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Abstract—We study the adoption of energy-efficient LED lighting in gar-
ment factories around Bangalore, India. Combining daily production line–
level data with weather data, we estimate a negative, nonlinear productivity-
temperature gradient. We find that LED lighting raises productivity on hot
days. Using the firm’s costs data, we estimate that the payback period for
LED adoption is less than one-third the length after accounting for produc-
tivity co-benefits. The average factory in our data gains about $2,880 in
power consumption savings and about $7,500 in productivity gains.

I. Introduction

INNOVATIONS in energy efficiency and regulation-driven
adoption of energy-efficient technologies have been cited

as a primary means of curbing the acceleration of climate
change (Granade et al., 2009). Despite this promise, energy-
efficient technologies are usually adopted at low rates (Allcott
& Taubinsky, 2015). Recent studies point to several expla-
nations for this “energy-efficiency gap.” The first is market
failures such as information frictions or credit constraints that
drive a wedge between socially and privately optimal adop-
tion (Allcott & Greenstone, 2012). The second is behavioral
factors such as consumer inattention to energy costs (All-
cott, Mullainathan, & Taubinsky, 2014). The third possible
explanation is that returns are smaller, or costs higher, in prac-
tice than engineering projections predict (Burlig et al., 2017;
Fowlie, Greenstone, & Wolfram, 2013; Ryan, 2017). Further-
more, behavioral responses to energy-efficiency (such as in-
creased consumption) may offset returns to energy efficiency
investments. Thus, estimating the true returns to energy ef-
ficiency requires testing for mechanisms that may drive a
wedge between engineering and economic returns, includ-
ing imperfect maintenance of the investments and rebound
effects.

In this study, we estimate the productivity consequences
of the adoption of energy-saving technology, using daily pro-
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duction line data from a large garment firm operating fac-
tories in and around Bangalore, India. First, we show that
days with higher outside temperatures have lower produc-
tivity, measured as production line efficiency (realized out-
put over target output). We then show that the replacement
of compact fluorescent lamps (CFLs) with light-emitting-
diode (LED) lighting on factory floors attenuates the negative
relationship between mean daily outdoor temperature and
efficiency. Driven by buyers’ environmental standards, fac-
tories replaced a substantial fraction of CFL bulbs with LED
bulbs. LED lighting reduces ambient temperature on the fac-
tory floor because less electricity is converted to waste heat,
relative to CFL lighting. This lower ambient temperature re-
duces the effect of higher outside temperature on efficiency.
We study the impacts of the staggered rollout of LEDs over
more than three years on the sewing floors of 26 garment fac-
tories.1 We use rich administrative data on worker attendance,
working hours, and productivity to test for mechanisms that
would mitigate or offset the returns to energy-efficient light-
ing. We also demonstrate in a variety of checks that the timing
of the rollout across factories was not systematically related
to business processes or working conditions, such as time of
the start or end of the workday, total working hours, wages,
or the composition of hiring patterns by worker skill levels.

Our measure of mean daily temperature exposure, wet bulb
globe temperature (WBGT), takes into account both temper-
ature and humidity, since the impact of temperature on ther-
mal regulation varies by humidity levels. Impacts of outdoor
temperature on productive efficiency, estimated using a spline
regression (controlling for factory by year, factory by month,
production line, and day of the week fixed effects), are quite
nonlinear: for mean daily WBGT of below 19◦C (the tem-
perature equivalent at average humidity levels in our sample
is 27◦ to 28◦C), temperature has a very small impact on ef-
ficiency. But for mean daily temperatures above this cutoff
(about one-quarter of production days), there is a large, nega-
tive impact on efficiency of approximately 2 efficiency points
per degree Celsius increase in temperature.2 We then estimate
the extent to which the introduction of LED lighting, likely
through the reduced dissipation of heat on factory floors, flat-
tens the temperature-productivity gradient. LED installation
has no impact on the gradient below the 19◦C WBGT cutoff
but attenuates the negative slope of the gradient by more than
80% for temperatures above this threshold. Our results are ro-
bust to the inclusion of a variety of fixed effects and controls,

1Our data examine thirty factories (all owned by the same garment firm),
four of which did not receive LED lighting.

2This nonlinear gradient is remarkably consistent with the physiology
of temperature effects: at high ambient temperatures, the body loses the
ability to dissipate heat, which negatively affects performance (Hancock
et al., 2007).
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780 THE REVIEW OF ECONOMICS AND STATISTICS

including factory by year by quarter fixed effects, as well as
alternative specifications such as semiparametric estimation.
The reason that LED installation flattens only the top of the
temperature-productivity gradient has to do with the nonlin-
ear nature of the gradient itself and is likely due to a leftward
movement along the gradient. This movement would gener-
ate large increases in efficiency in high temperature ranges
and small efficiency increases elsewhere.3

While engineering estimates of the heat dissipation of LED
(versus those of CFL) bulbs exist, those estimates are not al-
ways reflective of economic returns, as Fowlie et al. (2013)
and Burlig et al. (2017) showed recently. In our setting too,
a field study has several advantages in estimating the true
productivity returns to energy efficiency. First, if factories
respond to energy savings by increasing working hours, then
the cobenefits to these investments may change: they may
be higher if workers respond to the more comfortable envi-
ronment on hotter days by continuing to be more productive
for extra hours, and they may be lower or 0 if workers re-
spond to longer hours by slowing their productivity per hour.
Using data on working hours, we can directly test for this re-
sponse by the factory managers. Second, if the temperature-
productivity relationship is driven by lower attendance on
hotter days, and not by workers responding to a less comfort-
able work environment, then LED lighting may not mitigate
this relationship (e.g., temperatures outside of working hours
may affect workers’ health, and therefore their propensity to
attend work). Using data on worker attendance, we can rule
out that this is the case. Third, if workers respond to the light-
ing by changing their attendance (either because they are now
more comfortable or because they are uncomfortable with the
new lighting), the productivity cobenefits may be higher or
lower. Finally, our results indicate that energy-efficient light-
ing can generate these co-benefits in settings where workers
are exposed to heat generated by conventional bulbs, and air-
conditioning is not cost-effective (which is typical of manu-
facturing workplaces in low-income countries).

Finally, we perform cost-benefit calculations for LED
adoption, combining the above estimates with the firm’s ac-
tual cost data for LED replacement and projected energy
savings. The results of this analysis show that the produc-
tivity co-benefits of LED adoption are substantially larger
than the energy savings. Indeed, accounting for productivity
increases significantly shifts the break-even point for the firm,
from over three and half years to less than eight months. With
some assumptions on how worker productivity translates into
profits (detailed in section VII), we estimated that the average
factory gained about $2,880 in power consumption savings
and about $7,500 in productivity gains.

3One major drawback of our study is that we do not have indoor tem-
perature data in the factories before and after LED installation. Thus, other
aspects of LED lighting that affect the productivity-temperature gradient
such as unmeasured light quality changes may contribute to the aggregate
effect of LED lighting mitigating the productivity-temperature relationship,
as long as these unmeasured changes affect productivity only on hotter days.

Our study contributes to the literature on the returns to
climate change mitigation and energy efficiency. Recent
studies have indicated that energy-efficient lighting can both
reduce electricity consumption (Burlig et al., 2017) and gen-
erate positive externality co-benefits such as greater electric-
ity grid reliability (Carranza & Meeks, 2020). Other stud-
ies that examine co-benefits, or additional gains, of climate
change mitigation broadly speaking, such as carbon taxes,
also focus largely on the indirect public returns (Knittel &
Sandler, 2011; see IPCC, 2013, for a review). We study a
novel, private co-benefit of climate change mitigation. This
distinction is important because the success of most mitiga-
tion strategies rests on individuals’ and firms’ willingness
to adopt them, and this willingness is largely driven by pri-
vate returns. If energy-saving technologies like LEDs do have
substantial private co-benefits, this should meaningfully alter
firms’ benefit-cost calculations. By our estimation, ignoring
the productivity benefits of LEDs would significantly under-
estimate the private returns to adoption.

We also contribute to the understanding of the effects of
environmental and infrastructural factors (which are often re-
lated to the environment) on productivity in developing coun-
tries (Adhvaryu, Kala, & Nyshadham, 2016; Allcott, Collard-
Wexler, & O’Connell, 2014; Hsiang, 2010; Sudarshan et al.,
2015) and adaptation to higher temperatures.4 The impacts
of temperature on productivity appear to hold quite consis-
tently across countries and time (Burke, Hsiang, & Miguel,
2015; Dell, Jones, & Olken, 2012). A related literature has
established patterns of adaptation to climate change and the
returns to this adaptation (Barreca et al., 2016). Our results
indicate that energy-efficient lighting can be a form of adap-
tation to higher temperatures in settings characterized by low
air-conditioning adoption and significant indoor heat expo-
sure from conventional lighting. Our results thus highlight an
interaction between high temperatures and the co-benefits of
energy-efficient technologies.

The remainder of the paper is organized as follows. Section
II describes contextual details regarding garment production
in India and the LED installation. Section III provides details
on the temperature and production data. Section IV describes
our empirical strategy. Section V describes the results, sec-
tion VI offers additional robustness checks, and section VII
reviews the cost-benefit analysis and concludes.

II. Context

A. Physiology of the Temperature-Productivity Gradient

The physical impact of temperature on human beings is
well studied (Enander, 1989; Parsons, 2010; Seppanen, Fisk,
& Lei, 2006) and has been important for establishing occu-
pational safety standards for workers exposed to very high or

4Several recent studies document this relationship in more developed set-
tings (Chang et al., 2014; Costinot, Donaldson, & Smith, 2016; Graff Zivin
& Neidell, 2012; Hanna & Oliva, 2015).
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low temperatures for extended periods of time (Vanhoorne,
Vanachter, & De Ridder, 2006). Thermal stress can affect
human beings physically and through lower psychomotor
ability and degraded perceptual task performance (Hancock,
Ross, & Szalma, 2007). The impact on individual subjects
varies based on factors such as the type of task and its com-
plexity, duration of exposure, and the worker-level skill and
acclimatization level (Pilcher, Nadler, & Busch, 2002). This
contributes to the difficulty of setting a specific limit in work-
ing environments (Hancock et al., 2007).

One key finding from this literature is that there is a non-
monotonic relationship between ambient temperature and hu-
man performance. The overall shape of the relationship is an
U: performance suffers at excessively cold and excessively
warm temperatures (Parsons, 2010). Moreover, one meta-
analysis highlights the dry-bulb threshold of 29.4◦C (85◦F)
as particularly important (Hancock et al., 2007). This thresh-
old value represents the temperature above which the body
starts to store heat. As Hancock et al. (2007) put it, “[In] this
circumstance, although the individual is dissipating heat at
the maximal rate, he or she experiences a dynamic increase in
core body temperature” (p. 860). In line with this physiology,
measured effects on performance are larger for temperatures
above the 29.4◦C threshold.

B. Measuring Garment Productivity and Overview
of the LED Installation

India is the world’s second largest producer of textile and
garments, with the export value totaling $10.7 billion in
2009–2010. Women comprise the majority of the workforce
(Staritz, 2010). Garments are usually sewn in production lines
in manufacturing plants. Each line produces a single style of
garment at a time (possibly with varying colors or sizes) until
the order for that garment is met. Lines consist of sixty to sev-
enty sewing machine operators (depending on the complexity
of the style) arranged in sequence and grouped in terms of
parts of the garment (e.g., sleeve, collar).5 Completed sec-
tions of garments pass between these groups, are attached to
each other in additional operations along the way, and emerge
at the end of the line as a completed garment.

The factories began installing LED lighting in October
2009 and completed the installations by February 2013. Ac-
cording to senior management at the firm, over the past
decade, buyers have become more stringent in their regulation
of their suppliers’ production and environmental standards.
This prompted a staggered rollout of LEDs across factories
within the firm because some factories were more heavily in-
volved in the production of orders from particular buyers than
others. So, for example, if buyer A’s environmental regula-
tions become more stringent, then the supplier might choose

5In general, we describe here the process for woven garments; however,
the steps are quite similar for knits and even pants, with a varying number
and complexity of operations. Even within wovens, the production process
varies slightly by style or factory.

to upgrade to LED lighting in factories processing many or-
ders from buyer A. When buyer B’s regulations change, the
firm will prioritize factories servicing buyer B, and so on.6

One thing to note is that there are still CFL bulbs in all facto-
ries after the change. That is, only about half the bulbs were
replaced, with each fixture now containing one CFL bulb in-
stead of two.

The replacement took the form of substituting a portion
of CFLs targeted at individual operations with an equivalent
number of small LED lights mounted on individual work-
ers’ machines. The replacements were designed to maintain
the original level of illumination. On average, each factory
replaced about 1,200 CFLs consuming 7 W each with LED
lights of 1 W each.7 The LED light bulbs that replaced the
CFLs in the factories in our data require about 3 as opposed
to 21 kWh/year in electricity in our setting, and thus oper-
ate at about one-seventh the cost of CFL lighting.8 Based
on the factories’ operating time cost calculation, this meant
an energy saving of 18 kWh per bulb per year. Heat emis-
sions for a single LED bulb are 3.4 Btus, compared to 23.8
Btus for a single CFL lighting bulb.9 In section VII, we dis-
cuss the magnitude of the environmental benefits from the
installation.

Each factory received the installation within a single
month. Eight percent of the LED rollout (2 factories) was
completed in 2009, 48% (12 factories) in 2010, 16% (4 fac-
tories) in 2011, about 24% (6 factories) in 2012, and the rest
(1 factory in 2013. Of the 30 factories from which we have
productivity data, LED replacements occurred in 26 factories
during the observation period. Since our productivity data
range from April 2010 to June 2013, some factories already
had LEDs at the beginning of our productivity data, and all

6We check for the endogeneity of LED adoption in tables 5 and 6 and
conduct other robustness checks. We find little evidence that LED adoption
at the factory level was correlated with a variety of business operations and
outcomes.

7The number of lights installed is a function of the number of machines
in the factory and varies from about 100 to 2,550, with a mean of about
1,200.

8It should be noted that there are many varieties of LED and CFL bulbs.
The energy and lighting specifications and calculations presented and dis-
cussed in this paper are specific to the bulbs used in the factory replacements
in our data and do not represent universal comparisons. Accordingly, gen-
eralizing our findings would require an understanding of how bulb specifics
might differ from those used in this empirical context.

9Changing factory lighting may have consequences for productivity
through mechanisms other than temperature changes, as highlighted by the
results of the original Hawthorne lighting experiment (Snow, 1927; Mayo
et al., 1939), as well as new analysis by Levitt & List (2011). Our analysis
allows for this possibility by including the main effect of LED installation,
but we find limited evidence for productivity changes through mechanisms
other than temperature changes. This is not altogether surprising given the
degree of care and attention placed on lighting conditions in the garment
production setting. Senior management emphasized that the lighting re-
placement was designed such that light quantity and quality at the point
of production operation would remain within the strict industry and buyer
guidelines before and after the replacement. However, any unmeasured light
quality changes that affect the temperature gradient in addition to indoor
temperature would form part of our estimates of LED lighting to mitigate
the efficiency-temperature gradient. We cannot distinguish the two, since
we do not have measurements of indoor temperature before and after the
study.
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but four factories had LEDs by the end of our sample period.
Figure A1 in the appendix presents the cumulative proportion
of factories adopting LED against mean temperature.10

III. Data

A. Weather Data

We use mean daily temperature, precipitation, and relative
humidity data from the National Centers for Environmen-
tal Prediction Climate Forecast System Reanalysis (CFSR;
Saha et al., 2010). The CFSR data is a reanalysis data set
that uses historical station-level and satellite data combined
with climate models to produce a consistent record of gridded
weather variables from 1979 to 2014. It has a spatial resolu-
tion of about 38 km; each factory in our sample is matched
to the nearest data grid point.11

We use a temperature index that incorporates tempera-
ture and humidity. We incorporate relative humidity into the
temperature measure because the effect of relative humidity
on thermal comfort may vary with temperature by affecting
evaporative heat loss from the human body (Jing et al., 2013),
but we also show that our results hold with dry bulb temper-
ature. With mean daily temperature and relative humidity
data, we construct the wet bulb globe temperature (WBGT)
measure that is suitable for indoor exposure (that does not
take into account wind or sunlight exposure, since that is not
applicable in this context). The formula is from Lemke and
Kjellstrom (2012) and is given by

WBGT = 0.567Td + 0.216

(
rh

100
∗ 6.105 exp

(
17.27Td

237.7 + Td

))

+ 3.38, (1)

where Td = dry bulb temperature in Fahrenheit and rh =
relative humidity (%). Both measures of temperature—dry
bulb temperature and WBGT—are converted into Celsius to
ensure interpretative ease across regression specifications.

Note that the weather data we use are mean daily out-
door temperature measures. While indoor temperature in the
factory is what would affect worker productivity, we do not
have data on indoor temperature from the period of the LED
rollout. Accordingly, we use outdoor ambient temperature as

10Regression results that omit factories that had LED lighting at the start
of the sample period or did not receive LED lighting by the end of the
sample period yield very similar estimates.

11There are eight temperature grid points in our sample. The factories are
located in and around Bangalore city, so while they are not clustered in a
particular part of the city, the identification is largely coming from the time
series variation in temperature. The reanalysis data allow us to exploit this
cross-sectional relationship slightly better. There are eight reanalysis data
points and only one station in Bangalore that regularly report weather data
across our sample period that we found in the Global Historical Climate
Network (GHCN) data. If we compare the time series of the mean daily
temperatures from our eight reanalysis points (averaged over each day)
with the mean daily temperature from the Bangalore weather station, the
correlation in daily temperatures is about 0.8, which seems to suggest that
the reanalysis data correlate reasonably well with the station-level data.

discussed above as a proxy for indoor conditions. For outdoor
temperature to represent a valid proxy, we would like to ver-
ify that fluctuations in outdoor temperature pass through to
indoor temperature. Although we do not have indoor temper-
ature data from the study period, we did collect about a year’s
worth of indoor and outdoor temperature from two factories
and six months of data from a third factory after the study
period.12

In figure 1, we plot mean indoor temperature values for
each 0.1 degree bin of outdoor temperature along with a lo-
cal polynomial regression fit curve and 95% confidence in-
tervals.13 Indoor temperature appears to be a linear function
of outdoor temperature with a slope of roughly 0.79. That
is, there appears to be large but not perfect pass-through of
outdoor temperature fluctuations to indoor temperature, and
this relationship appears to be constant for all levels of out-
door temperature. A positive intercept indicates that at lower
outdoor temperatures (e.g., 22◦C wet bulb globe) the indoor
temperature is slightly higher than the outdoor temperature,
reflecting a flow source of heat inside the factory independent
of outdoor temperature (e.g., lighting and machinery, in ad-
dition to heat generated by workers’ presence on the factory
floor). Furthermore, a regression of indoor temperature on
outdoor temperature has an R2 of about 0.84, implying that
a very large amount of the variation in indoor temperature
is explained by the variation in outdoor temperature. How-
ever, it is important to note that these data were collected
after the introduction of LED in the factories and therefore
depict the ex post relationship between indoor and outdoor
temperature.

B. Factory Data

We use daily data at the production line level from thirty
garment factories in and around Bangalore. Identifiers in-
clude factory number and production line number within the
factory. For each line and day within each factory, production
measures include actual quantity of garments produced and
target quantities of the line on that day.

Actual efficiency is actual quantity produced divided by
target quantity. The target quantity is derived from an indus-
trial engineering measure for the complexity of the garment—
the “Standard allowable minute (SAM), which is the
estimated number of minutes required to produce a single
garment of a particular style. This estimate largely derives
from a central database of styles, with potential adjustments
by the factory’s industrial engineering (IE) department during
“sampling.”14

12We collected data from September 22, 2014, to August 11, 2015, in one
factory, from September 27, 2014, to August 10, 2015, in a second factory,
and from January 28, 2015, to August 10, 2015, in a third factory.

13Fit reflects kernel-weighted local mean smoothing, using the Epanech-
nikov kernel.

14Sampling is the process by which a cost estimate is generated for a
buyer when ordering a garment style. Sampling tailors make a garment of
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FIGURE 1.—INDOOR TEMPERATURE VERSUS OUTDOOR TEMPERATURE

The SAM measure is used to calculate the target quantity
for the line for each hour of production. Each line runs for
eight hours during a standard workday from 9 a.m. to 5 p.m.,
with all factories in our sample operating a single daytime
production shift. Accordingly, a line producing a style with
a SAM of 0.5 will have a target of 120 garments per hour,
or 960 garments per day. Most important, the target quantity
is almost always fixed across days (and, in fact, across hours
within the day) within a particular order of a style.

Each line produces only a single style at a time.15 Vari-
ations in expected achievable efficiency over the life of a
particular garment order due to order size are reflected in a
measure that incorporates learning by doing, budgeted effi-
ciency. Budgeted efficiency remains fixed for a given line
over the life of a particular order and reflects the efficiency
that management believes a line might be able to achieve
given the expected length of time the line will be producing
the order. Actual efficiency of a given order will vary system-
atically across lines and within a line over time due to, for
example, absenteeism, machine failures, or working condi-
tions. We are interested in variation in actual efficiency due
to transitory temperature. We therefore control for budgeted
efficiency to account for systematic variation in efficiency
deriving from order size and include line fixed effects in the
regression analysis that follows. In the robustness checks, we
show that our results are not affected by excluding this control
variable.

a particular style and recommend any alterations to the SAM for that style
to the IE department.

15Indeed, in our data, lines produce styles for between 1 and 268 days.

TABLE 1.—SUMMARY STATISTICS: WEATHER, PRODUCTION, AND LED
INTRODUCTION

Number of line-day observations 239,680
Number of lines 523
Number of days 1,001
Number of factories 30

Standard
Mean Deviation

Weather
Temperature (Celsius) 24.353 2.966
Relative humidity (%) 0.647 0.174
Wet bulb globe temperature (Celsius) 17.230 1.683

Production
Actual efficiency 55.234 26.233
Budgeted efficiency 61.981 11.545
Standard allowable minutes (SAM) 0.724 2.445

Attendance
1(Present for Full Work day) 0.843 0.363

C. Summary Statistics

We present means and standard deviations of variables
used in the analysis in table 1. Our sample consists of 523 pro-
duction lines across thirty factories. The range of dates over
which we have production data spans 1,001 days. However,
we do not observe all factories for all dates.16 Altogether, our
data include nearly 240,000 line by day observations. About
one-third of the observations correspond to days in factories
prior to the introduction of LED lighting, and the remainder
are post-LED observations.

16Once a factory starts reporting data, it continues to do so until the end
of the sample period. In the appendix, we restrict the analysis of the main
productivity specifications to only production lines that have a proportion
of missing data less than or equal to 30% of observations.
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FIGURE 2.—EFFICIENCY AGAINST TEMPERATURE (PRE-LED)

IV. Empirical Strategy

In this section, we provide preliminary graphs on the shape
of the temperature-productivity gradient, the effects of LED
introduction, and the persistence of this evidence after ac-
counting for various unobservables. We then leverage these
motivating facts to develop an empirical strategy to flexibly
estimate the impact of LED introduction on productivity as
moderated through ambient temperature.

A. Descriptive Evidence

We begin by motivating the empirical specifications and
techniques with descriptive plots of production and temper-
ature data.17

Productivity-temperature gradient. To estimate how LED
lights have an impact on the relationship between efficiency
and temperature, we first investigate the raw relationship be-
tween efficiency and wet bulb temperature in the data prior
to LED introduction. Figure 2 presents a scatter plot of the
average efficiency for each 0.1 degree bin of wet bulb tem-
perature observed in the data. We also include in the figure a
local polynomial smoothed fit and 95% confidence intervals
like those depicted in figure 1.18 Figure 2 shows that in the ab-
sence of LED lighting, efficiency appears to be a decreasing
function of temperature, and this relationship is quite non-
linear, with the largest declines in efficiency occurring at the

17Residualized graphs with fixed effects and controls mentioned in section
IVB look very similar and are available on request.

18Fit reflects kernel-weighted local mean smoothing, using the default
Epanechnikov kernel and bandwidth of 1.

highest wet bulb temperatures. Specifically, the gradient goes
from modestly decreasing to strongly decreasing to the right
of the vertical line in figure 2. This vertical line, denoting
19◦C in wet bulb temperature, represents a strong break in
the slope. Accordingly, in the parametric regression analysis
proposed below, we specify a linear spline with a node at 19
to capture this dichotomous slope in the gradient.

Notably, a wet bulb globe outdoor temperature of 19◦C cor-
responds in our data to an outdoor ambient dry bulb temper-
ature of about 27◦C and is likely equivalent to an indoor dry
bulb temperature of about 29.5◦C before LED introduction.19

This 29.5◦C dry bulb temperature is quite consistent with es-
timates from previous studies on the physiological threshold
for the absorption of heat into the body, above which temper-
ature affects human functioning (Hancock et al., 2007).

Impacts of LED introduction. Having established the shape
of the temperature-productivity gradient for the garment fac-
tories in our data before the introduction of LED, we next

19This approximate relationship is derived from the indoor-outdoor tem-
perature we collected and back-of-the-envelope calculations about how
LED affected internal temperature. While a full engineering projection of
heat dissipation is beyond the scope of this study, we present a simple heat
gain calculation. The difference in energy consumption is 18 kWh per bulb
per year, which translates into 0.058 kWh per bulb per day (assuming a
six-day workweek). For the average factory, which received 1,000 LED
bulbs, that implies a lowered electricity consumption of 58 kWh/day. Tak-
ing the heat capacity of air as 1 joule/(g δ◦ C) and the density of air as
1.18 kg/m3, 58 kWh would heat 73,700 m3 of air (or, for instance, a factory
of 192 by 192 m square with a height of 2 m) by 2.4◦C. This temperature
difference is a significant ambient temperature difference that would ex-
plain our results, a calculation based on the fact that 1 kWh is 3.6 million
joules, and heating 1 m3 of air requires 1 × 1.18 × 1,000 × 2.4 = 2832
joules = 0.00079 kWh. (We thank one of our referees for suggesting this
back-of-the-envelope calculation.)
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FIGURE 3.—EFFICIENCY AGAINST TEMPERATURE BY LED

check for evidence that this gradient is affected by the partial
replacement of the CFLs in factories with focused, machine-
mounted LED lighting. We repeat the exercise from figure 2
for subsets of the data from before and after the LED rollout
in each factory. These plots are presented in figure 3.20 The
evidence suggests that factories are somewhat more efficient
at all temperatures after the LED introduction, but this gain
(or attenuation) increases at high temperatures. That is, the
pre-LED gradient (red line) in figure 3 replicates the non-
linear shape depicted in figure 2, but the post-LED gradient
exhibits a flatter slope to the right of the 19 degree verti-
cal line, allowing the gap between the before and after LED
gradients to widen at higher temperatures and indicating a
persistently significant treatment effect above 19 degrees.

B. Parametric Spline Regression Analysis

Motivated by the graphical evidence we estimate the re-
gression equations below to causally identify both the ef-
fect of temperature on production efficiency at various points
along the temperature distribution and the attenuation of this
impact driven by the LED replacement. In particular, we ad-
dress concerns regarding factory-level trends in efficiency,
line-level unobservables, seasonality in efficiency, and the
exogeneity of the LED introduction along with the nonlin-
earities depicted in figures 2 and 3.

20Fit reflects kernel-weighted local mean smoothing, using the Epanech-
nikov kernel and bandwidth of 1. Note in each figure from here onward
in the paper with both pre- and post-LED plots, we show 83% confidence
intervals, which allow the reader to visually assess the hypothesis of a dif-
ference between the two curves; if the confidence intervals do not overlap
at a given point, then the two curves are significantly different at the 5%
level at that point.

First, we estimate the following empirical specification of
the relationship between production line efficiency and tem-
perature using only observations prior to LED installation:

Eludmy = α0 + βLT L
dgmy + βH T H

dgmy + φBludmy + αl + γuy

+ ηum + δd + εludmy. (2)

Here, E is the actual efficiency of line l of unit u on day d
in month m and year y; B is budgeted efficiency for line l of
unit u on day d in month m and year y; T L is daily wet bulb
globe temperature from grid point g in degrees Celsius up to
the spline node of 19, above which it records a constant 19;
T H is daily wet bulb temperature minus 19◦C from grid point
g above the spline node, below which it records a constant 0;
αl are production line fixed effects; γuy are unit by year fixed
effects; ηum are unit by month fixed effects; δd are day-of-
week fixed effects; and α0 is an intercept. βL and βH are the
coefficients of interest, giving the impact of a 1◦C Celsius in-
crease in wet bulb globe temperature on line-level efficiency
for temperatures below and above 19◦C, respectively.21

We then estimate the extent to which the introduction of
LED lighting attenuates the temperature-productivity rela-
tionship via the following specification:

Eludmy = α0 + βL
1 (T L

dgmy × LEDumy) + βH
1 (T H

dgmy × LEDumy)

+ β2LEDumy + βL
3 T L

dgmy + βH
3 T H

dgmy + φBludmy

+ αl + γuy + ηum + δd + εludmy. (3)

21While the effect of temperature on productivity may vary within the day,
this is not testable given our data, since we only observe mean productivity
and outdoor temperature for a production line each day.
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Here LEDumy is a dummy for the presence of LED lighting
in unit u in month m and year y. It changes from 0 to 1 in
the month of LED introduction in a particular factory unit.
The coefficients of interest in the above specification are βL

1 ,
βH

1 , βL
3 , and βH

3 . βL
3 and βH

3 indicate the effect of tempera-
ture on productivity below and above the 19◦C spline node,
respectively, before LED introduction. βL

1 and βH
1 are the ex-

tent of attenuation of the temperature-productivity gradient
below and above the 19◦C spline node, respectively, once
LED lighting is introduced. The sums βL

1 + βL
3 and βH

1 + βH
3

give the net effect of temperature on productivity below and
above the spline node, respectively, following LED intro-
duction. Note that we choose this spline specification with a
single node at 19◦C WBGT for two reasons: (a) the raw data
plots in figures 2 and 3 clearly show that the relationship be-
tween temperature and efficiency (and the difference in this
relationship across LED) changes at this point in the temper-
ature distribution and does not vary much on either side of
this cutoff, and (b) this point corresponds remarkably well to
previous studies of the physiology of heat stress (Hancock
et al., 2007).22

To account for common error distributions within a factory
over time, standard errors are clustered at the factory level.
This cluster structure is appropriate given that LED intro-
duction occurs at the unit level. However, given the relatively
small number of clusters (thirty), we employ wild cluster
bootstrap inference and report 95% confidence intervals in
parentheses in all tables unless otherwise noted.23

Attendance. We also estimate the same specifications pre-
sented in equations (2) and (3), but replacing the efficiency
outcome on the left-hand side with mean attendance (or prob-
ability of each worker being present in the factory) at the
line-daily level. These regressions are intended to investigate
the degree to which temperature affects efficiency, and the
corresponding attenuation from LED introduction might be
working through effects on worker attendance. In robustness
checks, we also estimate the original efficiency specifica-
tions from equations (2) and (3), including mean line-daily
worker attendance as an additional control. The combination
of these two sets of results allows us to investigate whether
temperature and LED introduction affect worker attendance
and whether controlling for attendance changes the estimated
impacts of temperature and LED on the primary outcome of
interest (efficiency).

Distributed lags. Daily temperature could reflect short-
term serial correlation, which would make it difficult to iden-
tify the impacts of contemporaneous exposure to tempera-
ture. Following previous studies, we augment equations 2

22Nevertheless, we explored more flexible spline specifications with more
nodes and found the results to be qualitatively identical with less precision.

23See Cameron, Gelbach, and Miller (2008) for a thorough treatment of
clustering approaches with few clusters and a discussion of their relative
performance, which highlights that wild cluster bootstrap inference works
best in a setting with few clusters.

and 3 to include 7-day distributed lag spline terms and their
interactions with LED, in addition to the contemporaneous
spline and LED interaction terms of primary interest. In the
distributed lag models, we interpret the coefficients on con-
temporaneous spline and interaction terms as the incremental
impacts of contemporaneous temperature exposure after con-
trolling for lagged exposure. This isolates the impact of con-
temporaneous exposure from that of lagged exposure. If the
coefficients on the contemporaneous temperature terms are
similar with and without the inclusion of the 7-day distributed
lag terms, we interpret the results as indicating a minimal role
for serial correlation and persistence in impacts of lagged ex-
posures. We can recover the composite impact of both the
contemporaneous temperature exposure and of lagged expo-
sures by summing up the coefficients from contemporaneous
temperature and the full set of lagged exposures, but this com-
posite impact will be nearly identical to that estimated from
the original specification presented in equations (2) and (3).

V. Results

A. Main Results

We report results from the estimation of the parametric
spline specifications presented in equations (2) and (3) in
table 2. Columns 1 and 2 report estimates of βL and βH from
equation (2), with column 2 estimates corresponding to a
specification with an additional control for precipitation. The
precipitation control ensures that impacts are being driven
by temperature exposure alone and are not composite effects
reflecting the impacts of other correlated weather conditions.
Columns 3 and 4 report estimates of βL

1 , βH
1 , β2, βL

3 , and βH
3

from equation (3), once again with column 4 reporting results
after controlling for precipitation.

The spline regression estimates from columns 1 and 2
reflect the pattern shown in figure 2 with the slope of the
efficiency-temperature gradient below 19◦C of wet bulb
globe temperature being slightly negative (statistically indis-
tinguishable from 0) and the slope above 19◦C being strongly
negative and statistically significant at the 1% level. Point es-
timates indicate that at wet bulb globe temperatures above
19◦C, a 1◦C increase in temperature leads to a reduction of
more than 2.1 percentage points in actual efficiency. A com-
parison of estimates across columns 1 and 2 shows that in-
cluding an additional control for precipitation has a minimal
impact on results.

The results in columns 3 and 4 are consistent with the
pattern reflected in figure 3, with the introduction of LED
having no significant impact on the slope of the efficiency-
temperature gradient below 19◦C, but a significant attenuat-
ing impact on the negative slope of the gradient above 19◦C.
That is, the introduction of LED offsets the negative impacts
of temperature on efficiency by about 85%, attenuating the
magnitude of the negative slope above 19◦C from about −2
to about −0.3. LED shows no significant impact below 19◦C,
which is consistent with the ergonomics and physiology
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TABLE 2.—IMPACT OF TEMPERATURE ON PRODUCTION EFFICIENCY AND MITIGATIVE IMPACT OF LED LIGHTING

1 2 3 4
Efficiency

(Actual Production / Targeted Production) × 100

Wet bulb globe temperature <19 −0.299 −0.318 −0.0940 −0.105
[−1.803, 0.532] [−1.813, 0.510] [−1.017, 0.421] [−1.008, 0.404]

Wet bulb globe temperature ≥19 −2.135∗∗∗ −2.169∗∗∗ −1.953∗∗ −1.981∗∗∗
[−3.312,−1.395] [−3.369,−1.399] [−3.00,−1.206] [−3.020,−1.230]

1(LED) × (Wet bulb globe temperature <19) −0.106 −0.103
[−0.847, 0.852] [−0.843, 0.853]

1(LED) × (Wet bulb globe temperature ≥19) 1.671∗∗∗ 1.681∗∗∗
[0.718, 2.787] [0.725, 2.809]

1(LED) 3.447 3.393
[−18.34, 16.85] [−18.39, 16.85]

Factory × Year, Factory × Calendar Month
Fixed effects Production Line, Day of the Week

Precipitation control N Y N Y
Observations 74,939 74,939 239,680 239,680
Mean of dependent variable 53.73 53.73 55.234 55.234

Wild-cluster bootstrap 95% CIs in brackets: significant at ∗∗∗1%, ∗∗5%, and ∗10%. Clustering is done at the factory level. All measures of temperature are in degrees Celsius. All regressions include daily budgeted
efficiency as a control variable.

TABLE 3.—IMPACT OF TEMPERATURE ON ATTENDANCE AND MITIGATIVE IMPACT OF LED LIGHTING

1 2 3 4
Worker Presence

(Line-Level Mean Daily Probability)

Wet bulb globe temperature <19 −0.0061∗∗ −0.0059∗∗ −0.0011 −0.0007
[−0.0166,−0.000630] [−0.0167,−0.000305] [−0.00534, 0.00162] [−0.00506, 0.00204]

Wet bulb globe temperature ≥19 0.0003 0.0007 0.0056 0.0064
[−0.00585, 0.00973] [−0.00533, 0.00989] [−0.00409, 0.0186] [−0.00341, 0.0193]

1(LED) × (Wet bulb globe temperature <19) 0.0003 0.0002
[−0.00283, 0.00442] [−0.00298, 0.00428]

1(LED) × (Wet bulb globe temperature ≥19) −0.0051 −0.0053
[−0.0197, 0.00771] [−0.0199, 0.00743]

1(LED) −0.0065 −0.0054
[−0.0708, 0.0427] [−0.0701, 0.0441]

Factory × Year, Factory × Calendar Month
Fixed effects Production Line, Day of the Week

Precipitation control N Y N Y
Observations 136,062 136,062 392,601 392,601
Mean of dependent variable 0.846 0.846 0.829 0.829

Wild-cluster bootstrap 95% CIs in brackets: significant at ∗∗∗1%, ∗∗5%, and ∗10%. Clustering is done at the factory level. All measures of temperature are in degrees Celsius.

literature, suggesting that temperature has the highest impact
on human functioning at temperatures above this level. The
estimate of the main effect of LED is positive and large, but
it is imprecisely estimated and statistically indistinguishable
from 0.

The results reported in table 3 correspond to the regression
of mean line-daily worker attendance on the identical speci-
fications to those in table 2, as described in section IVB. The
estimates from table 3 suggest a negative impact of tempera-
ture on attendance at temperatures below 19◦C, however, the
magnitudes of the point estimates are extremely small (less
than 1% of the mean). All other estimates of coefficients, in-
cluding those reflecting the impacts of LED, are statistically
indistinguishable from 0. In general, we interpret the results
in table 3 as indicating no real impacts of temperature on
worker attendance. These results imply that it is unlikely that
the impact of temperature on worker attendance contributes

to the estimated impacts of temperature and LED installation
on efficiency.

Next, we investigate whether the estimated impacts of
contemporaneous temperature exposure on efficiency reflect
contemporaneous exposure alone rather than a composite of
contemporaneous exposure and lagged exposure. Similarly,
we check that the estimated attenuation from LED installation
is working through contemporaneous temperature exposure.
Although persistent impacts of lagged exposures and serial
correlation in temperature would not invalidate our analysis,
the interpretation of the point estimates will change based
on the underlying sources of variation. As discussed in sec-
tion IV, we repeat the analysis reported in table 2 but in-
clude seven-day distributed lag temperature spline terms and,
where appropriate, their interactions with LED installation.
The results are reported in table 4. All results in table 4 cor-
respond to specifications including seven-day distributed lag
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TABLE 4.—IMPACT OF TEMPERATURE ON PRODUCTION EFFICIENCY AND MITIGATIVE IMPACT OF LED LIGHTING (DISTRIBUTED LAG SPECIFICATION)

1 2 3 4
Efficiency

(Actual Production / Targeted Production) × 100

Wet bulb globe temperature <19 −0.440 −0.467 −0.227 −0.245
[−1.895, 0.415] [−1.900, 0.380] [−1.191, 0.365] [−1.198, 0.342]

Wet bulb globe temperature ≥ 19 −2.236∗∗∗ −2.271∗∗∗ −2.295∗∗∗ −2.320∗∗∗
[−3.462,−1.359] [−3.479,−1.367] [−3.678,−1.229] [−3.686,−1.244]

1(LED) × wet bulb globe temperature < 19 0.0724 0.0776
[−0.510, 0.908] [−0.504, 0.902]

1(LED) × wet bulb globe temperature≥ 19 2.375∗∗∗ 2.384∗∗∗
[1.234, 3.726] [1.233, 3.740]

1(LED) −9.199 −9.165
[−42.54, 11.93] [−42.55, 11.92]

7-day distributed lag temperature splines Y Y Y Y
7-day distributed lag spline interactions with LED N N Y Y

Factory × Year, Factory × Calendar Month
Fixed effects Production Line, Day of the Week

Precipitation control N Y N Y
Observations 74,939 74,939 239,680 239,680
Mean of dependent variable 53.732 53.732 55.23 55.23

Wild-cluster bootstrap 95% CIs in brackets: significant at ∗∗∗1%, ∗∗5%, and ∗10%. Clustering is done at the factory level. All measures of temperature are in degrees Celsius. All regressions include daily budgeted
efficiency as a control variable. Full table reporting coefficiencts on seven-day distributed lag temperature splines and their interactions with LED are presented in appendix table A1.

temperature spline terms and results in columns 3 and 4 cor-
respond to specifications, also including interactions of dis-
tributed lag spline terms with the LED installation dummy.

Overall, the results in table 4 are qualitatively identical to
the main results reported in table 2, but with slightly larger
magnitudes for coefficients on the above 19◦C temperature
spline and the corresponding LED interaction terms. These
results indicate that the estimates of temperature impacts and
attenuation from LED installation are being driven by con-
temporaneous exposures and not the correlation of contem-
poraneous and lagged temperature. Daily temperature is gen-
erally believed to reflect some degree of serial correlation, so
the similarity in results with and without distributed lags is
not altogether surprising in our study. The baseline specifica-
tions already include a large set of heterogeneous nonlinear
trends (e.g., unit by month FE) to control for this less tran-
sitory variation in temperature. Indeed, the correlations be-
tween contemporaneous temperature and lagged temperature
values after partialing out the full set of controls are not very
high (never more than .25 and mostly below .1).24

B. Checks for Exogeneity of LED Roll-Out

In this section, we check for the exogeneity of the timing
of LED installation.

In column 1 of table 5, we report estimates of the coef-
ficients on the temperature spline terms from the regression
of the LED introduction dummy on the main specification in
equation (2). We find no evidence that LED installation was
timed around particular temperature realizations. In columns
2 and 3 of table 5, we report results from the regression of
SAM (a proxy for the complexity of the garments being pro-

24The coefficients on the lag terms are reported in appendix table A1.

duced) and budgeted efficiency (a proxy for scope for learn-
ing by doing due to order size), respectively, on the LED
installation dummy, the date relative to LED installation, and
their interaction with the remaining specification identical to
that depicted in equation (2). These regressions are meant
to check whether garment style and complexity (SAM) and
order size (budgeted efficiency) varied systematically in the
lead-up to LED installation or immediately after. Significant
coefficient estimates in columns 2 and 3 would suggest that
the timing of LED introduction is endogenous with respect to
these production factors; however, we find no such evidence.
In columns 4 through 6, we check that LED installation was
not accompanied by other forms of upgrading. Specifically,
we regress the proportion of each of the three skill levels of
tailors—A, B, and C grade—hired on each day in each fac-
tory unit on the same specification reported in columns 2 and
3.25 We do not find any evidence that hiring patterns changed
in the lead-up to LED installation or immediately after.

Finally, we test whether there were changes to working
hours or wage contracts in the lead-up to LED installation.
We use two other data sources for this purpose. The first data
source is daily data at the worker level showing when indi-
viduals clocked in and out of work, which we use to construct
the two measures of daily line-level working hours. The first
is the average time at the line level that we observe a worker
clock in for a given line on a given day (measured in terms
of elapsed minutes since midnight). The second is the aver-
age time that we observe a worker on a line clock out on a
given day (also measured in terms of elapsed minutes since
midnight). These measures are at the production-line daily

25A-grade tailors are the most skilled, followed by B-grade tailors, and
C-grade tailors are the least skilled.
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TABLE 5.—CHECKS FOR EXOGENEITY OF LED ROLLOUT: PRODUCTION AND HIRING

1 2 3 4 5 6
Standard Proportion Proportion Proportion

Allowable Budgeted of A Grade of B Grade of C Grade
1(LED) Minutes (SAM) Efficiency Tailors Hired Tailors Hired Tailors Hired

WBGT <19 0.00172
[−0.00797, 0.0103]

WBGT ≥19 −0.00776
[−0.0210, 0.00569]

1(LED) × Date relative −0.0001 0.0153 0.00001 0.00008 −0.00005
to LED installation [−0.00098, 0.00159] [−0.0284, 0.0518] [−0.00062, 0.00045] [−0.00017, 0.0003] [−0.0004, 0.00043]

1(LED) −0.0386 2.931∗ −0.0205 0.0436 −0.0194
[−0.171, 0.0894] [−4.637, 8.661] [−0.0808, 0.0375] [−0.0232, 0.119] [−0.0635, 0.0311]

Date relative to LED 0.0001 −0.0208 0.00009 0.00129∗ −0.00123
installation [−0.0005, 0.0008] [−0.0421, 0.0048] [−0.0013, 0.00161] [−0.00003, 0.00284] [−0.0032, 0.0004]

Factory × Year, Factory × Calendar Month
Fixed effects Production Line, Day of the Week Factory × Year, Factory × Calendar Month

Precipitation controls Y Y Y Y Y Y
Temperature controls N Y Y Y Y Y
Observations 239,680 134,326 134,326 8,595 8,561 8,562
Mean of the dependent 0.69 0.751 61.64 0.44 0.29 0.27

variable

Wild-cluster bootstrap 95% CIs in brackets: significant at ∗∗∗1%, ∗∗5%, and ∗10%. Clustering is done at the factory level. Since columns 2 through 6 consider the date relative to the LED installation, units that had
LED lighting at the beginning of the sample period or did not have LED lighting by the end of the sample period are omitted. The first three columns are at the production line-date level, and the last three columns are
defined at the factory-date level.

TABLE 6.—CHECKS FOR EXOGENEITY OF LED ROLLOUT: WORKING HOURS, WAGES, AND PAY DAYS

1 2 3 4 5 6
Mean Mean Earned Total Unpaid Number of

Time In Time Out Wages Deductions Leave Paydays

1(LED) × Date relative −0.0120 −0.0248 −23.02 −4.190 4.449 −0.0526
to LED installation [−0.0631, 0.0131] [−0.161, 0.0196] [−52.12, 13.33] [−9.149, 4.116] [−26.20, 25.63] [−0.170, 0.108]

Date relative to LED 0.00575 0.0189 −6,604 1,294 3,141 583.6
installation [−0.00438, 0.0151] [−0.0993, 0.188] [−707733, 592734] [−99108, 158182] [−33032, 501873] [−91.99, 2455]

1(LED) 2.133 −2.459 −42.68 −6.833 86.03 −0.317
[−2.924, 7.739] [−11.16, 10.26] [−141, 146.9] [−32.27, 18.26] [−53.07, 167.3] [−0.724, 0.313]

Factory × Year, Factory × Calendar Month Factory × Year, Factory × Calendar Month
Fixed effects Production Line, Day of the Week Production Line

Precipitation controls Y Y Y Y Y Y
Temperature controls Y Y Y Y Y Y
Observations 93,198 93,279 566,761 566,761 566,761 585,401
Mean of the dependent 537.4 1,058 5,629 602.3 982.3 25.34

variable

95% wild cluster bootstrap confidence intervals in brackets: significant at ∗∗∗1%, ∗∗5%, and ∗10%. Clustering is done at the factory level. Since this table considers the date relative to the LED installation, units that
had LED lighting at the beginning of the sample period or did not have LED lighting by the end of the sample period are omitted. All times are in minutes elapsed since midnight. The unit of observation for columns
1 and 2 is the production line-daily level, and for columns 3 through 6 is at the worker-monthly level. Earned wages are total wages accruing to the employee. Total deductions include contributions to the provident
fund, taxes, and employee social security. Unpaid leave refers to wages that were unpaid because the employee took leave without pay.

level.26 The second data source is at the monthly level for
each individual worker and measures different aspects of the
wage contract as well as the number of paydays each month
for the worker. The four variables we consider are wages
earned (total wages accruing to the employee, including de-
ductions for taxes, social security, and employees’ provident
fund), total deductions (contributions to taxes, social secu-
rity, and employees’ provident fund), value of unpaid leave,
and the number of days each month that the employee was
present and accrued wages (the number of pay days).

26Results using the earliest and latest times that a worker on a line clocks
in and out give very similar results.

Table 6 presents the results. Overall, we do not find that
changes in working hours or compensation to workers change
with LED adoption; there is no statistically significant change
in any of the six variables leading up to LED adoption.

VI. Additional Robustness Checks

We conduct a variety of additional robustness checks.
To further verify that worker attendance is not a primary

mediating mechanism of the impacts of temperature and LED
installation on efficiency, we repeat the analysis reported in
table 2 with mean line-daily worker attendance as an addi-
tional control. The results from these regressions are reported
in table A6 and are very similar to those presented in table 2.
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Overall, we interpret the results in tables 3 and A6 as ev-
idence against the importance of attendance as a primary
mediator of the has an impact on of temperature and LED
installation on efficiency. That is, we find that exposure to
higher temperatures impacts the intensive margin of produc-
tivity per unit labor supplied, but does not strongly affect
the extensive margin of the quantity of labor units supplied.
Similarly, the introduction of LED attenuates greatly the im-
pacts of temperature on the intensive margin of efficiency but
has no perceptible impact on the extensive margin of labor
supply.

We also present all of our main results with additional fixed
effects. We replace factory by year fixed effects with factory
by year by quarter fixed effects (and still include factory by
calendar month, production line, and day of the week fixed
effects, along with daily precipitation as a control variable).
Table A3 presents the results using this specification.
Columns 1 and 2 present the impact of temperature on pro-
ductivity and the mitigating impact of LED lighting. Columns
5 and 6 present the impact of temperature on productivity and
the mitigating impact of LED lighting controlling for line-
level attendance, and columns 3 and 4 do so while including
the same splines for seven-day distributed lag specification
of temperature as for same-day temperature (as well as with
interactions of the LED adoption dummy variable). The re-
sults are robust to the inclusion of these fixed effects, though
the magnitude reduces a little in some specifications. These
results suggest that any unmeasured changes to the working
environment that we are not able to pick up in the previous
robustness checks but that happened within the quarter are
not driving our results.

In table A2, we present our main results without includ-
ing budgeted efficiency as a control variable, to show that
our results do not depend on using this control variable. In
table A4, we restrict the analysis of the main productivity
specifications to only production lines that have a proportion
of missing data that is lower than or equal to 30% (this in-
cludes data from 344 of about 500 production lines).27 The
results are nearly identical to our original results, suggesting
that the missing data are not substantially affecting our main
results.28

In table A5, we replicate results from table 2, except that
we use dry bulb temperature instead of WBGT and control for
relative humidity separately. Finally, in the online appendix,
we present our main results using a more flexible semipara-
metric estimation rather than parametric spline regressions,
and obtain very similar estimates.

27We divide the number of days that a factory reported productivity data by
the total number of days between when a factory began reporting data until
the end of the sample period, excluding Sundays, to compute the proportion
of missing data. We chose this proportion because once a factory starts
reporting data, on average the probability that a production line is missing
productivity data on a given day is about 32%.

28We also check that the probability of missing productivity data is not
affected by temperature or LED adoption.

VII. Discussion

The promise of climate change mitigation is tempered by
the willingness of individuals and firms to adopt beneficial
technologies on a large scale. This willingness in turn, is
a function of the private returns to adoption. In this study,
we show that the introduction of energy-efficient LED light-
ing in Indian garment factories had substantial productivity
co-be-nefits that accrue privately to the adopting firm.

Specifically, we find that the introduction of LEDs elim-
inates about 85% percent of the negative impact of temper-
ature on worker efficiency on relatively hot days. Using the
probability that mean daily outdoor temperature reaches or
exceeds 19◦C WBGT (20% of all days), we estimate an aver-
age total increase in production efficiency of 0.4 percentage
points (0.2 times the mitigation coefficient on LED lighting,
which is 1.95 percentage points of efficiency).29

A. Private Benefits (Firm Cost-Benefit Calculations)

We combine our estimate of average total efficiency gains
with actual production and cost data from the firm to calcu-
late annual costs and benefits of LED installation. The cal-
culations are shown in table 7. Senior management at the
firm estimated that the profit gain for each percentage point
gain in efficiency was 0.1875 percentage points.30 Thus, a
0.4 percentage point gain in efficiency from LED installation
translates to a .075 percentage point gain in profits (or a 1.5%
increase in profitability from the 5% baseline profit margin
of the firm). At an approximate profit per factory per year of
$500,000 (amounts in US dollars) the introduction of LED
delivers productivity gains worth $7,500 per factory per year.

How does this estimate change the cost-benefit calcula-
tions of LED adoption for the firm? We calculated this based
on the energy cost calculations the firm used for its LED adop-
tion choices. The total energy cost savings per year per factory
unit of LEDs (as compared with CFL bulbs, which were be-
ing used before LED introduction) were approximately $2.40
per bulb replaced or $2,880 in total for an average replace-
ment of about 1,200 bulbs per factory in our sample.31 The
additional annual profits from efficiency gains we computed
are more than two and a half times this amount. The cost of

29Using a semiparametric estimation strategy in the online appendix gives
a higher impact of LEDs, with an average total increase in production ef-
ficiency of about 0.7 percentage points. However, we use the lower of the
two numbers here to be conservative.

30This calculation comes from management identifying what proportion
of total nonmaterial costs are recoverable by increasing labor efficiency.
These costs make 25% of the total cost of the garment, and the accounting
department of the firm estimated that 75% of these costs were recoverable
via efficiency improvements.

31For these calculations, we use the average number of bulbs replaced in
the factories we observe before and after LED installation in the production
data, as these factories best represent the treatment effects estimates. Ideally,
we would be able to corroborate the engineering estimates of electricity
savings with electricity billing data. Unfortunately, data limitations prevent
this. Since working hours in the factory did not change with LED lighting
adoption and the bulbs were run continuously throughout these hours, it
seems plausible that rebound effects are not very large in this context.
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TABLE 7.—COST-BENEFIT CALCULATIONS FOR LED ADOPTION

Cost of implementation (one-time)
Investment per bulb (e.g., bulb, wiring) $8.53
Number of bulbs replaced per factory 1200
Total cost of implementation $10,240.00

Energy savings (per year)
Power consumption savings per bulb (with savings of 18 kWh per year, at a cost of about $0.1334/kWh) $2.40
Number of bulbs replaced 1,200
Total energy savings $2,880.00

Efficiency gains (per year)
Average efficiency gain in percentage points from LED-induced temperature reductions 0.4000
Efficiency percentage point gain to profit percentage point gain translation 0.1875
Profit margin at baseline 5%
Average revenue in USD per factory per year $10,000,000.00
Average profit in USD per factory per year $500,000.00
Total efficiency gains $7,500.00

Total net savings from LED Adoption in the first year $140.00
Total net savings from LED Adoption in the second year $10,380.00
Carbon (public) benefits from LED adoption (at $44/tC) $197.04
Carbon (public) benefits from LED adoption (at $93/tC) $416.47

Profit margin at base was taken from the accounting department of the firm. Calculation for translating efficiency gains to profit comes from accounting estimates of the proportion of “cut to make” (nonmaterial)
costs that can be recovered via efficiency gains. “cut to make” costs make up 25% of total costs, and 75% of these costs are recoverable via improved efficiency. Average revenue in USD per factory per year is obtained
by taking balance sheet revenues for the firm and dividing by the number of plants. For additional details on the calculation of carbon benefits, refer to section VII.

replacing the average factory’s bulbs with LEDs is $10,240.
Thus, if only electricity expenditure were taken into account,
it would take about three and a half years to break even. How-
ever, when the productivity benefits are included, the firm
breaks even within twelve months of LED installation. After
the initial payback period, the firm benefits from an ongoing
combined increase in profitability from energy savings and
efficiency gains.

These results are of course generalizable only to settings
where air-conditioning is not available in the workplace.
However, since air-conditioning remains quite rare in facto-
ries in developing countries, our results indicate that energy-
efficient lighting can have substantial co-benefits for worker
productivity for a large section of the workforce.

B. Public Benefits (Emissions Calculations)

In addition to the private benefits of increased productivity
and energy cost savings, the replacement of CFL lighting with
LEDs has public benefits of avoided damages due to reduced
carbon emissions. On average, the LED introduction saves
21,600 kWh of electricity per factory unit per year, which
in this case reduces electricity emissions by about 3.73 tC
emissions per unit per year.32 Valuing this reduction of car-
bon emissions at the Nordhaus (2011) estimate of $44/tC (a
2005 carbon price) gives us avoided damages of $197.04 per
factory per year, and valuing this at the mean value of the

32The conversion from electricity consumption to carbon emissions is
done as follows. According to the CO2 Baseline Database for the Indian
Power Sector (version 8) by the Central Electricity Authority of India, a
megawatt of electricity generated on the Southern grid causes 0.76 tCO2
of emissions (Bhawan & Puram, 2014). Thus, 18,000 kWh causes about
16.42 tCO2, or about 4.48 tC. Callaway, Fowlie, and McCormick (2018)
use US electricity generation data to show that the average emissions factor
of electricity, which we use here, may be quite different from the marginal
emissions factor. While the latter is preferable to generate precise values
of carbon generated by electricity, the lack of data on marginal emissions
factors makes this impossible in our setting.

review by Tol (2005) of $93/tC yields avoided damages of
$416.47 per factory per year. At the current estimates of car-
bon prices, these benefits are relatively small in comparison
to the annual private benefits.33

33Adding the corresponding reduction in local air pollutants would in-
crease the valuation of public benefits, but given the sparsity of accurate
data regarding marginal damages of local pollutants in Bangalore, we are
unable to include this valuation in this study.
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