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Abstract—We investigate the willingness of individuals to persist at ex-
ploration when confronted by prolonged periods of negative feedback. We
design a two-dimensional maze game and run a series of randomized ex-
periments with human subjects in the game. Our results suggest individuals
explore more when they are reminded of the incremental cost of their ac-
tions, a result that extends prior research on loss aversion and prospect
theory to environments characterized by model uncertainty. In addition,
we run simulations based on a model of reinforcement learning that ex-
tend beyond two-period models of decision making to account for repeated
behavior in longer-running, dynamic contexts.

I. Introduction

Universal foreknowledge would leave no place
for an “entrepreneur.” His role is to improve
knowledge, especially foresight, and bear the
incidence of its limitations.

—F. H. Knight (1921)

WHAT motivates innovation? A growing literature views
this question as a problem of optimally structured in-

centives to explore new prospects (Che & Gale, 2003; Manso,
2011; Morgan & Sisak, 2016), and recent empirical work has
studied the causal effect on innovation of government sub-
sidies (Howell, 2017), ownership (Guadalupe, Kuzmina, &
Thomas, 2012; Seru, 2014), bankruptcy laws (Acharya &
Subramanian, 2009), career concerns (Aghion, Van Reenen,
& Zingales, 2013), and wrongful discharge laws (Acharya,
Baghai, & Subramanian, 2014). Much of the empirical re-
search on innovation has been at the organizational level, for
broad samples of individuals have been hard to obtain and
mechanisms hard to identify (for a notable exception, see
Azoulay, Graff Zivin, & Manso, 2011).

While incentives clearly are an important motivator to en-
gage in innovation (Lerner & Wulf, 2007), behavioral re-
search suggests that they do not always shape individual
behavior as one might expect (Gneezy, Meier, & Rey-Biel,
2011). In this study, we draw on methods from experimental
economics to examine how the structure of incentives may
affect a decision by an individual to pursue (or avoid) an
unproven path to an uncertain payoff. We construct an exper-
iment to induce an uncertain environment where exploration

Received for publication August 7, 2017. Revision accepted for publica-
tion April 10, 2019. Editor: Shachar Kariv.

∗Rosokha: Purdue University; Younge: École Polytechnique Fédérale de
Lausanne.

This paper benefited from discussions with and comments from Saurabh
Bansal, Tim Cason, and Stephen Leider, as well as workshop participants
at the 2017 North American ESA, 2017 INFORMS Annual Meeting, 2018
Workshop on Experimental Economics and Entrepreneurship, and seminar
participants at Imperial College London.

A supplemental appendix is available online at http://www.mitpress
journals.org/doi/suppl/10.1162/rest_a_00846.

is possible and focus on loss aversion as our mechanism of in-
terest. Specifically, we test how incentive structures that gen-
erate loss aversion affect an individual’s willingness to persist
at an exploratory task. We find that individuals vary consid-
erably in their willingness to explore an uncertain prospect
and that treatments that give rise to loss aversion increase
attempts at exploration.

Our results contribute to a behavioral perspective of what
motivates innovation, with implications for how organiza-
tions might structure incentives to motivate persistence when
attempting a breakthrough innovation. For example, the lit-
erature on tolerance for failure (Azoulay et al., 2011; Manso,
2011; Tian & Wang, 2014) has emphasized the need for or-
ganizations to tolerate early failure and reward long-term
success. Our behavioral findings, however, suggest that an
optimal incentive structure would induce innovators, at the
individual level, to experience the potential benefits of inno-
vation in tandem with the urgency of ongoing losses during
exploration.

We contribute to an emerging literature that uses experi-
ments with human subjects to study innovation. For exam-
ple, Ederer and Manso (2013) test how pay for performance
affects effort to explore; Buchanan and Wilson (2014) in-
vestigate how intellectual property protection encourages in-
novations in the market; Herz, Schunk, and Zehnder (2014)
study overoptimism and overconfidence and show that while
overoptimism is positively associated with innovation, over-
confidence is negatively associated with innovation; Elfen-
bein, Knott, and Croson (2016) test how an equity stake af-
fects the optimal timing of exit from a losing proposition;
and Kagan, Leider, and Lovejoy (2017) investigate how to
divide limited time between design (exploration) and execu-
tion stages during new product development. In this study, we
focus on one aspect of the innovation problem: the decision
to explore an unproven path when there is no direct evidence
from prior search about the likelihood of success. In such
a context, individuals must rely on their own “foresight” to
decide whether success is possible.

We build on Frank Knight’s (1921) proposition that fore-
sight is a key aspect of innovation and entrepreneurship. It
is well known that Knight distinguishes between risk (an un-
known draw from a known probability distribution) and un-
certainty (an unknown draw from an unknown probability
distribution). What is less known is that the context for his
distinction is an innovation problem. Specifically, Knight ar-
gues that innovations are uncertain (by definition) because
the probability distribution is unknown by virtue of being
new. Furthermore, he argues that when little is known about
the true feasibility or returns of a prospect, then markets will
require the entrepreneur to “warrant” a decision to innovate.
The entrepreneur might act on his own (such as starting a
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570 THE REVIEW OF ECONOMICS AND STATISTICS

new venture) or act within an organization (such as leading
a new initiative for a firm), but in either case, the Knight-
ian perspective implies that innovation requires an individ-
ual to first develop an intuition about how the environment
might be and to then bear the consequences (positive or neg-
ative) of being right or wrong. The decision to innovate must
be warranted by the individual innovator because the inno-
vator cannot present probabilistic evidence about the likeli-
hood of success and purchase insurance for the innovation
outcome. When one can provide probabilistic evidence, the
problem is then not one of innovation but, rather, one of risk
management.

We therefore focus on an innovation problem that is some-
what different from the innovation problems presented by
other studies in the literature on innovation. In particular,
bandit models have been used to study learning under uncer-
tainty as a type of innovation problem (Manso, 2011). In a
bandit model, an actor learns about the efficacy of a prospect
over time. In our framework, individuals may learn about the
potential benefit of a prospect, but the benefit is conditional
on getting the prospect to work. Getting the prospect to work,
however, remains fundamentally uncertain because there is
no positive experience from which to learn. Thus, our in-
novation problem focuses on model uncertainty (Hansen &
Sargent, 2001; Lim et al., 2006), where several specifications
are possible, and it is up to the individual to proceed based
solely on intuition about the true underlying model—what
Knight calls foresight.

One might think that our innovation problem is an extreme
case. After all, innovators have strong incentives to try to learn
about the efficacy of an innovation path as they explore it, and
so it would be reasonable to expect innovators to accumulate
probabilistic evidence as quickly as possible. For example,
Nanda and Rhodes-Kropf (2016) present a model in which
innovators stage investments specifically to learn more about
the probability distribution of an innovation prospect prior
to full commitment to the prospect. In their model, innova-
tors (or investors, or both) learn from first-stage experiments
in order to either invest more into continuing down that in-
novation path or to abandon course. We point out, however,
that in the Nanda and Rhodes-Kropf (2016) model (and in
the real world), there are periods during which action must
be motivated by little or no evidence about the probability
of the ultimate outcome (i.e., the first stage in their model).
During such periods of blindness, when cash keeps flowing
out the door and there is little to show for it, one or more key
individuals must take on the responsibility to warrant the de-
cision to continue pursuing the innovation. The most critical
decision during this time is simply whether to keep on trying
or to give up.

Given the nature of the innovation problem defined for this
study, we examine how the structure of incentives for this
problem may affect a decision by an individual to engage in
(or avoid) exploration. In particular we consider one of the
best-established biases in the field of behavioral economics:
loss aversion. Prior research has shown that individuals tend

to interpret gains or losses in different ways (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992). Specifically,
they tend to interpret each gain or loss relative to a reference
point (Kahneman, Knetsch, & Thaler, 1990; Barberis, Huang,
& Santos, 2001), such that a loss affects a value function more
than an equivalent gain (Tversky & Kahneman, 1991).

A brutal fact of innovation and entrepreneurship is that
most prospects fail; moreover, a relatively small share of
successes earn a majority of the rewards (Kerr, Nanda, &
Rhodes-Kropf, 2014). In such situations, the willingness of
individuals to bear the incidence of losses in the pursuit of
rewards may be an important behavioral factor to what mo-
tivates innovation. However, to the best of our knowledge,
there are no studies explicitly investigating loss aversion in
the context of a Knightian innovation. While a related stream
of literature on effort provision (Hannan, Hoffman, & Moser,
2005; Hossain & List, 2012; Armantier & Boly, 2015; Rubin,
Samek, & Sheremeta, 2018) and team productivity (Dickin-
son, 2001; Hong, Hossain, & List, 2015) has found that loss
aversion plays a significant role in determining an individ-
ual’s decision to expend resources to achieve a goal, the ex-
tent to which loss aversion affects an individual’s willingness
to persist at innovation remains unexplored.

In summary, we investigate the intersection of two topics:
innovation problems in which there is little (or no) evidence
about the probability of success, and the behavioral tendency
to avoid losses. As we will show in section III, the effect
of loss aversion on the decision to explore is not obvious,
especially when one considers the role of foresight in moti-
vating the decision to explore. To examine this question, we
designed an environment where we could manipulate incen-
tives for exploration while independently testing conditions
that promote or reduce loss aversion.

II. Experimental Design

In this section, we explain the design of our experiment.
Given the unusual setup of our innovation problem, it is im-
portant to first explain how subjects are allowed to behave
within the experiment and the instructions provided. In sec-
tion III, we describe how we model loss aversion and develop
predictions for our experiments, given the nature of the envi-
ronment described here.

Our research question called for the development of an en-
vironment in which the structure, rules, and incentives would
(a) lead each subject to develop a multiple-model view of the
environment; (b) lead each subject to develop foresight into
a superior solution to the game under one of those models;
(c) avoid revealing information about whether the foresight
would work (i.e., maintain uncertainty); (d) allow researchers
to manipulate incentives to induce loss aversion without oth-
erwise changing the expected earnings from the game; and
(e) unfold over repeated trials so that researchers could test
subjects’ persistence at exploration. We were unable to find
such an environment in the literature, so we designed a custom
environment to meet our research needs—one that we call the
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FIGURE 1.—MAZE SETUP

Subjects start the game at D4. They can navigate around empty cells, cannot backtrack, and cannot hit
walls. Walls are light gray. Doors at B4 and F4 are dark blue (dark gray in the figure). Subjects can hit a
door from either side. A subject who hits a closed door then jumps to the start position at D4. The top door
at F4 is opened on the second hit and then disappears for the remainder of the experiment. The bottom door
at B4 remains closed and is displayed as dark blue for the entire experiment. Potential reward placements
are marked in the figure with an R (at G4, D1, D7, and A4), but neither the potential nor actual reward
placements are displayed to subjects. A cell flashes green when a subject reaches a reward, and the subject
then moves back to the start position at D4. Grid coordinates are not visible. Online appendix B provides
step-by-step screenshots of a sample game.

Maze Game.1 Although the game lacks verisimilitude as an
example of innovation, it does reflect the underlying tension
between an option to exploit and an option to explore, and
the game allows us to carefully and independently vary each
of the factors of interest we identified earlier.

A. Rules of the Environment

The Maze Game is played on a 7 × 7 grid, illustrated in
figure 1. At the start of the game, participants are placed in the
center cell (marked “start” in the figure) and given 500 moves
to play. The game ends and subjects are paid only when they
complete all 500 moves. Participants are instructed to move
around the grid to discover and earn rewards, and the number
of moves is updated and displayed with each move.

Four types of cells appear on the grid: empty cells (in
white), walls (shaded in gray), doors (shaded in blue, but
dark gray in the figure), and rewards (shaded in green, once
discovered). While we describe gray cells as “walls” and blue
cells as “doors,” we do not provide any such description or in-
terpretation to subjects. Instead, the instructions for the game
state only: “Your moves may be blocked and/or you may be
forced to restart from a given position”; they are then left on
their own to infer what they will about the environment (see
section IIC and online appendix A for the additional details
about the instructions used in the experiment). Subjects can

1Designing an environment to vary incentives independent of loss aver-
sion is a difficult problem. Although other researchers have identified the
problem (see note 10 in Elfenbein et al., 2016—“We chose to shift the RL
parameters by +130 to avoid problems associated with loss aversion”), our
paper is the first study we know of to test changes in both the incentive
to explore and conditions for loss aversion without changing the expected
earnings from the game.

move through empty cells one move at a time. Subjects can-
not move into walls or attempt to move into walls because
the relevant button in that case is disabled. Subjects can move
into (or “hit”) a door from any side, but immediately upon
hitting a door, they jump back to the start position at the center
of the board. The top door (at F4 in figure 1) will “open” and
permanently disappear after the second hit. The bottom door
(at B4 in figure 1) remains closed at all times throughout the
experiment—that is, no matter how many times a subject hits
the door, the door always flashes red and the subject always
returns to the start position.2 Online appendix B provides
step-by-step screenshots for the opening moves of a sample
game.

The spatial distribution and frequency of rewards are
stochastic, and (unlike doors) the potential positions for re-
wards are not marked on the grid or shown to subjects. In-
stead, participants need to learn about both the positions in
which rewards can appear and the relative frequency of re-
wards in those positions. When a participant discovers a re-
ward, it is temporarily shown to her on the board (as a green
square and a reward amount); the reward then is added to the
game balance (displayed at the top of the game in dollars),
and the participant returns to the start position at the center
of the board. We refer to all of the steps taken from starting at
the center of the board to finding a reward (or hitting a door)
and returning to the center of the board as a cycle. At the
start of each cycle, a new reward is randomly and invisibly
positioned into one of the four locations on the grid (G4, D1,
D7, or A4 in figure 1).

The game does not allow backtracking, which limits the
number and types of strategies available to subjects and
makes it possible for us to model the relative expected pay-
off for each strategy. Specifically, the no-backtracking rule
works in conjunction with the structural layout of the maze
to ensure that rewards are always discovered with 3, 9, 15,
or 21 steps when a subject chooses to go through the top
door.3 Because the layout of both the maze (figure 1) and
the distribution of rewards (table 1) are left/right symmetric,
the subject actually makes only one substantive choice at the
start of each cycle: to go up from the start position or to go
down. Once the top door is opened (after the second hit, and
as shown in figure 2a), then the two options also map to styl-
ized notions of exploitation (go up and find a reward with
relative certainty) and exploration (go down in anticipation

2We considered using an alternative configuration in which the bottom
door would open after perhaps five, ten, or fifteen attempts, but we deter-
mined that such a design would only truncate evidence about the extent to
which subjects would be willing to persist at trying to open the bottom door.
Given that the objective of our study is to test such persistence, we selected
a configuration in which the bottom door always remains closed.

3A participant who chooses to go through the top door could choose to
go clockwise or counterclockwise. In either case, however, the rewards are
discovered with 3, 9, 15, or 21 steps because of the symmetric layout and the
fact that the participant cannot backtrack. The layout also guarantees that
regardless of clockwise or counterclockwise choice, the participant learns
the same information about the position of rewards.
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TABLE 1.—DESIGN PARAMETERS

a. Placement of Rewards b. Payoff Structure

Location Baseline Breakthrough Parameters Gains Losses

Top (G4) 0.25 0.25 Starting balance $1.50 $6.50
Left (D1) 0.25 0 Moves per game 500 500
Right (D7) 0.25 0 Cost per move $0.00 $0.01
Bottom (A4) 0.25 0.75 Reward amount $0.06 $0.06

(a) Rewards are placed on the grid according to the two probability distributions. (b) “Starting balance”:
endowment at the beginning of the game. “Moves per game”: total number of moves available to the subject
in the game. “Cost per move”: cost assessed on each move and deducted from the current balance. “Reward
amount”: amount added to the participant’s total balance upon reaching the reward.

of opening the bottom door—an innovation that might lead
to superior outcomes).

B. Treatments

Given the layout and rules of the environment described
above, we vary the structure of incentives within the experi-
ment in two ways: we vary the placement of rewards to vary
the relative benefit of exploration and vary the direction of
earnings to vary exposure to losses. Thus, we implement a
2 × 2 factorial design. We vary each factor such that a change
in one dimension does not affect expected payoffs resulting
from differences in the other dimension. In this section, we
describe the configuration of two probability distributions for
the placement of rewards (baseline versus breakthrough) and
the two earning policies for the avoidance or inducement of
loss aversion (gains versus losses). In section IIC, we high-
light the instructions provided regarding the four treatments.

Factor 1: Placement of rewards. Table 1a presents two con-
figurations for the placement of rewards used in the exper-
iment. First, in the baseline treatment, rewards are equally
likely to appear in any of four potential positions: a top po-
sition (G4), a left position (D1), a right position (D7), and a
bottom position (A4). Second, in the breakthrough treatment,
rewards are skewed to appear only at the top position 25%
of the time and at the bottom position 75% of the time. The
distributions of rewards were chosen carefully so that the ex-
pected number of moves to the reward through the top door
(F4) is the same in both the baseline and breakthrough treat-
ments, even as the relative incentive to explore through the
bottom door (A4) increases between the baseline and break-
through. In the baseline treatment, the expected number of
moves to earn a reward through the bottom door is the same
as the expected number of moves to the reward through the
top door; as such, once the top door is open there is no in-
centive to explore the possibility of opening the bottom door.
In the breakthrough treatment, however, the expected num-
ber of moves to the reward through the bottom door (if it
were to open) is fewer than the expected number of moves to
the reward through the top door; as such, a participant with
foresight that the bottom door might open would then have
an incentive to try the bottom door. In this way, we create a
breakthrough opportunity (i.e., a shortcut), but only for those
willing to act on such foresight. We summarize this key in-

sight to the baseline versus breakthrough manipulation with
the following remark:

Remark 1. The expected number of moves to the reward
through the top door is the same in both the baseline and
breakthrough treatments.

Factor 2: Framing of rewards. Table 1b presents two fram-
ings of earnings used in the experiment. In the gains treat-
ment, subjects begin the game with an initial balance of $1.50
and each move is free (i.e., costs $0.00); the reward amount
remains constant at $0.06. In the losses treatment, subjects
begin the game with a higher initial balance of $6.50, and
each move costs $0.01; the reward amount remains constant
at $0.06. Notice that because every subject has 500 moves
and the number of moves is both fixed and known to partic-
ipants at the start of the game, the expected payoffs at the
end of the game are equivalent for both the gains and losses
treatments. We summarize this key insight to the gains versus
losses manipulation with the following remark:

Remark 2. The payoffs for both the gains and losses treat-
ments are equivalent.

C. Instructions

The instructions provided to the subjects were identical in
the four treatments. In particular, the main part of the instruc-
tions, which pertained to the rules of the maze game, was as
follows: “In the experiment, you will navigate through a maze
and collect rewards. You can observe your location, your bal-
ance, and the remaining number of moves available to you in
the game. You will start the game with 500 moves. You must
complete all 500 moves in order to be paid a bonus. Rules for
your game were determined prior to the start of play. Your
moves may be blocked and/or you may be forced to restart
from a given position. You must navigate around the board,
subject to the rules, in order to collect rewards.” (See online
appendix A for a full set of instructions.) This is all that sub-
jects knew about the experimental setting prior to start of the
game.

The instructions were ambiguous for several reasons. First
and foremost, our goal was to focus on behavior in uncer-
tain environments. Thus, we did not provide any information
about the distribution of rewards or about the behavior of
doors. Instead, subjects learned information about rewards
and doors through experience. Second, we did not want to
induce wrong beliefs about the environment through the in-
structions, as doing so could be considered a form of decep-
tion. To that end, we chose not to tell the participants that
the doors might (or might not) be permanently removed after
an unknown number of tries. Instead, we chose to remove
the top door after the second hit to demonstrate that doors
might be removed, but we chose not to explicitly say any-
thing about the bottom door. As such, participants learned
about the possibility that doors may open (in general) only
through experience rather than through instructions. Third,
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FIGURE 2.—MODELS OF THE ENVIRONMENT

Potential reward positions are marked with a capital R (G4, D1, D7, A4). The reward positions are not shown to subjects but must be discovered. The top door (F4) is opened upon the second hit, and it remains open
for the duration of the experiment. The bottom door (B4) remains closed for the duration of the experiment. Subjects can hit a door from any side; if they do, the door temporarily turns red and they return to the start
position. (a) Actual model of the environment with the bottom door closed. (b) Foresight model of the environment with the bottom door open.

we wanted to start each of the four treatments with the exact
same information regarding the game to ensure a clean com-
parison between treatments. Specifically, we did not want to
emphasize any asymmetry between losses or gains in the in-
structions, because that might induce differences in behavior
due to differences in explanations and not due to differences
in the desired treatment conditions. Instead, the framing of
loss aversion was imposed by varying the starting balance
and cost of moves between the two settings and the intuitive
design of the maze game environment.

III. Predictions

In this section we develop predictions for our experiment.
A challenge with predicting outcomes for the Maze Game is
that the environment is inherently uncertain: there is no ob-
jective information about the distribution of rewards, and we
leave it up to the individual to evaluate whether the bottom
door will, or will not, open (thereby changing the future val-
uation of rewards). Furthermore, because each period in the
game is unique and the environment is uncertain, any strat-
egy that did, or did not, work in the past could lead to a new
outcome at a later stage in the game. We therefore do not rely
on probability updating by subjects but rather develop pre-
dictions based on how loss aversion interacts with Knightian
foresight (i.e., a subjective belief about a possible distribu-
tion of future rewards in the game) to increase or decrease
expected per period rewards of future exploration.4

Our game allows for competing views (i.e., multiple mod-
els) about an uncertain environment. Figure 2 illustrates these

4Note that there also could be another level of crossed factors affecting
our predictions: whether individuals actually are, or are not, loss averse.
The assumption of loss aversion has been widely tested in the literature,
however, and so for the purposes of this study, we assume that individuals
are in fact loss averse. The effect of loss aversion, however, has not been

two views. In the actual model (panel a), the top door is
opened, but the bottom door always remains closed; this view
is consistent with both the experience of subjects and the ac-
tual rules of the environment. In the foresight model (panel
b), the top door is opened but subjects consider the possibil-
ity that the bottom door also may be opened through some
unknown set of actions at some point during the game. This
view is consistent with an intuition of how the rules of envi-
ronment might be, given what happened to the top door.

While we are able to manipulate the placement and fram-
ing of rewards (baseline versus breakthrough and gains versus
losses), we are not able to manipulate whether individuals do
in fact consider a foresight model of the environment when
making decisions. We therefore pursue two lines of analytical
inquiry to predict how being loss averse (or not) and/or how
having foresight (or not) affect the likelihood of exploration.
We then compare different cases under the model to derive
testable predictions for the experiment. Specifically, we de-
rive the probability that an agent will, or will not, take an
exploratory action, which we define as choosing to go down
from the starting position during the game.

A. Stochastic Choice Model

To derive our predictions, we apply a classic stochas-
tic model of choice (Luce, 1959) with four simplifying as-
sumptions about subjects’ behavior. The first assumption
is regarding how subjects bracket the payoffs. Specifically,
when making a decision in period t , we assume that subjects
will integrate all of the payoffs while following the same
strategy, s, in each period of the remaining horizon, ht . To
do this, we begin by calculating the expected per period

investigated in the context of Knightian uncertainty. That is the focus of
this study.
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rewards for each of the four available strategies s ∈ {Up-
Right, Up-Left, Down-Right, Down-Left} for each of the
models m ∈ {actual, foresight}: us,m

t = ∫
Ft

rs,m

cs,m (x) dx, where
Ft is the subject’s subjective assessment of the distribution
of rewards; cs(x) is number of steps taken using strategy s
until either hitting the door or reaching the reward at posi-
tion x; and rs,m is the reward amount obtained by follow-
ing strategy s when considering model m.5 Then, defining
uU,m

t = max{uUR,m
t , uUL,m

t } and uD,m
t = max{uDR,m

t , uDL,m
t },

we calculate the value of going up or down for each of the
two models of the environment under each of the gains and
losses treatments:

Up Down

Gains V U,m
t,g = V D,m

t,g =
v (ht × uU,m

t ) v (ht × uD,m
t ).

Losses V U,m
t,l = V D,m

t,l =
v (ht × uU,m

t − ht ) v (ht × uD,m
t − ht ).

The second assumption pertains to the value function, v (.).
Specifically, we will use the simplest model of loss aver-
sion: a piece-wise linear function with a kink at 0: v (x) = x
if x ≥ 0 and v (x) = δx if x < 0 with δ > 1 denoting loss
aversion. The two assumptions considerably simplify the
predictions. Specifically, to examine the probability that an
agent will choose to explore the breakthrough opportunity,
we use the logit specification of the stochastic choice model
(Luce, 1959): pD,m

t = 1

1+eVU,m
t −V D,m

t
, where pD,m

t denotes the

probability of taking an exploratory action (choosing to go
down from the starting position) in period t under model
m ∈ {actual, foresight} of the environment. The stochastic
choice model has been widely used to study individual choice
across economics and operations domains (Luce, 1959; Mc-
Fadden, 1974; Su, 2008), as well as outcomes in multiagent
strategic environments (McKelvey & Palfrey, 1995). Note
that the probability depends on the difference in the valua-
tion between going up and going down, which is simple given
the piece-wise linear value function.

The third assumption is that subjects’ assessment of the
distribution of rewards is consistent with the theoretical dis-
tribution presented in table 1a. In particular, this assump-
tion implies that (a) the realized placement of rewards and
the subjective assessment of that distribution are not sub-
stantially different between gains and losses (across the two
treatments, subjects expect the same number of moves to the
reward through a given door); and (b) the realized placement
of rewards and the subjective assessment of that distribution
in baseline and breakthrough are such that (a) there is no dif-
ference in subjective assessment of the expected moves to the
rewards through the top door and (b) the expected number of
moves to the reward through the bottom door (if open) is less
in breakthrough than in baseline. While the third assump-
tion is helpful to derive theoretical predictions for our exper-
iment in expectation, we will relax this assumption in our em-

5Notice that rDR,actual = rDL,actual = 0 and cDR,actual = cDL,actual = 2.

pirical analysis (section IVC) and simulated learning model
(section V).

The fourth and final assumption pertains to subjects’ be-
liefs about the behavior of the bottom door. In particular, we
assume that under the actual model, subjects believe that the
bottom door is closed and will remain closed for the remain-
der of the experiment. Under the foresight model, however,
subjects believe that the door will open on the next attempt
and stay open for the remainder of the experiment. Given
the ambiguous nature of the environment, we adopt a binary
representation of beliefs about the bottom door as a simpli-
fication. We relax this assumption later (section V) when we
introduce a learning model in which agents may hold and
update more complicated beliefs about the bottom door.6

B. Predicted Probability of Exploration

In view of the stochastic model of choice and assumptions
reviewed above, we now derive the predicted probability of
exploration (of going down to the bottom door) for the exper-
iment. We consider four cases of our 2 × 2 design, depend-
ing on whether participants do (do not) consider a foresight
model and whether participants are (are not) subject to loss
aversion.

Case 1: Actual model, no loss aversion. In the first case,
agents do not have foresight and are not loss averse. In other
words, they believe that the bottom door is closed and their
value function is linear. Then the difference between payoffs
for the up path and the down path will be the same between
the gains (subscript g) and losses (subscript l) treatments, as
well as between the baseline (subscript ba) and breakthrough
(subscript br) treatments:

V U
ba,g − V D

ba,g ≈ V U
ba,l − V D

ba,l ≈ V U
br,g − V D

br,g ≈ V U
br,l − V D

br,l

⇒ pba,g ≈ pba,l ≈ pbr,g ≈ pbr,l .

Thus, in case 1, there should be no significant difference in
the number of exploratory actions among the four treatments
of the experiment.

Case 2: Actual model, loss aversion. In the second case,
agents do not have foresight, but they are loss averse. That
is, they believe that the bottom door is closed, but agents
value losses more than gains. Then the valuation of gains and
losses will differ, but there should be no difference between
the baseline and breakthrough treatments:

V U
ba,g − V D

ba,g ≈ V U
br,g − V D

br,g < V U
ba,l − V D

ba,l ≈ V U
br,l − V D

br,l

⇒ pba,g ≈ pbr,g > pba,l ≈ pbr,l .

6It also is possible that subjects could believe that the bottom door will
open after some number of, or combinations of, future attempts on the door.
For the predictions made in this section, it is important only that subjects
believe that the bottom door can open under foresight.
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FIGURE 3.—SUMMARY OF PREDICTIONS

N denotes the number of exploratory actions for configuration {ba for baseline, br for breakthrough} and framing {g for gains, l for losses}. The > symbol indicates a significant difference between conditions; the ∼
symbol indicates no significant difference.

Thus, in case 2, there should be fewer exploratory actions
in the losses treatment than in the gains treatment, but there
should be no difference in the number of exploratory actions
when comparing baseline and breakthrough treatments.

Case 3: Foresight model, no loss aversion. In the third case,
agents have foresight, but they are not loss averse. In other
words, agents believe that the bottom door is open and their
value function is linear. Then there will be a difference in the
payoffs between the baseline and breakthrough treatments,
but that difference will be the same for the gains and losses
treatments:

V U
ba,g − V D

ba,g ≈ V U
ba,l − V D

ba,l > V U
br,g − V D

br,g ≈ V U
br,l − V D

br,l

⇒ pba,g ≈ pba,l < pbr,g ≈ pbr,l .

Thus, in case 3, there should be fewer exploratory actions
in the baseline than in the breakthrough treatments, but there
should be an equal number of exploratory actions when com-
paring the gains and losses treatments.

Case 4: Foresight model, loss aversion. In the fourth case,
agents have foresight and are loss averse. In other words,
they believe that the bottom door is open, and agents value
losses more than gains. Then there will be a difference in
valuations between the baseline and breakthrough conditions.
Additionally, there will be a difference in valuations between
the gains and losses conditions in the breakthrough condition,
but there will not be a difference in valuations between the
gains and losses conditions in the baseline condition:

V U
ba,g − V D

ba,g ≈ V U
ba,l − V D

ba,l > V U
br,g − V D

br,g > V U
br,l − V D

br,l

⇒ pba,g ≈ pba,l < pbr,g < pbr,l .

Thus, in case 4, there should be fewer exploratory actions
in the baseline condition than in the breakthrough condition.
Furthermore, in the breakthrough condition, there should be
fewer exploratory actions in the gains condition than in the
losses condition.

C. Summary of Predictions

Figure 3 summarizes the predictions from the four cases.
Specifically, the number of exploratory actions should be the
same in the gains and losses treatments if subjects are not loss
averse (cases 1 and 3), because costs associated with moving
cancel out when evaluating the differences in the values V U

t
and V D

t . However, if subjects are loss averse (cases 2 and 4),
the direction of the prediction will depend on whether sub-
jects consider the actual model or the foresight model.7 A
comparison between the baseline and breakthrough condi-
tions is more complicated, because rewards come from dif-
ferent probability distributions. However, we chose the distri-
butions of rewards such that the expected number of moves to
a reward through the top door is the same on average. There-
fore, if subjects act according to the actual model, we expect
no difference in the number of exploratory actions on average
(cases 1 and 2); but if subjects act according to the foresight
model, then the path through the bottom door will be more
attractive under the breakthrough treatment, on average, than
under the baseline treatment (cases 3 and 4).

To summarize, the effect of loss aversion depends on
whether subjects do, or do not, act with foresight. If they do

7If subjects act according to the actual model, the value difference between
V U

t and V D
t will increase with an increase in loss aversion, leading to fewer

exploratory actions. But if subjects act according to the foresight model,
the value difference between V U

t and V D
t will decrease with an increase in

loss aversion, leading to more exploratory actions.
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TABLE 2.—RANDOMIZATION CHECK AND DEMOGRAPHICS BY CONDITION

Age Stat Econ Biz
Female Male ≥ 34 ≥ 2 ≥ 2 ≥ 2 College

Gains 50.5% 49.5% 49.0% 22.5% 28.5% 32.0% 56.0%
Losses 48.0% 51.0% 51.0% 20.5% 27.5% 32.0% 53.0%

“Stats”: percentage of subjects with more than one course in statistics. “Econ”: percentage of subjects
with more than one course in economics. “Biz”: percentage of subjects with more than one course in
business. “College”: percentage of subjects with a college degree.

act with foresight, then loss aversion will lead to more per-
sistence at exploration, but if they do not act with foresight,
then loss aversion will lead to less persistence at exploration.
The basic intuition for this result is that loss aversion magni-
fies mistakes: if subjects believe that the bottom door can be
opened, then it would be a mistake to go up, and going up is
more costly under loss aversion. In the next section, we test
these predictions with human subject experiments.

IV. Results

To test our predictions, we recruited 300 subjects from the
Amazon Mechanical Turk labor market (“M-Turk”) and ran-
domly assigned subjects to a treatment such that each baseline
treatment had 50 participants and each breakthrough treat-
ment had 100 participants. We chose the M-Turk population
for the experiment as it allowed us to run a large number of
human participants through the experiment with strong incen-
tives. Participants were restricted to M-Turk workers located
in the United States, with a “master” status and an approval
rating of at least 90% on prior work conducted at M-Turk.
The M-Turk population is now widely used to recruit sub-
jects for social science experiments (Paolacci, Chandler, &
Ipeirotis, 2010; Buhrmester, Kwang, & Gosling, 2011; Hor-
ton, Rand, & Zeckhauser, 2011; Rand, 2012; Goodman, Cry-
der, & Cheema, 2012).

Participants were told in an advertisement that they could
earn up to $4.00 as part of the experiment, and after recruit-
ment, they were told that they would earn a base payment of
$2.00, plus the possibility for a substantial bonus, depend-
ing on decisions they made within the game. Final earnings
ranged between $3.24 and $4.38 (mean = $3.86). As the ex-
periment lasted approximately 15 minutes, on average, the ef-
fective average hourly earnings of $15.44 was a high compen-
sation rate for M-Turk workers (Horton & Chilton, 2010, for
example, find a median reservation wage of $1.38 per hour).
Experiments were conducted online on a private web server.
We ran experiments between the gains and losses conditions
simultaneously to avoid potential differences in populations
related to the hour of the day or the day of the week (i.e.,
any such population differences should be randomly assigned
equivalently across the conditions). An ex post randomiza-
tion check (table 2) between the gains and losses conditions
suggests a relatively uniform assignment between conditions
for educational and demographic characteristics.

The rest of this section is organized as follows: First, we
present the data collected by the experiment. Second, we con-

duct permutation tests for our main inferential test of causal-
ity and our main result. Next, we perform regression analyses
to control for heterogeneity in the random placement of re-
wards and to correlate the effect of demographic variables
with exploratory behavior.

A. Data

The number of exploratory actions (decisions to go down
from the starting position after the top door has been opened)
is the main outcome of interest for the study. Figure 4 plots the
average cumulative number of exploratory actions by condi-
tion. Two observations stand out in the figure. First, subjects
tended to explore the unproven path more frequently in the
breakthrough treatment than in baseline. Second, they tended
to explore the unproven path more in the losses treatment than
in gains. Thus, we find qualitative support for the predictions
in section III with respect to loss-averse subjects who act with
foresight. Note that greater exploration under breakthrough
compared to baseline is a basic requirement for our exper-
iment.8 If individuals did not try to take a shorter path to
rewards in the game after discovering an advantageous dis-
tribution of rewards, then the game itself would not be a valid
test for exploration.

Table 3 reports descriptive statistics for aggregated behav-
ior in our experiment. In the following two sections, we test
the statistical significance of differences in the level of ex-
ploration with permutation tests and regression analysis.

B. Permutation Tests

Table 4 reports statistical comparisons between levels of
exploration by treatment condition made through two-tailed
permutation tests. Permutation tests are nonparametric ran-
domization tests in which the distribution of the test statistic
is obtained through random permutation of labels for treat-
ment among observations (Phipson & Smyth, 2010; Good,
2013). The p-value for the statistical comparison is obtained
by comparing the actual test statistic to the constructed dis-
tribution. For example, consider the cells in the breakthrough
column: there were 100 observations for gains and 100 obser-
vations for losses. Thus, there were 100 observations labeled
“G” and 100 labeled “L,” for a total of 200 observations in the
breakthrough column. Considering the difference of means
as the statistic of interest, let us denote the original differ-
ence as d-original. Under the null hypothesis, the labels are
interchangeable among subjects because treatment does not
matter. Therefore, in order to construct the empirical distri-
bution of the test statistic under the null hypothesis, we gen-
erate m random permutations of the labels (e.g., 10,000), and
then, for each permutation, calculate the statistic of interest,

8As a robustness test, we ran experiments for an intermediate configu-
ration that weighted rewards toward the bottom more than baseline, but
less than breakthrough (see online appendix C). As expected, the level of
exploration was greater than baseline and lower than breakthrough.
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FIGURE 4.—CUMULATIVE NUMBER OF EXPLORATORY ACTIONS FOR HUMAN SUBJECTS

TABLE 3.—SUMMARY STATISTICS

(1) (2) (3) (4)
Baseline Breakthrough

Gains Losses Gains Losses

Time per move 1.38 1.27 1.28 1.32
(0.54) (0.45) (0.6) (0.55)

Open top door 3.12 3.38 3.47 3.35
(0.84) (0.82) (2.29) (1.25)

Exploration 4.04 5.38 7.32 10.83
(2.93) (5.38) (6.79) (13.79)

Exploration—Interim 246.74 276.08 217.52 221.59
moves (153.18) (140.23) (159.94) (157.32)

Exploration—Final 252.12 222.82 281.53 277.21
attempt (153.47) (140.39) (160.01) (157.7)

Exploitation 41.14 39.46 39.37 38.91
(3.53) (3.47) (3.15) (3.09)

Exploitation— 15.0 15.86 17.17 15.7
Clockwise (3.62) (3.6) (7.46) (7.11)

Exploitation— 16.16 15.3 13.11 14.13
Counterclockwise (4.17) (3.96) (7.36) (7.06)

Number of subjects 50 50 100 100
Number of moves 500 500 500 500

Values averaged by condition. Standard deviations in parentheses. “Time per Move” in seconds. “Open
Top Door” is number of attempts at a door before the top door opened. All values for exploration and
exploitation are calculated after top door opened. “Exploration” is number of exploratory actions (decisions
to go down from the starting position after the top door has been opened). “Exploration—Interim moves” is
number of moves between consecutive exploration actions. “Final exploration” is number of moves taken
in game at time of final exploration action. “Exploitation” is number of times moving up. “Exploitation—
Clockwise” is number of times moving up and left. “Exploitation—Counterclockwise” is number of times
moving up and right.

d-permut. Finally, by counting the number of permutations,
b, for which the absolute value of the statistic of interest ex-
ceeds or is equal to the absolute value of d-original, the two-
tailed p-value rejecting the null hypothesis can be calculated
as p = b+1

m+1 (Ernst, 2004; Phipson & Smyth, 2010).
As reported in table 4, there are two key results to consider.

First, we find that subjects were significantly more likely to
explore the unproven path (bottom door) in the breakthrough
treatment, regardless of whether they are under a condition of
gains or losses. Although this is unsurprising, it confirms that
subjects do act with foresight in the experiment and that we
therefore achieved our objective of inducing the innovation

TABLE 4.—AVERAGE NUMBER OF EXPLORATORY ACTIONS

Baseline Breakthrough

Gains 4.04 ≪ 7.32
(0.414) (0.678)

� ∧∧
Losses 5.38 ≪ 10.83

(0.752) (1.374)

Bootstrapped standard errors are in parentheses. 
 and ≫ denote significance at the 0.05 and 0.01
levels, respectively. ∼ denotes no significance. p-values are determined using two-tailed permutation tests.
The unit of observation is a unique subject.

problem described at the outset of the paper. Second, in the
main result of the paper, we find that human subjects attempt
to go down the unproven path (in an attempt to open the bot-
tom door) significantly more when incentives are framed as
losses, as opposed to when equivalent incentives are framed
as gains. These two results are in line with the predictions in
section III for loss-averse agents who act with foresight.

It is important to point out that randomness in the place-
ment of rewards is likely to generate substantial heterogene-
ity with respect to the realized sequence of signals in each
treatment. It is not inconceivable that a sequence of the place-
ment of rewards from the baseline treatment might actually
be more representative of a breakthrough treatment than a
baseline treatment (and vice versa) due to the random nature
of the environment. Although it would be unlikely for that to
happen on average (and the descriptive statistics suggest that
it did not), our research design is “between-subjects” and so
results may be clearer if we take the heterogeneity of signals
into account. In the sections that follow, we do so in two ways.
First, we condition on the theoretical potential net benefit of
succeeding at the exploration task (opening the bottom door),
regardless of whether the subject comes from the baseline or
breakthrough treatment. Second, we construct matched sam-
ples where subjects from different treatment conditions for
gains versus losses are paired up and compared to each other
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FIGURE 5.—NET BENEFIT, CONDITIONAL ON FORESIGHT MODEL BEING TRUE

Thin lines represent the expected difference between going through the bottom door (B4) and the top door (F4) under the foresight model for the remainder of the experiment. Expected values are obtained from realized
signals by applying Bayes’ rule, starting with a uniform prior. Each subject has his or her own trajectory with respect to the expected net benefit over time. Thick black lines represent the average potential net benefit
for each treatment.

based on the exact sequence of reward placements (i.e., “sig-
nals”) that they observe.

C. Regression Analysis

Consider the following scenario. Two participants—one
in the baseline treatment and the other in the breakthrough
treatment—both find their first reward at location A4. In other
words, both participants receive the same first signal about
the distribution of rewards, regardless of treatment. Although
the two subjects are assigned to different reward distributions,
the situation is the same from their perspective. Therefore,
to better control for homogeneity between treatments and
heterogeneity within treatments, we pursue two regression
approaches.

In our first regression approach, we develop a new mea-
sure for “net benefit, conditional on foresight.” Specifically,
we calculate the difference in the expected rewards one would
obtain between opening and going through the bottom door
(location B4) for the remainder of the experiment, compared
to going through the top door (location F4). We updated ex-
pectations using Bayes’ rule, starting with a uniform prior.
Knowing the potential net benefit of opening the bottom door
allows us to compare decisions made by subjects with differ-

ent realized signals at different points in time. Moving to a
regression framework also allows us to control for other de-
mographic and educational characteristics. Figure 5 presents
the new net benefit measure for each treatment. As expected,
there is substantial heterogeneity within each treatment in
terms of the placement of rewards actually observed by sub-
jects. Furthermore, there is substantial overlap between the
baseline and breakthrough treatments—variation that is sta-
tistical noise in our permutation tests. The average net benefit
of opening the bottom door (the bold black lines in figure 5) is
also consistent with the parameters we set for the distribution
of rewards for each treatment.

Results for our first regression are presented in table 5.
We determine whether a subject goes down (coded 1) or up
(coded 0) from the starting position and run a logit model
for the probability of taking an exploratory action (attempt-
ing to go down through the bottom door) once the top door
is opened. We regress on treatment condition (losses coded
1, gains coded 0), and control for net benefit, moves into
the game, and demographic characteristics.9 Coefficients are

9Although including net benefits and moves in the regression introduces
endogeneity into our model specification, the goal of the analysis in table
7 is to assess whether the estimation of losses changes after controlling
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TABLE 5.—LOGIT MODEL OF EXPLORATION, GIVEN POTENTIAL NET BENEFIT

(1) (2) (3) (4)

Losses 1.397** 1.394** 1.413** 1.434**

(0.168) (0.167) (0.179) (0.182)
Net benefit 1.001 1.001 1.001

(0.001) (0.001) (0.001)
Moves 0.996*** 0.996***

(0.000) (0.000)
Sex 0.771

(0.107)
Age 0.991

(0.006)
College 1.159

(0.155)
Statistics 1.026

(0.085)
Biz and Econ 0.938*

(0.025)
Constant 0.180*** 0.171*** 0.388*** 0.640*

(0.013) (0.012) (0.033) (0.141)
Observations 15,180 15,180 15,180 14,633
Log likelihood −7,065 −7,060 −6,695 −6,399

The dependent variable is Exploration, coded 1 when going down. The model controls for the “Net
Benefit” of exploration, conditional on Foresight. Coefficients are odds ratios, with robust standard errors,
clustered by subject, in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

reported as odds ratios, and robust standard errors are clus-
tered by subject. The results in table 5 are consistent with
the main result in table 4 from the permutation analysis: we
find a strong, causal association between being in the losses
condition and the likelihood of taking an exploratory action.
Unsurprisingly, there also is a tendency to eventually give
up as one progresses through the game, as indicated by the
highly significant coefficients on moves. Finally, the only de-
mographic variable significant at the 0.05 level is Biz & Econ,
which represents that business and economics students are
marginally less likely to explore overall.

For our second regression approach, we match subjects
based on the realized distribution of signals observed in the
first half of the experiment. We restrict the sample to the first
250 moves in order to limit the effects of sample attrition
from failing to find a match and to confirm that results are
not driven by idiosyncratic behavior in the second half the
game. To match observations, we build a cycle-by-cycle dis-
tribution of reward locations observed by each subject, and
then match a subject from the losses treatment to a subject
from the gains treatment with the same distribution of re-
wards. When there was more than one potential match, we
picked one at random; when there was no match, we dropped
the observations. We determine whether a subject goes down
(coded 1) or up (coded 0) from the starting position and run
a logit model for the probability of taking an exploratory ac-
tion. We again regress on treatment condition and control for
moves into the game. Results from the matched analysis are
presented in table 6.

for the level of net benefits and moves and not to specifically estimate the
coefficients for net benefits or moves. For robustness, we address potential
endogeneity issues in table 8 by removing the variable Net Benefit from the
analysis and controlling for differences in observed signals with a matched
design.

TABLE 6.—LOGIT MODEL OF EXPLORATION, GIVEN MATCHED SAMPLES

(1) (2) (3) (4) (5)
Matched by Signal Matched by Signal and Move

Losses 1.407** 1.423** 1.391*** 1.415*** 1.385*

(0.177) (0.186) (0.138) (0.147) (0.220)
Moves 0.994*** 0.991*** 0.991***

(0.001) (0.001) (0.001)
Constant 0.265*** 0.518*** 0.250*** 0.578*** 0.536***

(0.012) (0.052) (0.019) (0.061) (0.090)
Observations 4,920 4,920 2,731 2,731 1,134
Log likelihood −2,709 −2,642 −1,462 −1,388 −529

Dependent variable is Exploration, coded 1 when going down. Coefficients are odds ratios, with robust
standard errors, clustered by subject, in parentheses. Columns 1 and 2 match observations by the realized
distribution of rewards. Columns 3, 4, and 5 match observations by both the realized distribution of rewards
and for being within +/− one move into the game. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

In columns 1 and 2 of table 6, we again find that subjects
with incentives structured for loss aversion were significantly
more likely to explore. The matching procedure drops 10,260
observations (from 15,180 observations in table 5, to 4,920
observations in column 1 of table 6), but the level of statistical
significance and magnitude of effects remains essentially the
same as in table 5. Next, in columns 3 and 4, we further restrict
the matching procedure to also require that matched pairs of
observations be within a window of +/−1 move into the
game. The more restrictive matching procedure again drops
the sample size (now down to 2,731 observations), and we
again find support for our main result with similar sizes of
effects and levels of significance. Finally, in an attempt to
control for some of the sample selection bias that may result
from the matching procedure itself, in column 5 we resample
observations from column 4 based on the inverse probability
of being selected into the sample by the matching procedure
at a given move into the game. Down-sampling in this way
rebalances the sample so that matches made from earlier in
the game do not dominate the analysis (see online appendix D
for more information). Rebalancing the sample again drops
the sample size by more than half, now to just 1,134 obser-
vations, but the effect size of losses is unaffected and the
statistical significance of the coefficient remains better than
p = 0.05.

Summarizing across all of our empirical results, we find
that human subjects are more likely to explore an uncertain
strategy, with a potentially higher net benefit, when incen-
tives are structured to induce loss aversion. Permutation tests
demonstrate that participants motivated by loss aversion ex-
plore more overall, and regression analyses demonstrate that
participants motivated by loss aversion are more likely to
make an exploratory decision. While these results provide
strong evidence that loss aversion is an important determi-
nant of exploratory behavior, they do not capture how partic-
ipants may learn over time. We use simulation analysis in the
following section to examine this question.

V. Simulations

Qualitative evidence from our human subjects experiments
suggests that individuals learn about their environment and
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FIGURE 6.—REINFORCEMENT LEARNING WITH A CHANNEL FOR FORESIGHT

adjust their behavior over time. As seen in figure 4, subjects
tend to experiment during the start of each game, and then
behavior differentiates by treatment condition. Specifically,
the trajectory of exploration is higher for subjects with incen-
tives structured to induce loss aversion. Also, while persis-
tence at exploration attenuates over time for all treatments,
the attenuation is more gradual under the losses condition. In
this section, we incorporate foresight and loss aversion into
a model of reinforcement learning and calibrate the model to
match results from our experiments.

A. Reinforcement Learning with Foresight

We use Q-learning (Sutton, 1990; Watkins & Dayan, 1992)
to simulate the action selection and learning process of
agents in our environment. Q-learning is a type of reinforce-
ment learning from the machine learning literature. It differs
from seminal models of reinforcement learning in economics
(Roth & Erev, 1995; Erev & Roth, 1998) in that agents learn
(reinforce) values for state-action pairs. In the context of our
environment, a state is a position in the maze, and an action
is one of the potential directions that one can move, {Up,
Down, Left, Right}. We chose a Q-learning approach for sev-
eral reasons. First, it can be applied to classical multiarmed
bandit problems, as well grid-world problems such as our en-
vironment (Sutton & Barto, 1998). Second, Q-learning has
already been used successfully to model learning behavior in
economic environments (Waltman & Kaymak, 2008; Green-
wald, Kannan, & Krishnan, 2010). Third, we can build on
prior research to incorporate model uncertainty into the rein-
forcement learning framework; specifically, we add in a step
for indirect learning (Sutton, 1990; Sutton & Barto, 1998).

Figure 6 provides intuition as to our use of the Q-learning.10

The figure illustrates two channels for learning: a direct chan-
nel that updates the value function based on actual experience
and an indirect channel that bootstraps experience from ei-

10Technical details for Q-learning are presented in online appendix E1.

ther an actual model or a foresight model based on β, the
likelihood of using the foresight model during indirect learn-
ing. Even though the bottom door never opens, the foresight
model simulates experience as if it were open, making an
exploratory action (choosing down in the starting position)
more attractive in the breakthrough treatment. Model learn-
ing captures an important aspect of our innovation problem:
the agent is not sure which model of the environment is true.
The environment provides visual cues (such as walls, doors,
and the disappearance of the top door) to condition human
subjects to consider an alternative model; we simulate that
ambiguity by including an indirect channel for learning.

B. Simulation Results

We fit a Q-learning model to our experimental results by
minimizing the total squared error between results from the
simulation algorithm and results from human experiments.
We run Q-learning simulations across 500 moves, for 1,000
games, for each of the four treatments, and then sum the
squared difference between the averaged simulated value and
the averaged observed value, by treatment. Having thus ob-
tained an average squared error for a given level of parameter
values, we then use a Bayesian optimization algorithm to re-
peat the entire estimation procedure and adjust parameters in
a direction determined by the algorithm to be likely to reduce
error (see online appendix E2 for a complete description of
the optimization procedure).

Figure 7 plots the simulation results for the best-fit param-
eter values (presented in table E1 of the online appendix).
The figure shows that Q-learning simulations closely match
data from our experiment. Importantly, while the value of
the loss-aversion parameter in the gains condition is set to
1.0, the value of the loss-aversion parameter in the losses
condition that is discovered by the optimization procedure is
2.64. This means that levels of loss aversion that are observed
in the literature (e.g., 2.25 in Tversky & Kahneman, 1992)
could explain the difference between the two treatments. In
addition, we consider counterfactuals to show the effect of
removing mechanisms for loss aversion and for foresight. As
expected, if loss aversion is set to 1.0 then there is no differ-
ence between the gains and losses conditions (figure E2 in
the online appendix), and, if the likelihood of learning from
the foresight model during indirect learning is set to 0.0, then
agents do not persist at exploration (figure E3 in the online
appendix).

In summary, our simulation results suggest that loss aver-
sion can lead to greater persistence at exploration in envi-
ronments where actors hold Knightian foresight. Although
existing models (either a multiarm bandit or a reinforcement
learning from actual experience) might appear to be an at-
tractive way to model our problem, such models will never
give any weight to new ideas where there is no probabilis-
tic evidence of success. Thus, our simulations differ from
prior research in that our model of learning accounts for other
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FIGURE 7.—CUMULATIVE NUMBER OF EXPLORATORY ACTIONS FOR SIMULATIONS

motivations for innovation, such as intuition, analogical rea-
soning, and entrepreneurial insight.

VI. Conclusion

In this paper, we investigate the willingness of individuals
to persist at innovation in the face of failure. Specifically, we
incorporate Knight’s idea of foresight into a stochastic model
of choice and find that it helps to explain human exploration in
an uncertain environment with the possibility for innovation.
Moreover, our results suggest that individuals explore more
when they are reminded of the incremental cost of their ac-
tions, a counterintuitive result for research on innovation, but
a result that extends findings on loss aversion and predictions
from prospect theory.

Our results have implications for how incentives can be
framed to increase persistence at a breakthrough innovation.
While the literature on tolerance for failure (Azoulay et al.,
2011; Manso, 2011) emphasizes the need to tolerate early
failure and reward long-term success, our behavioral find-
ings suggest that an optimal incentive structure in an un-
certain environment may also benefit from inducing individ-
uals to experience losses along the way (although perhaps
while also shielding them from the long-term consequences
of being wrong). Studies on escalation of commitment (Staw,
1976, 1981; Staw & Ross, 1978), overconfidence (Camerer
& Lovallo, 1999), and fear of failure (Kihlstrom & Laffont,
1979) often portray such factors in a negative light. Our re-
sults, however, suggest that incentives tailored to induce loss
aversion can be beneficial when the goal is to induce more ex-
ploration. In this respect, Hirshleifer, Low, and Teoh (2012)
and Galasso and Simcoe (2011) find that overconfident
managers and CEOs are associated with greater innovative
activity by the firm (as captured by the number of patents filed
by the firm). These results align well with our interpretation
of Knightian foresight: overconfident managers should have

stronger beliefs about their foresight, and thus they should be
more willing to persist at innovation despite a lack of confir-
matory evidence to justify their actions.

Finally, we note several limitations to our study that open
promising avenues for future research. First, there is sub-
stantial heterogeneity in exploratory behavior between sub-
jects. A question for future research is the extent to which
differences in the willingness to persist are driven by hetero-
geneity in loss aversion and/or how much is driven by other
individual characteristics. Second, the focus of this study is
on the effect that loss aversion has on exploration in uncer-
tain environments. Future work could compare whether the
willingness to persist in a risky (as compared to uncertain)
environment is different. Third, our experiments do not exam-
ine interpersonal or organizational considerations, and we do
not test how loss aversion may be moderated by a social con-
text. Future research could examine how loss aversion affects
innovation decision making in teams. Finally, in our imple-
mentation of the learning model, we assumed a deterministic
path for the evolution of beliefs. Future research could build
on our model of reinforcement learning to explore how the
dynamics of model learning and belief updating relate to a
willingness to persist.
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