
Pushing the Limits of Translation Quality Estimation
André F. T. Martins

Unbabel
Instituto de Telecomunicações

Lisbon, Portugal
andre.martins@unbabel.com

Marcin Junczys-Dowmunt
Adam Mickiewicz University in Poznań

Poznań, Poland
junczys@amu.edu.pl

Fabio N. Kepler
Unbabel

L2F/INESC-ID, Lisbon, Portugal
University of Pampa, Alegrete, Brazil

kepler@unbabel.com

Ramón Astudillo
Unbabel

L2F/INESC-ID
Lisbon, Portugal

ramon@unbabel.com

Chris Hokamp
Dublin City University

Dublin, Ireland
chokamp@computing.dcu.ie

Roman Grundkiewicz
Adam Mickiewicz University in Poznań

Poznań, Poland
romang@amu.edu.pl

Abstract

Translation quality estimation is a task of
growing importance in NLP, due to its poten-
tial to reduce post-editing human effort in dis-
ruptive ways. However, this potential is cur-
rently limited by the relatively low accuracy
of existing systems. In this paper, we achieve
remarkable improvements by exploiting syn-
ergies between the related tasks of word-level
quality estimation and automatic post-editing.
First, we stack a new, carefully engineered,
neural model into a rich feature-based word-
level quality estimation system. Then, we use
the output of an automatic post-editing sys-
tem as an extra feature, obtaining striking re-
sults on WMT16: a word-level F MULT

1 score of
57.47% (an absolute gain of +7.95% over the
current state of the art), and a Pearson correla-
tion score of 65.56% for sentence-level HTER
prediction (an absolute gain of +13.36%).

1 Introduction

The goal of quality estimation (QE) is to evaluate
a translation system’s quality without access to ref-
erence translations (Blatz et al., 2004; Specia et al.,
2013). This has many potential usages: informing
an end user about the reliability of translated con-
tent; deciding if a translation is ready for publish-
ing or if it requires human post-editing; highlighting

the words that need to be changed. QE systems are
particularly appealing for crowd-sourced and pro-
fessional translation services, due to their potential
to dramatically reduce post-editing times and to save
labor costs (Specia, 2011). The increasing interest
in this problem from an industrial angle comes as no
surprise (Turchi et al., 2014; de Souza et al., 2015;
Martins et al., 2016; Kozlova et al., 2016).

In this paper, we tackle word-level QE, whose
goal is to assign a label of OK or BAD to each word
in the translation (Figure 1). Past approaches to this
problem include linear classifiers with handcrafted
features (Ueffing and Ney, 2007; Biçici, 2013; Shah
et al., 2013; Luong et al., 2014), often combined
with feature selection (Avramidis, 2012; Beck et al.,
2013), recurrent neural networks (de Souza et al.,
2014; Kim and Lee, 2016), and systems that com-
bine linear and neural models (Kreutzer et al., 2015;
Martins et al., 2016). We start by proposing a “pure”
QE system (§3) consisting of a new, carefully en-
gineered neural model (NEURALQE), stacked into
a linear feature-rich classifier (LINEARQE). Along
the way, we provide a rigorous empirical analysis
to better understand the contribution of the several
groups of features and to justify the architecture of
the neural system.

A second contribution of this paper is bring-
ing in the related task of automatic post-editing
(APE; Simard et al. (2007)), which aims to au-

205

Transactions of the Association for Computational Linguistics, vol. 5, pp. 205–218, 2017. Action Editor: Stefan Riezler.
Submission batch: 12/2016; Revision batch: 2/2017; Published 7/2017.

c©2017 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



Source The Sharpen tool sharpens areas in an image .
MT Der Schärfen-Werkezug Bereiche in einem Bild schärfer erscheint .
PE (reference) Mit dem Scharfzeichner können Sie einzelne Bereiche in einem Bild scharfzeichnen .
QE BAD BAD OK OK OK OK BAD BAD OK ‖ HTER = 66.7%

Figure 1: Example from the WMT16 word-level QE training set. Shown are the English source sentence, the German
translation (MT), its manual post-edition (PE), and the conversion to word quality labels made with the TERCOM tool
(QE). Words labeled as OK are shown in green, and those labeled as BAD are shown in red. We also show the HTER
(fraction of edit operations to produce PE from MT) computed by TERCOM.

tomatically correct the output of machine transla-
tion (MT). We show that a variant of the APE sys-
tem of Junczys-Dowmunt and Grundkiewicz (2016),
trained on a large amount of artificial “roundtrip
translations,” is extremely effective when adapted to
predict word-level quality labels (yielding APEQE,
§4). We further show that the pure and the APE-
based QE system are highly complementary (§5): a
stacked combination of LINEARQE, NEURALQE,
and APEQE boosts the scores even further, leading
to a new state of the art on the WMT15 and WMT16
datasets. For the latter, we achieve an F MULT

1 score of
57.47%, which represents an absolute improvement
of +7.95% over the previous best system.

Finally, we provide a simple word-to-sentence
conversion to adapt our system to sentence-level
QE. This results in a new state of the art for human-
targeted translation error rate (HTER) prediction,
where we obtain a Pearson’s r correlation score of
65.56% (+13.36% absolute gain), and for sentence
ranking, which achieves a Spearman’s ρ correlation
score of 65.92% (+17.62%). We complement our
findings with error analysis that highlights the syn-
ergies between pure and APE-based QE systems.

2 Datasets and System Architecture

Datasets. For developing and evaluating our sys-
tems, we use the datasets listed in Table 1. These
datasets have been used in the QE and APE tasks
in WMT 2015–2016 (Bojar et al., 2015, 2016).1

They span two language pairs (English-Spanish and
English-German) and two different domains (news
translations and information technology). We used
the standard train, development and test splits. Each
split contains the source and automatically trans-
lated sentences (which we use as inputs), the manu-

1Publicly available at http://www.statmt.org/
wmt15 and http://www.statmt.org/wmt16.

ally post-edited sentences (output for the APE task),
and a sequence of OK/BAD quality labels, one per
each translated word (output for the word-level QE
task); see Figure 1. Besides these datasets, for
training the APE system we make use of artificial
roundtrip translations; this will be detailed in §4.

Evaluation. For all experiments, we report the of-
ficial evaluation metrics of each dataset’s year. For
WMT15, the official metric for the word-level QE
task is the F1 score of the BAD labels (F BAD

1 ). For
WMT16, it is the product of the F1 scores for the
OK and BAD labels (denoted F MULT

1 ). For sentence-
level QE, we report the Pearson’s r correlation for
HTER prediction and the Spearman’s ρ correlation
score for sentence ranking (Graham, 2015).

From post-edited sentences to quality labels. In
the datasets above, the word quality labels are ob-
tained automatically by aligning the translated and
the post-edited sentence with the TERCOM soft-
ware tool (Snover et al., 2006)2, with the default
settings (tokenized, case insensitive, exact matching
only, shifts disabled). This tool computes the HTER
(the normalized edit distance) between the translated
and post-edited sentence. As a by-product, it aligns
the words in the two sentences, identifying substitu-
tion errors, word deletions (i.e. words omitted by the
translation system), and insertions (redundant words
in the translation). Words in the MT output that need
to be edited are marked by the BAD quality labels.

The fact that the quality labels are automatically
obtained from the post-edited sentences is not just
an artifact of these datasets, but a procedure that is
highly convenient for developing QE systems in an
industrial setting. Manually annotating word-level
quality labels is time-consuming and expensive; on
the other hand, post-editing translated sentences is

2http://www.cs.umd.edu/˜snover/tercom.

206

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



Dataset Language pair # sents # words

WMT15, Train En-Es 11,271 257,548
WMT15, Dev En-Es 1,000 23,207
WMT15, Test En-Es 1,817 40,899

WMT16, Train En-De 12,000 210,958
WMT16, Dev En-De 1,000 19,487
WMT16, Test En-De 2,000 34,531

Table 1: Datasets used in this work.

commonly part of the workflow of crowd-sourced
and professional translation services. Thus, getting
quality labels for free from sentences that have al-
ready been post-edited is a much more realistic and
sustainable process. This observation suggests that
we can tackle word-level QE in two ways:

1. Pure QE: run the TER alignment tool (i.e. TER-
COM) on the post-edited data, and then train a
QE system directly on the generated quality la-
bels;

2. APE-based QE: train an APE system on the
original post-edited data, and at runtime use the
TER aligment tool to convert the automatically
post-edited sentences to quality labels.

From a machine learning pespective, QE is a se-
quence labeling problem (i.e., whose output se-
quence has a fixed length and a small number of
labels), while APE is a sequence-to-sequence prob-
lem (where the output is of variable length and
spans a large vocabulary). Therefore, we can regard
APE-based QE as a “projection” of a more complex
and fine-grained output (APE) into a simpler output
space (QE). APE-based QE systems have the poten-
tial for being more powerful since they are trained
with this finer-grained information (provided there is
enough training data to make them generalize well).
We report results in §4 confirming this hypothesis.

Our system architecture, described in full detail
in the following sections, consists of state of the art
pure QE and APE-based QE systems, which are then
combined to yield a new, more powerful, QE system.

3 Pure Quality Estimation

The best performing system in the WMT16 word-
level QE task was developed by the Unbabel team

(Martins et al., 2016). It is a pure but rather com-
plex QE system, ensembling a linear feature-based
classifier with three different neural networks with
different configurations. In this section, we provide
a simpler version of their system, by replacing the
three ensembled neural components by a single one,
which we engineer in a principled way. We evaluate
the resulting system on additional data (WMT15 in
addition to WMT16), covering a new language pair
and a new content type. Overall, we obtain a slightly
higher accuracy with a much simpler system.

In this section, we describe the linear (§3.1) and
neural (§3.2) components of our system, as well as
their combination (§3.3).

3.1 Linear Sequential Model

We start with the linear component of our model,
a discriminative feature-based sequential model
(called LINEARQE), based on Martins et al. (2016).
The system receives as input a tuple 〈s, t,A〉, where
s = s1 . . . sM is the source sentence, t = t1 . . . tN
is the translated sentence, and A ⊆ {(m,n) | 1 ≤
m ≤ M, 1 ≤ n ≤ N} is a set of word alignments.
It predicts as output a sequence ŷ = y1 . . . yN , with
each yi ∈ {BAD, OK}. This is done as follows:

ŷ = argmax
y

N∑

i=1

w>φu(s, t,A, yi)

+
N+1∑

i=1

w>φb(s, t,A, yi, yi−1). (1)

Above, w is a vector of weights, φu(s, t,A, yi) are
unigram features (depending only on a single output
label), φb(s, t,A, yi, yi−1) are bigram features (de-
pending on consecutive output labels), and y0 and
yN+1 are special start/stop symbols.

Features. Table 2 shows the unigram and bigram
features used in the LINEARQE system. Like the
baseline systems provided in WMT15/16, we in-
clude features that depend on the target word and
its aligned source word, as well as the context sur-
rounding them.3 A distinctive aspect of our sys-
tem is the inclusion of syntactic features, which will

3Features involving the aligned source word are replaced by
NIL if the target word is unaligned. If there are multiple aligned
source words, they are concatenated into a single feature.

207

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



Features Label Input (referenced by the ith target word)

unigram yi ∧ . . . ∗BIAS
∗WORD, LEFTWORD, RIGHTWORD
∗SOURCEWORD, SOURCELEFTWORD, SOURCERIGHTWORD
∗LARGESTNGRAMLEFT/RIGHT, SOURCELARGESTNGRAMLEFT/RIGHT
∗POSTAG, SOURCEPOSTAG
†WORD+LEFTWORD, WORD+RIGHTWORD
†WORD+SOURCEWORD, POSTAG+SOURCEPOSTAG

simple bigram yi ∧ yi−1 ∧ . . . ∗BIAS

rich bigrams yi ∧ yi−1 ∧ . . . all above
yi+1 ∧ yi ∧ . . . WORD+SOURCEWORD, POSTAG+SOURCEPOSTAG

syntactic yi ∧ . . . DEPREL, WORD+DEPREL
HEADWORD/POSTAG+WORD/POSTAG
LEFTSIBWORD/POSTAG+WORD/POSTAG
RIGHTSIBWORD/POSTAG+WORD/POSTAG
GRANDWORD/POSTAG+HEADWORD/POSTAG+WORD/POSTAG

Table 2: Features used in the LINEARQE system (see Martins et al., 2016 for a detailed description). Features marked
with ∗ are included in the WMT16 baseline system. Those marked with † were proposed by Kreutzer et al. (2015).

show to be useful to detect grammatically incor-
rect constructions.4 We use features that involve
the dependency relation, the head word, and second-
order sibling and grandparent structures. Features
involving part-of-speech (POS) tags and syntactic
information are obtained with TurboTagger and Tur-
boParser (Martins et al., 2013).5

Training. The feature weights are learned by run-
ning 50 epochs of the max-loss MIRA algorithm
(Crammer et al., 2006), with regularization con-
stant C ∈ {10−k}4k=1 and a Hamming cost function
placing a higher penalty on false positives than on
false negatives (cFP ∈ {0.5, 0.55, . . . , 0.95}, cFN =
1 − cFP), to account for the existence of fewer BAD

labels than OK labels in the data. These values are
tuned on the development set.

Results and feature contribution. Table 3 shows
the performance of the LINEARQE system. To
help understand the contribution of each group
of features, we evaluated different variants of the
LINEARQE system on the development sets of
WMT15/16. As expected, the use of bigrams im-
proves the simple unigram model, and the syntac-

4While syntactic features have been used previously in
sentence-level QE (Rubino et al., 2012), they have never been
applied to the finer-grained word-level variant tackled here.

5http://www.cs.cmu.edu/˜ark/TurboParser.

Features WMT15 (F BAD
1 ) WMT16 (F MULT

1 )

unigrams only 41.77 40.05
+simple bigram 42.20 40.63
+rich bigrams 42.80 43.65
+syntactic (full) 43.68 46.11

Table 3: Performance on the WMT15 (En-Es) and
WMT16 (En-De) development sets of several configu-
rations of LINEARQE. We report the official metric for
these shared tasks, F BAD

1 for WMT15 and F MULT
1 for

WMT16.

tic features help even further. The impact of these
features is more prominent in WMT16: the rich bi-
gram features lead to scores about 3 points above
a sequential model with a single indicator bigram
feature, and the syntactic features contribute another
2.5 points. The net improvement exceeds 6 points
over the unigram model.

3.2 Neural System
Next, we describe the neural component of our pure
QE system, which we call NEURALQE. In WMT15
and WMT16, the neural QUETCH system (Kreutzer
et al., 2015) and its ensemble with other neural mod-
els (Martins et al., 2016) were components of the
winning systems. However, none of these neural
models managed to outperform a linear model when

208

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



2 x FF 2 x 400

2 x FF 2 x 200

2 x FF 100 + 50

...

...
BiGRU 100

...

...BiGRU 200

softmax OK/BAD

source word

source POS

target word

target POS

em
be

dd
in

gs

3 x 64

3 x 50

3 x 64

3 x 50

Figure 2: Architecture of our NEURALQE system.

considered in isolation—for example, QUETCH ob-
tained a F BAD

1 of 35.27% in the WMT15 test set, far
below the 40.84% score of the linear system built
by the same team. By contrast, our carefully en-
gineered NEURALQE model attains a performance
superior to that of the linear system, as we shall see.

Architecture. The architecture of NEURALQE is
depicted in Figure 2. We used Keras (Chollet, 2015)
to implement our model. The system receives as
input the source and target sentences s and t, their
word-level alignments A, and their corresponding
POS tags obtained from TurboTagger. The input
layer follows a similar architecture as QUETCH,
with the addition of POS features. A vector rep-
resenting each target word is obtained by concate-
nating the embedding of that word with those of
the aligned word in the source.6 The immediate
left and right contexts for source and target words
are also concatenated. We use the pre-trained 64-
dimensional Polyglot word embeddings (Al-Rfou et
al., 2013) for English, German, and Spanish, and re-
fine them during training. In addition to this, POS
tags for each source and target word are also em-
bedded and concatenated. POS embeddings have
size 50 and are initialized as described by Glorot and
Bengio (2010). A dropout probability of 0.5 is ap-
plied to the resulting vector representations.

The following layers are then applied in sequence:

1. Two feed-forward layers of size 400 with recti-
fied linear units (ReLU; Nair and Hinton (2010));
6For the cases in which there are multiple source words

aligned to the same target word, the embeddings are averaged.

2. A layer with bidirectional gated recurrent units
(BiGRU, Cho et al. (2014)) of size 200, where
forward and backward vectors are concatenated,
trained with layer normalization (Ba et al., 2016);

3. Two feed-forward ReLU layers of size 200;

4. A BiGRU layer of size 100 with identical config-
uration to the previous BiGRU;

5. Two more feed-forward ReLU layers of sizes 100
and 50, respectively.

As the output layer, a softmax transformation over
the OK/BAD labels is applied. The choice for this
architecture was dictated by experiments on the
WMT16 development data, as we explain next.

Training. We train the model with the RMSProp
algorithm (Tieleman and Hinton, 2012) by minimiz-
ing the cross-entropy with a linear penalty for BAD

word predictions, as in Kreutzer et al. (2015). We set
the BAD weight factor to 3.0. All hyperparameters
are adjusted based on the development set. Target
sentences are bucketed by length and then processed
in batches (without any padding or truncation).

Results and architectural choices. The final re-
sults are shown in Table 4. Overall, the final NEU-
RALQE model achieves an F MULT

1 score of 46.80%
on the WMT16 development set, compared with
the 46.11% obtained with the LINEARQE system
(cf. Table 3). This contrasts with previous neural
systems, such as QUETCH (Kreutzer et al., 2015)
and any of the three neural systems developed by
Martins et al. (2016), which could not outperform a
rich feature linear classifier.

To justify the most relevant choices regarding the
architecture of NEURALQE, we also evaluated sev-
eral variations of it on the WMT16 development set.
The use of recurrent layers yields the largest con-
tribution to the performance of NEURALQE, as the
scores drop sharply (by more than 4 points) if they
are replaced by feed-forward layers (which would
correspond to a mere deeper QUETCH model). The
first BiGRU is particulary effective, as scores drop
more than 2 points if it is removed. The use of
layer normalization on the recurrent layers also con-
tributes positively (+1.20) to the final score. As ex-
pected, the use of POS tags adds another large im-
provement: everything staying the same, the model

209

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



Model F MULT
1

NEURALQE 46.80

No POS tags 44.41 (-2.39)
Replace BiGRU by FF 42.36 (-4.44)
Only the first BiGRU 45.76 (-1.04)
Only the second BiGRU 44.37 (-2.43)
Remove FF between BiGRUs 46.35 (-0.45)
Narrower layers 45.09 (-1.71)
Broader layers 45.02 (-1.78)
One more layer at the end 46.31 (-0.49)
No layer normalization 45.60 (-1.20)

Table 4: Effect of architectural changes in NEURALQE
on the WMT16 development set.

without POS tags as input performs almost 2.5
points worse. Finally, varying the size of the hidden
layers and the depth of the network hurts the final
model’s performance, albeit more slightly.

3.3 Stacking Neural and Linear Models

We now stack the NEURALQE system (§3.2) into
the LINEARQE system (§3.1) as an ensemble strat-
egy; we call the resulting system STACKEDQE.

Stacking architectures (Wolpert, 1992; Breiman,
1996) have proved effective in structured NLP prob-
lems (Cohen and de Carvalho, 2005; Martins et al.,
2008). The underlying idea is to combine two sys-
tems by letting the prediction of the first system be
used as an input feature for the second system. Dur-
ing training, it is necessary to jackknife the first sys-
tem’s predictions to avoid overfitting the training set.
This is done by splitting the training set in K folds
(we set K = 10) and training K different instances
of the first system, where each instance is trained on
K − 1 folds and makes predictions for the left-out
fold. The concatenation of all the predictions yields
an unbiased training set for the second classifier.

Neural intra-ensembles. We also evaluate the
performance of intra-ensembled neural systems. We
train independent instances of NEURALQE with dif-
ferent random initializations and different data shuf-
fles, following the approach of Jean et al. (2015) in
neural MT. In Tables 5–6, we report the performance
on the WMT15 and WMT16 datasets of systems en-
sembling 5 and 15 of these instances, called respec-
tively NEURALQE-5 and NEURALQE-15. The in-

Model F BAD
1 dev F BAD

1 test

Best system in WMT15 43.1- 43.12
QUETCH+ (2nd best) – 43.05

LINEARQE 43.68 42.50
NEURALQE 43.51 43.35
NEURALQE-5 44.21 43.54
NEURALQE-15 44.11 43.93
STACKEDQE 44.68 43.70

Table 5: Performance of the pure QE systems on the
WMT15 datasets. The best performing system in the
WMT15 competition was by Esplà-Gomis et al. (2015),
followed by Kreutzer et al. (2015)’s QUETCH+, which
is also an ensemble of a linear and a neural system.

Model F MULT
1 dev F MULT

1 test

Best system in WMT16 49.25 49.52
Unbabel-Linear (2nd best) 45.94 46.29

LINEARQE 46.11 46.16
NEURALQE 46.80 47.29
NEURALQE-5 47.30 48.50
NEURALQE-15 46.77 47.98
STACKEDQE 49.16 50.27

Table 6: Performance of the pure QE systems on the
WMT16 datasets. The best performing system in the
WMT16 competition was by Martins et al. (2016), fol-
lowed by a linear system developed by the same team
(Unbabel-Linear).

stances are ensembled by taking the averaged prob-
ability of each word being BAD. We see consistent
benefits (both for WMT15 and WMT16) in ensem-
bling 5 neural systems and (somewhat surprisingly)
some degradation with ensembles of 15.

Stacking architecture. The individual instances
of the neural systems are incorporated in the
stacking architecture as different features, yield-
ing STACKEDQE. In total, we have 15 predictions
(probability values given by each NEURALQE sys-
tem) for every word in the training, development and
test datasets. These predictions are plugged as addi-
tional features in the LINEARQE model. As uni-
gram features, we used one real-valued feature for
every model prediction at each position, conjoined
with the label. As bigram features, we used two real-
valued features for every model prediction at the two
positions, conjoined with the label pair.

210

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



The results obtained with this stacked architecture
on the WMT15 and WMT16 datasets are shown re-
spectively in Tables 5 and 6. In WMT15, it is un-
clear if stacking helps over the best intra-ensembled
neural system, with a slight improvement in the
development set, but a degradation in the test set.
In WMT16, however, stacking is clearly beneficial,
with a boost of about 2 points over the best intra-
ensembled neural system and 3–4 points above the
linear system, both in the development and test par-
titions. For the remainder of this paper, we will take
STACKEDQE as our pure QE system.

4 APE-Based Quality Estimation

Now that we have described a pure QE system, we
move on to an APE-based QE system (APEQE).

Our starting point is the system submitted by
the Adam Mickiewicz University (AMU) team to
the APE task of WMT16 (Junczys-Dowmunt and
Grundkiewicz, 2016). They explored the applica-
tion of neural translation models to the APE problem
and achieved good results by treating different mod-
els as components in a log-linear model, allowing
for multiple inputs (the source s and the translated
sentence t) that were decoded to the same target lan-
guage (post-edited translation p). Two systems were
considered, one using s as the input (s → p) and
another using t as the input (t → p). A simple
string-matching penalty integrated within the log-
linear model was used to control for higher faithful-
ness with regard to the raw MT output. The penalty
fires if the APE system proposes a word in its output
that has not been seen in t.

To overcome the problem of too little training
data, Junczys-Dowmunt and Grundkiewicz (2016)
generated large amounts of artificial data via round-
trip translations: a large corpus of monolingual
sentences is first gathered for the target language in
the domain of interest (each sentence is regarded as
an artificial post-edited sentence p); then an MT sys-
tem is ran to translate these sentences to the source
language (which are regarded as the source sen-
tences s), and another MT system in the reverse di-
rection translates the latter back to the target lan-
guage (playing the role of the translations t). The
artificial data is filtered to match the HTER statistics
of the training and development data for the shared

task.7 Their submission improved over the uncor-
rected baseline on the unseen WMT16 test set by -
3.2% TER and +5.5% BLEU and outperformed any
other system submitted to the shared-task by a large
margin.

4.1 Training the APE System

We reproduce the experiments from Junczys-
Dowmunt and Grundkiewicz (2016) using Nematus
(Sennrich et al., 2016) for training and AmuNMT
(Junczys-Dowmunt et al., 2016) for decoding.

As stated in §3.3, jackknifing is required to
avoid overfitting during the training procedure of the
stacked classifiers (§5), therefore we start by prepar-
ing four jackknifed models. We perform the follow-
ing steps:

• We divide the original WMT16 training set into
four equally sized parts, maintaining correspon-
dences between different languages. Four new
training sets are created by leaving out one part
and concatenating the remaining three parts.

• For each of the four new training sets, we train
one APE model on a concatenation of a smaller
set of artificial data (denoted as “round-trip.n1”
in Junczys-Dowmunt and Grundkiewicz (2016),
consisting of 531,839 sentence triples) and a 20-
fold oversampled new training set. Each of these
newly created four APE models has not seen a dif-
ferent part of the quartered original training data.

• To avoid overfitting, we use scaling dropout8 over
GRU steps and input embeddings, with dropout
probabilities 0.2, and over source and target words
with probabilities 0.1 (Sennrich et al., 2016).

• We use Adam (Kingma and Ba, 2014) instead of
Adadelta (Zeiler, 2012).

• We train both models (s → p and t → p) un-
til convergence up to 20 epochs, saving model
checkpoints every 10,000 mini-batches.

7The artificial filtered data has been made available by the
authors at https://github.com/emjotde/amunmt/
wiki/AmuNMT-for-Automatic-Post-Editing.

8Currently available in the MRT branch of Nematus at
https://github.com/rsennrich/nematus

211

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



System WMT15 WMT16

Best system 23.23 21.52
Uncorrected baseline 22.91 24.76

APE t→ p 23.91 22.60
APE s→ p 40.44 28.39
APE TER-tuned 23.29 20.99

Table 7: TER scores on the official WMT15 and WMT16
test sets for the APE task. Lower is better.

• The last four model checkpoints of each train-
ing run are averaged element-wise (Junczys-
Dowmunt et al., 2016) resulting in new single
models with generally improved performance.

To verify the quality of the APE system, we en-
semble the 8 resulting models (4 times s→ p and 4
times t → p) and add the APE penalty described in
Junczys-Dowmunt and Grundkiewicz (2016). This
large ensemble across folds is only used during test
time. For creating the jackknifed training data, only
the models from the corresponding fold are used.
Since we combine models of different types, we tune
weights on the development set with MERT9 (Och,
2003) towards TER, yielding the model denoted as
“APE TER-tuned”. Results are listed in Table 7 for
the APE shared task (WMT 16). For the purely
s → p and t → p ensembles, models are weighted
equally. We achieve slightly better results in terms
of TER, the main task metric, than the original sys-
tem, using less data.

For completeness, we also apply this proce-
dure to WMT15 data, generating a similar resource
of 500K artificial English-Spanish-Spanish post-
editing triplets via roundtrip translation.10 The train-
ing, jackknifing and ensembling methods are the
same as for the WMT16 setting. For the WMT15
APE shared task, results are less persuasive than for
WMT16: none of the shared task participants was
able to beat the uncorrected baseline and our sys-
tem fails at this as well. However, we produced the

9We found MERT to work better when tuning towards TER
than kb-MIRA which has been used in the original paper.

10Our artificially created data might suffer from a higher mis-
match between training and development data. While we were
able to match the TER statistics of the dev set, BLEU scores
are several points lower. The artificial WMT16 data we created
in Junczys-Dowmunt and Grundkiewicz (2016) matches both,
TER and BLEU scores, of the respective development set.

F BAD
1 dev F BAD

1 test

APE t→ p 13.46 12.83
APE s→ p 41.56 41.57
APE TER-tuned 5.96 4.72

APEQE 46.44 46.05

Table 8: Performance of APE-based QE systems on the
WMT15 development and test sets.

F MULT
1 dev F MULT

1 test

APE t→ p 27.46 31.39
APE s→ p 51.92 53.70
APE TER-tuned 40.17 41.87

APEQE 54.95 55.68

Table 9: Performance of APE-based QE systems on the
WMT16 development and test sets.

second strongest system for case-sensitive TER (Ta-
ble 7, WMT15) and the strongest for case-insensitve
TER (22.49 vs. 22.54).

4.2 Adaptation to QE and Task-Specific Tuning

As described in §2, APE outputs can be turned into
word quality labels using TER-based word align-
ments. Somewhat surprisingly, among the APE sys-
tems introduced above, we observe in Table 9 that
the s→ p APE system is the so-far strongest stand-
alone QE system for the WMT16 task in this work.
This system is essentially a retrained neural MT
component without any additional features.11 The
t → p system and the TER-tuned APE ensemble
are much weaker in terms of F MULT

1 . This is less
surprising in the case of the full ensemble, as it has
been tuned towards TER for the APE task specif-
ically. However, we can obtain even better APE-
based QE systems for both shared task settings by
tuning the full APE ensembles towards F MULT

1 , the
official WMT16 QE metric, and towards F BAD

1 for
WMT15.12 With this approach, we produce our new
best stand-alone QE-systems for both shared tasks,
which we denote as APEQE.

11Note that this system resembles other QE approaches
which use pseudo-reference features (Albrecht and Hwa, 2008;
Soricut and Narsale, 2012; Shah et al., 2013), since the s → p
is essentially an “alternative” MT system.

12Using again MERT and executing 7 iterations on the offi-
cial development set with an n-best list size of 12.

212

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



F BAD
1 dev F BAD

1 test

Best system in WMT15 43.1 43.12

LINEARQE 43.68 42.50
NEURALQE 43.51 43.35
STACKEDQE 44.68 43.70
APEQE 46.44 46.05
FULLSTACKEDQE 47.61 47.08

Table 10: Performance of the several word-level QE sys-
tems on the WMT15 development and test datasets. The
baseline is the best participating system in WMT15, from
Esplà-Gomis et al. (2015).

5 Full Stacked System

Finally, we consider a larger stacked system where
we stack both NEURALQE and APEQE into LIN-
EARQE. This will mix pure QE with APE-based
QE systems; we call the result FULLSTACKEDQE.
The procedure is analogous to that described in §3.3,
with one extra binary feature for the APE-based
word quality label predictions. For training, we used
jackknifing as described in §3.3.

5.1 Word-Level QE

The performance of the FULLSTACKEDQE system
on the WMT15 and WMT16 datasets are shown in
Tables 10–11. We compare with the other systems
introduced in this paper, and with the best partici-
pating systems at WMT15–16 (Esplà-Gomis et al.,
2015; Martins et al., 2016).

We can see that the APE-based and the pure QE
systems are complementary: the full combination of
the linear, neural, and APE-based systems improves
the scores with respect to the best individual sys-
tem (APEQE) by about 1 point in WMT15 and 2
points in WMT16. Overall, we obtain for WMT16
an F MULT

1 score of 57.47%, a new state of the art,
and an absolute gain of +7.95% over Martins et al.
(2016). This is a remarkable improvement that can
pave the way for a wider adoption of word-level QE
systems in industrial settings. For WMT15, we also
obtain a new state of the art, with a less impres-
sive gain of +3.96% over the best previous system.
In §6 we analyze the errors made by the pure and
the APE-based QE systems to better understand how
they complement each other.

F MULT
1 dev F MULT

1 test

Best system in WMT16 49.25 49.52

LINEARQE 46.11 46.16
NEURALQE 46.80 47.29
STACKEDQE 49.16 50.27
APEQE 54.95 55.68
FULLSTACKEDQE 56.80 57.47

Table 11: Performance of the several word-level QE sys-
tems on the WMT16 development and test datasets. The
baseline is the best participating system in WMT16, from
the Unbabel team (Martins et al., 2016).

5.2 Sentence-Level QE

Encouraged by the strong results obtained with the
FULLSTACKEDQE system in word-level QE, we in-
vestigate how we can adapt this system for HTER
prediction at sentence level. Prior work (de Souza
et al., 2014) incorporated word-level quality pre-
dictions as features in a sentence-level QE system,
training a feature-based linear classifier. Here, we
show that a very simple conversion, which requires
no training or tuning, is enough to obtain a substan-
tial improvement over the state of the art.

For the APE system, it is easy to obtain a predic-
tion for HTER: we can simply measure the HTER
between the translated sentence t and the predicted
corrected sentence p̂. For a pure QE system, we ap-
ply the following word-to-sentence conversion tech-
nique: (i) run a QE system to obtain a sequence of
OK and BAD word quality labels; (ii) use the frac-
tion of BAD labels as an estimate for HTER. Note
that this procedure, while not requiring any training,
is far from perfect. Words that are not in the trans-
lated sentence but exist in the reference post-edited
sentence do not originate BAD labels, and therefore
will not contribute to the HTER estimate. Yet, as we
will see, this procedure applied to the STACKEDQE
system (i.e. without the APEQE component) is al-
ready sufficient to obtain state of the art results. Fi-
nally, to combine the APE and pure QE systems to-
ward sentence-level QE, we simply take the average
of the two HTER predictions above.

Table 12 shows the results obtained with our
pure QE system (STACKEDQE), with our APE-
based system (APEQE), and with the combination
of the two (FULLSTACKEDQE). As baselines, we

213

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



Pearson dev Pearson test Spearman dev Spearman test

WMT15

Best system in WMT15 (ranking) – 39.41 – 36.49
Best system in WMT15 (HTER) – 38.46 – 36.81

STACKEDQE 32.29 36.96 33.22 34.44
APEQE 29.33 40.39 30.80 38.74
FULLSTACKEDQE 36.07 44.99 36.68 42.30

WMT16

Best system in WMT16 (ranking) – 52.5 – –
Best system in WMT16 (HTER) – 46.0 – 48.3

STACKEDQE 55.30 54.93 56.46 55.34
APEQE 59.04 61.27 61.06 62.48
FULLSTACKEDQE 64.04 65.56 65.52 65.92

Table 12: Performance of our sentence-level QE systems on the WMT15 an WMT16 datasets, as measured by the
WMT16 official evaluation script. The baselines are the best WMT15–16 systems in the HTER prediction track (Bicici
et al., 2015; Kozlova et al., 2016) and in the sentence ranking track (Langlois, 2015; Kim and Lee, 2016).

report the performance of the two best systems in
the sentence-level QE tasks at WMT15 and WMT16
(Bicici et al., 2015; Langlois, 2015; Kozlova et al.,
2016; Kim and Lee, 2016).

The results are striking: for WMT16, even our
weakest system (STACKEDQE) with the simple con-
version procedure above is already sufficient to ob-
tain state of the art results, outperforming Kozlova et
al. (2016) and Kim and Lee (2016) by a considerable
margin. The APEQE system gives a very large boost
over these scores, which are further increased by the
combined FULLSTACKEDQE system. Overall, we
obtain absolute gains of +13.36% in Pearson’s r cor-
relation score for HTER prediction, and +17.62%
in Spearman’s ρ correlation for sentence ranking, a
considerable advance over the previous state of the
art. For WMT15, we also obtain a new state of the
art, with less sharp (but still significant) improve-
ments: +5.08% in Pearson’s r correlation score, and
+5.81% in Spearman’s ρ correlation.

6 Error Analysis

Performance over sentence length. To better un-
derstand the differences in performance between the
pure QE system (STACKEDQE) and the APE-based
system (APEQE), we analyze how the two systems,
as well as their combination (FULLSTACKEDQE),
perform as a function of the sentence length.

Figure 3 shows the averaged number of BAD pre-
dictions made by the three systems for different sen-
tences lengths, in the WMT16 development set. For

comparison, we show also the true average num-
ber of BAD words in the gold standard. We ob-
serve that, for short sentences (less than 5 words),
the pure QE system tends to be too optimistic (i.e., it
underpredicts BAD words) and the APE-based sys-
tem too pessimistic (overpredicting them). In the
range of 5-10 words, the pure QE system matches
the proportion of BAD words more accurately than
the APE-based system. For medium/long sentences,
we observe the opposite behavior (this is partic-
ularly clear in the 20-25 word range), with the
APE-based system being generally better. On the
other hand, the combination of the two systems
(FULLSTACKEDQE) manages to find a good bal-
ance between these two biases, being much closer
to the true proportion of BAD labels for both shorter
and longer sentences than any of the individual sys-
tems. This shows that the two systems complement
each other well in the combination.

Illustrative examples. Table 13 shows concrete
examples of quality predictions on the WMT16 de-
velopment data. In the top example, we can see that
the APE system correctly replaced Angleichungs-
farbe by Mischfarbe, but is under-corrective in other
parts. The APEQE system therefore misses several
BAD words, but manages to get the correct label
(OK) for den. By contrast, the pure QE system er-
roneously flags this word as incorrect, but it makes
the right decision on Farbton and zu erstellen, be-
ing more accurate than APEQE. The combination
of the two systems (pure QE and APEQE) leads to

214

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



Source Combines the hue value of the blend color with the luminance and saturation of the base color to
create the result color .

MT Kombiniert den Farbton Wert der Angleichungsfarbe mit der Luminanz und Sättigung der
Grundfarbe zu erstellen .

PE (Reference) Kombiniert den Farbtonwert der Mischfarbe mit der Luminanz und Sättigung der Grundfarbe .
APE Kombiniert den Farbton der Mischfarbe mit der Luminanz und die Sättigung der Grundfarbe ,

um die Ergebnisfarbe zu erstellen .
STACKEDQE Kombiniert den Farbton Wert der Angleichungsfarbe mit der Luminanz und Sättigung der Grund-

farbe zu erstellen .
APEQE Kombiniert den Farbton Wert der Angleichungsfarbe mit der Luminanz und Sättigung der Grund-

farbe zu erstellen .
FULLSTACKEDQE Kombiniert den Farbton Wert der Angleichungsfarbe mit der Luminanz und Sättigung der Grund-

farbe zu erstellen .

Source The Video Preview plug - in supports RGB , grayscale , and indexed images .
MT Mit dem Zusatzmodul “ Videovorschau ” unterstützt RGB- , Graustufen- und indizierte Bilder .
PE (Reference) Das Zusatzmodul “ Videovorschau ” unterstützt RGB- , Graustufen- und indizierte Bilder .
APE Das Dialogfeld “ Videovorschau ” unterstützt RGB- , Graustufen- und indizierte Bilder .
STACKEDQE Mit dem Zusatzmodul “ Videovorschau ” unterstützt RGB- , Graustufen- und indizierte Bilder .
APEQE Mit dem Zusatzmodul “ Videovorschau ” unterstützt RGB- , Graustufen- und indizierte Bilder .
FULLSTACKEDQE Mit dem Zusatzmodul “ Videovorschau ” unterstützt RGB- , Graustufen- und indizierte Bilder .

Table 13: Examples on WMT16 validation data. Shown are the source and translated sentences, the gold post-edited
sentences, the output of the APE system, and the QE predictions of our pure QE and APE-based QE systems as well as
their combination. Words predicted as OK are shown in green, those predicted as BAD are shown in red, and differences
between the translated and the post-edited sentences are shown in blue. For both examples, the full stacked system
predicts all quality labels correctly.

Figure 3: Averaged number of words predicted as BAD
by the different systems in the WMT16 gold dev set, for
different bins of the sentence length.

the correct sequential prediction. In the bottom ex-
ample, the pure QE system assigns the correct label
to Zusatzmodul, while the APE system mistranslates
this word to Dialogfeld, leading to a wrong predic-
tion by the APEQE system. On the other hand, pure
QE misclassifies unterstützt RGB- as BAD words,
while the APEQE gets them right. Overall, the
APEQE is more accurate in this example. Again,

these decisions complement each other well, as can
be seen by the combined QE system which outputs
the correct word labels for the entire sentence.

7 Conclusions

We have presented new state of the art systems for
word-level and sentence-level QE that are consid-
erably more accurate than previous systems on the
WMT15 and WMT16 datasets.

First, we proposed a new pure QE system which
stacks a linear and a neural system, and is simpler
and slighly more accurate than the currently best
word-level system. Then, by relating the tasks of
APE and word-level QE, we derived a new APE-
based QE system, which leverages additional artifi-
cial roundtrip translation data, achieving a larger im-
provement. Finally, we combined the two systems
via a full stacking architecture, boosting the scores
even further. Error analysis shows that the pure and
APE-based systems are highly complementary. The
full system was extended to sentence-level QE by
virtue of a simple word-to-sentence conversion, re-

215

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



quiring no further training or tuning.

Acknowledgments

We thank the reviewers and the action edi-
tor for their insightful comments. This work
was partially supported by the the EXPERT
project (EU Marie Curie ITN No. 317471),
and by Fundação para a Ciência e Tecnolo-
gia (FCT), through contracts UID/EEA/50008/2013
and UID/CEC/50021/2013, the LearnBig project
(PTDC/EEI-SII/7092/2014), the GoLocal project
(grant CMUPERI/TIC/0046/2014), and the Amazon
Academic Research Awards program.

References

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013.
Polyglot: Distributed Word Representations for Multi-
lingual NLP. In Proceedings of the Seventeenth Con-
ference on Computational Natural Language Learn-
ing, pages 183–192.

Joshua Albrecht and Rebecca Hwa. 2008. The role of
pseudo references in MT evaluation. In Proceedings
of the Third Workshop on Statistical Machine Transla-
tion, pages 187–190.

Eleftherios Avramidis. 2012. Quality estimation for
machine translation output using linguistic analysis
and decoding features. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, pages
84–90.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Daniel Beck, Kashif Shah, Trevor Cohn, and Lucia Spe-
cia. 2013. SHEF-Lite: When less is more for transla-
tion quality estimation. In Proceedings of the Eighth
Workshop on Statistical Machine Translation, pages
335–340.

Ergun Bicici, Qun Liu, and Andy Way. 2015. Refer-
ential translation machines for predicting translation
quality and related statistics. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 304–308.

Ergun Biçici. 2013. Referential translation machines for
quality estimation. In Proceedings of the Eighth Work-
shop on Statistical Machine Translation, pages 343–
351.

John Blatz, Erin Fitzgerald, George Foster, Simona Gan-
drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2004. Confidence estimation for

machine translation. In Proceedings of the Interna-
tional Conference on Computational Linguistics, page
315.

Ondřej Bojar, Rajan Chatterjee, Christian Federmann,
Barry Haddow, Chris Hokamp, Matthias Huck, Var-
vara Logacheva, , Philipp Koehn, , Christof Monz,
Matteo Negri, Pavel Pecina, Matt Post, Carolina Scar-
ton, Lucia Specia, and Marco Turchi. 2015. Findings
of the 2015 Workshop on Statistical Machine Transla-
tion. In Proceedings of the Tenth Workshop on Statis-
tical Machine Translation, pages 1–46.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, Anto-
nio Jimeno Yepes, Philipp Koehn, Varvara Logacheva,
Christof Monz, Matteo Negri, Aurelie Neveol, Mari-
ana Neves, Martin Popel, Matt Post, Raphael Rubino,
Carolina Scarton, Lucia Specia, Marco Turchi, Karin
Verspoor, and Marcos Zampieri. 2016. Findings of
the 2016 conference on machine translation. In Pro-
ceedings of the First Conference on Machine Transla-
tion, pages 131–198.

Leo Breiman. 1996. Stacked Regressions. Machine
Learning, 24:49–64.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations Using RNN Encoder-Decoder for Sta-
tistical Machine Translation. In Proceedings of Empir-
ical Methods in Natural Language Processing, pages
1724–1734.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

William W. Cohen and Vitor R. de Carvalho. 2005.
Stacked Sequential Learning. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence,
pages 671–676.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online Passive-
Aggressive Algorithms. Journal of Machine Learning
Research, 7:551–585.

José G. C. de Souza, Jesús González-Rubio, Christian
Buck, Marco Turchi, and Matteo Negri. 2014. FBK-
UPV-UEdin participation in the WMT14 Quality Esti-
mation shared-task. In Proceedings of the Ninth Work-
shop on Statistical Machine Translation, pages 322–
328.

José G. C. de Souza, Marcello Federico, and Has-
san Sawaf. 2015. MT Quality Estimation for E-
Commerce Data. In Proceedings of MT Summit XV,
vol. 2: MT Users’ Track, pages 20–29.

Miquel Esplà-Gomis, Felipe Sánchez-Martı́nez, and
Mikel Forcada. 2015. UAlacant word-level machine
translation quality estimation system at WMT 2015.

216

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



In Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 309–315.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In International Conference on Artificial Intel-
ligence and Statistics, pages 249–256.

Yvette Graham. 2015. Improving evaluation of machine
translation quality estimation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 1804–1813.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal neu-
ral machine translation systems for wmt15. In Pro-
ceedings of the Tenth Workshop on Statistical Machine
Translation, pages 134–140.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear combinations of monolingual and
bilingual neural machine translation models for auto-
matic post-editing. In Proceedings of the First Confer-
ence on Machine Translation, pages 751–758.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016. Is neural machine translation ready for
deployment? A case study on 30 translation directions.
arXiv preprint arXiv:1610.01108.

Hyun Kim and Jong-Hyeok Lee. 2016. Recurrent neural
network based translation quality estimation. In Pro-
ceedings of the First Conference on Machine Transla-
tion, pages 787–792.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Anna Kozlova, Mariya Shmatova, and Anton Frolov.
2016. YSDA Participation in the WMT16 Quality Es-
timation Shared Task. In Proceedings of the First Con-
ference on Machine Translation, pages 793–799.

Julia Kreutzer, Shigehiko Schamoni, and Stefan Riezler.
2015. QUality Estimation from ScraTCH (QUETCH):
Deep Learning for Word-level Translation Quality Es-
timation. In Proceedings of the Tenth Workshop on
Statistical Machine Translation, pages 316–322.

David Langlois. 2015. LORIA System for the WMT15
Quality Estimation Shared Task. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion, pages 323–329.

Ngoc Quang Luong, Laurent Besacier, and Benjamin
Lecouteux. 2014. LIG System for Word Level QE
task at WMT14. In Proceedings of the Ninth Work-
shop on Statistical Machine Translation, pages 335–
341.

André F. T. Martins, Dipanjan Das, Noah A. Smith, and
Eric P. Xing. 2008. Stacking Dependency Parsers. In
Proceedings of Empirical Methods for Natural Lan-
guage Processing, pages 157–166.

André F. T Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 617–622.

André F. T. Martins, Ramón Astudillo, Chris Hokamp,
and Fabio N. Kepler. 2016. Unbabel’s Participation in
the WMT16 Word-Level Translation Quality Estima-
tion Shared Task. In Proceedings of the First Confer-
ence on Machine Translation, pages 806–811.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified lin-
ear units improve restricted Boltzmann machines. In
Proceedings of the International Conference on Ma-
chine Learning, pages 807–814.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the Annual Meeting on Association for Computational
Linguistics, pages 160–167.

Raphael Rubino, Jennifer Foster, Joachim Wagner, Jo-
hann Roturier, Rasul Samad Zadeh Kaljahi, and Fred
Hollowood. 2012. DCU-Symantec submission for the
WMT 2012 quality estimation task. In Proceedings of
the Seventh Workshop on Statistical Machine Transla-
tion, pages 138–144.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh Neural Machine Translation Systems
for WMT 16. In Proceedings of the First Conference
on Machine Translation, pages 371–376.

Kashif Shah, Trevor Cohn, and Lucia Specia. 2013. An
investigation on the effectiveness of features for trans-
lation quality estimation. In Proceedings of the Ma-
chine Translation Summit, volume 14, pages 167–174.

Michel Simard, Nicola Ueffing, Pierre Isabelle, and
Roland Kuhn. 2007. Rule-based translation with sta-
tistical phrase-based post-editing. In Proceedings of
the Second Workshop on Statistical Machine Transla-
tion, pages 203–206.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Associa-
tion for Machine Translation in the Americas, pages
223–231.

Radu Soricut and Sushant Narsale. 2012. Combining
quality prediction and system selection for improved
automatic translation output. In Proceedings of the
Seventh Workshop on Statistical Machine Translation,
pages 163–170.

Lucia Specia, Kashif Shah, Jose G.C. de Souza, and
Trevor Cohn. 2013. QuEst - a translation quality
estimation framework. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics: System Demonstrations, pages 79–84.

217

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023



Lucia Specia. 2011. Exploiting objective annotations for
measuring translation post-editing effort. In Proceed-
ings of the 15th Conference of the European Associa-
tion for Machine Translation, pages 73–80.

Tijmen Tieleman and Geoffrey Hinton. 2012. Rmsprop:
Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Ma-
chine Learning, 4(2).

Marco Turchi, Antonios Anastasopoulos, José GC
de Souza, and Matteo Negri. 2014. Adaptive qual-
ity estimation for machine translation. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics, pages 710–720.

Nicola Ueffing and Hermann Ney. 2007. Word-level
confidence estimation for machine translation. Com-
putational Linguistics, 33(1):9–40.

D. Wolpert. 1992. Stacked generalization. Neural Net-
works, 5(2):241–260.

Matthew D. Zeiler. 2012. ADADELTA: An
Adaptive Learning Rate Method. arXiv preprint
arXiv:1212.5701.

218

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00056/1567460/tacl_a_00056.pdf by guest on 09 Septem
ber 2023


