (conditional) entropies are replaced by (con-
ditional) cross-entropies, meaning that they are
estimated using a held-out sample from p rather
than qθ. The log-probabilities are still taken from
qθ.

It follows that given a fixed θ (as trained in the
previous section), we can minimize H(p, qθ) by
choosing the tree for each shape s that minimizes
the cross-entropy version of equation (4).

How? For each shape s, we select the minimum-
weight directed spanning tree over the ns slots
used by that shape, as computed by the Chu-
Liu-Edmonds algorithm (Edmonds, 1967).7 The

7Similarly, Chow and Liu (1968) find the best tree-
structured undirected graphical model by computing the
max-weighted undirected spanning tree. We need a
directed model instead because §4.3 provides conditional
distributions.
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weight of each potential directed edge σ′ →
σ is the conditional cross-entropy H(M .σ |
M .σ′, S= s) under the seq2seq model trained in
the previous section, so equation (4) implies that
the weight of a tree is the cross-entropy we would
get by selecting that tree.8 In practice, we estimate
the conditional cross-entropy for the non-syncretic
slot pairs using a held-out development set (not
the test set). For syncretic slot pairs, which are
handled by copying, the conditional cross-entropy
is always 0, so edges between syncretic slots can
be selected free of cost.

After selecting the tree, we could retrain the
seq2seq parameters θ to focus on the conditional
distributions we actually use, training on only
the slot pairs in each training paradigm that
correspond to an tree edge in the model of that
paradigm’s shape. Our experiments in §7 omitted
this step. But in fact, training on all n2 pairs may
even have found a better θ: It can be seen as a
form of multi-task regularization (available also
to human learners).

5 From Paradigm Entropy
to i-Complexity

Having defined a way to approximate paradigm
entropy, H(M), we finally operationalize our
measure of i-complexity for a language.

One Paradigm Shape. We start with the simple
case where the language has a single paradigm
shape: S = {s}. Our initial idea was to define
i-complexity as bits per form, H(M) / |s|, where
|s| is the enumerative complexity—the number of
distinct forms in the paradigm.

However, H(M) reflects not only the lan-
guage’s morphological complexity, but also its

8Where the weight of the tree is taken to include the
weight of the special edge empty → σ to the root node σ.
Thus, for each slot σ, the weight of empty→ σ is the cost of
selecting σ as the root. It is an estimate of H(M .σ | S=s),
the difficulty of predicting the σ form without any parent.

In the implementation, we actually decrement the weight
of every edge σ′ → σ (including when σ′ = empty) by the
weight of empty → σ. This does not change the optimal
tree, because it does not change the relative weights of the
possible parents of σ. However, it ensures that every σ
now has root cost 0, as required by the Chu-Liu-Edmonds
algorithm (which does not consider root costs). Notice that
because H(X) − H(X | Y ) = I(X;Y ), the decremented
weight is actually an estimate of −I(M .σ;M .σ′). Thus,
finding the min-weight tree is equivalent to finding the tree
that maximizes the total mutual information on the edges,
just like the Chow-Liu algorithm (Chow and Liu, 1968).

‘‘lexical complexity.’’ Some of the bits needed
to specify a lexeme’s paradigm m are necessary
merely to specify the stem. A language whose
stems are numerous or highly varied will tend to
have higherH(M), but we do not wish to regard it
as morphologically complex simply on that basis.
We can decompose H(M) into

H(M) = H(M .σ̌)︸ ︷︷ ︸
lexical entropy

+ H(M |M .σ̌)︸ ︷︷ ︸
morphological entropy

(5)

where σ̌ denotes the single lowest-entropy slot,

σ̌
def
= argmin

σ
H(M .σ) (6)

and we estimate H(M .σ) for any σ using the
seq2seq distribution qθ(M .σ = w | M.empty =
ε), which can be regarded as a model for generating
forms of slot σ from scratch.

We will refer to σ̌ as the lemma because it
gives in some sense the simplest form of the
lexeme, although it is not necessarily the slot that
lexicographers use as the citation form for the
lexeme.

We now define i-complexity as the entropy per
form when predicting the remaining forms of M
from the lemma:

H(M |M .σ̌)

|s| − 1
(7)

where the numerator can be obtained by sub-
traction via equation (5). This is a fairer repre-
sentation of the morphological irregularity (e.g.,
the average difficulty in predicting the inflectional
ending that is added to a given stem). Notice that if
|s| = 1 (an isolating language), the morphological
complexity is appropriately undefined, since no
inflectional endings are ever added to the stem.

If we had allowed the lexical entropy H(M .σ̌)
to remain in the numerator, then a language with
larger e-complexity |s| would have amortized
that term over more forms—meaning that larger
e-complexity would have tended to lead to lower
i-complexity, other things equal. By removing
that term from the numerator, our definition (7)
eliminates this as a possible reason for the
observed tradeoff between e-complexity and
i-complexity.

Multiple Paradigm Shapes. Now, we consider
the more general case where multiple paradigm
shapes are allowed: |S| ≥ 1. Again we are
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interested in the entropy per non-lemma form.
The i-complexity is

H(S) +
∑

s p(S=s)H(M |M .σ̌(s), S=s)∑
s p(S=s)(|s| − 1)

(8)
where

σ̌(s)
def
= argmin

σ
H(M .σ | S=s) (9)

In the case where |s| and σ̌(s) are constant
over all S, this reduces to equation (7). This is
because the numerator is essentially an expanded
formula for the conditional entropy in (7)—the
only wrinkle is that different parts of it condition
on different slots.

To estimate equation (8) using a trained model
q and a held-out test set, we follow §3.3 by
estimating all − log p(· · · ) terms in the entropies
with our model surprisals − log q(· · · ), but using
the empirical probabilities on the test set for all
other p(· · · ) terms including p(S=s). Suppose the
test set paradigms are m1, . . . ,mN with shapes
s1, . . . , sN respectively. Then taking q = qθ, our
final estimate of the i-complexity (8) works out to

∑N
i=1−

 log q(S=si)
+ log q(M = mi | S=si)
− log q(M .σ̌(si) = mi.σ̌(si) | S=si)


∑N

i=1 |si| − 1
(10)

where we have multiplied both the numerator
and denominator by N . In short, the denominator
is the total number of non-lemma forms in the
test set, and the numerator is the total number
of bits that our model needs to predict these
forms (including the paradigm shapes si) given
the lemmas. The numerator of equation (10) is
an upper bound on the numerator of equation (8)
since it uses (conditional) cross-entropies rather
than (conditional) entropies.

6 A Methodological Comparison to
Ackerman and Malouf (2013)

Our formulation of the low-entropy principle
differs somewhat from Ackerman and Malouf
(2013); the differences are highlighted below.

Heuristic Approximation to p. Ackerman and
Malouf (2013) first construct what we regard as a
heuristic approximation to the joint distribution
p over forms in a paradigm. They provide a

heuristically chosen candidate set of potential
inflections. Then, they consider a distribution
r(m.σ | m.σ′) that selects among those forms.
In contrast to our neural sequence-to-sequence
approach, this distribution unfortunately does not
have support over Σ∗ and, thus, cannot consider
changes other than substitution of morphological
exponents.

As a concrete example of r, consider Table 1’s
(simplified) Modern Greek example from
Ackerman and Malouf (2013). The conditional
distribution r(m.gen;sg | m.acc;pl = . . . -i)
over genitive singular forms is peaked because
there is exactly one possible transformation:
Substituting -us for -i. Other conditional
distributions for Modern Greek are less peaked:
Ackerman and Malouf (2013) estimated that
r(m.nom;sg | m.acc;pl = . . . -a) swaps -
a for ∅ with probability 2/3 and for -o with
probability 1/3. We reiterate that no other output
has positive probability under their model, for
example, swapping -a for -es or ablaut of a stem
vowel. In contrast, our p allows arbitrary irregulars
(§6.1).

Average Conditional Entropy. The second
difference is their use of the pairwise conditional
entropies between cells. They measure the com-
plexity of the entire paradigm by the average con-
ditional entropy:

1

n2 − n
∑
σ

∑
σ′ 6=σ

H(M .σ |M .σ′). (11)

This differs from our tree-based measure, in
which an irregular form only needs to be derived
from its parent—possibly a similar or even syn-
cretic irregular form—rather than from all other
forms in the paradigm. So it ‘‘only needs to pay
once’’ and it even ‘‘shops around for the cheapest
deal.’’ Also, in our measure, the lemma does not
‘‘pay’’ at all.

Ackerman and Malouf measure conditional
entropies, which are simple to compute because
their model q is simple. (Again, it only permits a
small number of possible outputs for each input,
based on the finite set of allowed morpheme sub-
stitutions that they annotated by hand.) In contrast,
our estimate uses conditional cross-entropies,
asking whether our q can predict real held-out
forms distributed according to p.
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SINGULAR PLURAL

CLASS NOM GEN ACC VOC NOM GEN ACC VOC

1 -os -u -on -e -i -on -us -i
2 -s -∅ -∅ -∅ -es -on -es -es
3 -∅ -s -∅ -∅ -es -on -es -es
4 -∅ -s -∅ -∅ -is -on -is -is
5 -o -u -o -o -a -on -a -a
6 -∅ -u -∅ -∅ -a -on -a -a
7 -os -us -os -os -i -on -i -i
8 -∅ -os -∅ -∅ -a -on -a -a

Table 1: Structuralist analysis of Modern Greek nominal inflection classes (Ralli, 1994, 2002).

6.1 Critique of Ackerman and Malouf (2013)

Now, we offer a critique of Ackerman and Malouf
(2013) on three points: (i) different linguistic
theories dictating how words are subdivided into
morphemes may offer different results, (ii) certain
types of morphological irregularity, particularly
suppletion, aren’t handled, and (iii) average con-
ditional entropy overestimates the i-complexity in
comparison to joint entropy.

Theory-Dependent Complexity. We consider
a classic example from English morphophonology
that demonstrates the effect of the specific anal-
ysis chosen. In regular English plural forma-
tion, the speaker has three choices: [z], [s], and
[ z]. Here are two potential analyses. One could
treat this as a case of pure allomorphy with
three potential, unrelated suffixes. Under such
an analysis, the entropy will reflect the empirical
frequency of the three possibilities found in
some data set: roughly, 1/4 log 1/4 + 3/8 log 3/8 +
3/8 log 3/8 ≈ 1.56127. On the other hand, if we
assume a different model with a unique underlying
affix /z/, which is attached and then converted
to either [z], [s], or [ z] by an application of
perfectly regular phonology, this part of the
morphological system of English has entropy of
0—one choice. See Kenstowicz (1994, p. 72)
for a discussion of these alternatives from a the-
oretical standpoint. Note that our goal is not to
advocate for one of these analyses, but merely
to suggest that Ackerman and Malouf (2013)’s
quantity is analysis-dependent.9 In contrast, our

9Bonami and Beniamine (2016) have made a similar point
(Rob Malouf, personal communication). Other proposed
morphological complexity metrics have relied on a similar
assumption (e.g., Bane, 2008).

approach is theory-agnostic in that we jointly learn
surface-to-surface transformations, reminiscent of
a-morphorous morphology (Anderson, 1992), and
thus our estimate of paradigm entropy does not
suffer this drawback. Indeed, our assumptions are
limited—recurrent neural networks are universal
approximators. It has been shown that any com-
putable function can be computed by some finite
recurrent neural network (Siegelmann and Sontag,
1991, 1995). Thus, the only true assumption we
make of morphology is mild: We assume it
is Turing-computable. That behavior is Turing-
computable is a rather fundamental tenet of cog-
nitive science (McCulloch and Pitts, 1943; Sobel
and Li, 2013).

In our approach, theory dependence is primarily
introduced through the selection of slots in our
paradigms, which is a form of bias that would
be present in any human-derived set of morphol-
ogical annotations. A key example of this is the
way in which different annotators or annotation
standards may choose to limitorexpand syncretism—
situations where the same string-identical form
may fill multiple different paradigm slots. For ex-
ample, Finnish has two accusative inflections for
nouns and adjectives, one always coinciding in
form with the nominative and the other coinciding
with the genitive. Many grammars therefore omit
these two slots in the paradigm entirely, although
some include them. Depending on which linguistic
choice annotators make, the language could appear
to have more or fewer paradigm slots. We have
carefully defined our e-complexity and i-complexity
metrics so that they are not sensitive to these
choices.

As a second example of annotation depen-
dence, different linguistic theories might disagree

335

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00271/1923163/tacl_a_00271.pdf by guest on 07 Septem
ber 2023



about which distinctions constitute productive
inflectional morphology, and which are deriva-
tional or even fixed lexical properties. For ex-
ample, our dataset for Turkish treats causative
verb forms as derivationally related lexical items.
The number of apparent slots in the Turkish
inflectional paradigms is reduced because these
forms were excluded.

Morphological Irregularity. A second prob-
lem with the model in Ackerman and Malouf
(2013) is its inability to treat certain kinds of
irregularity, particularly cases of suppletion. As
far as we can tell, the model is incapable of eval-
uating cases of morphological suppletion unless
they are explicitly encoded in the model. Consider,
again, the case of the English suppletive past tense
form went— if one’s analysis of the English base
is effectively a distribution of the choices add [d],
add [t], and [ d], one will assign probability 0 to
went as the past tense of go. We highlight the
importance of this point because suppletive forms
are certainly very common in academic English:
the plural of binyan is binyanim and the plural
of lemma is lemmata. It is unlikely that native
English speakers possess even a partial model of
Hebrew and Greek nominal morphology—a more
plausible scenario is simply that these forms are
learned by rote. As speakers and hearers are capa-
ble of producing and understanding these forms,
we should demand the same capacity of our mod-
els. Not doing so also ties into the point in the
previous section about theory-dependence since
it is ultimately the linguist—supported by some
theoretical notion—who decides which forms are
deemed irregular and hence left out of the analy-
sis. We note that these restrictive assumptions are
relatively common in the literature, for example,
Allen and Becker (2015)’s sublexical learner is
likewise incapable of placing probability mass on
irregulars.10

Average Conditional Entropy versus Joint
Entropy. Finally, we take issue with the formu-
lation of paradigm entropy as average conditional
entropy, as exhibited in equation (11). For one,
it does not correspond to the entropy of any
actual joint distribution p(M), and has no obvious
mathematical interpretation. Second, it is Priscian

10In the computer science literature, it is far more common
to construct distributions with support over Σ∗ (Paz, 2003;
Bouchard-Côté et al., 2007; Dreyer et al., 2008; Cotterell et
al., 2014), which do not have this problem.

(Robins, 2013) in its analysis in that any form can
be generated from any other, which, in practice,
will cause it to overestimate the i-complexity of
a morphological system. Consider the German
dative plural Händen (from the German Hand
‘‘hand’’). Predicting this form from the nomina-
tive singular Hand is difficult, but predicting
it from the nominative plural Hände is trivial:
just add the suffix -n. In Ackerman and Malouf
(2013)’s formulation, r(Händen | Hand) and
r(Händen | Hände) both contribute to the para-
digm’s entropy with the former substantially
raising the quantity. Our method in §4.4 is able
to select the second term and regard Händen as
predictable once Hände is in hand.

7 Experiments
Our experimental design is now fairly straight-
forward: plot e-complexity versus i-complexity
over as many languages as possible, We then
devise a numerical test of whether the complexity
trade-off conjecture (§1) appears to hold.

7.1 Data and UniMorph Annotation

At the moment, the largest source of annotated
full paradigms is the UniMorph dataset (Sylak-
Glassman et al., 2015; Kirov et al., 2018), which
contains data that have been extracted from
Wiktionary, as well as other morphological lexica
and analyzers, and then converted into a uni-
versal format. A partial subset of UniMorph has
been used in the running of the SIGMORPHON-
CoNLL 2017 and 2018 shared tasks on morphol-
ogical inflection generation (Cotterell et al.,
2017a, 2018b).

We use verbal paradigms from 33 typologically
diverse languages, and nominal paradigms from
18 typologically diverse languages. We only
considered languages that had at least 700 fully
annotated verbal or nominal paradigms, as the
neural methods we deploy required a large amount
of training example to achieve high performance.11

As the neural methods require a large set of anno-
tated training examples to achieve high performance,

11Focusing on data-rich languages should also help
mitigate sample bias caused by variable-sized dictionaries
in our database. In many languages, irregular words are also
very frequent and may be more likely to be included in a
dictionary first. If that’s the case, smaller dictionaries might
have lexical statistics skewed toward irregulars more so than
larger dictionaries. In general, larger dictionaries should be
more representative samples of a language’s broader lexicon.
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it is difficult to use them in a lower-resource
scenario.

To estimate a language’s e-complexity (§2.2.1),
we average over all paradigms in the UniMorph
inflected lexicon.

To estimate i-complexity, we first partition those
paradigms into training, development and test sets.
We identify the paradigm shapes from the training
set (§4.1). We also use the training set to train
the parameters θ of our conditional distribution
(§4.3), then estimate conditional entropies on the
development set and use Edmonds’s algorithm to
select a global model structure for each shape
(§4.4). Now we evaluate i-complexity on the test
set (equation (10)). Using held-out test data gives
an unbiased estimate of a model’s predictive ability,
which is why it is standard practice in statisti-
cal NLP, though less common in quantitative
linguistics.

7.2 Experimental Details

We experiment separately on nominal and verbal
lexicons. For i-complexity, we hold out at random
50 full paradigms for the development set, and 50
other full paradigms for the test set.

For comparability across languages, we tried to
ensure a ‘‘standard size’’ for the training setDtrain.
We sampled it from the remaining data using two
different designs, to address the fact that different
languages have different-size paradigms.

Equal Number of Paradigms (‘‘purple scheme’’).
In the first regime, Dtrain (for each language) is
derived from 600 randomly chosen non-held-out
paradigms m. We trained the reinflection model
in §4.4 on all non-syncretic pairs within these
paradigms, as described in §4.3. This disadvan-
tages languages with small paradigms, as they
train on fewer pairs.

Equal Number of Pairs (‘‘green scheme’’). In
the second regime, we trained the reinflection
model in §4.4 on 60,000 non-syncretic pairs
(m.σ′,m.σ) (where σ′ may be empty) sampled
without replacement from the non-held-out para-
digms.12 This matches the amount of training
data, but may disadvantage languages with large
paradigms, since the reinflection model will see
fewer examples of any individual mapping be-

12For a few languages, fewer than 60,000 pairs were
available, in which case we used all pairs.

tween paradigm slots. We call this the ‘‘green
scheme.’’

Model and Training Details. We train the seq2seq-
with-attention model using the OpenNMT toolkit
(Klein et al., 2017). We largely follow the recipe
given in Kann and Schütze (2016), the winning
submission on the 2016 SIGMORPHON shared
task for inflectional morphology. Accordingly, we
use a character embedding size of 300, and 100
hidden units in both the encoder and decoder.
Our gradient-based optimization method was
AdaDelta (Zeiler, 2012) with a minibatch size
of 80. We trained for 20 epochs, which yielded
20 models via early stopping. We selected
the model that achieved the highest average
log p(m.σ | m.σ′) on (σ′, σ) pairs from the
development set.

8 Results and Analysis

Our results are plotted in Figure 2, where each
dot represents a language. We see little difference
between the green and the purple training sets,
though it was not clear a priori that this would
be so.

The plots appear to show a clear trade-off be-
tween i-complexity and the e-complexity. We now
provide quantitative support for this impression by
constructing a statistical significance test. Visu-
ally, our low-entropy trade-off conjecture boils
down to the claim that languages cannot exist in
the upper right-hand corner of the graph, that is,
they cannot have both high e-complexity and high
i-complexity. In other words, the upper-right hand
corner of the graph is ‘‘emptier’’ than it would be
by chance.

How can we quantify this? The Pareto curve
for a multi-objective optimization problem shows,
for each x, the maximum value y of the second
objective that can be achieved while keeping the
first objective≥ x (and vice-versa). This is shown
in Figure 2 as a step curve, showing the maximum
i-complexity y that was actually achieved for each
level x of e-complexity. This curve is the tightest
non-increasing function that upper-bounds all of
the observed points: We have no evidence from
our sample of languages that any language can
appear above the curve.

We say that the upper right-hand corner is
‘‘empty’’ to the extent that the area under the
Pareto curve is small. To ask whether it is indeed
emptier than would be expected by chance, we
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Figure 2: The x-axis is our measure of e-complexity, the average number of distinct forms in a paradigm. The
y-axis is our estimate of i-complexity, the average bits per distinct non-lemma form. We overlay purple and green
graphs (§7.2): to obtain the y coordinate, all the languages are trained on the same number of paradigms (purple
scheme) or on the same number of slot pairs (green scheme). The purple curve is the Pareto curve for the purple
points, and the area under it is shaded in purple; similarly for green. The languages are labeled with their two-letter
ISO 639-1 codes in white text inside the colored circles.

perform a nonparametric permutation test that des-
troys the claimed correlation between the e-complexity
and i-complexity values. From our observed
points {(x1, y1), . . . , (xm, ym)}, we can sto-
chastically construct a new set of points
{(x1, yσ(1)), . . . , (xm, yσ(m))} where σ is a per-
mutation of 1, 2, . . . ,m selected uniformly at
random. The resulting scatterplot is what we
would expect under the null hypothesis of no
correlation. Our p-value is the probability that the
new scatterplot has an even emptier upper right-
hand corner—that is, the probability that the area
under the null-hypothesis Pareto curve is less than
or equal to the area under the actually observed
Pareto curve. We estimate this probability by
constructing 10,000 random scatterplots.

In the purple training scheme, we find that the
upper right-hand corner is significantly empty,
with p < 0.021 and p < 0.037 for the verbal
and nominal paradigms, respectively. In the green
training scheme, we find that the upper right-hand
corner is significantly empty with p < 0.032 and
p < 0.024 in the verbal and nominal paradigms,
respectively.

9 Future Directions

Frequency. Ackerman and Malouf hypothe-
sized that i-complexity is bounded, and we have
demonstrated that the bounds are stronger when

e-complexity is high. This suggests further inves-
tigation as to where in the language these bounds
apply. Such bounds are motivated by the notion
that naturally occurring languages must be learn-
able. Presumably, languages with large paradigms
need to be regular overall, because in such a
language, the average word type is observed too
rarely for a learner to memorize an irregular sur-
face form for it. Yet even in such a language,
some word types are frequent, because some lex-
emes and some slots are especially useful. Thus,
if learnability of the lexicon is indeed the driving
force,13 then we should make the finer-grained
prediction that irregularity may survive in the
more frequently observed word types, regardless
of paradigm size. Rarer forms are more likely to be
predictable—meaning that they are either regular,
or else irregular in a way that is predictable from a
related frequent irregular (Cotterell et al., 2018a).

Dynamical models. We could even investigate
directly whether patterns of morphological irreg-
ularity can be explained by the evolution of lan-
guage through time. Languages may be shaped
by natural selection or, more plausibly, by noisy
transmission from each generation to the next
(Hare and Elman, 1995; Smith et al., 2008), in a
natural communication setting where each learner

13Rather than, say, description length of the lexicon
(Rissanen and Ristad, 1994).
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observes some forms more frequently than others.
Are naturally occurring inflectional systems more
learnable (at least by machine learning algorithms)
than would be expected by chance? Do artificial
languages with unusual properties (for example,
unpredictable rare forms) tend to evolve into lan-
guages that are more typologically natural?

We might also want to study whether children’s
morphological systems increase in i-complexity
as they approach the adult system. Interestingly,
this definition of i-complexity could also explain
certain issues in first language acquisition, where
children often overregularize (Pinker and Prince,
1988): They impose the regular pattern on irreg-
ular verbs, producing forms like instead
of ran. Children may initially posit an inflectional
system with lower i-complexity, before con-
verging on the true system, which has higher
i-complexity.

Phonology Plus Orthography. A human learner
of a written language also has access to phonol-
ogical information that could affect predictability.
One could, for example, jointly model all the writ-
ten and spoken forms within each paradigm, where
the Bayesian network may sometimes predict a
spoken slot from a written slot or vice-versa.

Moving Beyond the Forms. The complexity
of morphological inflection is only a small bit
of the larger question of morphological typology.
We have left many bits unexplored. In this paper,
we have predicted orthographic forms from morpho-
syntactic feature bundles. Ideally, we would like
to also predict which morphosyntactic bundles are
realized as words within a language, and which
bundles are syncretic. That is, what paradigm shapes
are plausible or implausible?

In addition, our current treatment depends
upon a paradigmatic treatment of morphology,
which is why we have focused on inflectional
morphology. In contrast, derivational morphol-
ogy is often viewed as syntagmatic.14 Can we
devise quantitative formulation of derivational
complexity—for example, extending to polysyn-
thetic languages?

10 Conclusions

We have provided clean mathematical formula-
tions of enumerative and integrative complexity of

14For paradigmatic treatments of derivational morphology,
see Cotterell et al. (2017c) for a computational perspective
and the references therein for theoretical perspectives.

inflectional systems, using tools from generative
modeling and deep learning. With an empirical
study on noun and verb systems in 36 typologically
diverse languages, we have exhibited a Pareto-
style trade-off between the e-complexity and
i-complexity of morphological systems. In short,
a morphological system can mark a large num-
ber of morphosyntactic distinctions, as Finnish,
Turkish, and other agglutinative and polysynthetic
languages do; or it may have a high-level of unpre-
dictability (irregularity); or neither.15 But it cannot
do both.

The NLP community often focuses one-complexity
and views a language as morphologically complex
if it has a profusion of unique forms, even if they
are very predictable. The reason is probably our
habit of working at the word-level, so that all forms
not found in the training set are out-of-vocabulary
(OOV). Indeed, NLP practitioners often use high
OOV rates as a proxy for defining morphologi-
cal complexity. However, as NLP moves to the
character-level, we need other definitions of mor-
phological richness. A language like Hungarian,
with almost perfectly predictable morphology,
may be easier to process than a language like
German, with an abundance of irregularity.
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