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Abstract

Spatial understanding is crucial in many real-
world problems, yet little progress has been
made towards building representations that
capture spatial knowledge. Here, we move
one step forward in this direction and learn
such representations by leveraging a task
consisting in predicting continuous 2D spa-
tial arrangements of objects given object-
relationship-object instances (e.g., “cat under
chair”) and a simple neural network model
that learns the task from annotated images. We
show that the model succeeds in this task and,
furthermore, that it is capable of predicting
correct spatial arrangements for unseen ob-
jects if either CNN features or word embed-
dings of the objects are provided. The differ-
ences between visual and linguistic features
are discussed. Next, to evaluate the spatial
representations learned in the previous task,
we introduce a task and a dataset consisting
in a set of crowdsourced human ratings of
spatial similarity for object pairs. We find
that both CNN (convolutional neural network)
features and word embeddings predict human
judgments of similarity well and that these
vectors can be further specialized in spatial
knowledge if we update them when training
the model that predicts spatial arrangements
of objects. Overall, this paper paves the way
towards building distributed spatial represen-
tations, contributing to the understanding of
spatial expressions in language.

1 Introduction

Representing spatial knowledge is instrumental in
any task involving text-to-scene conversion such as

robot understanding of natural language commands
(Guadarrama et al., 2013; Moratz and Tenbrink,
2006) or a number of robot navigation tasks. Despite
recent advances in building specialized representa-
tions in domains such as sentiment analysis (Tang
et al., 2014), semantic similarity/relatedness (Kiela
et al., 2015) or dependency parsing (Bansal et al.,
2014), little progress has been made towards build-
ing distributed representations (a.k.a. embeddings)
specialized in spatial knowledge.

Intuitively, one may reasonably expect that the
more attributes two objects share (e.g., size, func-
tionality, etc.), the more likely they are to exhibit
similar spatial arrangements with respect to other
objects. Leveraging this intuition, we foresee that
visual and linguistic representations can be spatially
informative about unseen objects as they encode
features/attributes of objects (Collell and Moens,
2016). For instance, without having ever seen an
“elephant” before, but only a “horse”, one would
probably devise the “elephant” carrying the “hu-
man” than otherwise, just by considering their size
attribute. Similarly, one can infer that a “tablet” and
a “book” will show similar spatial patterns (usually
on a table, in someone’s hands, etc.) although they
barely show any visual resemblance—yet they are
similar in size and functionality. In this paper we
systematically study how informative visual and lin-
guistic features—in the form of convolutional neural
network (CNN) features and word embeddings—are
about the spatial behavior of objects.

An important goal of this work is to learn dis-
tributed representations specialized in spatial knowl-
edge. As a vehicle to learn spatial representations,
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we leverage the task of predicting the 2D spatial ar-
rangement for two objects under a relationship ex-
pressed by either a preposition (e.g., “below” or
“on”) or a verb (e.g., “riding”, “jumping”, etc.). For
that, we make use of images where both objects are
annotated with bounding boxes. For instance, in an
image depicting (horse, jumping, fence) we reason-
ably expect to find the “horse” above the “fence”. To
learn the task, we employ a feed forward network
that represents objects as continuous (spatial) fea-
tures in an embedding layer and guides the learning
with a distance-based supervision on the objects’ co-
ordinates. We show that the model fares well in this
task and that by informing it with either word em-
beddings or CNN features it is able to output accu-
rate predictions about unseen objects, e.g., predict-
ing the spatial arrangement of (man, riding, bike)
without having ever been exposed to a “bike” be-
fore. This result suggests that the semantic and vi-
sual knowledge carried by the visual and linguistic
features correlates to a certain extent with the spatial
properties of words, thus providing predictive power
for unseen objects.

To evaluate the quality of the spatial representa-
tions learned in the previous task, we introduce a
task consisting in a set of 1,016 human ratings of
spatial similarity between object pairs. It is thus de-
sirable for spatial representations that “spatially sim-
ilar” objects (i.e., objects that are arranged spatially
similar in most situations and relative to other ob-
jects) have similar embeddings. In these ratings we
show, first, that both CNN features and word em-
beddings are good predictors of human judgments,
and second, that these vectors can be further spe-
cialized in spatial knowledge if we update them by
backpropagation when learning the model in the task
of predicting spatial arrangements of objects.

The rest of the paper is organized as follows. In
Sect. 2 we review related research. In Sect. 3 we
describe two spatial tasks and a model. In Sect. 4
we describe our experimental setup. In Sect. 5 we
present and discuss our results. Finally, in Sect. 6
we summarize our contributions.

2 Related Work

Contrary to earlier rule-based approaches to spatial
understanding (Kruijff et al., 2007; Moratz and Ten-

brink, 2006), Malinowski and Fritz (2014) propose
a learning-based method that learns the parameters
of “spatial templates” (or regions of acceptability
of an object under a spatial relation) using a pool-
ing approach. They show improved performance in
image retrieval and image annotation (i.e., retriev-
ing sentences given a query image) over previous
rule-based systems and methods that rely on hand-
crafted templates. Contrary to us, they restrict to
relationships expressed by explicit spatial preposi-
tions (e.g., “on” or “below”) while we also consider
actions (e.g., “jumping”). Furthermore, they do not
build spatial representations for objects.

Other approaches have shown the value of prop-
erly integrating spatial information into a variety of
tasks. For example, Shiang et al. (2017) improve
over the state-of-the-art object recognition by lever-
aging previous knowledge of object co-occurrences
and relative positions of objects—which they mine
from text and the web—in order to rank possible
object detections. In a similar fashion, Lin and
Parikh (2015) leverage common sense visual knowl-
edge (e.g., object locations and co-occurrences) in
two tasks: fill-in-the-blank and visual paraphrasing.
They compute the likelihood of a scene to identify
the most likely answer to multiple-choice textual
scene descriptions. In contrast, we focus solely on
spatial information rather than semantic plausibility.
Moreover, our primary target is to build (spatial) rep-
resentations. Alternatively, Elliott and Keller (2013)
annotate geometric relationships between objects in
images (e.g., they add an “on” link between “man”
and “bike” in an image of a “man” “riding” a “bike”)
to better infer the action present in the image. For
instance, if the “man” is next to the bike one can
infer that the action “repairing” is more likely than
“riding” in this image. Accounting for this extra
spatial structure allows them to outperform bag-of-
features methods in an image captioning task. In
contrast with those who restrict to a small domain
of 10 actions (e.g., “taking a photo”, “riding”, etc.),
our goal is to generalize to any unseen/rare objects
and actions by learning from frequent spatial config-
urations and objects, and critically, leveraging rep-
resentations of objects. Recent work (Collell et al.,
2018) tackles the research question of whether rel-
ative spatial arrangements can be predicted equally
well from actions (e.g., “riding”) than from spatial
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prepositions (e.g., “below”), and how to interpret
the learned weights of the network. In contrast, our
research questions concern spatial representations.
Crucially, none of the studies above have consid-
ered or attempted to learn distributed spatial repre-
sentations of objects, nor studied how much spatial
knowledge is contained in visual and linguistic rep-
resentations.

The existence of quantitative, continuous spatial
representations of objects has been formerly dis-
cussed, yet to our knowledge, not systematically in-
vestigated before. For instance, Forbus et al. (1991)
conjectured that “there is no purely qualitative, gen-
eral purpose representation of spatial properties”,
further emphasizing that the quantitative component
is strictly necessary.

It is also worth commenting on early work aimed
at enhancing the understanding of natural spatial
language such as the L0 project (Feldman et al.,
1996). In the context of this project, Regier (1996)
proposed a connectionist model that learns to predict
a few spatial prepositions (“above”, “below”, “left”,
“right”, “in”, “out”, “on”, and “off”) from low reso-
lution videos containing a limited set of toy objects
(circle, square, etc.). In contrast, we consider an un-
limited vocabulary of real-world objects, and we do
not restrict to spatial prepositions but we include ac-
tions, as well. Hence, Regier’s (1996) setting does
not seem plausible to deal with actions given that,
in contrast to the spatial prepositions that they use,
which are mutually exclusive (an object cannot be
“above” and simultaneously “below” another ob-
ject), actions are not. In particular, actions exhibit
large spatial overlap and, therefore, attempt to pre-
dict thousands of different actions from the relative
locations of the objects seems infeasible. Addition-
ally, Regier’s (1996) architecture does not allow to
meaningfully extract representations of objects from
the visual input—which yields rather visual features.

Here, we propose an ad hoc setting for both,
learning and evaluating spatial representations. In
particular, instead of learning to predict spatial rela-
tions from visual input as in Regier’s (1996) work,
we learn the reverse direction, i.e., to map the rela-
tion (and two objects) to their visual spatial arrange-
ment. By backpropagating the embeddings of the
objects while learning the task, we enable learning
spatial representations. As a core finding, we show

in an ad hoc task, namely our collected human rat-
ings of spatial similarity, that the learned features
are more specialized in spatial knowledge than the
CNN features and word embeddings that were used
to initialize the parameters of the embeddings.

3 Tasks and Model

Here, we first describe the Prediction task and model
that we use to learn the spatial representations.
We subsequently present the spatial Similarity task
which is employed to evaluate the quality of the
learned representations.

3.1 Prediction Task

To evaluate the ability of a model or embeddings to
learn spatial knowledge, we employ the task of pre-
dicting the spatial location of an Object (“O”) rela-
tive to a Subject (“S”) under a Relationship (“R”).
Let Oc = (Oc

x, O
c
y) denote the coordinates of the

center (“c”) of the Object’s bounding box, where
Oc

x ∈ R and Oc
y ∈ R are its x and y compo-

nents. Let Ob = (Ob
x, O

b
y) be one half of the ver-

tical (Ob
y ∈ R) and horizontal (Ob

x ∈ R) sizes of the
Object’s bounding box (“b”). A similar notation ap-
plies to the Subject (i.e., Sc and Sb), and we denote
model predictions with a hat Ôc, Ôb. The task is
to learn a mapping from the structured textual input
(Subject, Relation, Object)—abbreviated by (S, R,
O)—to the output consisting of the Object’s center
coordinates Oc and its size Ob (see Fig. 1).

We notice that a “Subject” is not necessarily a
syntactic subject but simply a convenient notation to
accommodate the case where the Relationship (R) is
an action (e.g., “riding” or “wearing”), while when
R is a spatial preposition (e.g., “below” or “on”) the
Subject simply denotes the referent object. Simi-
larly, the Object is not necessarily a direct object.1

3.2 Regression Model

Following the task above (Sect. 3.1), we con-
sider a model (Fig. 1) that takes a triplet of
words (S, R, O) as input and maps their one-

1We prefer to adhere to the terminology used to express
entity-relationships in the Visual Genome dataset, but are aware
of annotation schemes for spatial semantics (Pustejovsky et al.,
2012). However, a one-to-one mapping of the Visual Genome
terminology to these annotation schemes is not always possible.
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Figure 1: Overview of the model (right) and the image pre-processing setting (left).

hot2 vectors wS , wR, wO to d-dimensional dense
vectors wSWS , wRWR, wOWO via dot product
with their respective embedding matrices WS ∈
Rd×|VS |,WR ∈ Rd×|VR|,WO ∈ Rd×|VO|, where
|VS |, |VR|, |VO| are the vocabulary sizes. The em-
bedding layer models our intuition that spatial prop-
erties of objects can be, to a certain extent, en-
coded with a vector of continuous features. In
this work we test two types of embeddings, visual
and linguistic. The next layer simply concatenates
the three embeddings together with the Subject’s
size Sb and Subject center Sc. The inclusion of
the Subject’s size is aimed at providing a reference
size to the model in order to predict the size of
the Object Ob.3 The resulting concatenated vector
[wSWS , wRWR, wOWO, S

c, Sb] is then fed into a
hidden layer(s) which acts as a composition function
for the triplet (S, R, O):

2One-hot vectors (a.k.a. one-of-k), are sparse vectors with 0
everywhere except for a 1 at the position of the k-th word.

3We find that without inputing Sb to the model, it still learns
to predict an “average size” for each Object due to the MSE
penalty. However, to keep the design cleaner and intuitive, here
we provide the size of the Subject to the model.

z = f(Wh[wSWS , wRWR, wOWO, S
c, Sb] + bh)

where f(·) is the non-linearity and Wh and bh the
parameters of the layer. These “composition lay-
ers” allow to distinguish between e.g., (man, walks,
horse) which is spatially distinct from (man, rides,
horse). We find that adding more layers gener-
ally improves performance, so the output z above
can simply be composed with more layers, i.e.,
f(Wh2z + bh2). Finally, a linear output layer tries
to match the ground truth targets y = (Oc, Ob) us-
ing a mean squared error (MSE) loss function:

Loss(y, ŷ) = ‖ŷ − y‖2

where ŷ = (Ôc, Ôb) is the model prediction and
‖·‖ denotes the Euclidean norm. Critically, un-
like CNNs, the model does not make use of the
pixels (which are discarded during the image pre-
processing (Fig. 1 and Sect. 3.2.1)), but learns ex-
clusively from image coordinates, yielding a simpler
model focused solely on spatial information.
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3.2.1 Image Pre-Processing
We perform the following pre-processing steps to

the images before feeding them to the model.
(i) Normalize the image coordinates by the num-
ber of pixels of each axis (vertical and horizontal).
This step guarantees that coordinates are indepen-
dent of the resolution of the image and always lie
within the [0, 1]× [0, 1] square, i.e., Sc, Oc ∈ [0, 1]2.
(ii) Mirror the image (when necessary). We no-
tice that the distinction between right and left is ar-
bitrary in images since a mirrored image completely
preserves its spatial meaning. For instance, a “man”
“feeding” an “elephant” can be arbitrarily at either
side of the “elephant”, while a “man” “riding” an
“elephant” cannot be either below or above the “ele-
phant”. This left/right arbitrariness has also been
acknowledged in prior work (Singhal et al., 2003).
Thus, to enable a more meaningful learning, we mir-
ror the image when (and only when) the Object is
at the left-hand side of the Subject.4 The choice
of leaving the Object always to the right-hand side
is arbitrary and does not entail a loss of general-
ity, i.e., we can consider left/right symmetrically re-
flected predictions as equiprobable. Mirroring pro-
vides thus a more realistic performance evaluation in
the Prediction task and enables learning representa-
tions independent of the right/left distinction which
is irrelevant for the spatial semantics.

3.3 Spatial Similarity Task
To evaluate how well our embeddings match human
mental representations of spatial knowledge about
objects, we collect ratings for 1,016 word pairs
(w1, w2) asking annotators to rate them by their spa-
tial similarity. That is, objects that exhibit similar
locations in most situations and are placed similarly
relative to other objects would receive a high score,
and lower otherwise. For example (cap, sunglasses)
would receive a high score as they are usually at
the top of the human body, while following a sim-
ilar logic, (cap, shoes) would receive a lower score.
Our collected ratings establish the spatial counter-
part to other existing similarity ratings such as se-
mantic similarity (Silberer and Lapata, 2014), vi-

4The only conflicting case for the “mirroring” transforma-
tion is when the Relationship (R) is either “left” or “right,” e.g.,
(man, left of, car), yet these only account for an insignificant
proportion of instances (< 0.1%) and thus we leave them out.

sual similarity (Silberer and Lapata, 2014) or gen-
eral relatedness (Agirre et al., 2009). A few exem-
plars of ratings are shown in Tab. 1. Following stan-
dard practices (Pennington et al., 2014), we compute
the prediction of similarity between two embeddings
sw1 and sw2 (representing words w1 and w2) with
their cosine similarity:

cos(sw1 , sw2) =
sw1sw2

‖sw1‖‖sw2‖

We notice that this spatial Similarity task does not
involve learning and its main purpose is to evalu-
ate the quality of the representations learned in the
Prediction task (Sect. 3.1) and the spatial informa-
tiveness of visual and linguistic features.

Word pair Rating Word pair Rating

(snowboard, feet) 7.2 (horns, backpack) 1.8
(ears, eye) 8.3 (baby, bag) 7
(cockpit, table) 2.4 (hair, laptop) 1.8
(cap, hair) 9 (earring, racket) 2
(frisbee, food) 2.4 (ears, hat) 5.6

Table 1: Examples of our collected similarity ratings.

4 Experimental Setup

In this section we describe the experimental settings
employed in the tasks and the model.

4.1 Visual Genome Data Set

We obtain our annotated data from Visual Genome
(Krishna et al., 2017). This dataset contains 108,077
images and over 1.5M human-annotated object-
relationship-object instances (S, R, O) with their
corresponding boxes for the Object and Subject. We
keep only those examples for which we have embed-
dings available (see Sect. 4.3). This yields ∼1.1M
instances of the form (S, R, O), 7,812 unique im-
age objects and 2,214 unique Relationships (R) for
our linguistic embeddings; and ∼920K (S, R, O)
instances, 4,496 unique image objects and 1,831
unique Relationships for our visual embeddings. We
notice that visual representations do not exist for
Relationships R (i.e., either prepositions or verbs)
and therefore we only require visual embeddings for
the pair (S, O) instead of the complete triplet (S,
R, O) required in language. Notice that since we
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do not restrict to any particular domain (e.g., furni-
ture or landscapes) the combinations (S, R, O) are
markedly sparse, which makes learning our Predic-
tion task especially challenging.

4.2 Evaluation Sets in the Prediction Task

In the Prediction task, we consider the following
subsets of Visual Genome (Sect. 4.1) for evaluation
purposes:
(i) Original set: a test split from the original data
which contains instances unseen at training time.
That is, the test combinations (S, R, O) might
have been seen at training time, yet in different in-
stances (e.g., in different images). This set contains
a large number of noisy combinations such as (peo-
ple, walk, funny) or (metal, white, chandelier).
(ii) Unseen Words set: We randomly select a list
of 25 objects (e.g., “wheel”, “camera”, “elephant”,
etc.) among the 100 most frequent objects in Vi-
sual Genome.5 We choose them among the most
frequent ones in order to avoid meaningless objects
such as “gate 2”, “number 40” or “2:10 pm” which
are not infrequent in Visual Genome. We then take
all instances of combinations that contain any of
these words, yielding ∼ 123K instances. For ex-
ample, since “cap” is in our list, (girl, wears, cap)
is included in this set. When we enforce “unseen”
conditions, we remove all these instances from the
training set, using them only for testing.

4.3 Visual and Linguistic Features

As our linguistic representations, we employ 300-
dimensional GloVe vectors (Pennington et al., 2014)
trained on the Common Crawl corpus with 840B-
tokens and a 2.2M words vocabulary.6

We use the publicly available visual representa-
tions from Collell et al. (2017).7 They extract 128-
dimensional visual features with the forward pass of
a VGG-128 (Visual Geometry Group) CNN model
(Chatfield et al., 2014) pre-trained in ImageNet
(Russakovsky et al., 2015). The representation of
a word is the averaged feature vector (centroid) of

5The complete list of objects is: [leaves, foot, wheel, t-shirt,
ball, handle, skirt, stripe, trunk, face, camera, socks, tail, pants,
elephant, ear, helmet, vest, shoe, eye, coat, skateboard, apple,
cap, motorcycle].

6http://nlp.stanford.edu/projects/glove
7http://liir.cs.kuleuven.be/software.php

all images in ImageNet for this concept. They only
keep words with at least 50 images available. We
notice that although we employ visual features from
an external source (ImageNet), these could be al-
ternatively obtained in the Visual Genome data—
although ImageNet generally provides a larger num-
ber of images per concept.

4.4 Method Comparison

We consider two types of models, those that update
the parameters of the embeddings (U ∼ “Update”)
and those that keep them fixed (NU ∼ “No Up-
date”) when learning the Prediction task. For each
type (U and NU) we consider two conditions, em-
beddings initialized with pre-trained vectors (INI)
and random embeddings (RND) randomly drawn
from a component-wise normal distribution of mean
and standard deviation equal to those of the origi-
nal embeddings. For example, U-RND corresponds
to a model with updated, random embeddings. For
the INI methods we also add a subindex indicating
whether the embeddings are visual (vis) or linguistic
(lang), as described in Sect. 4.3.8 For the NU type
we additionally consider one-hot embeddings (1H).
We also include a control method (rand-pred) that
outputs random uniform predictions.

4.5 Implementation Details and Validation

To validate results in our Prediction task we employ
a 10-fold cross-validation (CV) scheme. That is, we
split the data into 10 parts and employ 90% of the
data for training and 10% for testing. This yields 10
embeddings (for each “U” method), which are then
evaluated in our Similarity task. In both tasks, we
report results averaged across the 10 folds.

Model hyperparameters are first selected by
cross-validation in 10 initial splits and results are re-
ported in 10 new splits. All models employ a learn-
ing rate of 0.0001 and are trained for 10 epochs
by backpropagation with the RMSprop optimizer.
The dimensionality of the embeddings is the origi-
nal one, i.e., d=300 for GloVe and d=128 for VGG-
128 (Sect. 4.3), which is preserved for the random-

8Given that visual representations are not available for the
Relationships (i.e., verbs and prepositions), the models with vis
embeddings employ one-hot embeddings for the Relationships
and visual embeddings for Object and Subject. This is a rather
neutral choice that enables the vis models to use Relationships.
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embedding methods RND (Sect. 4.4). Models em-
ploy 2 hidden layers with 100 Rectified Linear Units
(ReLu), followed by an output layer with a linear ac-
tivation. Early stopping is employed as a regularizer.
We implement our models with Keras deep learning
framework in Python 2.7 (Chollet and others, 2015).

4.6 Spatial Similarity Task

To build the word pairs, we randomly select a list
of objects from Visual Genome and from these
we randomly chose 1,016 non-repeated word pairs
(w1, w2). Ratings are collected with the Crowd-
flower9 platform and correspond to averages of at
least 5 reliable annotators10 that provided ratings in
a discrete scale from 1 to 10. The median similarity
rating is 3.3 and the mean variance between annota-
tors per word pair is ∼1.2.

4.7 Evaluation Metrics

4.7.1 Prediction Task

We evaluate model predictions with the following
metrics.

(I) Regression metrics. .
(i) Mean Squared Error (MSE) between the pre-
dicted ŷ = (Ôc, Ôb) and the true y = (Oc, Ob) Ob-
ject center coordinates and Object size. Notice that
since Oc, Ob are within [0, 1]2, the MSE is easily in-
terpretable, ranging between 0 and 1.
(ii) Pearson Correlation (r) between the predicted
Ôc and the true Oc Object center coordinates. We
consider the vertical (ry) and horizontal (rx) com-
ponents separately (i.e., Oc

x and Oc
y).

(iii) Coefficient of Determination (R2) of the pre-
dictions ŷ = (Ôc, Ôb) and the target y = (Oc, Ob).
R2 is employed to evaluate goodness of fit of a re-
gression model and is related to the percentage of
variance of the target explained by the predictions.
The best possible score is 1 and it can be arbitrarily
negative for bad predictions. A model that outputs
either random or constant predictions would obtain
scores close to 0 and exactly 0 respectively.

9https://www.crowdflower.com/
10Reliable annotators are those with performance over 70%

in the test questions (16 in our case) that the crowdsourcing plat-
form allows us to introduce in order to test annotators’ accuracy.

(II) Classification. Additionally, given the seman-
tic distinction between the vertical and horizontal
axis noted above (Sect. 3.2.1), we consider the clas-
sification problem of predicting above/below rela-
tive locations. That is, if the predicted y-coordinate
for the Object center Ôc

y falls below the y-coordinate
of the Subject center Sc

y and the actual Object cen-
ter Oc

y is below the Subject center Sc
y, we count

it as a correct prediction, and as incorrect other-
wise. Likewise for above predictions. We compute
both macro-averaged11 accuracy (accy) and macro-
averaged F1 (F1y) metrics.

(III) Intersection over Union (IoU). We consider
the bounding box overlap (IoU) from the VOC de-
tection task (Everingham et al., 2015): IoU =
area(B̂O ∩ BO)/area(B̂O ∪ BO) where B̂O and
BO are predicted and ground truth Object boxes re-
spectively. A prediction is counted as correct if the
IoU is larger than 50%. Crucially, we notice that our
setting and results are not comparable to object de-
tection as we employ text instead of images as input
and thus we cannot leverage the pixels to locate the
Object, unlike in detection.

4.7.2 Similarity Task
Following standard practices (Pennington et al.,

2014), the performance of the predictions of (co-
sine) similarity from the embeddings (described in
Sect. 3.3) is evaluated with the Spearman correlation
ρ against the crowdsourced human ratings.

5 Results and Discussion

We consider the notation of the methods from
Sect. 4.4 and the evaluation subsets described in
Sect. 4.2 for the Prediction task. To test statistical
significance we employ a Friedman rank test and
post hoc Nemeny tests on the results of the 10 folds.

5.1 Prediction Task
Table 2 shows that the INI and RND12 methods per-
form similarly in the Original test set, arguably be-

11Macro-averaged accuracy equals to the average of per-class
accuracies, with classes {above, below}. Similarly for F1.

12For simplicity, we do not add any subindex (vis or lang)
to RND, yet these vectors are drawn from two different distri-
butions, i.e., from either vis or lang embeddings (Sect. 4.4).
Additionally, results tables show two blocks of methods since
vis and lang do not share all the instances (see Sect. 4.1).
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cause a large part of the learning takes place in the
parameters of the layers subsequent to the embed-
ding layer. However, in the next section we show
that this is no longer the case when unseen words
are present. We also observe that the one-hot embed-
dings NU-1H perform slightly better than the rest of
methods when no unseen words are present (Tab. 2
and Tab. 3 right).

MSE R2 accy F1y rx ry IoU

U-INIlang 0.011 0.654 0.773 0.773 0.849 0.832 0.283
U-RNDlang 0.011 0.646 0.770 0.770 0.847 0.827 0.279
NU-INIlang 0.011 0.651 0.770 0.770 0.848 0.829 0.275
NU-RNDlang 0.011 0.636 0.766 0.766 0.845 0.822 0.268
NU-1H 0.010 0.659 0.777 0.778 0.850 0.833 0.297
rand-pred 0.794 -27.61 0.533 0.516 0.000 0.001 0.010

U-INIvis 0.011 0.627 0.766 0.766 0.841 0.820 0.266
U-RNDvis 0.012 0.612 0.762 0.762 0.836 0.810 0.244
NU-INIvis 0.012 0.611 0.765 0.763 0.837 0.813 0.246
NU-RNDvis 0.012 0.607 0.767 0.766 0.835 0.808 0.237
NU-1H 0.011 0.657 0.788 0.788 0.848 0.833 0.308
rand-pred 0.789 -27.51 0.534 0.519 0.000 0.000 0.010

Table 2: Results in the Original test set (Sect. 4.2). Bold-
face indicates best performance within the corresponding
block of methods (lang above, and vis below).

It is also worth noting that the results of the Pre-
diction task are, in fact, conservative. First, the
Original test data contains a considerable number
of meaningless (e.g., (giraffe, a, animal)), and ir-
relevant combinations (e.g., (clock, has, numbers)
or (sticker, identifies, apple)). Second, even when
only meaningful examples are considered, we are in-
evitably penalizing for plausible predictions. For in-
stance, in (man, watching, man) we expect both men
to be reasonably separated on the x-axis yet the one
with the highest y coordinate is generally not pre-
dictable as it depends on their height and their dis-
tance to the camera. This yields above/below classi-
fication performance and correlations. Regardless,
all methods (except rand-pred) exhibit reasonably
high performance in all measures.

5.1.1 Evaluation on Unseen Words
Table 3 evidences that both visual and linguistic

embeddings (INIvis and INIlang) significantly out-
perform their random-embedding counterparts RND
by a large margin when unseen words are present.
The improvement occurs for both, updated (U) and
non-updated (NU) embeddings—although it is ex-
pected that the updated methods perform slightly

worse than the non-updated ones since the original
embeddings will have “moved” during training and
therefore an unseen embedding (which has not been
updated) might no longer be close to other semanti-
cally similar vectors in the updated space.

Besides statistical significance, it is worth men-
tioning that the INI methods consistently outper-
formed both their RND counterparts and NU-1H in
each of the 10 folds (not shown here) by a steadily
large margin. In fact, results are markedly stable
across folds, in part due to the large size of the train-
ing and test sets (> 0.9M and > 120K examples re-
spectively). Additionally, to ensure that “unseen”
results are not dependent on our particular list of
objects, we repeated the experiment with two addi-
tional lists of randomly selected objects, obtaining
very similar results.

Remarkably, the INI methods experience only a
small performance drop under unseen conditions
(Tab. 3, left) compared to when we allow them to
train with these words (Tab. 3, right), and this differ-
ence might be partially attributed to the reduction of
the training data under “unseen” conditions, where
at least 10% of the training data are left out.

Altogether, these results on unseen words show
that semantic and visual similarities between con-
cepts, as encoded by word and visual embeddings,
can be leveraged by the model in order to predict
spatial knowledge about unseen words.13

5.1.2 Qualitative Insight
Visual inspection of model predictions is instruc-

tive in order to gain insight on the spatial informa-
tiveness of visual and linguistic representations on
unseen words. Figure 2 shows heat maps of low
(black) and high (white) probability regions for the
objects. The “heat” for the Object is assumed to be
normally distributed with mean (µ) equal to the pre-
dicted Object center Ôc and standard deviation (σ)
equal to the predicted Object size Ôb (assuming in-
dependence of the x and y components, which yields
the product of two Gaussians, one for each compo-
nent x and y). The “heat” for the Subject is com-
puted similarly, although with µ and σ equal to the

13In this Prediction task we have additionally considered
the concatenation of visual and linguistic representations (not
shown), which did not show any relevant improvement over the
unimodal representations.
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Unseen words condition Seen words condition

MSE R2 accy F1y rx ry IoU MSE R2 accy F1y rx ry IoU

U-INIlang 0.011∗� 0.584∗� 0.712∗� 0.710∗� 0.877∗� 0.770∗ 0.131∗� 0.007 0.736∗ 0.810 0.810 0.901 0.876 0.223
U-RNDlang 0.015 0.422 0.603 0.601 0.863 0.624 0.090 0.007 0.730 0.806 0.806 0.899 0.874 0.223
NU-INIlang 0.009∗� 0.663∗� 0.770∗� 0.770∗� 0.888∗� 0.835∗� 0.164∗� 0.007 0.734∗ 0.805 0.805 0.900 0.875 0.221
NU-RNDlang 0.016 0.405 0.600 0.598 0.864 0.617 0.101 0.007 0.721 0.803 0.803 0.898 0.871 0.212
NU-1H 0.015 0.465 0.608 0.607 0.867 0.642 0.098 0.007 0.740 0.814 0.813 0.901 0.877 0.243
rand-pred 0.843 -38.32 0.524 0.501 0.000 0.000 0.012 0.845 -38.42 0.524 0.500 -0.002 -0.001 0.012

U-INIvis 0.010∗� 0.599∗� 0.775∗� 0.774∗� 0.887∗� 0.801∗� 0.123∗� 0.007 0.726 0.816 0.816 0.904 0.874 0.200
U-RNDvis 0.017 0.360 0.581 0.578 0.867 0.513 0.082 0.008 0.711 0.812 0.811 0.901 0.864 0.174
NU-INIvis 0.010∗� 0.602∗� 0.777∗� 0.775∗� 0.887∗� 0.803∗� 0.123∗� 0.007 0.711 0.817 0.815 0.902 0.868 0.186
NU-RNDvis 0.017 0.366 0.574 0.572 0.867 0.536 0.085 0.008 0.706 0.820 0.819 0.901 0.862 0.171
NU-1H 0.015 0.437 0.618 0.617 0.867 0.601 0.078 0.006 0.760 0.841 0.841 0.910 0.885 0.256
rand-pred 0.840 -40.34 0.524 0.507 -0.001 0.000 0.012 0.840 -40.37 0.524 0.507 -0.002 -0.001 0.012

Table 3: Results in the Unseen Words set (Sect. 4.2). Left table: results of enforcing “unseen” conditions, i.e., leaving
out all words of the Unseen Words set from our training data. Right table: the models are evaluated in the same
set but we allow them to train with the words from this set. Asterisks (∗) in an INI method indicate significantly
better performance (p < 0.05) than its RND counterpart (i.e., U-INIemb type is compared against U-RND, and NU-
INIemb type against NU-RND). Diamonds (�) indicate significantly better performance than NU-1H.

actual Subject center Sc and size Sb, respectively.
The INI methods in Figure 2 illustrate the contri-

bution of the embeddings to the spatial understand-
ing of unseen objects. In general, both visual and
linguistic embeddings enabled predicting meaning-
ful spatial arrangements, yet for the sake of space
we have only included three examples where: vis
performs better than lang (third column), where
lang performs better than vis (second column), and
where both perform well (first column). We notice
that the embeddings enable the model to infer that
e.g., since “camera” (unseen) is similar to “cam-
corder” (seen at training time), both must behave
spatially similarly. Likewise, the embeddings enable
predicting correctly the relative sizes of unseen ob-
jects. We also observe that when the embeddings
are not informative enough, model predictions be-
come less accurate. For instance, in NU-INIlang,
some unrelated objects (e.g., “ipod”) have embed-
dings similar to “apple”, and analogously for NU-
INIvis and “tail”. We finally notice that predictions
on unseen objects using random embeddings (RND)
are markedly bad.

5.2 Spatial Similarity Task

Table 4 shows the results of evaluating the em-
beddings, including those learned in the Predic-
tion task, against the human ratings of spatial sim-
ilarity (Sect. 3.3). Hence, only the “updated”
methods (U) are shown and we additionally in-

clude the concatenation of visual and linguistic
embeddings CONCGloVe+VGG-128 and the concate-
nation of the corresponding updated embeddings
CONCU-INIlang+U-INIvis .

LANG V&L

GloVe 0.543 0.535
VGG-128 - 0.459
CONCGloVe+VGG-128 - 0.582

U-INIlang 0.557 ± 0.0015∗ 0.558 ± 0.002∗

U-INIvis - 0.48 ± 0.0012∗

CONCU-INIlang+U-INIvis - 0.6 ± 0.0015∗

U-RND 0.15 ± 0.0075 0.174 ± 0.0078

# word pairs 1016 839

Table 4: Spearman correlations between model predic-
tions and human ratings. Standard errors across folds
are shown for the methods that involve learning (second
block). Columns correspond to the word pairs for which
both embeddings (vis and lang) are available (V&L)
and those for which only the linguistic embeddings are
available (LANG). Asterisk (∗) indicates significant im-
provement (p < 0.05) of a U-INI method of the second
block (U-INIvis and U-INIlang) over its corresponding
untrained embedding (i.e., VGG-128 or GloVe respec-
tively) from the first block.

The first thing to notice in Tab. 4 is that both
visual and linguistic embeddings show good corre-
lations with human spatial ratings (ρ > 0.45 and
ρ > 0.53 respectively), suggesting that visual and
linguistic features carry significant knowledge about
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Figure 2: Heat maps of predictions of the NU-INIlang,
U-INIvis and NU-RND methods. The unseen Objects
are underlined (top of the image) and their corresponding
four (cosine-based) nearest neighbors are shown below
with their respective cosine similarities.

spatial properties of objects. In particular, linguistic
features seem to be more spatially informative than
visual features.

Crucially, we observe a significant improvement
of the U-INIvis over the original visual vectors
(VGG-128) (p < 0.05) and of the U-INIlang over the
original linguistic embeddings (GloVe) (p < 0.05),
which evidence the effectiveness of training in the
Prediction task as a method to further specialize em-
beddings in spatial knowledge. It is worth mention-
ing that these improvements are consistent in each
of the 10 folds (not shown here) and markedly sta-
ble (see standard errors in Tab. 4).

We additionally observe that the concate-
nation of visual and linguistic embeddings
CONCGloVe+VGG-128 outperforms all unimodal
embeddings by a margin, suggesting that the fusion
of visual and linguistic features provides a more
complete description of spatial properties of objects.
Remarkably, the improvement is even larger for the
concatenation of the embeddings updated during
training CONCU-INIlang+U-INIvis , which obtains the
highest performance overall.

Figure 3 illustrates the progressive specialization
of our embeddings in spatial knowledge as we train
them in our Prediction task. We notice that all em-
beddings improve, yet U-INIlang seem to worsen
their quality when we over-train them—likely due to
overfitting, as we do not use any regularizer besides
early stopping. We also observe that although the
random embeddings (RND) are the ones that benefit
the most from the training, their performance is still
far from that of U-INIvis and U-INIlang, suggesting
the importance of visual and linguistic features to
represent spatial properties of objects.
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Figure 3: Correlation between human ratings and embed-
ding cosine similarities at each number of epochs.

It is relevant to mention that in a pilot study we
crowdsourced a different list of 1,016 object pairs
where we employed 3 instead of 5 annotators per
row. Results stayed remarkably consistent with
those presented here—the improvement for the up-
dated embeddings was in fact even larger.
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Limitations of the current approach and future
work In order to keep the design clean in this first
paper on distributed spatial representations we em-
ploy a fully supervised setup. However, we notice
that methods to automatically parse images (e.g., ob-
ject detectors) and sentences are available.

A second limitation is the 2D simplification of the
actual 3D world that our approach and the current
spatial literature generally employs. Even though
methods that infer 3D structure from 2D images ex-
ist, this is beyond the scope of this paper which
shows that a 2D treatment already enhances the
learned spatial representations. It is also worth not-
ing that the proposed regression setting trivially gen-
eralizes to 3D if suitable data are available, and
in fact, we believe that the learned representations
could further benefit from such extension.

6 Conclusions

Altogether, this paper sheds light on the problem
of learning distributed spatial representations of ob-
jects. To learn spatial representations we have lever-
aged the task of predicting the continuous 2D rel-
ative spatial arrangement of two objects under a
relationship, and a simple embedding-based neural
model that learns this task from annotated images.
In the same Prediction task we have shown that
both word embeddings and CNN features endow the
model with great predictive power when is presented
with unseen objects. Next, in order to assess the spa-
tial content of distributed representations, we have
collected a set of 1,016 object pairs rated by spatial
similarity. We have shown that both word embed-
dings and CNN features are good predictors of hu-
man spatial judgments. More specifically, we find
that word embeddings (ρ = 0.535) tend to perform
better than visual features (ρ ∼ 0.46), and that their
combination (ρ ∼ 0.6) outperforms both modalities
separately. Crucially, in the same ratings we have
shown that by training the embeddings in the Pre-
diction task we can further specialize them in spatial
knowledge, making them more akin to human spa-
tial judgments. To benchmark the task, we make the
Similarity dataset and our trained spatial representa-
tions publicly available.14

Lastly, this paper contributes to the automatic un-

14https://github.com/gcollell/spatial-representations

derstanding of spatial expressions in language. The
lack of common sense knowledge has been recur-
rently argued as one of the main reasons why ma-
chines fail at exhibiting more “human-like” behav-
ior in tasks (Lin and Parikh, 2015). Here, we
have provided a means of compressing and encod-
ing such common sense spatial knowledge about ob-
jects into distributed representations, further show-
ing that these specialized representations correlate
well with human judgments. In future work, we will
also explore the application of our trained spatial
embeddings in extrinsic tasks in which representing
spatial knowledge is essential such as robot naviga-
tion or robot understanding of natural language com-
mands (Guadarrama et al., 2013; Moratz and Ten-
brink, 2006). Robot navigation tasks such as assist-
ing people with special needs (blind, elderly, etc.)
are in fact becoming increasingly necessary (Ye et
al., 2015) and require great understanding of spatial
language and spatial connotations of objects.
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