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Abstract

When searching for information, a human
reader first glances over a document, spots
relevant sections, and then focuses on a few
sentences for resolving her intention. How-
ever, the high variance of document structure
complicates the identification of the salient
topic of a given section at a glance. To
tackle this challenge, we present SECTOR, a
model to support machine reading systems by
segmenting documents into coherent sections
and assigning topic labels to each section.
Our deep neural network architecture learns a
latent topic embedding over the course of a
document. This can be leveraged to classify
local topics from plain text and segment a
document at topic shifts. In addition, we
contribute WikiSection, a publicly available
data set with 242k labeled sections in English
and German from two distinct domains: dis-
eases and cities. From our extensive evaluation
of 20 architectures, we report a highest score
of 71.6% F1 for the segmentation and
classification of 30 topics from the English
city domain, scored by our SECTOR long
short-term memory model with Bloom filter
embeddings and bidirectional segmentation.
This is a significant improvement of 29.5
points F1 over state-of-the-art CNN classifiers
with baseline segmentation.

1 Introduction

Today’s systems for natural language understand-
ing are composed of building blocks that extract
semantic information from the text, such as named
entities, relations, topics, or discourse structure.
In traditional natural language processing (NLP),
these extractors are typically applied to bags of

words or full sentences (Hirschberg and Manning,
2015). Recent neural architectures build upon pre-
trained word or sentence embeddings (Mikolov
et al., 2013; Le and Mikolov, 2014), which focus
on semantic relations that can be learned from
large sets of paradigmatic examples, even from
long ranges (Dieng et al., 2017).

From a human perspective, however, it is
mostly the authors themselves who help best to
understand a text. Especially in long documents,
an author thoughtfully designs a readable structure
and guides the reader through the text by arranging
topics into coherent passages (Glavaš et al., 2016).
In many cases, this structure is not formally ex-
pressed as section headings (e.g., in news articles,
reviews, discussion forums) or it is structured
according to domain-specific aspects (e.g., health
reports, research papers, insurance documents).

Ideally, systems for text analytics, such as topic
detection and tracking (TDT) (Allan, 2002), text
summarization (Huang et al., 2003), information
retrieval (IR) (Dias et al., 2007), or question an-
swering (QA) (Cohen et al., 2018), could access
a document representation that is aware of both
topical (i.e., latent semantic content) and struc-
tural information (i.e., segmentation) in the text
(MacAvaney et al., 2018). The challenge in
building such a representation is to combine these
two dimensions that are strongly interwoven in
the author’s mind. It is therefore important to
understand topic segmentation and classification
as a mutual task that requires encoding both topic
information and document structure coherently.

In this paper, we present SECTOR,1 an end-to-end
model that learns an embedding of latent topics

1Our source code is available under the Apache License
2.0 at https://github.com/sebastianarnold/
SECTOR.
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from potentially ambiguous headings and can be
applied to entire documents to predict local topics
on sentence level. Our model encodes topical in-
formation on a vertical dimension and structural
information on a horizontal dimension. We show
that the resulting embedding can be leveraged in
a downstream pipeline to segment a document
into coherent sections and classify the sections
into one of up to 30 topic categories reaching
71.6%F1—or alternatively, attach up to 2.8k topic
labels with 71.1% mean average precision (MAP).
We further show that segmentation performance
of our bidirectional long short-term memory
(LSTM) architecture is comparable to specialized
state-of-the-art segmentation methods on various
real-world data sets.

To the best of our knowledge, the combined task
of segmentation and classification has not been
approached on the full document level before.
There exist a large number of data sets for text
segmentation, but most of them do not reflect
real-world topic drifts (Choi, 2000; Sehikh et al.,
2017), do not include topic labels (Eisenstein and
Barzilay, 2008; Jeong and Titov, 2010; Glavaš
et al., 2016), or are heavily normalized and too
small to be used for training neural networks (Chen
et al., 2009). We can utilize a generic segmentation
data set derived from Wikipedia that includes
headings (Koshorek et al., 2018), but there is also
a need in IR and QA for supervised structural
topic labels (Agarwal and Yu, 2009; MacAvaney
et al., 2018), different languages and more specific
domains, such as clinical or biomedical research
(Tepper et al., 2012; Tsatsaronis et al., 2012),
and news-based TDT (Kumaran and Allan, 2004;
Leetaru and Schrodt, 2013).

Therefore we introduce WIKISECTION,2 a large
novel data set of 38k articles from the English
and German Wikipedia labeled with 242k sec-
tions, original headings, and normalized topic
labels for up to 30 topics from two domains: dis-
eases and cities. We chose these subsets to cover
both clinical/biomedical aspects (e.g., symptoms,
treatments, complications) and news-based topics
(e.g., history, politics, economy, climate). Both
article types are reasonably well-structured ac-
cording to Wikipedia guidelines (Piccardi et al.,
2018), but we show that they are also comple-

2The data set is available under the CC BY-SA 3.0
license at https://github.com/sebastianarnold/
WikiSection.

mentary: Diseases is a typical scientific domain
with low entropy (i.e., very narrow topics, precise
language, and low word ambiguity). In contrast,
cities resembles a diversified domain, with high
entropy (i.e., broader topics, common language,
and higher word ambiguity) and will be more
applicable to for example, news, risk reports, or
travel reviews.

We compare SECTOR to existing segmenta-
tion and classification methods based on latent
Dirichlet allocation (LDA), paragraph embed-
dings, convolutional neural networks (CNNs), and
recurrent neural networks (RNNs). We show that
SECTOR significantly improves these methods in
a combined task by up to 29.5 points F1 when
applied to plain text with no given segmentation.

The rest of this paper is structured as follows:
We introduce related work in Section 2. Next, we
describe the task and data set creation process in
Section 3. We formalize our model in Section 4.
We report results and insights from the evaluation
in Section 5. Finally, we conclude in Section 6.

2 Related Work

The analysis of emerging topics over the course
of a document is related to a large number of
research areas. In particular, topic modeling (Blei
et al., 2003) and TDT (Jin et al., 1999) focus on
representing and extracting the semantic topical con-
tent of text. Text segmentation (Beeferman et al.
1999) is used to split documents into smaller co-
herent chunks. Finally, text classification (Joachims
1998) is often applied to detect topics on text
chunks. Our method unifies those strongly inter-
woven tasks and is the first to evaluate the com-
bined topic segmentation and classification task
using a corresponding data set with long structured
documents.

Topic modeling is commonly applied to entire
documents using probabilistic models, such as
LDA (Blei et al., 2003). AlSumait et al. (2008)
introduced an online topic model that captures
emerging topics when new documents appear.
Gabrilovich and Markovitch (2007) proposed
the Explicit Semantic Analysis method in which
concepts from Wikipedia articles are indexed and
assigned to documents. Later, and to overcome
the vocabulary mismatch problem, Cimiano et al.
(2009) introduced a method for assigning latent
concepts to documents. More recently, Liu et al.
(2016) represented documents with vectors of
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closely related domain keyphrases. Yeh et al.
(2016) proposed a conceptual dynamic LDA
model for tracking topics in conversations. Bhatia
et al. (2016) utilized Wikipedia document titles
to learn neural topic embeddings and assign doc-
ument labels. Dieng et al. (2017) focused on the
issue of long-range dependencies and proposed a
latent topic model based on RNNs. However, the
authors did not apply the RNN to predict local
topics.

Text segmentation has been approached
with a wide variety of methods. Early unsuper-
vised methods utilized lexical overlap statistics
(Hearst 1997; Choi 2000), dynamic programming
(Utiyama and Isahara, 2001), Bayesian models
(Eisenstein and Barzilay, 2008), or pointwise
boundary sampling (Du et al., 2013) on raw terms.

Later, supervised methods included topic mod-
els (Riedl and Biemann, 2012) by calculating a
coherence score using dense topic vectors ob-
tained by LDA. Bayomi et al. (2015) exploited
ontologies to measure semantic similarity be-
tween text blocks. Alemi and Ginsparg (2015) and
Naili et al. (2017) studied how word embeddings
can improve classical segmentation approaches.
Glavaš et al. (2016) utilized semantic relatedness
of word embeddings by identifying cliques in a
graph.

More recently, Sehikh et al. (2017) utilized
LSTM networks and showed that cohesion be-
tween bidirectional layers can be leveraged to
predict topic changes. In contrast to our method,
the authors focused on segmenting speech recog-
nition transcripts on word level without explicit
topic labels. The network was trained with super-
vised pairs of contrary examples and was mainly
evaluated on artificially segmented documents.
Our approach extends this idea so it can be applied
to dense topic embeddings which are learned from
raw section headings.

Wang et al. (2017) tackled segmentation by
training a CNN to learn coherence scores for text
pairs. Similar to Sehikh et al. (2017), the network
was trained with short contrary examples and no
topic objective. The authors showed that their
pointwise ranking model performs well on data
sets by Jeong and Titov (2010). In contrast to our
method, the ranking algorithm strictly requires a
given ground truth number of segments for each
document and no topic labels are predicted.

Koshorek et al. (2018) presented a large new
data set for text segmentation based on Wikipedia

that includes section headings. The authors intro-
duced a neural architecture for segmentation that
is based on sentence embeddings and four layers
of bidirectional LSTM. Similar to Sehikh et al.
(2017), the authors used a binary segmentation
objective on the sentence level, but trained on
entire documents. Our work takes up this idea of
end-to-end training and enriches the neural model
with a layer of latent topic embeddings that can
be utilized for topic classification.

Text classification is mostly applied at the
paragraph or sentence level using machine
learning methods such as support vector machines
(Joachims, 1998) or, more recently, shallow and
deep neural networks (Le et al., 2018; Conneau
et al., 2017). Notably, paragraph vectors (Le and
Mikolov, 2014) is an extension of word2vec for
learning fixed-length distributed representations
from texts of arbitrary length. The resulting model
can be utilized for classification by providing
paragraph labels during training. Furthermore,
Kim (2014) has shown that CNNs combined
with pre-trained task-specific word embeddings
achieve the highest scores for various text
classification tasks.

Combined approaches of topic segmentation
and classification are rare to find. Agarwal and
Yu (2009) classified sections of BioMed Central
articles into four structural classes (introduction,
methods, results, and discussion). However, their
manually labeled data set only contains a sample of
sentences from the documents, so they evaluated
sentence classification as an isolated task. Chen
et al. (2009) introduced two Wikipedia-based data
sets for segmentation, one about large cities, the
second about chemical elements. Although these
data sets have been used to evaluate word-level
and sentence-level segmentation (Koshorek et al.,
2018), we are not aware of any topic classification
approach on this data set.

Tepper et al. (2012) approached segmentation
and classification in a clinical domain as super-
vised sequence labeling problem. The documents
were segmented using a maximum entropy model
and then classified into 11 or 33 categories. A sim-
ilar approach by Ajjour et al. (2017) used sequence
labeling with a small number of 3–6 classes. Their
model is extractive, so it does not produce a con-
tinuous segmentation over the entire document.
Finally, Piccardi et al. (2018) did not approach
segmentation, but recommended an ordered set of
section labels based on Wikipedia articles.
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(1) Plain Text
without headings
(1) Plain Text

without headings
(2) Topic Distribution

over sequence
(2) Topic Distribution

over sequence
(3) Topic

Segmentation
(3) Topic

Segmentation

             disease.diagnosis

      disease.cause

            disease.symptom

(4) Topic
Classification

(4) Topic
Classification

Figure 1: Overview of the WIKISECTION task: (1) The input is a plain text document D without structure information.
(2) We assume the sentences s1...N contain a coherent sequence of local topics e1...N . (3) The task is to segment
the document into coherent sections S1...M and (4) to classify each section with a topic label y1...M .

Eventually, we were inspired by passage re-
trieval (Liu and Croft, 2002) as an important
downstream task for topic segmentation and clas-
sification. For example, Hewlett et al. (2016) pro-
posed WikiReading, a QA task to retrieve values
from sections of long documents. The objective
of TREC Complex Answer Retrieval is to retrieve
a ranking of relevant passages for a given outline
of hierarchical sections (Nanni et al., 2017).
Both tasks highly depend on a building block
for local topic embeddings such as our proposed
model.

3 Task Overview and Data set

We start with a definition of the WIKISECTION

machine reading task shown in Figure 1. We
take a document D = 〈S,T〉 consisting of N
consecutive sentences S = [s1, . . . , sN ] and
empty segmentation T = ∅ as input. In our
example, this is the plain text of a Wikipedia
article (e.g., about Trichomoniasis3) without
any section information. For each sentence sk,
we assume a distribution of local topics ek
that gradually changes over the course of the
document.

The task is to split D into a sequence of
distinct topic sections T = [T1, . . . ,TM ], so that
each predicted section Tj = 〈Sj ,yj〉 contains
a sequence of coherent sentences Sj ⊆ S and
a topic label yj that describes the common
topic in these sentences. For the document

3https://en.wikipedia.org/w/index.php?
title=Trichomoniasis&oldid=814235024.

Data set disease city

language en de en de
total docs 3.6k 2.3k 19.5k 12.5k
avg sents per doc 58.5 45.7 56.5 39.9
avg sects per doc 7.5 7.2 8.3 7.6
headings 8.5k 6.1k 23.0k 12.2k
topics 27 25 30 27
coverage 94.6% 89.5% 96.6% 96.1%

Table 1: Data set characteristics for disease (German:
Krankheit) and city (German: Stadt). Headings denotes
the number of distinct section and subsection headings
among the documents. Topics stands for the number of
topic labels after synset clustering. Coverage denotes
the proportion of headings covered by topics; the
remaining headings are labeled as other.

Trichomoniasis, the sequence of topic labels
is y1...M = [ symptom, cause, diagnosis,
prevention, treatment, complication,
epidemiology ].

3.1 WikiSection Data Set

For the evaluation of this task, we created WIKI-
SECTION, a novel data set containing a gold stan-
dard of 38k full-text documents from English and
German Wikipedia comprehensively annotated
with sections and topic labels (see Table 1).

The documents originate from recent dumps in
English4 and German.5 We filtered the collection

4https://dumps.wikimedia.org/enwiki/
20180101.

5https://dumps.wikimedia.org/dewiki/
20180101.
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using SPARQL queries against Wikidata (Tanon
et al., 2016). We retrieved instances of Wikidata
categories disease (Q12136) and their subcategories
(e.g., Trichomoniasis or Pertussis) or
city (Q515) (e.g., London or Madrid).

Our data set contains the article abstracts, plain
text of the body, positions of all sections given
by the Wikipedia editors with their original head-
ings (e.g., "Causes | Genetic sequence")
and a normalized topic label (e.g., disease.
cause). We randomized the order of documents
and split them into 70% training, 10% validation,
20% test sets.

3.2 Preprocessing

To obtain plain document text, we used Wiki-
extractor,6 split the abstract sections and stripped
all section headings and other structure tags except
newline characters and lists.

Vocabulary Mismatch in Section Headings.
Table 2 shows examples of section headings
from disease articles separated into head (most
common), torso (frequently used), and tail (rare).
Initially, we expected articles to share congruent
structure in naming and order. Instead, we observe
a high variance with 8.5k distinct headings in the
diseases domain and over 23k for English cities. A
closer inspection reveals that Wikipedia authors
utilize headings at different granularity levels,
frequently copy and paste from other articles, but
also introduce synonyms or hyponyms, which
leads to a vocabulary mismatch problem (Furnas
et al., 1987). As a result, the distribution of head-
ings is heavy-tailed across all articles. Roughly 1%
of headings appear more than 25 times whereas
the vast majority (88%) appear 1 or 2 times only.

3.3 Synset Clustering

In order to use Wikipedia headlines as a source
for topic labels, we contribute a normalization
method to reduce the high variance of headings to
a few representative labels based on the clustering
of BabelNet synsets (Navigli and Ponzetto, 2012).

We create a set H that contains all headings
in the data set and use the BabelNet API to
match7 each heading h ∈ H to its corresponding

6http://attardi.github.io/wikiextractor/.
7We match lemmas of main senses and compounds to

synsets of type NOUN CONCEPT.

rank heading h label y H freq

0 Diagnosis diagnosis 0.68 3,854
1 Treatment treatment 0.69 3,501
2 Signs and

Symptoms
symptom 0.68 2,452

. . .
21 Differential

Diagnosis
diagnosis 0.23 236

22 Pathogenesis mechanism 0.16 205
23 Medications medication 0.14 186

. . .
8,494 Usher Syndrome

Type IV
classification 0.00 1

8,495 False Melanose
Lesions

other 0.00 1

8,496 Cognitive
Therapy

treatment 0.00 1

Table 2: Frequency and entropy (H) of top-3 head and
randomly selected torso and tail headings for category
diseases in the English Wikipedia.

synsets Sh ⊂ S. For example, "Cognitive
behavioral therapy" is assigned to synset
bn:03387773n. Next, we insert all matched
synsets into an undirected graph G with nodes
s ∈ S and edges e. We create edges between
all synsets that match among each other with a
lemma h′ ∈ H. Finally, we apply a community
detection algorithm (Newman, 2006) on G to find
dense clusters of synsets. We use these clusters
as normalized topics and assign the sense with
most outgoing edges as representative label, in
our example e.g. therapy.

From this normalization step we obtain 598
synsets that we prune using the head/tail divi-
sion rule count(s) < 1

|S|
∑

si∈S count(si) (Jiang,
2012). This method covers over 94.6% of all
headings and yields 26 normalized labels and one
other class in the English disease data set. Table 1
shows the corresponding numbers for the other data
sets. We verify our normalization process by man-
ual inspection of 400 randomly chosen heading–
label assignments by two independent judges and
report an accuracy of 97.2% with an average
observed inter-annotator agreement of 96.0%.

4 SECTOR Model

We introduce SECTOR, a neural embedding model
that predicts a latent topic distribution for every
position in a document. Based on the task
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topic vectors                      

Wikipedia
Articles

Raw Text

BabelNet

training targets

training targets

Prepro-
cessing
Prepro-
cessing

Synset
Clustering
Synset

Clustering

(1) Sentence
Encoding

(1) Sentence
Encoding

(2) Topic Embedding
BLSTM

(2) Topic Embedding
BLSTM

(3a) Topic
Classification

single-label

(3a) Topic
Classification

single-label

(4) Topic
Segmentation

sentence-
level

(4) Topic
Segmentation

sentence-
level

(A) WikiSection Training and Evaluation Data (B) SECTOR Model Inference

(3b) Heading
Classification

multi-label

(3b) Heading
Classification

multi-label

Headings
~1.5k words

Topic Labels
~25 classes

Headings Task
multi-labeled

sections

Topics Task
single-labeled

sections

Figure 2: Training and inference phase of segmentation and topic classification (SECTOR). For training (A), we
preprocess Wikipedia documents to supply a ground truth for segmentation T, headings Z and topic labels Y .
During inference (B), we invoke SECTOR with unseen plain text to predict topic embeddings ek on sentence level.
The embeddings are used to segment the document and classify headings ẑj and normalized topic labels ŷj .

described in Section 3, we aim to detectM sections
T1...M in a document D and assign topic labels
yj = topic(Sj), where j = 1, . . . ,M . Because
we do not know the expected number of sections,
we formulate the objective of our model on the
sentence level and later segment based on the
predictions. Therefore, we assign each sentence
sk a sentence topic label ȳk = topic(sk), where
k = 1, . . . , N . Thus, we aim to predict coherent
sections with respect to document context:

p(ȳ1, ... , ȳN | D) =
N∏
k=1

p(ȳk | s1, ... , sN ) (1)

We approach two variations of this task: For
WIKISECTION-topics, we choose a single topic
label yj ∈ Y out of a small number of nor-
malized topic labels. However, from this sim-
plified classification task arises an entailment
problem, because topics might be hierarchically
structured. For example, a section with head-
ing "Treatment | Gene Therapy" might
describe genetics as a subtopic of treat-
ment. Therefore, we also approach an extended
task WIKISECTION-headings to capture ambiguity
in a heading, We follow the CBOW approach
(Mikolov et al., 2013) and assign all words in
the heading zj ⊂ Z as multi-label bag over
the original heading vocabulary. This turns our
problem into a ranked retrieval task with a
large number of ambiguous labels, similar to
Prabhu and Varma (2014). It further eliminates
the need for normalized topic labels. For both
tasks, we aim to maximize the log likelihood

of model parameters Θ on section and sentence
level:

L(Θ) =
M∑
j=1

log p(yj | s1, ... , sN ; Θ)

L̄(Θ) =
N∑
k=1

log p(ȳk | s1, ... , sN ; Θ)

(2)

Our SECTOR architecture consists of four stages,
shown in Figure 2: sentence encoding, topic
embedding, topic classification and topic segmen-
tation. We now discuss each stage in more detail.

4.1 Sentence Encoding
The first stage of our SECTOR model transforms
each sentence sk from plain text into a fixed-size
sentence vector xk that serves as input into the
neural network layers. Following Hill et al. (2016),
word order is not critical for document-centric
evaluation settings such as our WIKISECTION task.
Therefore, we mainly focus on unsupervised
compositional sentence representations.

Bag-of-Words Encoding. As a baseline, we
compose sentence vectors using a weighted bag-
of-words scheme. Let I(w) ∈ {0, 1}|V| be the
indicator vector, such that I(w)(i) = 1 iff w is
the i-th word in the fixed vocabulary V , and
let tf-idf(w) be the TF-IDF weight of w in
the corpus. We define the sparse bag-of-words
encoding xbow ∈ R|V| as follows:

xbow(s) =
∑
w∈s

(
tf-idf(w) · I(w)

)
(3)
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Bloom Filter Embedding. For large V and long
documents, input matrices grow too large to fit
into GPU memory, especially with larger batch
sizes. Therefore we apply a compression technique
for sparse sentence vectors based on Bloom
filters (Serrà and Karatzoglou, 2017). A Bloom
filter projects every item of a set onto a bit
array A(i) ∈ {0, 1}m using k independent hash
functions. We use the sum of bit arrays per word
as compressed Bloom embedding xbloom ∈ Nm:

xbloom(s) =
∑
w∈s

k∑
i=1

A
(
hashi(w)

)
(4)

We set parameters to m = 4096 and k = 5
to achieve a compression factor of 0.2, which
showed good performance in the original paper.

Sentence Embeddings. We use the strategy
of Arora et al. (2017) to generate a distribu-
tional sentence representation based on pre-trained
word2vec embeddings (Mikolov et al., 2013). This
method composes a sentence vector vemb ∈ Rd for
all sentences using a probability-weighted sum
of word embeddings vw ∈ Rd with α = 10−4,
and subtracts the first principal component u of
the embedding matrix [ vs : s ∈ S ]:

vs =
1

|S|
∑
w∈s

( α

α+ p(w)
vw

)
xemb(s) = vs − uuT vs

(5)

4.2 Topic Embedding

We model the second stage in our architecture to
produce a dense distributional representation of
latent topics for each sentence in the document.
We use two layers of LSTM (Hochreiter and
Schmidhuber, 1997) with forget gates (Gers et al.,
2000) connected to read the document in the
forward and backward direction (Graves, 2012).
We feed the LSTM outputs to a ‘‘bottleneck’’
layer with tanh activation as topic embedding.
Figure 3 shows these layers in context of the
complete architecture. We can see that context
from left (k − 1) and right (k + 1) affects
forward and backward layers independently. It
is therefore important to separate these weights
in the embedding layer to precisely capture
the difference between sentences at section
boundaries. We modify our objective given in
Equation (2) accordingly with long-range depen-

(4) Topic 
Segmentation 

(1) Sentence
Encoding

(2) Topic
Embedding

(3) Topic
Classification

LSTM fw

Sentences

LSTM bw

topic
shift

embedding
deviation

Figure 3: Neural network architecture SECTOR. The
recurrent model consists of stacked LSTM, embedding
and output layers that are optimized on document level
and later accessed during inference in stages 1–4.

dencies from forward and backward layers of the
LSTM:

L(Θ) =

N∑
k=1

(
log p(ȳk | x1...k−1; ~Θ,Θ

′)

+ log p(ȳk | xk+1...N ; ~Θ,Θ′)
) (6)

Note that we separate network parameters ~Θ
and ~Θ for forward and backward directions of the
LSTM, and tie the remaining parameters Θ′ for
the embedding and output layers. This strategy
couples the optimization of both directions into
the same vector space without the need for an
additional loss function. The embeddings e1...N

are calculated from the context-adjusted hidden
states h′k of the LSTM cells (here simplified as
fLSTM) through the bottleneck layer:

~hk = fLSTM(xk, ~h′k−1, ~Θ)

~hk = fLSTM(xk, ~h′k+1, ~Θ)

~ek = tanh(Weh
~hk + be)

~ek = tanh(Weh
~hk + be)

(7)

Now, a simple concatenation of the embeddings
ek = ~ek ⊕ ~ek can be used as topic vector by
downstream applications.
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4.3 Topic Classification
The third stage in our architecture is the output
layer that decodes the class labels. To learn model
parameters Θ required by the embedding, we need
to optimize the full model for a training target. For
the WIKISECTION-topics task, we use a simple
one-hot encoding ȳ ∈ {0, 1}|Y| of the topic
labels constructed in Section 3.3 with a softmax
activation output layer. For the WIKISECTION-
headings task, we encode each heading as lower-
case bag-of-words vector z̄ ∈ {0, 1}|Z|, such that
z̄(i) = 1 iff the i-th word in Z is contained in
the heading, for example, z̄k=̂{gene, therapy,
treatment}. We then use a sigmoid activation
function:

ˆ̄yk = softmax(Wye~ek +Wye ~ek + by)

ˆ̄zk = sigmoid(Wze~ek +Wze ~ek + bz)
(8)

Ranking Loss for Multi-Label Optimization.
The multi-label objective is to maximize the like-
lihood of every word that appears in a heading:

L(Θ) =
N∑
k=1

|Z|∑
i=1

log p(z̄
(i)
k | x1...N ; Θ) (9)

For training this model, we use a variation of the
logistic pairwise ranking loss function proposed
by dos Santos et al. (2015). It learns to maximize
the distance between positive and negative labels:

L = log
(
1 + exp(γ(m+ − score+(x)))

)
+ log

(
1 + exp(γ(m− + score−(x)))

) (10)

We calculate the positive term of the loss by
taking all scores of correct labels y+ into account.
We average over all correct scores to avoid a too-
strong positive push on the energy surface of the
loss function (LeCun et al., 2006). For the negative
term, we only take the most offending example
y− among all incorrect class labels.

score+(x) =
1

|y+|
∑
y∈y+

sθ(x)(y)

score−(x) = arg max
y∈y−

sθ(x)(y)
(11)

Here, sθ(x)(y) denotes the score of label y for
input x. We follow the authors and set scaling
factor γ = 2, margins m+ = 2.5, and m− = 0.5.

4.4 Topic Segmentation
In the final stage, we leverage the information
encoded in the topic embedding and output layers
to segment the document and classify each section.

Baseline Segmentation Methods. As a simple
baseline method, we use prior information from
the text and split sections at newline characters
(NL). Additionally, we merge two adjacent sec-
tions if they are assigned the same topic label after
classification. If there is no newline information
available in the text, we use a maximum label
(max) approach: We first split sections at every
sentence break (i.e., Sj = sk; j = k = 1, . . . , N )
and then merge all sections that share at least one
label in the top-2 predictions.

Using Deviation of Topic Embeddings for
Segmentation. All information required to clas-
sify each sentence in a document is contained
in our dense topic embedding matrix E =
[e1, . . . , eN ]. We are now interested in the vec-
tor space movement of this embedding over
the sequence of sentences. Therefore, we apply
a number of transformations adapted from
Laplacian-of-Gaussian edge detection on images
(Ziou and Tabbone, 1998) to obtain the magnitude
of embedding deviation (emd) per sentence.
First, we reduce the dimensionality of E to D
dimensions using PCA, that is, we solve E =
UΣW T using singular value decomposition and
then project E on the D principal components
ED = EWD. Next, we apply Gaussian smoothing
to obtain a smoothed matrix E′D by convolution
with a Gaussian kernel with variance σ2. From the
reduced and smoothed embedding vectors e′1...N
we construct a sequence of deviations d1...N by
calculating the stepwise difference using cosine
distance:

dk = cos(e′k−1, e
′
k) =

e′k−1 · e′k
‖ e′k−1 ‖‖ e′k ‖

(12)

Finally we apply the sequence d1...N with
parameters D = 16 and σ = 2.5 to locate the
spots of fastest movement (see Figure 4), i.e. all
k where dk−1 < dk > dk+1; k = 1 . . . N in our
discrete case. We use these positions to start a new
section.

Improving Edge Detection with Bidirectional
Layers. We adopt the approach of Sehikh et al.
(2017), who examine the difference between
forward and backward layer of an LSTM for
segmentation. However, our approach focuses on
the difference of left and right topic context over
time steps k, which allows for a sharper distinction
between sections. Here, we obtain two smoothed
embeddings ~e′ and ~e′ and define the bidirectional
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Figure 4: Embedding deviations emdk and bemdk

of the smoothed SECTOR topic embeddings for example
document Trichomoniasis. The plot shows the
first derivative of vector movement over sentences
k = 1, . . . N from left to right. Predicted segmentation
is shown as black lines, the axis labels indicate ground
truth segmentation.

embedding deviation (bemd) as geometric mean
of the forward and backward difference:

d′k =

√
cos(~e′k−1, ~e′k) · cos( ~e′k, ~e′k+1) (13)

After segmentation, we assign each segment the
mean class distribution of all contained sentences:

ŷj =
1

| Sj |
∑
si∈Sj

ˆ̄yi (14)

Finally, we show in the evaluation that our
SECTOR model, which was optimized for sentences
ȳk, can be applied to the WIKISECTION task to
predict coherently labeled sections Tj = 〈Sj , ŷj〉.

5 Evaluation

We conduct three experiments to evaluate the
segmentation and classification task introduced
in Section 3. The WIKISECTION-topics experiment
constitutes segmentation and classification of
each section with a single topic label out of a
small number of clean labels (25–30 topics). The
WIKISECTION-headings experiment extends the
classification task to multi-label per section with a
larger target vocabulary (1.0k–2.8k words). This
is important, because often there are no clean topic
labels available for training or evaluation. Finally,
we conduct a third experiment to see how SECTOR

performs across existing segmentation data sets.

Evaluation Data Sets. For the first two exper-
iments we use the WIKISECTION data sets intro-
duced in Section 3.1, which contain documents
about diseases and cities in both English and
German. The subsections are retained with full
granularity. For the third experiment, text seg-
mentation results are often reported on artificial
data sets (Choi, 2000). It was shown that this

scenario is hardly applicable to topic-based seg-
mentation (Koshorek et al., 2018), so we restrict
our evaluation to real-world data sets that are
publicly available. The Wiki-727k data set by
Koshorek et al. (2018) contains Wikipedia articles
with a broad range of topics and their top-level
sections. However, it is too large to compare
exhaustively, so we use the smaller Wiki-50 subset.
We further use the Cities and Elements data sets
introduced by Chen et al. (2009), which also
provide headings. These sets are typically used
for word-level segmentation, so they don’t contain
any punctuation and are lowercased. Finally, we
use the Clinical Textbook chapters introduced
by Eisenstein and Barzilay (2008), which do not
supply headings.

Text Segmentation Models. We compare SEC-
TOR to common text segmentation methods as
baseline, C99 (Choi, 2000) and TopicTiling (Riedl
and Biemann, 2012) and the state-of-the-art
TextSeg segmenter (Koshorek et al., 2018). In the
third experiment we report numbers for BayesSeg
(Eisenstein and Barzilay, 2008) (configured to
predict with unknown number of segments) and
GraphSeg (Glavaš et al., 2016).

Classification Models. We compare SECTOR to
existing models for single and multi-label sen-
tence classification. Because we are not aware of
any existing method for combined segmentation
and classification, we first compare all methods
using given prior segmentation from newlines
in the text (NL) and then additionally apply
our own segmentation strategies for plain text
input: maximum label (max), embedding deviation
(emd) and bidirectional embedding deviation
(bemd).

For the experiments, we train a Paragraph
Vectors (PV) model (Le and Mikolov, 2014)
using all sections of the training sets. We utilize
this model for single-label topic classification
(depicted as PV>T) by assigning the given topic
labels as paragraph IDs. Multi-label classifica-
tion is not possible with this model. We use the
paragraph embedding for our own segmentation
strategies. We set the layer size to 256, window
size to 7, and trained for 10 epochs using a batch
size of 512 sentences and a learning rate of 0.025.
We further use an implementation of CNN (Kim,
2014) with our pre-trained word vectors as input
for single-label topics (CNN>T) and multi-label
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headings (CNN>H). We configured the models
using the hyperparameters given in the paper
and trained the model using a batch size of 256
sentences for 20 epochs with learning rate 0.01.

SECTOR Configurations. We evaluate the var-
ious configurations of our model discussed in
prior sections. SEC>T depicts the single-label
topic classification model which uses a softmax
activation output layer, SEC>H is the multi-
label variant with a larger output and sigmoid
activations. Other options are: bag-of-words
sentence encoding (+bow), Bloom filter encoding
(+bloom) and sentence embeddings (+emb);
multi-class cross-entropy loss (as default) and
ranking loss (+rank).

We have chosen network hyperparameters us-
ing grid search on the en disease validation set
and keep them fixed over all evaluation runs.
For all configurations, we set LSTM layer size
to 256, topic embeddings dimension to 128.
Models are trained on the complete train splits
with a batch size of 16 documents (reduced
to 8 for bag-of-words), 0.01 learning rate, 0.5
dropout, and ADAM optimization. We used
early stopping after 10 epochs without MAP
improvement on the validation data sets. We pre-
trained word embeddings with 256 dimensions for
the specific tasks using word2vec on lowercase
English and German Wikipedia documents using
a window size of 7. All tests are implemented in
Deeplearning4j and run on a Tesla P100 GPU with
16GB memory. Training a SEC+bloom model on
en city takes roughly 5 hours, inference on CPU
takes on average 0.36 seconds per document.
In addition, we trained a SEC>H@fullwiki
model with raw headings from a complete
English Wikipedia dump,8 and use this model
for cross-data set evaluation.

Quality Measures. We measure text segmen-
tation at sentence level using the probabilistic
Pk error score (Beeferman et al., 1999), which
calculates the probability of a false boundary in
a window of size k, lower numbers mean better
segmentation. As relevant section boundaries we
consider all section breaks where the topic label
changes. We set k to half of the average segment
length. We measure classification performance on
section level by comparing the topic labels of all
ground truth sections with predicted sections. We

8Excluding all documents contained in the test sets.

select the pairs by matching their positions using
maximum boundary overlap. We report micro-
averaged F1 score for single-label or Precision@1
for multi-label classification. Additionally, we
measure Mean Average Precision (MAP), which
evaluates the average fraction of true labels ranked
above a particular label (Tsoumakas et al., 2009).

5.1 Results

Table 3 shows the evaluation results of the
WIKISECTION-topics single-label classification task,
Table 4 contains the corresponding numbers for
multi-label classification. Table 5 shows results
for topic segmentation across different data sets.

SECTOR Outperforms Existing Classifiers. With
our given segmentation baseline (NL), the best
sentence classification model CNN achieves
52.1% F1 averaged over all data sets. SECTOR

improves this score significantly by 12.4 points.
Furthermore, in the setting with plain text input,
SECTOR improves the CNN score by 18.8 points
using identical baseline segmentation. Our model
finally reaches an average of 61.8% F1 on the
classification task using sentence embeddings
and bidirectional segmentation. This is a total
improvement of 27.8 points over the CNN model.

Topic Embeddings Improve Segmentation.
SECTOR outperforms C99 and TopicTiling signifi-
cantly by 16.4 and 18.8 points Pk, respectively, on
average. Compared to the maximum label base-
line, our model gains 3.1 points by using the
bidirectional embedding deviation and 1.0 points
using sentence embeddings. Overall, SECTOR

misses only 4.2 points Pk and 2.6 points F1

compared with the experiments with prior new-
line segmentation. The third experiments reveals
that our segmentation method in isolation almost
reaches state-of-the-art on existing data sets and
beats the unsupervised baselines, but lacks per-
formance on cross-data set evaluation.

Bloom Filters on Par with Word Embeddings.
Bloom filter encoding achieves high scores among
all data sets and outperforms our bag-of-words
baseline, possibly because of larger training batch
sizes and reduced model parameters. Surprisingly,
word embeddings did not improve the model
significantly. On average, German models gained
0.7 points F1 and English models declined by
0.4 points compared with Bloom filters. However,
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WikiSection-topics
single-label classification

en disease
27 topics

de disease
25 topics

en city
30 topics

de city
27 topics

model configuration segm. Pk F1 MAP Pk F1 MAP Pk F1 MAP Pk F1 MAP

Classification with newline prior segmentation
PV>T* NL 35.6 31.7 47.2 36.0 29.6 44.5 22.5 52.9 63.9 27.2 42.9 55.5
CNN>T* NL 31.5 40.4 55.6 31.6 38.1 53.7 13.2 66.3 76.1 13.7 63.4 75.0
SEC>T+bow NL 25.8 54.7 68.4 25.0 52.7 66.9 21.0 43.7 55.3 20.2 40.5 52.2
SEC>T+bloom NL 22.7 59.3 71.9 27.9 50.2 65.5 9.8 74.9 82.6 11.7 73.1 81.5
SEC>T+emb* NL 22.5 58.7 71.4 23.6 50.9 66.8 10.7 74.1 82.2 10.7 74.0 83.0

Classification and segmentation on plain text
C99 37.4 n/a n/a 42.7 n/a n/a 36.8 n/a n/a 38.3 n/a n/a
TopicTiling 43.4 n/a n/a 45.4 n/a n/a 30.5 n/a n/a 41.3 n/a n/a
TextSeg 24.3 n/a n/a 35.7 n/a n/a 19.3 n/a n/a 27.5 n/a n/a
PV>T* max 43.6 20.4 36.5 44.3 19.3 34.6 31.1 28.1 43.1 36.4 20.2 35.5
PV>T* emd 39.2 32.9 49.3 37.4 32.9 48.7 24.9 53.1 65.1 32.9 40.6 55.0
CNN>T* max 40.1 26.9 45.0 40.7 25.2 43.8 21.9 42.1 58.7 21.4 42.1 59.5
SEC>T+bow max 30.1 40.9 58.5 32.1 38.9 56.8 24.5 28.4 43.5 28.0 26.8 42.6
SEC>T+bloom max 27.9 49.6 64.7 35.3 39.5 57.3 12.7 63.3 74.3 26.2 58.9 71.6
SEC>T+bloom emd 29.7 52.8 67.5 35.3 44.8 61.6 16.4 65.8 77.3 26.0 65.5 76.7
SEC>T+bloom bemd 26.8 56.6 70.1 31.7 47.8 63.7 14.4 71.6 80.9 16.8 70.8 80.1
SEC>T+bloom+rank* bemd 26.8 56.7 68.8 33.1 44.0 58.5 15.7 71.1 79.1 18.0 66.8 76.1
SEC>T+emb* bemd 26.3 55.8 69.4 27.5 48.9 65.1 15.5 71.6 81.0 16.2 71.0 81.1

Table 3: Results for topic segmentation and single-label classification on four WIKISECTION data sets. n = 718
/ 464 / 3, 907 / 2, 507 documents. Numbers are given as Pk on sentence level, micro-averaged F1 and MAP at
segment-level. For methods without segmentation, we used newlines as segment boundaries (NL) and merged
sections of same classes after prediction. Models marked with * are based on pre-trained distributional embeddings.

WikiSection-headings
multi-label classification

en disease
1.5k topics

de disease
1.0k topics

en city
2.8k topics

de city
1.1k topics

model configuration segm. Pk P@1 MAP Pk P@1 MAP Pk P@1 MAP Pk P@1 MAP

CNN>H* max 40.9 36.7 31.5 41.3 14.1 21.1 36.9 43.3 46.7 42.2 40.9 46.5
SEC>H+bloom bemd 35.4 35.8 38.2 36.9 31.7 37.8 20.0 65.2 62.0 23.4 49.8 53.4
SEC>H+bloom+rank bemd 40.2 47.8 49.0 42.8 28.4 33.2 41.9 66.8 59.0 34.9 59.6 54.6
SEC>H+emb* bemd 30.7 50.5 57.3 32.9 26.6 36.7 17.9 72.3 71.1 19.3 68.4 70.2
SEC>H+emb+rank* bemd 30.5 47.6 48.9 42.9 32.0 36.4 16.1 65.8 59.0 18.3 69.2 58.9
SEC>H+emb@fullwiki* bemd 42.4 9.7 17.9 42.7 (0.0) (0.0) 20.3 59.4 50.4 38.5 (0.0) (0.1)

Table 4: Results for segmentation and multi-label classification trained with raw Wikipedia headings. Here, the
task is to segment the document and predict multi-word topics from a large ambiguous target vocabulary.

model training and inference using pre-trained
embeddings is faster by an average factor of 3.2.

Topic Embeddings Perform Well on Noisy
Data. In the multi-label setting with unprocessed
Wikipedia headings, classification precision of
SECTOR reaches up to 72.3% P@1 for 2.8k labels.
This score is in average 9.5 points lower compared
to the models trained on the small number of 25–30
normalized labels. Furthermore, segmentation
performance only misses 3.8 points Pk compared
with the topics task. Ranking loss could not

improve our models significantly, but achieved
better segmentation scores on the headings task.
Finally, the cross-domain English fullwiki model
performs only on baseline level for segmentation,
but still achieves better classification performance
than CNN on the English cities data set.

5.2 Discussion and Model Insights

Figure 5 shows classification and segmentation of
our SECTOR model compared to the PV baseline.
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Segmentation Wiki-50 Cities Elements Clinical

and multi-label classification Pk MAP Pk MAP Pk MAP Pk

GraphSeg 63.6 n/a 40.0 n/a 49.1 n/a −
BayesSeg 49.2 n/a 36.2 n/a 35.6 n/a 57.8
TextSeg 18.2* n/a 19.7* n/a 41.6 n/a 30.8
SEC>H+emb@en disease − − − − 43.3 9.5 36.5
SEC>C+emb@en disease − − − − 45.1 n/a 35.6
SEC>H+emb@en city 30.0 31.4 28.2 56.5 41.0 7.9 −
SEC>C+emb@en city 31.3 n/a 22.9 n/a 48.8 n/a −
SEC>H+emb@cities 33.3 15.3 21.4* 52.3* 39.2 12.1 37.7
SEC>H+emb@fullwiki 28.6* 32.6* 33.4 40.5 42.8 14.4 36.9

Table 5: Results for cross-data set evaluation on existing data sets. Numbers marked with * are generated by
models trained specifically for this data set. A value of ‘n/a’ indicates that a model is not applicable to this problem.
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PV>T (NL)

SEC>T+bloom (NL)

PV>T (emd)

SEC>T+bloom (bemd)

Figure 5: Heatmaps of predicted topic labels ŷk for document Trichomoniasis from PV and SECTOR models
with newline and embedding segmentation. Shading denotes probability for 10 out of 27 selected topic classes
on Y axis, with sentences from left to right. Segmentation is shown as black lines, X axis shows expected gold
labels. Note that segments with same class assignments are merged in both predictions and gold standard (‘. . . ’).

SECTOR Captures Latent Topics from Context.
We clearly see from NL predictions (left side
of Figure 5) that SECTOR produces coherent
results with sentence granularity, with topics
emerging and disappearing over the course of a
document. In contrast, PV predictions are scat-
tered across the document. Both models success-
fully classify first (symptoms) and last sections
(epidemiology). However, only SECTOR can cap-
ture diagnosis, prevention, and treatment.
Furthermore, we observe additional screening
predictions in the center of the document. This
section is actually labeled "Prevention |
Screening" in the source document, which
explains this overlap.

Furthermore, we observe low confidence in the
second section labeled cause. Our multi-class
model predicts for this section {diagnosis,

cause, genetics}. The ground truth heading
for this section is "Causes | Genetic
sequence," but even for a human reader this
assignment is not clear. This shows that the multi-
label approach fills an important gap and can
even serve as an indicator for low-quality article
structure.

Finally, both models fail to segment the com-
plication section near the end, because it
consists of an enumeration. The embedding devi-
ation segmentation strategy (right side of Figure 5)
completely solves this issue for both models. Our
SECTOR model is giving nearly perfect segmenta-
tion using the bidirectional strategy, it only misses
the discussed part of cause and is off by one sen-
tence for the start of prevention. Furthermore,
averaging over sentence-level predictions reveals
clearly distinguishable section class labels.
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6 Conclusions and Future Work

We presented SECTOR, a novel model for coherent
text segmentation and classification based on
latent topics. We further contributed WIKISECTION,
a collection of four large data sets in English and
German for this task. Our end-to-end method
builds on a neural topic embedding which is
trained using Wikipedia headings to optimize a
bidirectional LSTM classifier. We showed that
our best performing model is based on sparse
word features with Bloom filter encoding and
significantly improves classification precision for
25–30 topics on comprehensive documents by up
to 29.5 points F1 compared with state-of-the-art
sentence classifiers with baseline segmentation.
We used the bidirectional deviation in our topic
embedding to segment a document into coherent
sections without additional training. Finally, our
experiments showed that extending the task to
multi-label classification of 2.8k ambiguous topic
words still produces coherent results with 71.1%
average precision.

We see an exciting future application of SECTOR

as a building block to extract and retrieve topical
passages from unlabeled corpora, such as medical
research articles or technical papers. One possible
task is WikiPassageQA (Cohen et al., 2018), a
benchmark to retrieve passages as answers to
non-factoid questions from long articles.
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