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Abstract
Speech translation has traditionally been ap-
proached through cascaded models consisting
of a speech recognizer trained on a corpus of
transcribed speech, and a machine translation
system trained on parallel texts. Several recent
works have shown the feasibility of collapsing
the cascade into a single, direct model that can
be trained in an end-to-end fashion on a corpus
of translated speech. However, experiments
are inconclusive on whether the cascade or the
direct model is stronger, and have only been
conducted under the unrealistic assumption
that both are trained on equal amounts of data,
ignoring other available speech recognition
and machine translation corpora.

In this paper, we demonstrate that direct speech
translation models require more data to per-
form well than cascaded models, and although
they allow including auxiliary data through
multi-task training, they are poor at exploiting
such data, putting them at a severe disadvan-
tage. As a remedy, we propose the use of end-
to-end trainable models with two attention
mechanisms, the first establishing source speech
to source text alignments, the second modeling
source to target text alignment. We show that
such models naturally decompose into multi-
task–trainable recognition and translation tasks
and propose an attention-passing technique
that alleviates error propagation issues in a
previous formulation of a model with two
attention stages. Our proposed model outper-
forms all examined baselines and is able to
exploit auxiliary training data much more
effectively than direct attentional models.

1 Introduction

Speech translation takes audio signals of speech
as input and produces text translations as output.
Although traditionally realized by cascading an

automatic speech recognition (ASR) and a ma-
chine translation (MT) component, recent work
has shown that it is feasible to use a single
sequence-to-sequence model instead (Duong
et al., 2016; Weiss et al., 2017; Bérard et al.,
2018; Anastasopoulos and Chiang, 2018). An
appealing property of such direct models is that
we no longer suffer from propagation of errors,
where the speech recognizer passes an erroneous
source text to the machine translation component,
potentially leading to compounding follow-up
errors. Another advantage is the ability to train
all model parameters jointly.

Despite these obvious advantages, two prob-
lems persist: (1) Reports on whether direct models
outperform cascaded models (Fig. 1a,d) are in-
conclusive, with some work in favor of direct
models (Weiss et al., 2017), some work in favor of
cascaded models (Kano et al., 2017; Bérard et al.,
2018), and one work in favor of direct models
for two out of the three examined language pairs
(Anastasopoulos and Chiang, 2018). (2) Cascaded
and direct models have been compared under
identical data situations, but this is an unrealistic
assumption: In practice, cascaded models can be
trained on much more abundant independent ASR
and MT corpora, whereas end-to-end models
require hard-to-acquire end-to-end corpora of
speech utterances paired with textual translations.

Our first contribution is a closer investigation
of these two issues. Regarding the question of
whether direct models or cascaded models are
generally stronger, we hypothesize that direct
models require more data to work well, due to the
more complex mapping between inputs (source
speech) and outputs (target text). This would imply
that direct models outperform cascades when
enough data are available, but underperform in
low-data scenarios. We conduct experiments and
present empirical evidence in favor of this
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Figure 1: Conceptual diagrams for various speech trans-
lation approaches. Cascade (a) uses separate machine
translation and speech recognition models. The direct
model (d) is a standard attentional encoder-decoder
model. The basic 2-stage model (b) uses two attention
stages and passes source-text decoder states to the
translation component. Our proposed attention-passing
model (c) applies two attention stages, but passes con-
text vectors to the translation component for improved
robustness.

hypothesis. Next, for a more realistic comparison
with regard to data conditions, we train a direct
speech translation model using more auxiliary
ASR and MT training data than end-to-end data.
This can be implemented through multi-task train-
ing (Weiss et al., 2017; Bérard et al., 2018). Our
results show that the auxiliary data are beneficial
only to a limited extent, and that direct multi-
task models are still heavily dependent on the
end-to-end data.

As our second contribution, we apply a
two-stage model (Tu et al., 2017; Kano et al.,
2017) as an alternative solution to our problem,
hoping that such models may overcome the data
efficiency shortcoming of the direct model. Two-
stage models consist of a first-stage attentional
sequence-to-sequence model that performs speech
recognition and then passes the decoder states as
input to a second attentional model that performs
translation (Fig. 1b). This architecture is closer to
cascaded translation while maintaining end-to-
end trainability. Introducing supervision from
the source-side transcripts midway through the
model creates inductive bias that guides the com-
plex transformation between source speech and
target text through a reasonable intermediate
representation closely tied to the source text. The
architecture has been proposed by Tu et al. (2017)
to realize a reconstruction objective, and a similar
model was also applied to speech translation

(Kano et al., 2017) to ease trainability, although no
experiments under varying data conditions have
been conducted. We hypothesize that such a model
may help to address the identified data efficiency
issue: Unlike multi-task training for the direct
model that trains auxiliary models on additional
data but then discards many of the additionally
learned parameters, the two-stage model uses all
parameters of sub-models in the final end-to-end
model. Empirical results confirm that the two-
stage model is indeed successful at improving data
efficiency, but suffers from some degradation in
translation accuracy under high data conditions
compared with the direct model. One reason for
this degradation is that this model re-introduces
the problem of error propagation, because the sec-
ond stage of the model depends on the decoder
states of the first model stage which often contain
errors.

Our third contribution, therefore, is an attention-
passing variant of the two-stage model that, rather
than passing on possibly erroneous decoder states
from the first to the second stage, passes on only
the computed attention context vectors (Fig. 1c).
We can view this approach as replacing the early
decision on a source-side transcript by an early
decision only on the attention scores needed to
compute the same transcript, where the attention
scores are expectedly more robust to errors in
source text decoding. We explore several variants
of this model and show that it outperforms both
the direct model and the vanilla two-stage model,
while maintaining the improved data efficiency of
the latter. Through an analysis, we further observe
a trade-off between sensitivity to error propagation
and data efficiency.

2 Baseline Models

This section introduces two types of end-to-end
trainable models for speech translation, along with
a cascaded approach, which will serve as our
baselines. All models are based on the attentional
encoder-decoder architecture of Bahdanau et al.
(2015) with character-level outputs, and use the
architecture described in §2.1 as audio encoders.
The end-to-end trainable models include a direct
model and a two-stage model. Both are limited1 by
the fact that they can only be trained on end-to-end

1Prior work noted that in severe low-resource situations
it may actually be easier to collect speech paired with
translations than transcriptions (Duong et al., 2016). How-
ever, we focus on well-resourced languages for which ASR
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data, which is much harder to obtain than ASR
or MT data used to train traditional cascades.2

§3 will introduce multi-task training as a way to
overcome this limitation.

2.1 Audio Encoder

Sequence-to-sequence models can be adopted for
audio inputs by directly feeding speech features
(here, Mel filterbank features) instead of word
embeddings as encoder inputs (Chorowski et al.,
2015; Chan et al., 2016). Such an encoder trans-
forms M feature vectors x1:M into L encoded
vectors e1:L, performing downsampling such
that L<M . We use an encoder architecture that
follows one of the variants described by Zhang
et al. (2017): We stack two blocks, each con-
sisting of a bidirectional long short-term memory
(LSTM), a network-in-network (NiN) projection
that downsamples by factor two, and batch nor-
malization. After the second block, we add a final
bidirectional LSTM layer. NiN denotes a simple
linear projection applied at every time step, per-
forming downsampling by concatenating pairs
of adjacent projection inputs. Because of space
constraints, we do not present detailed equations,
but refer interested readers to Zhang et al. (2017)
as well as to our provided code for details.

2.2 Direct Model

The sequence-to-sequence model with audio inputs
outlined above can be trained as a direct speech
translation model by using speech data as input
and the corresponding translations as outputs.
Such a model does not rely on intermediate ASR
output and is therefore not subject to error prop-
agation. However, the transformation from source
speech inputs to target text outputs is much more
complex than that of an ASR or MT system
taken individually, which may cause the model to
require more data to perform well.

To make matters precise, givenL audio encoder
states e1:L computed by the audio encoder as

and MT corpora exist and for which it is more realistic to
obtain good speech translation accuracy.

2As a case in point, the largest available speech translation
corpora (Post et al., 2013; Kocabiyikoglu et al., 2018) are an
order of magnitude smaller than the largest speech recognition
corpora (Cieri et al., 2004; Panayotov et al., 2015) (∼ 200
hours vs 2000 hours) and several orders of magnitude smaller
than the largest machine translation corpora, e.g., those
provided by the Conference on Machine Translation (WMT).

described in §2.1, the direct model is computed
as

si = LSTM ([Weyi−1; ci−1] , si−1; θlstm) (1)

ci = Attention (si, e1:L; θatt) (2)

s̃i = tanh (Ws [si; ci] + bs) (3)

p (yi | y<i, e1:L) = SoftmaxOut (s̃i; θout) . (4)

Here, W∗, b∗, and θ∗ are the trainable param-
eters, yi are output characters, and SoftmaxOut
denotes an affine projection followed by a softmax
operation. si are decoder states with s0 initialized
to the last encoder state, and ci are attentional
context vectors with c0=0. In Equation 2, we
compute Attention(·)=

∑L
j=1 αijej with weights

αij conditioned on ej and si, parameterized by
θatt, and normalized via a softmax operation.

2.3 Two-Stage Model

As an alternative to the direct model, the two-stage
model uses a cascaded information flow while
maintaining end-to-end trainability. Our main
motivation for using this model is the potentially
improved data efficiency when adding auxiliary
ASR and MT training data (§3). This model is
similar to the architecture first described by Tu
et al. (2017). It combines two encoder-decoder
models in a cascade-like fashion, with the decoder
of the first stage and the encoder of the second
stage being shared (Fig. 2). In other words, while
a cascade would use the source-text outputs of
the first stage as inputs into the second stage,
in this model the second stage directly computes
attentional context vectors over the decoder states
of the first stage. The inputs of the two-stage model
are speech frames, the outputs of the first stage
are transcribed characters in the source language,
and the outputs of the second stage are translated
characters in the target language.

Again assuming L audio encoder states e1:L,
the first stage outputs of length N are computed
identically to equations 1–4, except that input
feeding (conditioning the decoding step on the
previous context vector) is not used in the first
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Figure 2: Basic two-stage model. Decoder states of the
first stage double as encoder states for the second stage.

stage decoder to keep components compatible for
multi-task training (§3.2):

ssrc
i = LSTM (W src

e ysrc
i−1, s

src
i−1; θ

src
lstm) (5)

csrc
i = Attention (ssrc

i , e1:L; θ
src
att ) (6)

s̃src
i = tanh (W src

s [ssrc
i ; csrc

i ] + bsrc
s ) (7)

p (ysrc
i | y<i, e1:L)

= SoftmaxOut (s̃src
i ; θsrc

out) (8)

Next, the second stage proceeds similarly but uses
the stage 1 decoder states as input:

strg
j = LSTM

([
W trg

e y
trg
i−1; c

trg
j−1

]
, strg

j−1; θ
trg
lstm

)
(9)

ctrg
j = Attention

(
strg
j , s

src
1:N ; θtrg

att

)
(10)

s̃trg
j = tanh

(
W trg

s

[
strg
j ; ctrg

j

]
+ btrg

s

)
(11)

p
(
y

trg
j | y<j , s

src
1:N

)
= SoftmaxOut

(
s̃trg
j ; θtrg

out

)
(12)

2.4 Cascaded Model
We finally utilize a traditional cascaded model as
a baseline, whose architecture is kept as similar to
the above models as possible in order to facilitate
meaningful comparisons. The cascade consists
of an ASR component and an MT component,
which are both attentional sequence-to-sequence
models according to equations 1–4, trained on the
appropriate data. The ASR component uses the
acoustic encoder of §2.1, and the MT model uses
a bidirectional LSTM with 2 layers as encoder.

3 Incorporating Auxiliary Data

The models described in §2.2 and §2.3 are trained
only on speech utterances paired with translations

(and transcripts in the case of §2.3), which is a
severe limitation. To incorporate auxiliary ASR
and MT data into the training, we make use of a
multi-task training strategy. Such a strategy trains
auxiliary ASR and MT models that share certain
parameters with the main speech translation model.
We implement multi-task training by drawing
several minibatches, one minibatch for each task,
and performing an update based on the accu-
mulated gradients across tasks. Note that this
results in a balanced contribution of each task.3

3.1 Multi-Task Training for the Direct
Model

Multi-task training for direct speech translation
models has previously been used by Weiss et al.
(2017) and Bérard et al. (2018), although not
for the purpose of adding additional training
utterances that are not shown to the main speech
translation task.4 We distinguish five model com-
ponents: a source speech encoder, a source text
encoder (a two-layer bidirectional LSTM working
on character level), a source text decoder, a target
text decoder, and an attention mechanism that
we opt to share across all tasks. There are four
ways in which these components can be combined
into a complete sequence-to-sequence model (see
Figure 3), corresponding to the following four
tasks:

ASR: Combines source speech encoder, general-
purpose attention, source text decoder. This
is similar to the auxiliary ASR task used by
Weiss et al. (2017) and can be trained on
common ASR data.

MT: Combines source text encoder, general-
purpose-attention, target text decoder. The
addition of an MT task has been mentioned
by Bérard et al. (2018) and allows training
on common MT data.

ST: Combines source speech encoder, general-
purpose-attention, target text decoder. This
is our main task and requires end-to-end data
for training.

3We also experimented with a final fine-tuning phase on
only the main task (Niehues and Cho, 2017), but discarded
this strategy for lack of consistent gains.

4Note that Bansal et al. (2019) do experiment with
additional speech recognition data, although, differently from
our work, for purposes of cross-lingual transfer learning.
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Figure 3: Direct multi-task model.

Auto-encoder (AE): Combines source text en-
coder, general-purpose attention, source text
decoder. The AE task can be trained on
monolingual corpora in the source language
and may serve to tighten the coupling be-
tween components and potentially improves
the parameters of the general-purpose atten-
tion model. We have observed slight improve-
ments by adding the AE task in preliminary
experiments and will therefore use it through-
out this paper.

3.2 Multi-Task Training for the
Two-Stage Model

Including an auxiliary ASR task is straight-
forward with the two-stage model by simply com-
puting the cross-entropy loss with respect to the
softmax output of the first stage, and dropping the
second stage.

The auxiliary MT task computes only the
second stage, replacing the inputs ssrc

1:N by states
easr
1:N computed as:

easr
i = LSTM

(
W src

e ytranscr
i , esrc

i−1; θ
src
lstm

)
. (13)

That is, instead of computing the second-
stage inputs using the first stage, we compute
these inputs through a conventional encoder that
encodes the reference transcript ytranscr

1:N and uses
the same embeddings matrix and unidirectional
LSTM as the first stage decoder. Note that there
is no equivalent to the auxiliary auto-encoder task
of the direct multi-task model here.

Why might this architecture help to make better
use of auxiliary ASR and MT data? Note that in
the direct model only roughly half of the model
parameters are shared between the main task and
the ASR task, and likewise for main and MT
tasks (§3.1). Additional data would therefore only
have a rather indirect impact on the main task.
In contrast, in the two-stage model all parameters
of the auxiliary tasks are shared with the main
task and therefore have a more direct impact,
potentially leading to better data efficiency.

Note that somewhat related to our multi-task
strategy, Kano et al. (2017) have decomposed
their two-stage model in a similar way to perform
pretraining for the individual stages, although not
with the goal of incorporating additional auxiliary
data.

4 Attention-Passing Model

We have so far described a direct model that has
the appealing property of avoiding error prop-
agation in a principled way but that may not be
particularly data-efficient, and have described a
two-stage model that addresses the latter dis-
advantage. Unfortunately, the two-stage model
re-introduces the error propagation problem into
end-to-end modeling, because the second stage
heavily depends on the potentially erroneous de-
coder states of the first stage. We therefore pro-
pose an improved attention-passing model in this
section that is less impacted by error propagation
issues.

4.1 Preventing Error Propagation

The main idea behind the attention-passing model
is to not feed the erroneous first-stage decoder
states to the second stage, but instead to pass
on only the context vectors that summarize the
relevant encoded audio at each decoding step. The
first stage decoder is unfolded as usual by using
discrete source-text representations, but the only
information exposed to the translation stage are
the per-timestep context vectors created as a by-
product of the decoding. Figure 4 illustrates this
idea. Intuitively, we expect this to help because
we no longer make an early decision on the
identity of the source-language text, but only on
the corresponding attentions. This is motivated by
our observation that speech recognition attentions
are sufficiently robust against decoding errors
(§5.7).

Formally, the first stage remains unchanged
from equations 5–8. The context vectors csrc

i then
form the input to the second stage:

xtrg
i = LSTM

(
csrc
i ,x

trg
i−1; θ

src
lstm

)
(14)

strg
j = LSTM

([
W trg

e y
trg
i−1; c

trg
j−1

]
, strg

j−1; θ
trg
lstm

)
(15)
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Figure 4: Attention-passing model.

ctrg
j = Attention

(
strg
j ,x

trg
1:N ; θtrg

att

)
(16)

s̃trg
j = tanh

(
W trg

s

[
strg
j ; csrc

j

]
+ btrg

s

)
(17)

p
(
y

trg
j | y<j , s

src
1:N

)
= SoftmaxOut

(
s̃trg
j ; θtrg

out

)
(18)

4.2 Decoder State Drop-Out
Along with the modifications described in §4.1, we
introduce an additional block drop-out operation
(Ammar et al., 2016) on the decoder states, re-
placing equation 7 by

s̃src
i = tanh (W src

s [BDrop {ssrc
i } ; csrc

i ] + bsrc
s ) .

The block drop-out operation, denoted as BDrop,
replaces the whole vector by zero with a cer-
tain probability (here: 0.5). This results in the
context vectors csrc

i becoming the only information
available to the output layer whenever the decoder
states are dropped out. The motivation for this is to
force the model to maximize the informativeness
of the context vectors, which are later relied upon
as sole inputs to the second stage.

4.3 Multi-Task Training
Similar to the basic two-stage model, the attention-
passing model as a whole is trained on speech-

transcript-translation triplets, but can be decom-
posed into two sub-models that correspond to
ASR and MT tasks. In fact, the ASR task is
unchanged with the exception of the new
block dropout operation. The MT task is ob-
tained by replacing equation 14 by xtrg

i =
LSTM

(
Wey

src
i ,x

trg
i−1; θ

src
lstm

)
—that is, by using the

transcript character embeddings as inputs instead
of the context vectors used when training the main
task. Note that the LSTMs in equations 5 and 14
are shared in order to have a match between stage
1 decoder and stage 2 encoder as with the basic
model.

4.4 Cross Connections
As a further extension to the attention-passing
model of §4.1, we can introduce cross connections
that concatenate the dropped-out first stage hidden
decoder states to the second-stage inputs encoder.
This causes equation 14 to be replaced by

xtrg
i = (19)

LSTM
(
Affine [csrc

i ;BDrop {ssrc
i }] ,x

trg
i−1; θ

src
lstm

)
This extension moves the model closer to the

basic two-stage model, and the inclusion of the
context vectors and the block drop-out operation
on the hidden decoder states ensures that the
second stage decoder does not rely too strongly
on the first stage outputs.

4.5 Additional Loss
We further experiment with introducing an
additional loss aimed at making the LSTM inputs
between first stage decoder and second stage
encoder RNN more similarly. Recall that in our
attention-passing model, both RNNs share param-
eters (equations 5 and 14), so that similar inputs
at both times is desirable. The loss is defined as
follows:

Ladd = ||csrc
i −Wey

src
i ||2.

If combined with the cross connections
(§4.4), the formula is adjusted to Ladd =
||Affine [csrc

i ;BDrop {ssrc
i }] − Wey

src
i ||2. We did

not find it beneficial to apply a scaling factor
when adding this loss to the main cross-entropy
loss in our experiments.

5 Experiments

We conduct experiments on the Fisher and
Callhome Spanish–English Speech Translation
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Corpus (Post et al., 2013), a corpus of Spanish
telephone conversations that includes audio, tran-
scriptions, and translations into English. We use
the Fisher portion that consists of telephone con-
versations between strangers. The training data size
is 138,819 sentences, corresponding to 162 hours
of speech. ASR word error rates on this dataset are
usually relatively high because of the spontaneous
speaking style and challenging acoustics. From a
translation viewpoint, the data can be considered
as relatively easy with regard to both the topical
domain and particular language pair.

Our implementation is based on the xnmt
toolkit.5 We use the speech recognition recipe as
a starting point, which has previously been shown
to achieve competitive ASR results (Neubig et al.,
2018). 6

The vocabulary consists of the common char-
acters appearing in English and Spanish, apos-
trophe, whitespace, and special start-of-sequence
and unknown-character tokens. The same vocab-
ulary is used on both encoder (for the MT auxiliary
task) and decoder sides. We set the batch size
dynamically depending on the input sequence size
such that the average batch size is 24 sentences.
We use Adam (Kingma and Ba, 2014) with initial
learning rate of 0.0005, decayed by 0.5 when the
validation BLEU score did not improve over 10
check points initially and 5 check points after the
first decay. We initialize attention-passing models
using weights from a basic two-stage model trained
on the same data.

Following Weiss et al. (2017), we lowercase
texts and remove punctuation. As speech features,
we use 40-dimensional Mel filter bank features
with per-speaker mean and variance normaliza-
tion. We exclude a small number of utterances
longer than 1500 frames from training to avoid
running out of memory. The encoder-decoder at-
tention is MLP-based, and the decoder uses a
single LSTM layer.7 Source text encoders for
the multi-task direct model and the cascaded
models use two LSTM layers. The number of
hidden units is 128 for the encoder-decoder

5https://github.com/neulab/xnmt.
6Code and configuration files can be found at http://

www.msperber.com/research/tacl-attention-
passing/.

7Weiss et al. (2017) report improvements from deeper
decoders, but we encountered stability issues and therefore
restricted the decoder to a single layer.

Training sents. Cascade Direct model

139k 32.45 35.30
69k 26.52 24.68
35k 16.84 14.91
14k 6.59 6.08

Table 1: BLEU scores (4 references) on the Fisher/
Test for various amounts of training data. The
direct (multi-task) model performs best in the full
data condition, but the cascaded model is best in
all reduced conditions.

attention MLP, 64 for target character embed-
dings, 256 for the encoder LSTMs in each
direction, and 512 elsewhere. The model uses
variational recurrent dropout with probability
0.3 and target character dropout with probability
0.1 (Gal and Ghahramani, 2016). We apply label
smoothing (Szegedy et al., 2016) and fix the tar-
get embedding norm to 1 (Nguyen and Chiang,
2018). We use beam search with beam size 15 and
polynomial length normalization with exponent
1.5.8

All BLEU scores are computed on Fisher/Test
against 4 references.

5.1 Cascaded vs. Direct Models

We first wish to shed light on the question of
whether cascaded or direct models can be expected
to perform better. This question has been inves-
tigated previously (Weiss et al., 2017; Kano et al.,
2017; Bérard et al., 2018; Anastasopoulos and
Chiang, 2018), but with contradictory findings.
We hypothesize that the increased complexity of
the direct mapping from speech to translation
increases the data requirements of such models.
Table 1 compares the direct multi-task model
(§3.1) against a cascaded model with identical
architecture to the respective ASR and MT sub-
models of the multi-task model. The direct model
is trained with multi-task training on the auxiliary
ASR, MT, and AE tasks on the same data that
outperformed single-task training considerably in
preliminary experiments. As can be seen, the direct
model outperforms the traditional cascaded setup
only when both are trained on the full data, but not
when using only parts of the training data. This

8For two-stage and attention-passing models, we apply
beam search only for the second stage decoder. We do not
use the two-phase beam search of Tu et al. (2017) because of
its prohibitive memory requirements.

319

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00270/1923092/tacl_a_00270.pdf by guest on 08 Septem
ber 2023

https://github.com/neulab/xnmt
http://www.msperber.com/research/tacl-attention-passing/
http://www.msperber.com/research/tacl-attention-passing/
http://www.msperber.com/research/tacl-attention-passing/


Model BLEU

Cascade 32.45
Direct 35.30

Basic two-stage 34.36

APM 35.31
APM + cross connections 36.51
APM + cross conn. + additional loss 36.70

Best APM w/o block dropout 36.04

Table 2: Results for cascaded and multi-task
models under full training data conditions.

provides evidence in favor of our hypothesis and
indicates that direct end-to-end models should be
expected to perform strongly only in a case where
enough training data is available.

5.2 Two-Stage Models

Next, we investigate the performance of the two-
stage models, for both the basic variant (§3.2)
and our proposed attention-passing model (§4).
Again, all models are trained in a multi-task fashion
by including auxiliary ASR and MT tasks based
on the same data. Table 2 shows the results. The
basic two-stage model performs in between the
direct and cascaded models from §5.1. APM,
the attention-passing model of §4.1 which is
designed to circumvent the negative effects of
error propagation, outperforms the basic variant
and performs similarly to the direct model. The
APM extensions (§4.4, §4.5) further improved the
results, with the best model outperforming the di-
rect model by 1.40 BLEU points and the basic
two-stage model by 2.34 BLEU points absolute.
The last row in the table confirms that the block
dropout operation contributed to the gains: Re-
moving it led to a drop by 0.66 BLEU points.

5.3 Data Efficiency: Direct Model

Having established results in favor of our pro-
posed model on the full data, we now examine
the data efficiency of the different models. Our
experimental strategy is to compare model per-
formance (1) when trained on the full data, (2)
when trained on partial data, and (3) when trained
on partial speech-to-translation data but full aux-
iliary (ASR+MT) data.9

9An alternative experimental strategy is to train on the full
data and then add auxiliary data from other domains to the

Figure 5: Data efficiency for the direct (multi-task)
model, compared against cascade on full auxiliary
data.

Figure 5 shows the results, comparing the
cascaded model against the direct model trained
under conditions (1), (2), and (3).10 Unsurpris-
ingly, the performance of the direct model trained
on partial data declines sharply as the amount of
data is reduced. Adding auxiliary data through
multi-task training improves performance in all
cases. For instance, in the case of 69k speech-
to-translation instances, adding the full auxiliary
data helps to reach the accuracy of the cascaded
model. However, this is already somewhat dis-
appointing because the end-to-end data, which is
not available to the cascaded model, no longer
yields an advantage. Moreover, reducing the end-
to-end data further reveals that multi-task training
is not able to close the gap to the cascade. In the
scenario with 35k end-to-end instances and full
auxiliary data, the direct model underperforms the
cascade by 9.14 BLEU points (32.50 vs. 23.36),
despite being trained on more data. The unsatis-
factory data efficiency in this controlled ablation
study strongly indicates that the direct model will
also fall behind a cascade that is trained on large
amounts of external data. This claim is verified in
§5.5.

5.4 Data Efficiency: Two-Stage Models
We showed that the direct model is poor at
integrating auxiliary data and heavily depends
on sufficient amounts of end-to-end training data.

training. We pursue this strategy in §5.5 as a more realistic
scenario, but point out several problems that lead us to not
use this as our main approach: Adding external auxiliary
data (1) leads to side-effects through domain mismatch and
(2) severely limits the number of experiments that we can
conduct because of the considerably increased training time.

10Note that the above hyper-parameters were selected for
best full-data performance and are not re-tuned here.
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Figure 6: Data efficiency across model types. All
models use full auxiliary data through multi-task
training.

How do two-stage models behave with regard to
this data efficiency issue? Figure 6 shows that
both the basic two-stage model and the best APM
perform reasonably well even when having seen
much less end-to-end data. We can explain this
by noticing that these models can be naturally
decomposed into an ASR sub-model and an MT
sub-model, while the direct model needs to add
auxiliary sub-models to support multi-task train-
ing. Interestingly, the attention-passing model with-
out cross-connections does better than the direct
model with regard to data efficiency, but falls
behind the basic and best proposed two-stage
models. This indicates that access to ASR labels in
some form contributes to favorable data efficiency
of speech translation models.

5.5 Adding External Data

Our approach for evaluating data efficiency so
far has been to assume that end-to-end data
are available for only a subset of the available
auxiliary data. In practice, we can often train ASR
and MT tasks on abundant external data. We there-
fore run experiments in which we use the full
Fisher training data for all tasks as before, and
add OpenSubtitle11 data for the auxiliary MT
task. We clean and normalize the Spanish–English
OpenSubtitle 2018 data (Lison and Tiedemann,
2016) to be consistent with the employed Fisher
training data by lowercasing and removing punc-
tuation. We apply a basic length filter and obtain
61 million sentences. During training, we include
the same number of sentences from in-domain and
out-of-domain MT tasks in each minibatch in order
to prevent degradation due to domain mismatch.

11http://www.opensubtitles.org/.

Model Fisher Fisher+OpenSub

Cascade 32.45 34.58 (+6.2% rel.)
Direct model 35.30 36.45 (+3.2% rel.)
Basic two-stage 34.36 36.91 (+6.9% rel.)
Best APM 36.70 38.81 (+5.4% rel.)

Table 3: Adding auxiliary OpenSubtitles MT data
to the training. The two-stage models benefit
much more strongly than the direct model, with
our proposed model yielding the strongest overall
results.

Our models converged before a full pass over the
OpenSubtitle data, but needed between two and
three times more steps than the in-domain model
to converge.

Table 3 shows that all models were able to
benefit from the added data. However, when exam-
ining the relative gains we can see that both the
cascaded model and the models with two attention
stages benefitted about twice as much from the
external data as the direct model. In fact, the
basic two-stage model now slightly surpasses
the direct model, and the best APM is ahead of
the basic two-stage model by almost the same
absolute difference as before (2.36 BLEU points).
The superior relative gains show that our findings
from §5.3 and §5.4, namely, that two-stage models
are much more efficient at exploiting auxiliary
training data, generalizes to the setting in which
large amounts of out-of-domain data are added
to the MT task. Out-of-domain data are often
much easier to obtain, and we can therefore con-
clude that the proposed approach is preferable
in many practically relevant situations. Because
these experiments are very expensive to conduct,
we leave experiments with external ASR data for
future work.

5.6 Error Propagation

To better understand the impact of error propaga-
tion, we analyze how improved or degraded ASR
labels impact the translation results. This exper-
iment is applicable to APM, the two-stage model
and the cascade, but not to the direct model which
does not compute intermediate ASR outputs. We
analyze three different settings: using the standard
decoded ASR labels, replacing these labels with
the gold labels, or artificially degrading the de-
coded labels by randomly introducing 10% of
substitution, insertion, and deletion noise (Sperber
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Labels Gold Decod. Perturbed

Cascade 58.15 (+44%) 32.45 25.67 (-26%)
B2S 56.60 (+39%) 34.36 28.81 (-19%)
APM 40.70 (+13%) 35.31 31.96 (-10%)
+ cross 58.29 (+37%) 36.70 30.48 (-20%)

Table 4: Effect of altering the ASR labels for
different models as a measure for robustness against
error propagation. We compare results for the
cascade, the basic two-stage model (B2S), and APM
without and with cross connections. Percentages
are relative to the results for unaltered (decoded)
ASR labels.

et al., 2017). Intuitively, models that suffer from
error propagation issues are expected to rely most
heavily on these intermediate labels and would
therefore be most impacted by both degraded and
improved labels.

Table 4 shows the results. Unsurprisingly, the
cascade responds most strongly to improved or
degraded noise, confirming that it is severely
impacted by error propagation. The APM, which
does not directly expose the labels to the trans-
lation sub-model, is much less impacted. How-
ever, the impact is still more significant than
perhaps expected, suggesting that improved atten-
tion models that are more robust to decoding errors
(Chorowski et al., 2015; Tjandra et al., 2017) may
serve to further improve our model in the future.
Note that the APM benefits poorly from gold ASR
labels, which is expected because gold labels only
improve the ASR alignments and by extension the
passed context vectors, but these are quite robust
against decoding errors in the first place.

The basic two-stage model is impacted signif-
icantly, although less strongly than the cascade, in
line with our claim that such models are subject
to error propagation despite being end-to-end train-
able. Note that it falls behind the cascade for
gold labels, despite both models being seemingly
identical under this condition. This can beexplained
by the cascaded model’s use of beam search and
greater number of encoder layers.

Somewhat contrary to our expectations, APM
with cross connections appears equally subject to
error propagation despite the block dropout on
these connections, displaying the same accuracy
gains across the three different settings. This sug-
gests future explorations toward model variants
with an even better trade-off between overall accu-

Figure 7: ASR attentions when force-decoding the
oracle transcripts.

Figure 8: ASR attentions after regular decoding.

racy, data efficiency, and amount of degradation
due to error propagation.

5.7 Robustness of ASR Attentions

The attention-passing model was motivated by
the assumption that attention scores are relatively
robust against recognition errors. We perform a
qualitative analysis to validate this assumption.
Figure 7 shows the first-stage attention matrix
when force-decoding the reference transcript, and
Figure 8 shows the same for regular decoding,
which for this utterance produced significant errors.
Despite the errors, we can see that the attention
matrices are very similar. We manually inspected
the first 100 test attention matrices and confirm
that this behavior occurs very consistently. Further
quantitative evidence is given in §5.6, which
showed that the attention-passing model is more
resistent to error propagation than the other
models.

6 Prior Work

Model architectures similar to what we have
referred to as the basic two-stage model have first
been used by Tu et al. (2017) for a reconstruction
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task, where the first stage performs translation
and the second stage attempts to reconstruct the
original inputs based on the outputs of the first
stage. A second variant of a similar architecture
are Xia et al. (2017)’s deliberation networks,
where the second stage refines or polishes the
outputs of the first stage. For our purposes, the
first stage performs speech recognition, a natural
intermediate representation for the speech trans-
lation task, corresponding to the second stage
output. Toshniwal et al. (2017) explore a different
way of lower-level supervision during training of
an attentional speech recognizer by jointly training
an auxiliary phoneme recognizer based on a lower
layer in the acoustic encoder. Similarly to the dis-
cussed multi-task direct model, this approach
discards many of the learned parameters when
used on the main task and consequently may also
suffer from data efficiency issues.

Direct end-to-end speech translation models
were first used by Duong et al. (2016), although
the authors did not actually evaluate translation
performance. Weiss et al. (2017) extended this
model into a multi-task model and report excel-
lent translation results. Our baselines do not match
their results, despite considerable efforts. We note
that other research groups have encountered sim-
ilar replicability issues (Bansal et al., 2018), ex-
planations include the lack of a large GPU cluster
to perform ASGD training, as well as to explore
an ideal number of training schedules and other
hyper-parameter settings. Bérard et al. (2018) ex-
plored the translation of audio books with direct
models and report reasonable results, but do not
outperform a cascaded baseline. Kano et al. (2017)
have first used a basic two-stage model for
speech translation. They use a pretraining strat-
egy for the individual sub-models, related to our
multi-task approach, but do not attempt to inte-
grate auxiliary data. Moreover, the authors only
evaluated the translation of synthesized speech,
which greatly simplifies training and may not
lead to generalizable conclusions, as indicated
by the fact that they were actually able to out-
perform a translation model that used the gold
transcripts as input. Anastasopoulos and Chiang
(2018) conducted experiments on low-resource
speech translation and used a triangle model that
can be seen as a combination of a direct model
and a two-stage model, but is not easily trainable
in a multi-task fashion. It is therefore not a suit-
able choice for exploiting auxiliary data in or-

der to compete with cascaded models under
well-resourced data conditions. Finally, contem-
poraneous work explores transferring knowledge
from high-resource to low-resource languages
(Bansal et al., 2019).

7 Conclusion

This work explored direct and two-stage models
for speech translation with the aim of obtaining
models that are strong, not only in favorable data
conditions, but are also efficient at exploiting
auxiliary data. We started by demonstrating that
direct models do outperform cascaded models,
but only when enough data is available, shedding
light on inconclusive results from prior work.
We further showed that these models are poor
at exploiting auxiliary data, making them a poor
choice in realistic situations. We were motivated
to use two-stage models by their ability to over-
come this shortcoming of the direct models, and
found that two-stage models are in fact more
data-efficient, but suffer from error propagation
issues. We addressed this by introducing a novel
attention-passing model that alleviates error prop-
agation issues, as well as several model variants.
The best proposed model outperforms all other
tested models and is much more data efficient
than the direct model, allowing this model to com-
pete with cascaded models even under realistic
assumptions with auxiliary data available. Anal-
ysis showed that there seems to be a trade-off
between data efficiency and error propagation.
Avenues for future work include testing better
ASR attention models; adding other types of ex-
ternal data such as ASR data, unlabeled speech,
or monolingual texts; and exploring further model
variants.
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