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Abstract

This paper presents an unsupervised frame-
work for jointly modeling topic content and
discourse behavior in microblog conversa-
tions. Concretely, we propose a neural model
to discover word clusters indicating what a
conversation concerns (i.e., topics) and those
reflecting how participants voice their opin-
ions (i.e., discourse).1 Extensive experiments
show that our model can yield both coherent
topics and meaningful discourse behavior. Fur-
ther study shows that our topic and discourse
representations can benefit the classification
of microblog messages, especially when they
are jointly trained with the classifier.

1 Introduction

The last decade has witnessed the revolution
of communication, where the ‘‘kitchen table
conversations’’ have been expanded to public dis-
cussions on online platforms. As a consequence,
in our daily life, the exposure to new information
and the exchange of personal opinions have been
mediated through microblogs, one popular online
platform genre (Bakshy et al., 2015). The flourish
of microblogs has also led to the sheer quantity
of user-created conversations emerging every
day, exposing individuals to superfluous infor-
mation. Facing such an unprecedented number of
conversations relative to limited attention of indi-
viduals, how shall we automatically extract the
critical points and make sense of these microblog
conversations?

∗This work was partially conducted in Jichuan Zeng’s
internship in Tencent AI Lab. Corresponding author: Jing Li.

1Our data sets and code are available at: http://
github.com/zengjichuan/Topic_Disc.

Toward key focus understanding of a conver-
sation, previous work has shown the benefits of
discourse structure (Li et al., 2016b; Qin et al.,
2017; Li et al., 2018), which shapes how messages
interact with each other, forming the discussion
flow, and can usefully reflect salient topics raised
in the discussion process. After all, the topical
content of a message naturally occurs in context
of the conversation discourse and hence should not
be modeled in isolation. Conversely, the extracted
topics can reveal the purpose of participants and
further facilitate the understanding of their dis-
course behavior (Qin et al., 2017). Further, the
joint effects of topics and discourse will contribute
to better understanding of social media conversa-
tions, benefiting downstream tasks such as the
management of discussion topics and discourse
behavior of social chatbots (Zhou et al., 2018) and
the prediction of user engagements for conversa-
tion recommendation (Zeng et al., 2018b).

To illustrate how the topics and discourse inter-
play in a conversation, Figure 1 displays a snip-
pet of Twitter conversation. As can be seen, the
content words reflecting the discussion topics
(such as ‘‘supreme court’’ and ‘‘gun rights’’) ap-
pear in context of the discourse flow, where
participants carry the conversation forward via
making a statement, giving a comment, asking a
question, and so forth. Motivated by such an ob-
servation, we assume that a microblog conver-
sation can be decomposed into two crucially
different components: one for topical content
and the other for discourse behavior. Here, the
topic components indicate what a conversation
is centered around and reflect the important dis-
cussion points put forward in the conversation
process. The discourse components signal the
discourse roles of messages, such as making
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Figure 1: A Twitter conversation snippet about the
gun control issue in U.S. Topic words reflecting the
conversation focus are in boldface. The italic words in
[ ] are our interpretations of the messages’ discourse
roles.

a statement, asking a question, and other dia-
logue acts (Ritter et al., 2010; Joty et al., 2011),
which further shape the discourse structure of a
conversation.2 To distinguish the above two com-
ponents, we examine the conversation contexts
and identify two types of words: topic words,
indicating what a conversation focuses on, and
discourse words, reflecting how the opinion is
voiced in each message. For example, in Figure 1,
the topic words ‘‘gun’’ and ‘‘control’’ indicate the
conversation topic while the discourse word ‘‘what’’
and ‘‘?’’ signal the question in M3.

Concretely, we propose a neural framework
built upon topic models, enabling the joint explo-
ration of word clusters to represent topic and
discourse in microblog conversations. Different
from the prior models trained on annotated data
(Li et al., 2016b; Qin et al., 2017), our model is
fully unsupervised, not dependent on annotations
for either topics or discourse, which ensures its
immediate applicability in any domain or lan-
guage. Moreover, taking advantages of the recent
advances in neural topic models (Srivastava and
Sutton, 2017; Miao et al., 2017), we are able to
approximate Bayesian variational inference with-
out requiring model-specific derivations, whereas
most existing work (Ritter et al., 2010; Joty et al.,
2011; Alvarez-Melis and Saveski, 2016; Zeng
et al., 2018b; Li et al., 2018) require expertise
involved to customize model inference algo-
rithms. In addition, our neural nature enables

2In this paper, the discourse role refers to a certain type of
dialogue act (e.g., statement or question) for each message.
And the discourse structure refers to some combination of
discourse roles in a conversation.

end-to-end training of topic and discourse repre-
sentation learning with other neural models for
diverse tasks.

For model evaluation, we conduct an extensive
empirical study on two large-scale Twitter data
sets. The intrinsic results show that our model
can produce latent topics and discourse roles
with better interpretability than the state-of-the-
art models from previous studies. The extrinsic
evaluations on a tweet classification task exhibit
the model’s ability to capture useful representa-
tions for microblog messages. Particularly, our
model enables an easy combination with existing
neural models for end-to-end training, such as
convolutional neural networks, which is shown to
perform better in classification than the pipeline
approach without joint training.

2 Related Work

Our work is in the line with previous studies
that use non-neural models to leverage discourse
structure for extracting topical content from con-
versations (Li et al., 2016b; Qin et al., 2017; Li
et al., 2018). Zeng et al. (2018b) explore how dis-
course and topics jointly affect user engagements
in microblog discussions. Different from them,
we build our model in a neural network frame-
work, where the joint effects of topic and discourse
representations can be exploited for various down-
stream deep learning tasks in an end-to-end man-
ner. In addition, we are inspired by prior research
that only models topics or conversation discourse.
In the following, we discuss them in turn.

Topic Modeling. Our work is closely related
with the topic model studies. In this field, despite
the huge success achieved by the springboard topic
models (e.g., pLSA [Hofmann, 1999] and LDA
[Blei et al., 2001]), and their extensions (Blei et al.,
2003; Rosen-Zvi et al., 2004), the applications of
these models have been limited to formal and well-
edited documents, such as news reports (Blei et al.,
2003) and scientific articles (Rosen-Zvi et al.,
2004), attributed to their reliance on document-
level word collocations. When processing short
texts, such as the messages on microblogs, it is
likely that the performance of these models will
be inevitably compromised, due to the severe data
sparsity issue.

To deal with such an issue, many previous ef-
forts incorporate the external representations, such
as word embeddings (Nguyen et al., 2015; Li et al.,
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2016a; Shi et al., 2017) and knowledge (Song
et al., 2011; Yang et al., 2015; Hu et al., 2016),
pre-trained on large-scale high-quality resources.
Different from them, our model learns topic and
discourse representations only with the internal
data and thus can be widely applied on scenarios
where the specific external resource is unavailable.

In another line of the research, most prior work
focuses on how to enrich the context of short
messages. To this end, biterm topic model (BTM)
(Yan et al., 2013) extends a message into a biterm
set with all combinations of any two distinct words
appearing in the message. On the contrary, our
model allows the richer context in a conversation
to be exploited, where word collocation patterns
can be captured beyond a short message.

In addition, there are many methods using
some heuristic rules to aggregate short messages
into long pseudo-documents, such as those based
on authorship (Hong and Davison, 2010; Zhao
et al., 2011) and hashtags (Ramage et al., 2010;
Mehrotra et al., 2013). Compared with these
methods, we model messages in the context of
their conversations, which has been demonstrated
to be a more natural and effective text aggregation
strategy for topic modeling (Alvarez-Melis and
Saveski, 2016).

Conversation Discourse. Our work is also in
the area of discourse analysis for conversa-
tions, ranging from the prediction of the shallow
discourse roles on utterance level (Stolcke et al.,
2000; Ji et al., 2016; Zhao et al., 2018) to the
discourse parsing for a more complex conversation
structure (Elsner and Charniak, 2008, 2010;
Afantenos et al., 2015). In this area, most existing
models heavily rely on the data annotated with
discourse labels for learning (Zhao et al., 2017).
Different from them, our model, in a fully
unsupervised way, identifies distributional word
clusters to represent latent discourse factors in
conversations. Although such latent discourse
variables have been studied in previous work
(Ritter et al., 2010; Joty et al., 2011; Ji et al., 2016;
Zhao et al., 2018), none of them explores the
effects of latent discourse on the identification of
conversation topic, which is a gap our work fills in.

3 Our Neural Model for Topics and
Discourse in Conversations

This section introduces our neural model that
jointly explores latent representations for topics

and discourse in conversations. We first present
an overview of our model in Section 3.1, followed
by the model generative process and inference
procedure in Section 3.2 and 3.3, respectively.

3.1 Model Overview

In general, our model aims to learn coherent word
clusters that reflect the latent topics and discourse
roles embedded in the microblog conversations.
To this end, we distinguish two latent components
in the given collection: topics and discourse, each
represented by a certain type of word distribution
(distributional word cluster). Specifically, at the
corpus level, we assume that there are K topics,
represented by φTk (k = 1, 2, . . . ,K), and D dis-
course roles, captured with φDd (d = 1, 2, . . . , D).
φT and φD are all multinomial word distributions
over the vocabulary size V . Inspired by the neural
topic models in Miao et al. (2017), our model
encodes topic and discourse distributions (φT and
φD) as latent variables in a neural network and
learns the parameters via back propagation.

Before touching the details of our model, we
first describe how we formulate the input. On
microblogs, as a message might have multiple
replies, messages in an entire conversation can
be organized as a tree with replying relations (Li
et al., 2016b, 2018). Though the recent progress
in recursive models allows the representation
learning from the tree-structured data, previous
studies have pointed out that, in practice, sequence
models serve as a more simple yet robust alterna-
tive (Li et al., 2015). In this work, we follow the
common practice in most conversation modeling
research (Ritter et al., 2010; Joty et al., 2011;
Zhao et al., 2018) to take a conversation as a
sequence of turns. To this end, each conversation
tree is flattened into root-to-leaf paths. Each one of
such paths is hence considered as a conversation
instance, and a message on the path corresponds
to a conversation turn (Zarisheva and Scheffler,
2015; Cerisara et al., 2018; Jiao et al., 2018).

The overall architecture of our model is shown
in Figure 2. Formally, we formulate a conversation
c as a sequence of messages (x1, x2, . . . , xMc),
where Mc denotes the number of messages in
c. In the conversation, each message x, as the
target message, is fed into our model sequentially.
Here we process the target message x as the
bag-of-words (BoW) term vector xBoW ∈ RV ,
following the bag-of-words assumption in most
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Figure 2: The architecture of our neural framework.
The latent topics z and latent discourse d are jointly
modeled from conversation c and target message x,
respectively. Mutual information penalty (MI) is used
to separate words clusters representing topics and
discourse. Afterward, z and d are used to reconstruct
the target message x′.

topic models (Blei et al., 2003; Miao et al., 2017).
The conversation, c, where the target message x
is involved, is considered as the context of x.
It is also encoded in the BoW form (denoted as
cBoW ∈ RV ) and fed into our model. In doing
so, we ensure that the context of the target
message is incorporated while learning its latent
representations.

Following the previous practice in neural topic
models (Miao et al., 2017; Srivastava and Sutton,
2017), we utilize the variational auto-encoder
(VAE) (Kingma and Welling, 2013) to resemble
the data generative process via two steps. First,
given the target message x and its conversation c,
our model converts them into two latent variables:
topic variable z and discourse variable d. Then,
using the intermediate representations captured by
z and d, we reconstruct the target message, x′.

3.2 Generative Process

In this section, we first describe the two latent
variables in our model: the topic variable z and the
discourse variable d. Then, we present our data
generative process from the latent variables.

Latent Topics. For latent topic learning, we
examine the main discussion points in the context
of a conversation. Our assumption is that messages
in the same conversation tend to focus on similar

topics (Li et al., 2018; Zeng et al., 2018b). Con-
cretely, we define the latent topic variable z ∈ RK
at the conversation level and generate the topic
mixture of c, denoted as a K-dimensional distri-
bution θ, via a softmax construction conditioned
on z (Miao et al., 2017).

Latent Discourse. For modeling the discourse
structure of conversations, we capture the message-
level discourse roles reflecting the dialogue acts
of each message, as is done in Ritter et al. (2010).
Concretely, given the target message x, we use
a D-dimensional one-hot vector to represent the
latent discourse variable d, where the high bit
indicates the index of a discourse word distribu-
tion that can best express x’s discourse role. In
the generative process, the latent discourse d is
drawn from a multinomial distribution with pa-
rameters estimated from the input data.

Data Generative Process As mentioned pre-
viously, our entire framework is based on VAE,
which consists of an encoder and a decoder.
The encoder maps a given input into latent topic
and discourse representations and the decoder
reconstructs the original input from the latent
representations. In the following, we first describe
the decoder followed by the encoder.

In general, our decoder is learned to reconstruct
the words in the target message x (in the BoW
form) from the latent topic z and latent discourse
d. We show the generative story that reflects the
reconstruction process below:

• Draw the latent topic z ∼ N (µ,σ2)

• c’s topic mixture θ = softmax(fθ(z))

• Draw the latent discourse d ∼Multi(π)

• For the n-th word in x

– βn = softmax(fφT (θ) + fφD(d))
– Draw the word wn ∼Multi(βn)

where f∗(·) is a neural perceptron, with a linear
transformation of inputs activated by a non-linear
transformation. Here we use rectified linear units
(Nair and Hinton, 2010) as the activate func-
tions. In particular, the weight matrix of fφT (·)
(after the softmax normalization) is considered
as the topic-word distributions φT . The discourse-
word distributions φD are similarly obtained from
fφD(·).
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For the encoder, we learn the parameters µ, σ,
and π from the input xBoW and cBoW (the BoW
form of the target message and its conversation),
following the following formula:

µ = fµ(fe(cBoW )), logσ = fσ(fe(cBoW ))

π = softmax(fπ(xBoW ))
(1)

3.3 Model Inference

For the objective function of our entire framework,
we take three aspects into account: the learning of
latent topics and discourse, the reconstruction of
the target messages, and the separation of topic-
associated words and discourse-related words.

Learning Latent Topics and Discourse. For
learning the latent topics/discourse in our model,
we utilize the variational inference (Blei et al.,
2016) to approximate posterior distribution over
the latent topic z and the latent discourse d given
all the training data. To this end, we maximize the
variational lower bound Lz for z and Ld for d,
each defined as following:

Lz = Eq(z | c)[p(c | z)]−DKL(q(z | c) || p(z))
Ld = Eq(d | x)[p(x |d)]−DKL(q(d | x) || p(d))

(2)

q(z | c) and q(d | x) are approximated posterior
probabilities describing how the latent topic z
and the latent discourse d are generated from
the data. p(c | z) and p(x |d) represent the corpus
likelihoods conditioned on the latent variables.
Here, to facilitate coherent topic production, in
p(c | z), we penalize the likelihood of stopwords
to be generated from latent topics following Li
et al. (2018). p(z) follows the standard normal
prior N (0, I) and p(d) is the uniform distribu-
tion Unif(0, 1). DKL refers to the Kullback-
Leibler divergence that ensures the approximated
posteriors to be close to the true ones. For more
derivation details, we refer readers to Miao et al.
(2017).

Reconstructing target messages. From the la-
tent variables z and d, the goal of our model is
to reconstruct the target message x. The corre-
sponding learning objective is to maximize Lx
defined as:

Lx = Eq(z | x)q(d | c)[log p(x | z,d)] (3)

Here we design Lx to ensure that the learned
latent topics and discourse can reconstruct x.

Distinguishing Topics and Discourse. Our
model aims to distinguish word distributions for
topics (φT ) and discourse (φD), which enables topics
and discourse to capture different information
in conversations. Concretely, we use the mutual
information, given below, to measure the mutual
dependency between the latent topics z and the
latent discourse d.3

Eq(z)q(d)
[
log

p(z,d)
p(z)p(d)

]
(4)

Equation 4 can be further derived as the Kullback-
Leibler divergence of the conditional distribution,
p(d | z), and marginal distribution, p(d). The de-
rived formula, defined as the mutual information
(MI) loss (LMI ) and shown in Equation 5, is used
to map z and d into the separated semantic space.

LMI = Eq(z)[DKL(p(d | z)||p(d))] (5)

We can hence minimize LMI for guiding our
model to separate word distributions that represent
topics and discourse.

The Final Objective. To capture the joint ef-
fects of the learning objectives described above
(Lz , Ld, Lx, and LMI ), we design the final ob-
jective function for our entire framework as the
following:

L = Lz + Ld + Lx − λLMI (6)

where the hyperparameter λ is the trade-off
parameter for balancing between the MI loss
(LMI ) and the other learning objectives. By
maximizing the final objective L via back pro-
pagation, the word distributions of topics and
discourse can be jointly learned from microblog
conversations.4

4 Experimental Setup

Data Collection. For our experiments, we col-
lected two microblog conversation data sets from
Twitter. One is released by the TREC 2011
microblog track (henceforth TREC), containing
conversations concerning a wide range of topics.5

3The distributions in Equation 4 are all conditional
probability distributions given the target message x and its
conversation c. We omit the conditions for simplicity.

4To smooth the gradients in implementation, for z ∼
N (µ,σ), we apply the reparameterization on z (Kingma and
Welling, 2013; Rezende et al., 2014), and for d ∼Multi(π),
we adopt the Gumbel-Softmax trick (Maddison et al., 2016;
Jang et al., 2016).

5http://trec.nist.gov/data/tweets/.
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Data sets # of Avg msgs Avg words
|Vocab|

convs per conv per msg
TREC 116,612 3.95 11.38 9,463
TWT16 29,502 8.67 14.70 7,544

Table 1: Statistics of the two data sets containing
Twitter conversations.

The other is crawled from January to June 2016
with Twitter streaming API6 (henceforth TWT16,
short for Twitter 2016), following the way of
building the TREC data set. During this period,
there are a large volume of discussions centered
around the U.S. presidential election. In addition,
for both data sets, we apply Twitter search API7

to retrieve the missing tweets in the conversation
history, as the Twitter streaming API (used to
collect both data sets) only returns sampled tweets
from the entire pool.

The statistics of the two experiment data sets
are shown in Table 1. For model training and
evaluation, we randomly sampled 80%, 10%, and
10% of the data to form the training, development,
and test set, respectively.

Data Preprocessing. We preprocessed the data
with the following steps. First, non-English
tweets were filtered out. Then, hashtags, men-
tions (@username), and links were replaced with
generic tags ‘‘HASH’’, ‘‘MENT’’, and ‘‘URL’’,
respectively. Next, the natural languge toolkit was
applied for tweet tokenization.8 After that, all
letters were normalized to lower cases. Finally,
words that occurred fewer than 20 times were
filtered out from the data.

Parameter Setting. To ensure comparable
results with Li et al. (2018) (the prior work
focusing on the same task as ours), in the topic
coherence evaluation, we follow their setup to
report the results under two sets ofK (the number
of topics): K = 50 and K = 100, and with the
number of discourse roles (D) set to 10. The
analysis for the effects of K and D will be further
presented in Section 5.5. For all the other hyper-
parameters, we tuned them on development set by
grid search. The trade-off parameter λ (defined

6https://developer.twitter.com/en/docs/
tweets/filter-realtime/api-reference/post-
statuses-filter.html.

7https://developer.twitter.com/en/docs/
tweets/search/api-reference/get-savedsearches-
show-id.

8https://www.nltk.org/.

in Equation 6), balancing the MI loss and the
other objective functions, is set to 0.01. In model
training, we use the Adam optimizer (Kingma and
Ba, 2014) and run 100 epochs with early stop
strategy adopted.

Baselines. In topic modeling experiments, we
consider the five topic model baselines treating
each tweet as a document: LDA (Blei et al., 2003),
BTM (Yan et al., 2013), LF-LDA, LF-DMM
(Nguyen et al., 2015), and NTM (Miao et al.,
2017). In particular, BTM and LF-DMM are the
state-of-the-art topic models for short texts. BTM
explores the topics of all word pairs (biterms) in
each message to alleviate data sparsity in short
texts. LF-DMM incorporates word embeddings
pre-trained on external data to expand semantic
meanings of words, so does LF-LDA. In Nguyen
et al. (2015), LF-DMM, based on one-topic-per-
document Dirichlet Multinomial Mixture (DMM)
(Nigam et al., 2000), was reported to perform
better than LF-LDA, based on LDA. For LF-LDA
and LF-DMM, we use GloVe Twitter embeddings
(Pennington et al., 2014) as the pre-trained word
embeddings.9

For the discourse modeling experiments, we
compare our results with LAED (Zhao et al.,
2018), a VAE-based representation learning model
for conversation discourse. In addition, for both
topic and discourse evaluation, we compare with
Li et al. (2018), a recently proposed model for
microblog conversations, where topics and dis-
course are jointly explored with a non-neural
framework. Besides the existing models from pre-
vious studies, we also compare with the variants
of our model that only models topics (hence-
forth TOPIC ONLY) or discourse (henceforth DISC

ONLY).10 Our joint model of topics and discourse
is referred to as TOPIC+DISC.

In the preprocessing procedure for the baselines,
we removed stop words and punctuation for topic
models unable to learn discourse representations
following the common practice in previous work
(Yan et al., 2013; Miao et al., 2017). For the other
models, stop words and punctuation were retained
in the vocabulary, considering their usefulness
as discourse indicators (Li et al., 2018).

9https://nlp.stanford.edu/projects/glove/.
10In our ablation without mutual information loss (LMI

defined in Equation 4), topics and discourse are learned inde-
pendently. Thus, its topic representation can be used for the
output of TOPIC ONLY, so does its discourse one for DISC ONLY.
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Models K = 50 K = 100
TREC TWT16 TREC TWT16

Baselines
LDA 0.467 0.454 0.467 0.454
BTM 0.460 0.461 0.466 0.463
LF-DMM 0.456 0.448 0.463 0.466
LF-LDA 0.470 0.456 0.467 0.453
NTM 0.478 0.479 0.482 0.443
Li et al. (2018) 0.463 0.433 0.464 0.435
Our models
TOPIC ONLY 0.478 0.482 0.481 0.471
TOPIC+DISC 0.485 0.487 0.496 0.480

Table 2: Cv coherence scores for latent topics
produced by different models. The best result in
each column is highlighted in bold. Our joint
model TOPIC+DISC achieves significantly better
coherence scores than all the baselines (p < 0.01,
paired test).

5 Experimental Results

In this section, we first report the topic coher-
ence results in Section 5.1, followed by a dis-
cussion in Section 5.2 comparing the latent
discourse roles discovered by our model with the
manually annotated dialogue acts. Then, we study
whether we can capture useful representations for
microblog messages in a tweet classification task
(in Section 5.3). A qualitative analysis, showing
some example topics and discourse roles, is further
provided in Section 5.4. Finally, in Section 5.5,
we provide more discussions on our model.

5.1 Topic Coherence

For the topic coherence, we adopt the Cv scores
measured via the open-source Palmetto toolkit as
our evaluation metric.11 Cv scores assume that
the top N words in a coherent topics (ranked by
likelihood) tend to co-occur in the same document
and have shown comparable evaluation results to
human judgments (Röder et al., 2015). Table 2
shows the average Cv scores over the produced
topics given N = 5 and N = 10. The values
range from 0.0 to 1.0, and higher scores indicate
better topic coherence. We can observe that:

• Models assuming a single topic for each mes-
sage do not work well. It has long been pointed
out that the one-topic-per-message assumption
(each message contains only one topic) helps

11https://github.com/dice-group/Palmetto.

topic models alleviate the data sparsity issue in
short texts on microblogs (Zhao et al., 2011;
Quan et al., 2015; Nguyen et al., 2015; Li et al.,
2018). However, we observe contradictory results
because both LF-DMM and Li et al. (2018),
following this assumption, achieve generally worse
performance than the other models. This might
be attributed to the large-scale data used in our
experiments (each data set has over 250K mes-
sages as shown in Table 1), which potentially
provide richer word co-occurrence patterns and
thus partially alleviate the data sparsity issue.

• Pre-trained word embeddings do not bring ben-
efits. Comparing LF-LDA with LDA, we found
that they result in similar coherence scores.
This shows that with sufficiently large training
data, with or without using the pre-trained word
embeddings do not make any difference in the
topic coherence results.

• Neural models perform better than non-neural
baselines. When comparing the results of neural
models (NTM and our models) with the other
baselines, we find the former yield topics with
better coherence scores in most cases.

• Modeling topics in conversations is effective.
Among neural models, we found our models
outperform NTM (without exploiting conversa-
tion contexts). This shows that the conversations
provide useful context and enables more coherent
topics to be extracted from the entire conversation
thread instead of a single short message.

• Modeling topics together with discourse helps
produce more coherent topics. We can observe
better results with the joint model TOPIC+DISC in
comparison with the variant considering topics
only. This shows that TOPIC+DISC, via the joint
modeling of topic- and discourse-word distribu-
tions (reflecting non-topic information), can bet-
ter separate topical words from non-topical ones,
hence resulting in more coherent topics.

5.2 Discourse Interpretability

In this section, we evaluate whether our model
can discover meaningful discourse representa-
tions. To this end, we train the comparison models
for discourse modeling on the TREC data set and
test the learned latent discourse on a benchmark
data set released by Cerisara et al. (2018). The
benchmark data set consists of 2,217 microblog
messages forming 505 conversations collected
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Models Purity Homogeneity VI
Baselines
LAED 0.505 0.022 6.418
Li et al. (2018) 0.511 0.096 5.540
Our models
DISC ONLY 0.510 0.112 5.532
TOPIC+DISC 0.521 0.142 5.097

Table 3: The purity, homogeneity, and variation
of information (VI) scores for the latent discourse
roles measured against the human-annotated dia-
logue acts. For purity and homogeneity, higher
scores indicate better performance, while for VI
scores, lower is better. In each column, the best
results are in boldface. Our joint model TOPIC+DISC

significantly outperforms all the baselines (p <
0.01, paired t-test).

from Mastodon,12 a microblog platform exhibit-
ing Twitter-like user behavior (Cerisara et al.,
2018). For each message, there is a human-
assigned discourse label, selected from one of
the 15 dialogue acts, such as question, answer,
disagreement, and so forth.

For discourse evaluation, we measure whether
the model-produced discourse assignments are
consistent with the human-annotated dialogue
acts. Hence, following Zhao et al. (2018), we
assume that an interpretable latent discourse
role should cluster messages labeled with the
same dialogue act. Therefore, we adopt purity
(Manning et al., 2008), homogeneity (Rosenberg
and Hirschberg, 2007), and variation of informa
tion (VI) (Meila, 2003; Goldwater and Griffiths,
2007) as our automatic evaluation metrics. Here,
we set D = 15 to ensure the number of latent
discourse roles to be the same as the number of
manually labeled dialogue acts. Table 3 shows the
comparison results of the average scores over the
15 latent discourse roles. Higher values indicate
better performance for purity and homogeneity,
while for VI, lower is better.

It can be observed that our models exhibit
generally better performance, showing the effec-
tiveness of our framework in inducing inter-
pretable discourse roles. Particularly, we observe
the best results achieved by our joint model
TOPIC+DISC, which is learned to distinguish topic-
and discourse-words, important in recognizing
indicative words to reflect latent discourse.

12https://mastodon.social.

Figure 3: A heatmap showing the alignments of the
latent discourse roles and human-annotated dialogue
act labels. Each line visualizes the distribution of
messages with the corresponding dialogue act label
over varying discourse roles (indexed from 1 to 15),
where darker colors indicate higher values.

To further analyze the consistency of varying
latent discourse roles (produced by our TOPIC+DISC

model) with the human-labeled dialogue acts,
Figure 3 displays a heatmap, where each line
visualizes how the messages with a dialogue act
distribute over varying discourse roles. It is seen
that among all dialogue acts, our model discov-
ers more interpretable latent discourse for ‘‘greet-
ings’’, ‘‘thanking’’, ‘‘exclamation’’, and ‘‘offer’’,
where most messages are clustered into one or
two dominant discourse roles. It may be because
these dialogue acts can be relatively easier to
detect based on their associated indicative words,
such as the word ‘‘thanks’’ for ‘‘thanking’’, and
the word ‘‘wow’’ for ‘‘exclamation’’.

5.3 Message Representations

To further evaluate our ability to capture effec-
tive representations for microblog messages, we
take tweet classification as an example and test
the classification performance with the topic and
discourse representations as features. Here, the
user-generated hashtags capturing the topics of
online messages are used as the proxy class labels
(Li et al., 2016b; Zeng et al., 2018a). We construct
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Models TREC TWT16
Acc Avg F1 Acc Avg F1

Baselines
BoW 0.120 0.026 0.132 0.030
TF-IDF 0.116 0.024 0.153 0.041
LDA 0.128 0.041 0.146 0.046
BTM 0.123 0.035 0.167 0.054
LF-DMM 0.158 0.072 0.162 0.052
NTM 0.138 0.042 0.186 0.068
Our model 0.259 0.180 0.341 0.269

Table 4: Evaluation of tweet classification re-
sults in accuracy (Acc) and average F1 (Avg F1).
Representations learned by various models serve
as the classification features. For our model, both
the topic and discourse representations are fed
into the classifier.

the classification data set from TREC and TWT16
with the following steps. First, we removed the
tweets without hashtags. Second, we ranked hash-
tags by their frequencies. Third, we manually
removed the hashtags that are not topic-related
(e.g. ‘‘#fb’’ for indicating the source of tweets
from Facebook), and combined the hashtags refer-
ring to the same topic (e.g., ‘‘#DonaldTrump’’
and ‘‘#Trump’’). Finally, we selected the top 50
frequent hashtags, and all tweets containing these
hashtags as our classification data set. Here, we
simply use the support vector machines as the
classifier, since our focus is to compare the rep-
resentations learned by various models. Li et al.
(2018) are unable to produce vector representation
on tweet level, hence not considered here.

Table 4 shows the classification results of accu-
racy and average F1 on the two data sets with
the representations learned by various models
serving as the classification features. We observe
that our model outperforms other models with a
large margin. The possible reasons are twofold.
First, our model derives topics from conversa-
tion threads and thus potentially yields better
message representations. Second, the discourse
representations (only produced by our model) are
indicative features for hashtags, because users
will exhibit various discourse behaviors in dis-
cussing diverse topics (hashtags). For instance, we
observe prominent ‘‘argument’’ discourse from
tweets with ‘‘#Trump’’ and ‘‘#Hillary’’, attributed
to the controversial opinions to the two candidates
in the 2016 U.S. presidential election.

5.4 Example Topics and Discourse Roles
We have shown that joint modeling of topics
and discourse presents superior performance on a
quantitative measure. In this section, we qualita-
tively analyze the interpretability of our outputs
via analyzing the word distributions of some
example topics and discourse roles.

Example Topics. Table 5 lists the top 10 words
of some example latent topics discovered by var-
ious models from the TWT16 data set. According
to the words shown, we can interpret the extracted
topics as ‘‘gun control’’ — discussion about gun
law and the failure of gun control in Chicago. We
observe that LDA wrongly includes off-topic word
‘‘flag’’. From the outputs of BTM, LF-DMM, Li
et al. (2018), and our TOPIC ONLY variant, though
we do not find off-topic words, there are some non-
topic words, such as ‘‘said’’ and ‘‘understand’’.13

The output of our TOPIC+DISC model appears to be
the most coherent, with words such as ‘‘firearm’’
and ‘‘criminals’’ included, which are clearly rel-
evant to ‘‘gun control’’. Such results indicate the
benefit of examining the conversation contexts and
jointly exploring topics and discourse in them.

Example Discourse Roles. To qualitatively
analyze whether our TOPIC+DISC model can dis-
cover interpretable discourse roles, we select the
top 10 words from the distributions of some exam-
ple discourse roles and list them in Table 6. It can
be observed that there are some meaningful word
clusters reflecting varying discourse roles found
without any supervision. Interestingly, we observe
that the latent discourse roles from TREC and
TWT16, though learned separately, exhibit some
notable overlap in their associated top 10 words,
particularly for ‘‘question’’ and ‘‘statement’’. We
also note that ‘‘argument’’ is represented by very
different words. The reason is that TWT16 con-
tains a large volume of arguments centered around
candidates Clinton and Trump, resulting in the fre-
quent appearance of words like ‘‘he’’ and ‘‘she’’.

5.5 Further Discussions
In this section, we further present more discussions
on our joint model: TOPIC+DISC.

Parameter Analysis. Here, we study the two
important hyper-parameters in our model, the

13Non-topic words do not clearly indicate the correspond-
ing topic, whereas off-topic words are more likely to appear
in other topics.
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LDA
:::::
people trump police violence gun death protest guns flag shot

BTM gun guns
:::::
people police wrong right

::::
think law agree black

LF-DMM gun police black
:::
said

::::::
people guns killing ppl amendment laws

Li et al. (2018) wrong don trump gun
:::::::::
understand laws agree guns

:::::
doesn

::::
make

NTM gun
:::::::::
understand

::
yes guns world dead

:::
real discrimination trump silence

TOPIC ONLY shootings gun guns cops charges control
::::
mass commit

::::
know agreed

TOPIC+DISC guns gun shootings chicago shooting cops firearm criminals commit laws

Table 5: Top 10 representative words of example latent topics discovered from the TWT16 data set. We
interpret the topics as ‘‘gun control’’ by the displayed words.

:::::::::
Non-topic

::::::
words are wave-underlined

and in blue, and off-topic words are underlined and in red.

Table 6: Top 10 representative words of example discourse roles learned from TREC and TWT16. The
discourse roles of the word clusters are manually assigned according to their associated words.

number of topics (K) and the number of discourse
roles (D). In Figure 4, we show the Cv topic
coherence given varying K in (a) and the homo-
geneity measure given varyingD in (b). As can be
seen, the curves corresponding to the performance
on topics and discourse are not monotonic. In par-
ticular, better topic coherence scores are achieved
given relatively larger topic numbers for TREC
with the best result observed at K = 80. On the
contrary, the optimum topic number for TWT16
is K = 20, and increasing the number of topics
results in worse Cv scores in general. This may be
attributed to the relatively centralized topic con-
cerning U.S. election in the TWT16 corpus. For
discourse homogeneity, the best result is achieved
givenD = 15, with same the number of manually
annotated dialogue acts in the benchmark.

Case Study. To further understand why our
model learns meaningful representations for topics

and discourse, we present a case study based
on the example conversation shown in Figure 1.
Specifically, we visualize the topic words (with
p(w | z) > p(w |d)) in red and the rest of the
words in blue to indicate discourse. Darker red
indicates the higher topic likelihood (p(w | z)) and
darker blue shows the higher discourse likelihood
(p(w |d)). The results are shown in Figure 5. We
can observe that topic and discourse words are
well separated by our model, which explains why
it can generate high-quality representations for
both topics and discourse.

Model Extensibility. Recall that in the Intro-
duction, we mentioned that our neural-based
model has an advantage to be easily combined
with other neural network architectures and allows
for the joint training of both models. Here, we
take message classification (with the setup in
Section 5.3) as an example, and study whether
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Figure 4: (a) The impact of topic numbers. The
horizontal axis shows the number of topics; the vertical
axis shows the Cv topic coherence. (b) The impact of
discourse numbers. The horizontal axis represents the
number of discourse; the vertical axis represents the
homogeneity measure.

joint training our model with convolutional neural
network (CNN) (Kim, 2014), the widely used
model on short text classification, can bring ben-
efits to the classification performance. We set the
embedding dimension to 200, with random initial-
ization. The results are shown in Table 7, where
we observe that joint training our model and the
classifier can successfully boost the classification
performance.

Error Analysis. We further analyze the errors
in our outputs. For topics, taking a closer look
at their word distributions, we found that our
model sometimes mixes sentiment words with
topic words. For example, among the top 10 words
of a topic ‘‘win people illegal americans hate lt
racism social tax wrong’’, there are words ‘‘hate’’
and ‘‘wrong’’, expressing sentiment rather than
conveying topic-related information. This is due
to the prominent co-occurrences of topic words
and sentiment words in our data, which results in
the similar distributions for topics and sentiment.
Future work could focus on the further separation
of sentiment and topic words.

For discourse, we found that our model can
induce some discourse roles beyond the 15 man-
ually defined dialogue acts in the Mastodon data
set (Cerisara et al., 2018). For example, as shown
in Table 6, our model discovers the ‘‘quotation’’
discourse from both TREC and TWT16, which
is, however, not defined in the Mastodon data set.
This perhaps should not be considered as an error.
We argue that it is not sensible to pre-define a
fixed set of dialogue acts for diverse microblog
conversations due to the rapid change and a
wide variety of user behaviors in social media.
Therefore, future work should involve a better
alternative to evaluate the latent discourse without

Figure 5: Visualization of the topic-discourse assign-
ment of a twitter conversion from TWT16. The anno-
tated blue words are prone to be discourse words,
and the red are topic words. The shade indicates the
confidence of the current assignment.

relying on manually defined dialogue acts. We
also notice that our model sometimes fails to iden-
tify discourse behaviors requiring more in-depth
semantic understanding, such as sarcasm, irony,
and humor. This is because our model detects
latent discourse purely based on the observed
words, whereas the detection of sarcasm, irony, or
humor requires deeper language understanding,
which is beyond the capacity of our model.

6 Conclusion and Future Work

We have presented a neural framework that jointly
explores topic and discourse from microblog
conversations. Our model, in an unsupervised
manner, examines the conversation contexts and
discovers word distributions that reflect latent
topics and discourse roles. Results from extensive
experiments show that our model can generate
coherent topics and meaningful discourse roles.
In addition, our model can be easily combined
with other neural network architectures (such
as CNN) and allows for joint training, which
has presented better message classification results
compared with the pipeline approach without joint
training.

Our model captures topic and discourse repre-
sentations embedded in conversations. They are
potentially useful for a broad range of down-
stream applications, worthy to be explored in
future research. For example, our model is useful
for developing social chatbots (Zhou et al., 2018).
By explicitly modeling ‘‘what you say’’ and ‘‘how
you say’’, our model can be adapted to track the
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Models TREC TWT16
Acc Avg F1 Acc Avg F1

CNN only 0.199 0.167 0.334 0.311
Separate-Train 0.284 0.270 0.391 0.390
Joint-Train 0.297 0.286 0.428 0.413

Table 7: Accuracy (Acc) and average F1 (Avg F1)
on tweet classification (hashtags as labels). CNN
only: CNN without using our representations.
Seperate-Train: CNN fed with our pre-trained
representations. Joint-Train: Joint training CNN
and our model.

change of topics in conversation context, helpful
to determine ‘‘what to say and how to say’’ in
the next turn. Also, it would be interesting to
study how our learned latent topics and discourse
affect recommendation (Zeng et al., 2018b) and
summarization of microblog conversations (Li
et al., 2018).
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Michael Röder, Andreas Both, and Alexander
Hinneburg. 2015. Exploring the Space of
Topic Coherence Measures. In Proceedings of
the Eighth ACM International Conference on
Web Search and Data Mining, WSDM 2015,
pages 399–408. Shanghai.

Michal Rosen-Zvi, Thomas L. Griffiths, Mark
Steyvers, and Padhraic Smyth. 2004. The
author-topic model for authors and documents.
In UAI ’04, Proceedings of the 20th Confer-
ence Uncertainty in Artificial Intelligence,
pages 487–494. Banff.

Andrew Rosenberg and Julia Hirschberg. 2007.
V-measure: A conditional entropy-based exter-
nal cluster evaluation measure. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning,
EMNLP-CoNLL 2007, pages 410–420. Prague.

Bei Shi, Wai Lam, Shoaib Jameel, Steven
Schockaert, and Kwun Ping Lai. 2017. Jointly
learning word embeddings and latent topics.
In Proceedings of the 40th International ACM
SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 375–384.
Tokyo.

Yangqiu Song, Haixun Wang, Zhongyuan Wang,
Hongsong Li, and Weizhu Chen. 2011. Short
text conceptualization using a probabilistic
knowledgebase. In Proceedings of the 22nd
International Joint Conference on Artificial
Intelligence, IJCAI 2011, pages 2330–2336.
Barcelona.

Akash Srivastava and Charles Sutton. 2017. Auto-
encoding variational inference for topic models.
In Proceedings of the Fifth International
Conference on Learning Representations, ICLR
2017. Toulon.

Andreas Stolcke, Noah Coccaro, Rebecca Bates,
Paul Taylor, Carol Van Ess-Dykema, Klaus
Ries, Elizabeth Shriberg, Daniel Jurafsky,
Rachel Martin, and Marie Meteer. 2000. Dia-
logue act modeling for automatic tagging and
recognition of conversational speech. Compu-
tational Linguistics, 26(3).

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and
Xueqi Cheng. 2013. A biterm topic model for

280

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00267/1923301/tacl_a_00267.pdf by guest on 07 Septem
ber 2023



short texts. In 22nd International World Wide
Web Conference, WWW ’13, pages 1445–1456.
Rio de Janeiro.

Yi Yang, Doug Downey, and Jordan L. Boyd-
Graber. 2015. Efficient methods for incor-
porating knowledge into topic models. In
Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Pro-
cessing, EMNLP 2015, pages 308–317. Lisbon.

Elina Zarisheva and Tatjana Scheffler. 2015. Dia-
log act annotation for twitter conversations. In
Proceedings of the SIGDIAL 2015 Conference,
pages 114–123. Prague.

Jichuan Zeng, Jing Li, Yan Song, Cuiyun Gao,
Michael R. Lyu, and Irwin King. 2018a. Topic
memory networks for short text classification.
In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing, EMNLP 2018. Brussels.

Xingshan Zeng, Jing Li, Lu Wang, Nicholas
Beauchamp, Sarah Shugars, and Kam-Fai
Wong. 2018b. Microblog conversation recom-
mendation via joint modeling of topics and
discourse. In Proceedings of the 2018 Con-
ference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT

2018, Volume 1 (Long Papers), pages 375–385.
New Orleans, LA.

Tiancheng Zhao, Kyusong Lee, and Maxine
Eskénazi. 2018. Unsupervised discrete sentence
representation learning for interpretable neural
dialog generation. In Proceedings of the 56th
Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Volume 1:
Long Papers, pages 1098–1107. Melbourne.

Tiancheng Zhao, Ran Zhao, and Maxine Eskénazi.
2017. Learning discourse-level diversity for
neural dialog models using conditional varia-
tional autoencoders. In Proceedings of the 55th
Annual Meeting of the Association for Com-
putational Linguistics, ACL 2017, Volume 1:
Long Papers, pages 654–664. Vancouver.

Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing
He, Ee-Peng Lim, Hongfei Yan, and Xiaoming
Li. 2011. Comparing Twitter and traditional
media using topic models. In Proceedings
of Advances in Information Retrieval - 33rd
European Conference on IR Research, ECIR
2011, pages 338–349. Dublin.

Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung
Shum. 2018. The design and implementation of
Xiaoice, an empathetic social chatbot. CoRR,
abs/1812.08989.

281

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00267/1923301/tacl_a_00267.pdf by guest on 07 Septem
ber 2023


	Introduction
	Related Work
	Our Neural Model for Topics and Discourse in Conversations
	Model Overview
	Generative Process
	Model Inference

	Experimental Setup
	Experimental Results
	Topic Coherence
	Discourse Interpretability
	Message Representations
	Example Topics and Discourse Roles
	Further Discussions

	Conclusion and Future Work

