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Abstract
In many machine learning scenarios, supervi-
sion by gold labels is not available and conse-
quently neural models cannot be trained directly
by maximum likelihood estimation. In a weak
supervision scenario, metric-augmented objec-
tives can be employed to assign feedback to
model outputs, which can be used to extract a
supervision signal for training. We present sev-
eral objectives for two separate weakly super-
vised tasks, machine translation and semantic
parsing. We show that objectives should ac-
tively discourage negative outputs in addition
to promoting a surrogate gold structure. This
notion of bipolarity is naturally present in
ramp loss objectives, which we adapt to neu-
ral models. We show that bipolar ramp loss
objectives outperform other non-bipolar ramp
loss objectives and minimum risk training on
both weakly supervised tasks, as well as on a
supervised machine translation task. Addition-
ally, we introduce a novel token-level ramp
loss objective, which is able to outperform
even the best sequence-level ramp loss on both
weakly supervised tasks.

1 Introduction

Sequence-to-sequence neural models are stan-
dardly trained using a maximum likelihood esti-
mation (MLE) objective. However, MLE training
requires full supervision by gold target structures,
which in many scenarios are too difficult or
expensive to obtain. For example, in semantic
parsing for question-answering it is often easier
to collect gold answers rather than gold parses

∗Both authors contributed equally to this publication.

(Clarke et al., 2010; Berant et al., 2013; Pasupat
and Liang, 2015; Rajpurkar et al., 2016, inter alia).
In machine translation, there are many domains
for which no gold references exist, although cross-
lingual document-level links are present for many
multilingual data collections.

In this paper we investigate methods where a
supervision signal for output structures can be
extracted from weak feedback. In the following,
we use learning from weak feedback, or weakly
supervised learning, to refer to a scenario where
output structures generated by the model are
judged according to an external metric, and this
feedback is used to extract a supervision signal that
guides the learning process. Metric-augmented
sequence-level objectives from reinforcement
learning (Williams, 1992; Ranzato et al., 2016),
minimum risk training (MRT) (Smith and Eisner,
2006; Shen et al., 2016) or margin-based struc-
tured prediction objectives (Taskar et al., 2005;
Edunov et al., 2018) can be seen as instances of
such algorithms.

In natural language processing applications,
such algorithms have mostly been used in com-
bination with full supervision tasks, allowing to
compute a feedback score from metrics such as
BLEU or F-score that measure the similarity
of output structures against gold structures. Our
main interest is in weak supervision tasks where
the calculation of a feedback score cannot fall
back onto gold structures. For example, matching
proposed answers to a gold answer can guide a
semantic parser towards correct parses, and match-
ing proposed translations against linked doc-
uments can guide learning in machine translation.

In such scenarios the judgments by the external
metric may be unreliable and thus unable to select
a good update direction. It is our intuition that
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a more reliable signal can be produced by not
just encouraging outputs that are good according
to weak positive feedback, but also by actively
discouraging bad structures. In this way, a system
can more effectively learn what distinguishes good
outputs from bad ones. We call an objective that
incorporates this idea a bipolar objective. The bi-
polar idea is naturally captured by the structured
ramp loss objective (Chapelle et al., 2009), espe-
cially in the formulation by Gimpel and Smith
(2012) and Chiang (2012), who use ramp loss to
separate a hope from a fear output in a linear
structured prediction model. We employ several
ramp loss objectives for two weak supervision
tasks, and adapt them to neural models.

First, we turn to the task of semantic parsing
in a setup where only question-answer pairs, but
no gold semantic parses, are given. We assume
a baseline system has been trained using a small
supervised data set of question-parse pairs under
the MLE objective. The goal is to improve this
system by leveraging a larger data set of question-
answer pairs. During learning, the semantic parser
suggests parses for which corresponding answers
are retrieved. These answers are then compared to
the gold answer and the resulting weak supervision
signal guides the semantic parser towards finding
correct parses. We can show that a bipolar ramp
loss objective can improve upon the baseline by
over 12 percentage points in F1 score.

Second, we use ramp losses on a machine
translation task where only weak supervision in
the form of cross-lingual document-level links
is available. We assume a translation system
has been trained using MLE on out-of-domain
data. We then investigate whether document-
level links can be used as a weak supervision
signal to adapt the translation system to the target
domain. We formulate ramp loss objectives that
incorporate bipolar supervision from relevant and
irrelevant documents. We also present a metric
that allows us to include bipolar supervision in
an MRT objective. Experiments show that bipolar
supervision is crucial for obtaining gains over the
baseline. Even with this very weak supervision,
we are able to achieve an improvement of over 0.4%
BLEU over the baseline using a bipolar ramp loss.

Finally, we turn to a fully supervised machine
translation task. In supervised learning, MLE train-
ing in a fully supervised scenario has also been
associated with two issues. First, it can cause
exposure bias (Ranzato et al., 2016) because

during training the model receives its context
from the gold structures of the training data, but
at test time the context is drawn from the model
distribution instead. Second, the MLE objective
is agnostic to the final evaluation metric, causing
a loss-evaluation mismatch (Wiseman and Rush,
2016). Our experiments use a similar setup as
Edunov et al. (2018), who apply structured pre-
diction losses to two fully supervised sequence-
to-sequence tasks, but do not consider structured
ramp loss objectives. Like our predecessors, we
want to understand whether training a pre-trained
machine translation model further with a metric-
informed sequence-level objective will improve
translation performance by alleviating the above-
mentioned issues. By gauging the potential of
applying bipolar ramp loss in a full supervision
scenario, we achieve best results for a bipolar
ramp loss, improving the baseline by over 0.4%
BLEU.

In sum, we show that bipolar ramp loss is
superior to other sequence-level objectives for all
investigated tasks, supporting our intuition that a
bipolar approach is crucial where strong positive
supervision is not available. In addition to adapting
the ramp loss objective to weak supervision, our
ramp loss objective can also be adapted to operate
at the token level, which makes it particularly
suitable for neural models as they produce their
outputs token by token. A token-level objective
also better emulates the behavior of the ramp loss
for linear models, which only update the weights of
features that differ between hope and fear. Finally,
the token-level objective allows us to capture
token-level errors in a setup where MLE training
is not available. Using this objective, we obtain
additional gains on top of the sequence-level ramp
loss for weakly supervised tasks.

2 Related Work

Training neural models with metric-augmented
objectives has been explored for various NLP tasks
in supervised and weakly supervised scenarios.
MRT for neural models has previously been
used for machine translation (Shen et al., 2016)
and semantic parsing (Liang et al., 2017; Guu
et al., 2017).1 Other objectives based on classical

1Note that Liang et al. (2017) refer to their objective as an
instantiation of REINFORCE, however they build an average
over several outputs for one input and thus the objective more
accurately falls under the heading of MRT.
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structured prediction losses have been used for both
machine translation and summarization (Edunov
et al., 2018), as well as semantic parsing (Iyyer
et al., 2017; Misra et al., 2018). Objectives inspired
by REINFORCE have, for example, been ap-
plied to machine translation (Ranzato et al., 2016;
Norouzi et al., 2016), semantic parsing (Liang
et al., 2017; Mou et al., 2017; Guu et al., 2017),
and reading comprehension (Choi et al., 2017;
Yang et al., 2017).2

Misra et al. (2018) are the first to compare
several objectives for neural semantic parsing.
For semantic parsing, they find that objectives
employing structured prediction losses perform
best. Edunov et al. (2018) compare different clas-
sical structured prediction objectives including
MRT on a fully supervised machine translation
task. They find MRT to perform best. However,
they only obtain larger gains by interpolating
MRT with the MLE loss. Neither Misra et al.
(2018) nor Edunov et al. (2018) investigate objec-
tives that correspond to the bipolar ramp loss that
is central in our work.

The ramp loss objective (Chapelle et al., 2009)
has been applied to supervised phrase-based
machine translation (Gimpel and Smith, 2012;
Chiang, 2012). We adapt these objectives to neural
models and adapt them to incorporate bipolar
weak supervision, while also introducing a novel
token-level ramp loss objective.

3 Neural Sequence-to-Sequence Learning

Our neural sequence-to-sequence models utilize
an encoder-decoder setup (Cho et al., 2014;
Sutskever et al., 2014) with an attention
mechanism (Bahdanau et al., 2015). Specifically,
we employ the framework NEMATUS (Sennrich
et al., 2017). Given an input sequence x =
x1, x2, . . . x|x|, the probability that a model assigns
for an output sequence y = y1, y2, . . . y|y| is given
by πw(y|x) =

∏|y|
j=1 πw(yj |y<j , x). Using beam

search, we can obtain a sorted k-best list K(x) of
most likely to least likely outputs and we define the
most likely output as ŷ = argmaxy∈K(x) πw(y|x).

2We do not use REINFORCE because its updates are
based on only one sampled model output, which can lead to
high variance. Because it is possible for us to obtain feedback
for more than one model output, we employ the more robust
MRT that calculates an average over several outputs.

Maximum Likelihood Estimation (MLE).
Prior to employing metric-augmented objectives,
we assume that a model has been pre-trained with
a maximum likelihood estimation (MLE) objec-
tive.Giveninputsx and gold structures ȳ, the param-
eters of the neural network are updated using
Stochastic Gradient Descent (SGD) with mini-
batchesof sizeM , leading to the following objective:

LMLE = − 1

M

M∑
m=1

|ȳ|∑
j=1

log πw(ȳm,j |ȳm,<j , xm).

(1)
Minimum Risk Training (MRT). We compare
our ramp loss objectives to MRT (Shen et al.,
2016), which uses an external metric to assign
rewards to model outputs. Given an input x, S
outputs are sampled from the model distribution
and updates are performed based on the following
MRT objective:

LMRT = − 1

M

M∑
m=1

1

S

S∑
s=1

πw(ym,s|xm)δ(ym,s),

(2)
where δ(ym,s) is the reward returned for ym,s

by the external metric, and πw(ym,s|xm) is a
distribution over outputs that is normalized over
S samples and can be controlled for sharpness by
a temperature parameter.3 Following Shen et al.
(2016), we use a baseline term b(xm) that acts
as a control variate for variance reduction of the
stochastic gradient (Williams, 1992; Greensmith
et al., 2004) and allows negative updates for
rewards smaller than the baseline. We compute
this term by sampling S′ outputs from the model
distribution such that b(x) = − 1

S′
∑S′

s′=1 δ(ys′).

Ramp Loss Objectives. Our ramp loss objec-
tives can be formulated as follows:

LRAMP =
1

M

M∑
m=1

πw(y
−
m|xm) (3)

− 1

M

M∑
m=1

πw(y
+
m|xm),

where y− is a fear output that is to be discouraged
and y+ is a hope output that is to be encouraged.

3We follow the implementation of MRT in NEMATUS with
its default settings, including de-duplication of samples and
setting the temperature parameter to α = 0.005. In case of
fully supervised MT where the question arises whether to
include the reference in the sample, we choose not to include
it in order to be comparable with Edunov et al. (2018) who
also do not include it.
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Name y+ y−

RAMP argmaxy∈P(x) πw(y|x) argmaxy∈N (x) πw(y|x)
RAMP1 ŷ argmaxy∈N (x) πw(y|x)
RAMP2 argmaxy∈P(x) πw(y|x) ŷ

Table 1: Configurations for y+ and y− for semantic parsing. We abbreviate P(x) = K(x) : δ(y) = 1, which is the
most likely output in the k-best list K(x) that leads to the correct answer, and N (x) = K(x) : δ(y) = 0, which is
the most likely output in the k-best list K(x) that leads to the wrong answer.

Intuitively, y− should be an output which has high
probability, but receives a bad reward from the
external metric. Analogously, y+ should be an
output which has high probability and receives
a high reward from the external metric. The
concrete instantiations of y− and y+ depend on
the underlying task and are thus deferred to the
respective sections below (see Tables 1, 4, and
7). The RAMP loss defined in equation (3) has
been introduced as equation (8) in Gimpel and
Smith (2012). This loss naturally incorporates
a bipolarity principle by including both hope and
fear into one objective. An alternative formulation
of ramp loss can be given by favoring the current
model prediction, that is, setting y+ = ŷ, and
searching for a fear output. This has been called
‘‘cost-augmented decoding’’ and been formalized
in equation (6) in Gimpel and Smith (2012). This
loss dates back to the ‘‘margin-rescaled hinge
loss’’ of Taskar et al. (2004) and will be called
RAMP1 in the following. The converse approach
has been called ‘‘cost-diminished decoding’’ and
been formalized in equation (7) in Gimpel and
Smith (2012). Here the model prediction is
penalized by setting y− = ŷ and searching for
a hope output. This objective has been called
‘‘direct loss’’ in Hazan et al. (2010), and will be
called RAMP2 in the following.

Finally, we introduce a ramp loss objective that
can operate on the token level. To be able to adjust
individual tokens, we move to log probabilities,
so that the sequence decomposes as a sum over
individual tokens and it is possible to ignore tokens
while encouraging or discouraging others. This
leads to the RAMP-T objective:

LRAMP-T = (4)

1

M

M∑
m=1

|y−
m|∑

j=1

τ−m,j log πw(y
−
m,j |ym,<j , xm)

− 1

M

M∑
m=1

|y+
m|∑

j=1

τ+m,j log πw(y
+
m,j |ym,<j , xm),

Figure 1: Settings for token-level rewards τ+ and τ−

for hope output y+ = ‘‘a small house’’ and fear output
y− = ‘‘the house’’.

where τ+m,j and τ−m,j are set to 0, 1 or−1 depending
on the decision whether the corresponding token
y+m,j/y

−
m,j should be left untouched, encouraged

or discouraged. Concretely, we define:

τ+m,j =

{
0 if y+m,j ∈ y−

1 else
(5)

and

τ−m,j =

{
0 if y−m,j ∈ y+

−1 else.
(6)

With this definition, tokens that appear in both
y+ and y− are left untouched, whereas tokens that
appear only in the hope output are encouraged,
and tokens that appear only in the fear output are
discouraged (see Figure 1 for an example). This
more fine-grained contrast allows the model to
learn what distinguishes a good output from a bad
one more effectively.4

4 Semantic Parsing

Ramp Loss Objectives. In semantic parsing for
question answering, natural language questions
are mapped to machine readable parses. Such
a parse, y, can be executed against a database
that returns an answer a. This answer a can be
compared to the available gold answer ā and the
following metric can be defined:

δ(y) =

{
1 if a = ā

0 else.
(7)

4An implementation of the RAMP objectives can be found
at https://github.com/carhaas/nematus.
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For RAMP, y+ is defined as the most probable
output in the k-best list K(x) that leads to the
correct answer, that is, where δ(y) = 1. In
contrast, y− is defined as the most probable output
in K(x) that does not lead to the correct answer,
namely, where δ(y) = 0. The definitions of y+

and y− for this objective and the related ramp loss
objectives can be found in Table 1. If y+ or y−

are found, the parse is cached as a hope or fear
output, respectively, for the corresponding input
x. If at a later point y+ or y− cannot be found
in the current k-best list, then previously cached
outputs are accessed instead. Should no cached
output exist, the corresponding sample is skipped.

Experimental Setup. Our experiments are con-
ducted on the NLMAPS V2 corpus (Lawrence and
Riezler, 2018), which is a publicly available
corpus5 for geographical questions that can be
answered with the OPENSTREETMAP database.6 The
corpus is a recent extension of its predecessor
(Haas and Riezler, 2016), which has been used in
Kočiský et al. (2016) or Duong et al. (2018).

For each question, the corpus provides both gold
parses and gold answers that can be obtained by
executing the parses against the database. We take
a random subset of 2,000 question-parse pairs to
train an initial model πw with the MLE objective.
Following Lawrence and Riezler (2018), we take
a pre-order traversal of the tree-structured parses
to obtain individual tokens. A further 1,843 and
2,000 instances of the corpus are retained for de-
velopment and test set, respectively. For the re-
maining 22,766 questions, we assume that no gold
parses exist and only gold answers are available.
With the gold answers as a guide, the initial
model πw is further improved using the metric-
augmented objectives of Section 3 and the metric
defined in equation (7).

The model has 1,024 hidden units (GRUs)
and word embeddings of size 1,000. The opti-
mal learning rate was chosen in preliminary
experiments on the development set and is set
to 0.1. Gradients are clipped to 1.0 if they exceed
a value of 1.0 and the sentence length is capped
at 200. In the case of the MRT objectives, we
set S = S′ = 10. For the RAMP objectives the
size of the k-best list K is 10. For objectives with
minibatches, the size of a minibatch is M = 80

5https://www.cl.uni-heidelberg.de/statnlp
group/nlmaps/.

6https://www.openstreetmap.org.

and validation on the development set is performed
after every 100 updates. For objectives where
updates are performed after each seen input, the
validation is run after every 8,000 updates, leading
to the same number of seen inputs compared to
the objectives with minibatches.

For validation and at test time, the most likely
parse is obtained after a beam search with a
beam of size 12. The obtained parse is executed
against the database to retrieve its corresponding
answer, which is compared to the available gold
answer. We define recall as the percentage of
correct answers in the entire set and precision
as the percentage of correct answers in the set
of non-empty answers. The harmonic mean of
recall and precision constitutes the F1 score. The
stopping point is determined by the highest F1
score on the development set after 30 validations
or 30 days of run time7 and corresponding re-
sults are reported on the test set. To measure
statistical significance between models we use an
approximate randomization test (Noreen, 1989).

Experimental Results. Results using the var-
ious ramp loss objectives as well as MRT are
shown in Table 2. MRT outperforms the MLE
baseline by about 6 percentage points in F1 score.
RAMP1 performs worse than MRT, but can still
significantly outperform the baseline by 3.05 points
in F1 score. RAMP2 performs better than RAMP1,
but outperforms MRT only nominally.

In contrast to this, by carefully selecting both a
hope and fear parse, RAMP achieves a significant
further 5.43 points in F1 score over MRT. By
incorporating token-level feedback, our novel
objective RAMP-T outperforms all other models
significantly and beats the baseline by over
12 points in F1 score. Compared with RAMP,
RAMP-T can take advantage of the token-level
feedback that allows a model to determine which
tokens in the hope output are instrumental to
obtain a positive reward but are missing in the
fear output. Analogously, it is possible to identify
which tokens in the fear output lead to an incorrect
parse, rather than also punishing the tokens in the
fear output which are actually correct.

MRT is not naturally a bipolar objective. It
can only discourage wrong parses if the baseline
is larger than 0. Investigating the value of the
baseline for 10,000 instances shows that in 37%

7The 30-day mark was only hit by RAMP2.
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M % F1 Δ

1 MLE 57.45
2 MRT 1 63.60 ± 0.02 + 6.15
3 RAMP1 80 60.50 ± 0.01 + 3.05
4 RAMP2 80 64.22 ± 0.00 + 6.77
5 RAMP 80 69.03 ± 0.04 + 11.58
6 RAMP-T 80 69.87 ± 0.02 + 12.42

Table 2: Answer F1 scores on the NLMAPS V2
test set for various objectives, averaged over two
independent runs. M is the minibatch size. All
models are statistically significant from each other
at p < 0.01, except the pair (2, 4).

of the cases the baseline is 0 (i.e., none of the
sampled parses leads to the correct answer).
As a result, 37% of the time, wrong parses are
ignored rather than discouraged. To explore the
importance of always discouraging wrong parses,
we introduce the objective MRT NEG: it modifies
the feedback for parses with a wrong answer to
be −1 rather than 0, which resembles the fear
output that is discouraged in the RAMP objective.
With this change, the MRT objective always
behaves in a bipolar manner, irrespective of the
baseline’s value. As a consequence, MRT NEG

can significantly outperform MRT by 2.33 points
in F1 score (see Table 3). This showcases the
importance of utilizing bipolar supervision and
it constitutes an important finding compared to
previous approaches (Liang et al., 2017; Misra
et al., 2018), where the feedback is defined to lie
in the range of [0, 1].

However, MRT NEG still falls short of RAMP
by 3.1 points in F1 score. This could be because
of the different batch sizes, as MRT uses a batch
size of 1, whereas RAMP employs a batch size
of 80. To ensure that the difference between the
objectives does not stem from this difference, we
run an experiment with RAMP where the batch
size is also set to 1 (i.e., RAMP M=1). Crucially, it
still significantly outperforms MRT. At the same
time, it does, however, have a lower F1 score
than RAMP (see Table 3). This showcases the
importance of using a larger minibatch size, so
that an average over several inputs is computed
before updating. In fact, its F1 score is on par
with the MRT NEG objective, which uses the
same minibatch size and incorporates bipolar
supervision just as RAMP does. However, RAMP
M=1 should still be preferred because the RAMP

M % F1 Δ

1 MLE 57.45
2 MRT 1 63.60 ± 0.02 + 6.15
3 MRT NEG 1 65.93 ± 0.16 + 8.48
4 RAMP M=1 1 66.78 ± 0.21 + 9.33
5 RAMP 80 69.03 ± 0.04 + 11.58

Table 3: Answer F1 scores on the NLMAPS V2 test
set for RAMP and the MRT objective as well
as two further objectives, which help crystallize
the difference between the two former objectives,
averaged over two independent runs. M is the
minibatch size. All models are statistically sig-
nificant from each other at p < 0.01, except the
pair (3, 4).

objectives are more efficient than MRT objectives.
In the case of MRT, for every training instance
S + S′ = 20 queries need to be executed against
the database to obtain an answer and corres-
ponding reward. On the other hand, RAMP has
to execute at most the 10 queries of the k-best list
K, but often less if both a correct and an incorrect
query are found earlier.

To summarize, RAMP can attribute its success
to two factors: First, it discourages parses that
receive a wrong answer rather than ignoring them
as MRT often does. Second, a larger minibatch
size leads to improvements because updates are
based on an average over several inputs. Further
performance gains can be obtained by using the
token-level objective RAMP-T. Finally, RAMP
objectives are more efficient because fewer out-
puts have to be judged.

5 Weakly Supervised Machine Translation

Ramp Loss Objectives. We consider machine
translation (MT) in a weakly supervised domain
adaptation setting, where in-domain references
are unavailable. In this setting, we obtain weak
feedback by matching translation model outputs
against cross-lingually linked documents. For
each input sentence x, we can obtain a set of
relevant documents D+(x) ∈ D where D is a
collection of target language documents. Cross-
lingual link structures can be found in many
multilingual document collections, such as cross-
lingual citations in patent documents or product
categories in e-commerce data. Our example is
links between Wikipedia documents. Instead of a
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reference translation, we use a relevant document
d+ sampled from D+(x) to guide our search for
y+ and y−. As a relevant document provides much
weaker supervision than a reference translation,
we construct a more informative supervision
signal by integrating negative supervision from an
irrelevant document d− sampled from a collection
of irrelevant contrast documents. For each input
x, the bipolar supervision signal then consists of a
pair of sampled documents (d+, d−).

Unlike semantic parsing for question answer-
ing, our task uses a continuous reward δ(y) ∈
[0, 1]. In fully supervised MT a sentence-level
approximation of the BLEU score can serve as the
reward. But computing the BLEU score between
a translation and a document does not make sense.
We therefore propose two different alternative
metrics. The first, δ1(y, d), computes how well
a translation matches a relevant document. The
second, δ2(y, d+, d−) computes how well a trans-
lation differentiates between a relevant and an
irrelevant document. δ1(y, d) is defined as the
average n-gram precision between a hypothesis
and a document, multiplied by a brevity penalty.
As we do not have a reference length, we include
a brevity penalty term that compares the output
length to the input length. This ratio can be modi-
fied by a factor r that represents the average length
difference between source and target language
and which can be computed over the training
data:

δ1(y, d) =
1

N

N∑
n=1

∑
un

c(un, y) · 11un∈d∑
un

c(un, y)
·BP ,

(8)

where un are the n-grams present in y, c() counts
the occurrences of an n-gram in y, and N is the
maximum order of n-grams used. The brevity
penalty term is

BP = min

(
1,

r · |y|
|x|

)
.

δ2(y, d
+, d−) is defined as the difference be-

tween δ1(y, d
+) and δ1(y, d

−), subject to a linear
transformation to allow values to lie between 0
and 1:

δ2(y, d
+, d−) =

0.5 · (δ1(y, d+)− δ1(y, d
−) + 1) .

(9)

Our intuition behind this metric is that it should
measure how well a translation differentiates

between the relevant and irrelevant document,
leading to domain-specific translations being
weighted higher than domain-agnostic ones.

Table 4 shows our loss functions for the weakly
supervised case. RAMP and RAMP2 define y+

and y− in the same way as is done in the semantic
parsing task, except that the metric δ1(y, d

+) is
used to match outputs against documents. Like
Gimpel and Smith (2012), we include a scaling
factor α to trade off the importance of the reward
against the model score in determining y+ and y−.
Note that these objectives do not include negative
supervision from d−. Using the metrics defined
above, we formulate two objectives that include
d−: RAMP− defines y+ in the same way as RAMP,
but uses a different definition of y−: Instead of
using a fear output with respect to d+ (i.e., a
translation with high probability and low reward
δ1(y, d

+)), we use a hope output with respect to d−

(i.e., a translation with high probability and high
reward δ1(y, d

−)). As this translation matches an
irrelevant document well, it can be used as a
negative output. The same definition of y− is also
used in RAMP1−. Note that this objective does
not include positive supervision from d+. Finally,
RAMPδ2 incorporates d+ and d− in a different
way. This objective defines y+ as a hope and y−

as a fear, but uses the joined metric δ2(y, d
+, d−)

with respect to the document pair (d+, d−).

Experimental Setup. We test our objectives on
a weakly supervised English–German Wikipedia
translation task first proposed in Jehl and Riezler
(2016). In-domain training data are 10,000 English
sentences with relevant German documents
sampled from the WikiCLIR corpus (Schamoni
et al., 2014).8 The task includes a small in-domain
development and test set (dev: 1,712 sentences,
test: 1,526 sentences), each consisting of four
Wikipedia articles on diverse subjects. Irrelevant
documents d− are sampled from the German side
of the News Commentary9 data set, which contains
document boundary information.

Byte-pair encoding (Sennrich et al., 2016) with
30,000 merge operations is applied to all source
and target data. Sentences longer than 80 words

8WikiCLIR annotates both a stronger mate relation when
there is a direct cross-lingual link between documents and a
weaker link relation when a there is a bidirectional link be-
tween a German mate document and another German doc-
ument. The experiments reported here use the mate relation.

9http://casmacat.eu/corpus/news-commentary.html.
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Loss y+ y−

RAMP argmaxy πw(y|x)− α(1− δ1(y, d
+)) argmaxy πw(y|x) + α(1− δ1(y, d

+))
RAMP− argmaxy πw(y|x)− α(1− δ1(y, d

+)) argmaxy πw(y|x)− α(1− δ1(y, d
−))

RAMP1− ŷ argmaxy πw(y|x)− α(1− δ1(y, d
−))

RAMP2 argmaxy πw(y|x)− α(1− δ1(y, d
+)) ŷ

RAMPδ2 argmaxy πw(y|x)− α(1− δ2(y, d
+, d−)) argmaxy πw(y|x) + α(1− δ2(y, d

+, d−))

Table 4: Configurations for y+ and y− for weakly supervised MT adaptation. ŷ is the highest-probability model
output. πw(y|x) is the probability of y under the model. The argmaxy is taken over the k-best list K(x). α is
a scaling factor regulating the influence of the metric compared to the model probability. δ1 and δ2 are metrics
defined with respect to relevant and irrelevant documents d+ and d− (see Eq. 8 and 9).

are removed from the training set. Our neural MT
model uses 500-dimensional word embeddings
and hidden layer dimension of 1,024. Encoder and
decoder use GRU units. An out-of-domain model
is trained on 2.1 million sentence pairs from
Europarl v7 (Koehn, 2005), News Commentary
v10, and the MultiUN v1 corpus (Eisele and Chen,
2010). The baseline (MLE) is trained using the
MLE objective and ADADELTA (Zeiler, 2012)
for 20 epochs. We train on batches of 64 and use
dropout for regularization, with a dropout rate of
0.2 for embedding and hidden layers and 0.1 for
source and target layers. Gradients are clipped if
their norm exceeds 1.0.

The metric-augmented objectives are trained
using SGD. All hyperparameters are chosen on
the development set. For the ramp loss objectives,
we use a learning rate of 0.005, α = 10, and
a k-best size of 16. We compare ramp loss to
MRT using both δ1(y, d

+) and δ2(y, d
+, d−) as

the external cost function, denoted as MRTδ1

and MRTδ2 , respectively. MRT is trained using
a learning rate of 0.05, S = 16, and S′ = 10. For
testing and validation, translations are obtained
using beam search with a beam size of 16. Results
are validated every 200 updates and training is
run for 25 validations. The stopping point is
determined by the BLEU score (Papineni et al.,
2001) on the development set. We report scores
computed with Moses’10 multi-bleu.perl
on tokenized, truecased output. Results are aver-
aged over 2 runs.

Experimental Results. Results for the different
objectives can be found in Table 5. The ramp
losses RAMP, RAMP1−, and RAMP2, which
do not incorporate bipolar supervision from d+

and d− (lines 2, 3, and 4) actually deteriorate

10https://github.com/moses-smt/mosesdecoder.

M % BLEU Δ

1 MLE 64 15.59
2 RAMP 40 15.03 ± 0.01 − 0.56
3 RAMP1− 40 15.12 ± 0.02 − 0.47
4 RAMP2 40 15.19 ± 0.01 − 0.40
5 MRTδ1 1 15.37 ± 0.04 − 0.22
6 MRTδ2 1 15.70 ± 0.04 + 0.11
7 RAMP− 40 15.85 ± 0.02 + 0.26
8 RAMPδ2 40 15.86 ± 0.04 + 0.27
9 RAMP−-T 40 16.03∗± 0.02 + 0.44

10 RAMPδ2 -T 40 15.84 ± 0.02 + 0.25

Table 5: BLEU scores for weakly supervised MT
experiments. Boldfaced results are significantly
better than the baseline at p < 0.05 according to
multeval (Clark et al., 2011). ∗ marks a sig-
nificant difference over RAMP−.

in performance. This shows that supervision
from only d+ or only d− is insufficient. The
deteriorating effect is strongest for RAMP, which
uses d+ to select both y+ and y−. We explain this
by the fact that d+ is an imperfect label. Trying to
push the model to perfectly reproduce d+ will not
lead to a good translation. The same observation
holds true for MRTδ1 . This objective only includes
the reward δ1(y, d

+). Compared with the RAMP
objectives, the decrease for MRTδ1 is smaller.

On the other hand, MRTδ2 , which incorpo-
rates bipolar supervision, produces a nominal
improvement over the MLE baseline. This objec-
tive is outperformed by RAMP− and RAMPδ2 .
Both objectives produce a small, but significant,
improvement of 0.3% BLEU over the MLE base-
line. This result shows that bipolar supervision
is crucial for success in this weak supervision
scenario. It also shows that unlike MRT, for the
bipolar ramp loss it does not matter whether δ1 or
δ2 is used, as they both capture the same idea. The
superiority of these objectives over MRT shows

240

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00265/1923174/tacl_a_00265.pdf by guest on 08 Septem
ber 2023

https://github.com/moses-smt/mosesdecoder


Figure 2: BLEU scores by sentence length for the MLE
Baseline and the RAMP−-T runs.

again the success of intelligently selecting positive
and negative outputs. Another small, but signifi-
cant, improvement is produced by the token-level
variant RAMP−-T, leading to the best overall
result.

To summarize, we find that for this task, which
uses very weak supervision from document-level
links, small improvements can be obtained. To
achieve these improvements, it is imperative to
use objectives that include bipolar supervision
from d+ and d−. This finding holds for both ramp
loss and MRT. The best overall result is obtained
using ramp loss in the token-level variant.

Analysis of Translation Results. As the im-
provements in the translation experiments are very
small, we conduct a small-scale analysis to better
determine the nature of the gains. Our analysis is
inspired by Bentivogli et al. (2016). We compare
the weakly supervised MLE baseline to the best
experiment in this setting, which uses the bipolar
token-level ramp loss RAMP−-T.

We first analyze the performance by sentence
length. We separate the translations into source
length brackets and score each bracket separately.
The brackets represent quartiles of the source
length distribution, ensuring an approximately
equal amount of sentences in each bracket. Results
are shown in Figure 2. For all systems, we observe
a drop in performance up to an input length of 33.
Surprisingly, BLEU scores increase again for the
top bracket (source length > 33). For this bracket,
we also see the biggest gap between MLE and
RAMP−-T of 0.52 and 0.67% BLEU for the two
runs. This increase is mitigated by much weaker
increases in the bottom brackets. A possible
explanation for the weaker performance of MLE in
the top bracket is the observation that hypotheses
produced by the MLE system are longer than

Figure 3: BLEU scores by Wikipedia article for the
MLE Baseline and the RAMP−-T runs.

Figure 4: Improvements in BLEU scores by Wikipedia
article for the RAMP−-T runs.

for RAMP−-T. For the top bracket, hypothesis
lengths exceed reference lengths for all systems.
However, for MLE this over-generation is more
severe at 106% of the reference length, compared
to RAMP−-T at 102%, potentially causing a higher
loss in precision.

As our test set consists of parallel sentences
extracted from four Wikipedia articles, we can
examine the performance for each article sepa-
rately. Figure 3 shows the results. We observe
large differences in performance according to arti-
cle ID. These are probably caused by some articles
being more similar to the out-of-domain training
data than others. Comparing RAMP−-T and MLE,
we see that RAMP−-T outperforms MLE for each
article by a small margin. Figure 4 shows the
size of the improvements by article. We observe
that margins are bigger on articles with better
baseline performance. This suggests that there are
challenges arising from domain mismatch that
are not addressed by our method.

Lastly, we present an examination of example
outputs. Table 6 shows an example of a long
sentence from Article 2, which describes the
German town of Schüttorf. This article is orig-
inally in German, meaning that our model is
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Source Towards the end of the 19th century, a strong textile industry was developing itself in Schüttorf
with several large local businesses (Schlikker & Söhne, Gathmann & Gerdemann, G. Schümer &
Co. and ten Wolde, later Carl Remy; today’s RoFa is not one of the original textile companies,
but was founded by H. Lammering and later taken over by Gerhard Schlikker jun., Levert Rost
and Wilhelm Edel;

MLE Ende des 19. Jahrhunderts, eine starke Textilindustrie, die sich in Ettorf mit mehreren
großen lokalen Unternehmen (Schlikker & Söhne, Gathmann & Geréann, G. Schal
& Co. und zehn Wolde, später Carl Remy) entwickelt hat; die heutige RoFa ist nicht
einer der ursprünglichen Textilunternehmen, sondern wurde von H. Lammering [gegründet] und
später von Gerhard Schaloker Junge, Levert Rost und Wilhelm Edel übernommen.

RAMP−-T Ende des 19. Jahrhunderts entwickelte sich [in Schüttorf] eine starke Textilindustrie mit mehreren
großen lokalen Unternehmen (Schlikker & Söhne, Gathmann & Gerdemann, G. Schal & Co.
und zehn Wolde, später Carl Remy; die heutige RoFa ist nicht eines der ursprünglichen
Textilunternehmen, sondern wurde von H. Lammering [gegründet] und später von Gerhard
Schaloker Junge, Levert Rost und Wilhelm Edel übernommen.

Reference gegen Ende des 19. Jahrhunderts entwickelte sich in Schüttorf eine starke Textilindustrie mit
mehreren großen lokalen Unternehmen (Schlikker & Söhne, Gathmann & Gerdemann, G.
Schümer & Co. und ten Wolde, später Carl Remy, die heutige RoFa ist keine ursprüngliche
Textilfirma, sondern wurde von H. Lammering gegründet und später von Gerhard Schlikker jun.,
Levert Rost und Wilhelm Edel übernommen.)

Table 6: MT example from Article 2 in the test set. All translation errors are underlined. Incorrect
proper names are also set in cursive. Omissions are inserted in brackets and set in cursive [like this].
Improvements by RAMP−-T over MLE are marked in boldface.

back-translating from English into German. The
reference contains some awkward or even un-
grammatical phrases such as ‘‘was developing
itself’’, a literal translation from German. The
example also illustrates that translating Wikipedia
involves handling frequent proper names (there
are 11 proper names in the example). Both mod-
els struggle with translating proper names, but
RAMP−-T produces the correct phrase ‘‘Gathmann
& Gerdemann’’, while MLE fails to do so. The
RAMP−-T translation is also fully grammatical,
whereas MLE incorrectly translates the main verb
phrase ‘‘was developing itself’’ into a relative clause,
and contains an agreement error in the translation
of the noun phrase ‘‘one of the original textile
companies’’. Although making fewer errors in
grammar and proper name translation, RAMP−-T
contains two deletion errors and MLE only con-
tains one. This could be caused by the active opti-
mization of sentence length in the ramp loss model.

6 Fully Supervised Machine Translation

Our work focuses on weakly supervised tasks,
but we also conduct experiments using a fully
supervised MT task. These experiments are
motivated on the one hand by adapting the findings
of Gimpel and Smith (2012) to the neural MT

paradigm, and on the other hand by expanding the
work by Edunov et al. (2018) on applying classical
structured prediction losses to neural MT.

Ramp Loss Objectives. For fully supervised
MT we assume access to one or more reference
translations ȳ for each input x. The reward
BLEU+1(y, ȳ) is a per-sentence approximation of
the BLEU score.11 Table 7 shows the different
definitions of y+ and y−, which give rise to
different ramp losses. RAMP, RAMP1, and
RAMP2 are defined analogously to the other
tasks. We again include a hyperparameter α > 0
interpolating cost function and model score when
searching for y+ and y−. Gimpel and Smith
(2012) also include the perceptron loss in their
analysis. PERC1 is a re-formulation of the Collins
perceptron (Collins, 2002) where the reference is
used as y+ and ŷ is used as y−. A comparison with
PERC1 is not possible for the weakly supervised
tasks in the previous sections, as gold structures
are not available for these tasks. With neural MT
and subword methods we are able to compute
this loss for any reference without running into
the problem of reachability that was faced by
phrase-based MT (Liang et al., 2006). However,

11We use the BLEU score with add-1 smoothing forn > 1,
as proposed by Chen and Cherry (2014).

242

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00265/1923174/tacl_a_00265.pdf by guest on 08 Septem
ber 2023



Loss y+ y−

RAMP argmaxy πw(y|x)− α(1− BLEU+1(y, ȳ)) argmaxy πw(y|x) + α(1− BLEU+1(y, ȳ))
RAMP1 ŷ argmaxy πw(y|x) + α(1− BLEU+1(y, ȳ))
RAMP2 argmaxy πw(y|x)− α(1− BLEU+1(y, ȳ)) ŷ
PERC1 ȳ ŷ
PERC2 argmaxy BLEU+1(y, ȳ) ŷ

Table 7: Configurations for y+ and y− for fully supervised MT. ŷ is the highest-probability model output, ȳ is a
gold standard reference. πw(y|x) is the probability of y according to the model. The argmaxy is taken over the
k-best list K(x). BLEU+1 is smoothed per-sentence BLEU and α is a scaling factor.

using sequence-level training towards a reference
can lead to degenerate solutions where the model
gives low probability to all its predictions (Shen
et al., 2016). PERC2 addresses this problem by
replacing ȳ by a surrogate translation that achieves
the highest BLEU+1 score in K(x). This approach
is also used by Edunov et al. (2018) for the
loss functions which require an oracle. PERC1
corresponds to equation (9), PERC2 to equation
(10) of Gimpel and Smith (2012).

Experimental Setup. We conduct experiments
on the IWSLT 2014 German–English task, which
is based on Cettolo et al. (2012) in the same way
as Edunov et al. (2018). The training set contains
160K sentence pairs. We set the maximum sen-
tence length to 50 and use BPE with 14,000
merge operations. Edunov et al. (2018) sample 7K
sentences from the training set as heldout data.
We do the same, but only use one tenth of the data
as heldout set to be able to validate often.

Our baseline system (MLE) is a BiLSTM
encoder-decoder with attention, which is trained
using the MLE objective. Word embedding and
hidden layer dimensions are set to 256. We use
batches of 64 sentences for baseline training and
batches of 40 inputs for training RAMP and
PERC variants. MRT makes an update after each
input using all sampled outputs and resulting in a
batch size of 1. All experiments use dropout for
regularization, with dropout probability set to 0.2
for embedding and hidden layers and to 0.1 for
source and target layers. During MLE-training,
the model is validated every 2500 updates and
training is stopped if the MLE loss on the heldout
set worsens for 10 consecutive validations.

For metric-augmented training, we use SGD
for optimization with learning rates optimized on
the development set. Ramp losses and PERC2 use
a k-best list of size 16. For ramp loss training,
we set α = 10. RAMP and PERC variants both

use a learning rate of 0.001. A new k-best list is
generated for each input using the current model
parameters. We compare ramp loss to MRT as
described above. For MRT, we use SGD with a
learning rate of 0.01 and set S = 16 and S′ = 10.
As Edunov et al. (2018) observe beam search
to work better than sampling for MRT, we also
run an experiment in this configuration, but find
no difference between results. As beam search
runs significantly slower, we only report sampling
experiments.

The model is validated on the development
set after every 200 updates for experiments with
batch size 40 and after 8,000 updates for MRT
experiments with batch size 1. The stopping
point is determined by the BLEU score on the
heldout set after 25 validations. As we are training
on the same data as the MLE baseline, we
also apply dropout during ramp loss training to
prevent overfitting. BLEU scores are computed
with Moses’ multi-bleu.perl on tokenized,
truecased output. Each experiment is run 3 times
and results are averaged over the runs.

Experimental Results. As shown in Table 8,
all experiments except for PERC1 yield improve-
ments over MLE, confirming that sequence-
level losses that update towards the reference
can lead to degenerate solutions. For MRT, our
findings show similar performance to the initial
experiments reported by Edunov et al. (2018),
who gain 0.24 BLEU points on the same test
set.12 PERC2 and RAMP2, improve over the

12See their Table 2. Using interpolation with the MLE
objective, Edunov et al. (2018) achieve +0.7 BLEU points.
As we are only interested in the effect of sequence-level
objectives, we do not add MLE interpolation. The best model
by Edunov et al. (2018) achieved a BLEU score of 32.91%.
It is possible that these scores are not directly comparable to
ours due to different pre- and post-processing. They also use
a multi-layer CNN architecture (Gehring et al., 2017), which
has been shown to outperform a simple RNN architecture
such as ours.
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M % BLEU Δ

1 MLE 64 31.99
2 MRT 1 32.17 ± 0.02 + 0.18
3 PERC1 40 31.91 ± 0.02 − 0.08
4 PERC2 40 32.22 ± 0.03 + 0.23
5 RAMP1 40 32.36∗ ± 0.05 + 0.37
6 RAMP2 40 32.19 ± 0.01 + 0.20
7 RAMP 40 32.44∗∗ ± 0.00 + 0.45
8 RAMP-T 40 32.33∗ ± 0.00 + 0.34

Table 8: BLEU scores for fully supervised MT
experiments. Boldfaced results are significantly
better than MLE at p < 0.01 according to
multeval (Clark et al., 2011). ∗ marks a sig-
nificant difference to MRT and PERC2, and ∗∗

marks a difference to RAMP1.

MLE baseline and PERC1, but perform on a
par with MRT and each other. Both RAMP and
RAMP1 are able to outperform MRT, PERC2,
and RAMP2, with the bipolar objective RAMP
also outperforming RAMP1 by a narrow margin.
The main difference between RAMP and RAMP1,
compared to PERC2 and RAMP2, is the fact that
the latter objectives use ŷ as y−, whereas the
former use a fear translation with high prob-
ability and low BLEU+1. We surmise that for
this fully supervised task, selecting a y− which
has some known negative characteristics is more
important for success than finding a good y+.
RAMP, which fulfills both criteria, still out-
performs RAMP2. This result re-confirms the
superiority of bipolar objectives compared to non-
bipolar ones. Although still improving over MLE,
token-level ramp loss RAMP-T is outperformed
by RAMP by a small margin. This result suggests
that when using a metric-augmented objective on
top of an MLE-trained model in a full super-
vision scenario without domain shift, there is
little room for improvement from token-level
supervision, while gains can still be obtained from
additional sequence-level information captured by
the external metric, such as information about the
sequence length.

To summarize, our findings on a fully super-
vised task show the same small margin for
improvement as Edunov et al. (2018), without
any further tuning of performance (e.g., by inter-
polation with the MLE objective). Bipolar RAMP
is found to outperform the other losses. This
observation is also consistent with the results
by Gimpel and Smith (2012) for phrase-based

MT. We conclude that for fully supervised MT,
deliberately selecting a hope and fear translation
is beneficial.

7 Conclusion

We presented a study of weakly supervised
learning objectives for three neural sequence-to-
sequence learning tasks. In our first task of seman-
tic parsing, question-answer pairs provide a weak
supervision signal to find parses that execute to the
correct answer. We show that ramp loss can out-
perform MRT if it incorporates bipolar supervision
where parses that receive negative feedback are
actively discouraged. The best overall objective is
constituted by the token-level ramp loss. Next, we
turn to weak supervision for machine translation
in form of cross-lingual document-level links. We
present two ramp loss objectives that combine
bipolar weak supervision from a linked document
d+ and an irrelevant document d−. Again, the
bipolar ramp loss objectives outperform MRT,
and the best overall result is obtained using token-
level ramp loss. Finally, to tie our work to previous
work on supervised machine translation, we con-
duct experiments in a fully supervised scenario
where gold references are available and a metric-
augmented loss is desired to reduce the exposure
bias and the loss-evaluation mismatch. Again, the
bipolar ramp loss objective performs best, but we
find that the overall margin for improvement is
small without any additional engineering. We con-
clude that ramp loss objectives show promise for
neural sequence-to-sequence learning, especially
when it comes to weakly supervised tasks where
the MLE objective cannot be applied. In contrast to
ramp losses that either operate only in the undesir-
able region of the search space (‘‘cost-augmented
decoding’’ as in RAMP1) or only in the desir-
able region of the search space (‘‘cost-diminished
decoding’’ as in RAMP2), bipolar RAMP operates
in both regions of the search space when extract-
ing supervision signals from weak feedback. We
showed that MRT can be turned into a bipolar
objective by defining a metric that assigns neg-
ative values to bad outputs. This improves the
performance of MRT objectives. However, the
ramp loss objective is still superior as it is easy to
implement and efficient to compute. Furthermore,
on weakly supervised tasks our novel token-level
ramp loss objective RAMP-T can obtain further
improvements over its sequence-level counterpart

244

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00265/1923174/tacl_a_00265.pdf by guest on 08 Septem
ber 2023



because it can more directly assess which tokens
in a sequence are crucial to its success or failure.
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