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ABSTRACT

National research evaluation initiatives and incentive schemes choose between simplistic
quantitative indicators and time-consuming peer/expert review, sometimes supported by
bibliometrics. Here we assess whether machine learning could provide a third alternative,
estimating article quality using more multiple bibliometric and metadata inputs. We
investigated this using provisional three-level REF2021 peer review scores for 84,966 articles
submitted to the U.K. Research Excellence Framework 2021, matching a Scopus record 2014–
18 and with a substantial abstract. We found that accuracy is highest in the medical and
physical sciences Units of Assessment (UoAs) and economics, reaching 42% above the
baseline (72% overall) in the best case. This is based on 1,000 bibliometric inputs and half of
the articles used for training in each UoA. Prediction accuracies above the baseline for the
social science, mathematics, engineering, arts, and humanities UoAs were much lower or
close to zero. The Random Forest Classifier (standard or ordinal) and Extreme Gradient
Boosting Classifier algorithms performed best from the 32 tested. Accuracy was lower if UoAs
were merged or replaced by Scopus broad categories. We increased accuracy with an active
learning strategy and by selecting articles with higher prediction probabilities, but this
substantially reduced the number of scores predicted.

1. INTRODUCTION

Many countries systematically assess the outputs of their academic researchers to monitor
progress or reward achievements. A simple mechanism for this is to set bibliometric criteria
to gain rewards, such as awarding funding for articles with a given Journal Impact Factor ( JIF).
Several nations have periodic evaluations of research units instead. These might be simulta-
neous nationwide evaluations (e.g., Australia, New Zealand, United Kingdom: Buckle &
Creedy, 2019; Hinze, Butler et al., 2019; Wilsdon, Allen et al., 2015), or rolling evaluations
for departments, fields, or funding initiatives (e.g., The Netherlands’ Standard Evaluation Pro-
tocol: Prins, Spaapen, & van Vree, 2016). Peer/expert review, although imperfect, seems to be
the most desirable system because reliance on bibliometric indicators can disadvantage some
research groups, such as those that focus on applications rather than theory or methods devel-
opment, and bibliometrics are therefore recommended for a supporting role (CoARA, 2022;
Hicks, Wouters et al., 2015; Wilsdon et al., 2015). Nevertheless, extensive peer review
requires a substantial time investment from experts with the skill to assess academic research
quality and there is a risk of human bias, which are major disadvantages. In response, some
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systems inform peer review with bibliometric indicators (United Kingdom: Wilsdon et al.,
2015) or automatically score outputs that meet certain criteria, reserving human reviewing
for the remainder (as Italy has done: Franceschini & Maisano, 2017). In this article we assess
a third approach: machine learning to estimate the score of some or all outputs in a periodic
research assessment, as previously proposed (Thelwall, 2022). It is evaluated for the first time
here with postpublication peer review quality scores for a large set of journal articles (although
prepublication quality scores mainly for conference papers in computational linguistics have
been predicted: Kang, Ammar et al., 2018).

The background literature relevant to predicting article scores with machine learning has
been introduced in an article (Thelwall, 2022) that also reported experiments with machine
learning to predict the citation rate of an article’s publishing journal as a proxy article quality
measurement. This study found that the Gradience Boosting Classifier was the most accurate
out of 32 classifiers tested. Its accuracy varied substantially between the 326 Scopus narrow
fields that it was applied to, but it had above-chance accuracy in all fields. The text inputs into
the algorithm seemed to leverage journal-related style and boilerplate text information rather
than more direct indicators of article quality, however. The level of error in the results was large
enough to generate substantial differences between institutions through changed average
scores. Another previous study had used simple statistical regression to predict REF scores for
individual articles in the 2014 REF, finding that the value of journal impact and article citation
counts varied substantially between Units of Assessment (UoAs) (HEFCE, 2015).

Some previous studies have attempted to estimate the quality of computational linguistics
conference submissions (e.g., Kang et al., 2018; Li, Sato et al., 2020), with some even writing
reviews (Yuan, Liu, & Neubig, 2022). This is a very different task to postpublication peer
review for journal articles across fields because of the narrow and unusual topic combined
with a proportion of easy predictions not relevant to journal articles, such as out-of-scope,
poorly structured, or short submissions. It also cannot take advantage of two powerful
postpublication features: citation counts and publication venue.

Although comparisons between human scores and computer predictions for journal article
quality tend to assume that the human scores are correct, even experts are likely to disagree
and can be biased. An underlying reason for disagreements is that many aspects of peer review
are not well understood, including the criteria that articles should be assessed against (Tennant
& Ross-Hellauer, 2020). For REF2014 and REF2021, articles were assessed for originality,
significance, and rigor (REF2021, 2019), which is the same as the Italian Valutazione della
Qualità della Ricerca requirement for originality, impact, and rigor (Bonaccorsi, 2020). These
criteria are probably the same as for most journal article peer reviewing, except that some
journals mainly require rigorous methods (e.g., PLOS, 2022). Bias in peer review can be
thought of as any judgment that deviates from the true quality of the article assessed, although
this is impossible to measure directly (Lee, Sugimoto et al., 2013). Nonsystematic judgement
differences are also common (Jackson, Srinivasan et al., 2011; Kravitz, Franks et al., 2010).
Nonsystematic differences may be due to unskilled reviewers, differing levels of leniency or
experience (Haffar, Bazerbachi, & Murad, 2019; Jukola, 2017), weak disciplinary norms
(Hemlin, 2009), and perhaps also to teams of reviewers focusing on different aspects of a paper
(e.g., methods, contribution, originality). Weak disciplinary norms can occur because a field’s
research objects/subjects and methods are fragmented or because there are different schools of
thought about which theories, methods, or paradigms are most suitable (Whitley, 2000).

Sources of systematic bias that have been suggested for nonblinded peer review include
malicious bias or favoritism towards individuals (Medoff, 2003), gender (Morgan, Hawkins,
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& Lundine, 2018), nationality (Thelwall, Allen et al., 2021), and individual or institutional
prestige (Bol, de Vaan, & van de Rijt, 2018). Systematic peer review bias may also be based
on language (Herrera, 1999; Ross, Gross et al., 2006), and study topic or approach (Lee et al.,
2013). There can also be systematic bias against challenging findings (Wessely, 1998), complex
methods (Kitayama, 2017), or negative results (Gershoni, Ishai et al., 2018). Studies that find
review outcomes differing between groups may be unable to demonstrate bias rather than other
factors (e.g., Fox & Paine, 2019). For example, worse peer review outcomes for some groups
might be due to lower quality publications because of limited access to resources or unpopular
topic choices. A study finding some evidence of same country reviewer systematic bias that
accounted for this difference could not rule out the possibility that it was a second-order effect
due to differing country specialisms and same-specialism systematic reviewer bias rather than
national bias (Thelwall et al., 2021).

In this article we assess whether it is reasonable to use machine learning to estimate any U.K.
REF output scores for journal articles. It is a condensed and partly rephrased version of a longer
report (Thelwall, Kousha et al., 2022), with some additional analyses. The main report found
that it was not possible to replace all human scores with predictions, and this could also be
inferred from the findings reported here. The purpose of the analysis is not to check whether
machines can understand research contributions but only to see if they can use available
inputs to guess research quality scores accurately enough to be useful in any contexts. The
social desirability of this type of solution is out of scope for this article, although it informs
the main report. We detail three approaches:

• human scoring for a fraction of the outputs, then machine learning predictions for the
remainder;

• human scoring for a fraction of the outputs, then machine learning predictions for a
subset of the rest where the predictions have a high probability of being correct, with
human scoring for the remaining articles; and

• the active learning strategy to identify sets of articles that meet a given probability
threshold.

These are assessed with expert peer review quality scores for most of the journal articles sub-
mitted to REF2021. The research questions are as follows, with the final research question
introduced to test if the results change with a different standard classification schema. While
the research questions mention “accuracy,” the experiments instead measure agreement with
expert scores from the REF, which are therefore treated as a gold standard. As mentioned
above and discussed at the end, the expert scores are in fact also only estimates. Although
the results focus on article-level accuracy to start with, the most important type of accuracy
is institutional level (Traag & Waltman, 2019), as reported towards the end.

• RQ1: How accurately can machine learning estimate article quality from article meta-
data and bibliometric information in each scientific field?

• RQ2: Which machine learning methods are the most accurate for predicting article
quality in each scientific field?

• RQ3: Can higher accuracy be achieved on subsets of articles using machine learning
prediction probabilities or active learning?

• RQ4: How accurate are machine learning article quality estimates when aggregated
over institutions?

• RQ5: Is the machine learning accuracy similar for articles organized into Scopus broad
fields?
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2. METHODS

The research design was to assess a range of machine learning algorithms in a traditional
training/testing validation format: training each algorithm on a subset of the data and evaluat-
ing it on the remaining data. Additional details and experiments are available in the report that
this article was partly derived from (Thelwall et al., 2022).

2.1. Data: Articles and Scores

We used data from two data sources. First, we downloaded records for all Scopus-indexed journal
articles published 2014–2020 in January–February 2021 using the Scopus Application Program-
ming Interface (API). This matches the date when the human REF2021 assessments were originally
scheduled to begin, so is from the time frame when a machine learning stage could be activated.
We excluded reviews and other nonarticle records in Scopus for consistency. The second source
was a set of 148,977 provisional article quality scores assigned by the expert REF subpanel mem-
bers to the articles in 34 UoAs, excluding all data from the University of Wolverhampton. This was
confidential data that could not be shared and had to be deleted before May 10, 2022. The dis-
tribution of the scores for these articles is online (Figure 3.2.2 of Thelwall et al., 2022). Many arti-
cles had been submitted by multiple authors from different institutions and sometimes to different
UoAs. These duplicates were eliminated, and the median score retained, or a random median
when there were two (for more details, see Section 3.2.1 of Thelwall et al., 2022).

The REF data included article DOIs (used for matching with Scopus, and validated by the REF
team), evaluating UoA (one of 34), and provisional score (0, 1*, 2*, 3*, or 4*).Wemerged the REF
scores into three groups for analysis: 1 (0, 1* and 2*), 2 (3*), and 3 (4*). The grouping was nec-
essary because there were few articles with scores of 0 or 1*, which gives a class imbalance that
can be problematic for machine learning. This is a reasonable adjustment because 0, 1*, and 2*
all have the same level of REF funding (zero), so they are financially equivalent.

We matched the REF outputs with journal articles in Scopus with a registered publication
date from 2014 to 2020 (Table 1). Matching was primarily achieved through DOIs. We
checked papers without a matching DOI in Scopus against Scopus by title, after removing
nonalphabetic characters (including spaces) and converting to lowercase. We manually
checked title matches for publication year, journal name, and author affiliations. When there
was a disagreement between the REF registered publication year and the Scopus publication
year, we always used the Scopus publication year. The few articles scoring 0 appeared to be
mainly anomalies, seeming to have been judged unsuitable for review due to lack of evidence
of substantial author contributions or being an inappropriate type of output. We excluded
these because no scope-related information was available to predict score 0s from.

Finally, we also examined a sample of articles without an abstract. For the five fields with
the highest machine learning accuracy in preliminary tests, these were mainly short format
(e.g., letters, communications) or nonstandard articles (e.g., guidelines), although data process-
ing errors accounted for a minority of articles with short or missing abstracts. Short format and
unusual articles seem likely to be difficult to predict with machine learning, so we excluded
articles with abstracts shorter than 500 characters. Unusual articles are likely to be difficult to
predict because machine learning relies on detecting patterns, and short format articles could
be letter-like (sometimes highly cited) or article-like, with the former being the difficult to pre-
dict type. Thus, the final set was cleansed of articles that could be identified in advance as
unsuitable for machine learning predictions. The most accurate predictions were found for
the years 2014–18, with at least 2 full years of citation data, so we reported these for the main
analysis as the highest accuracy subset.
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The 2014–18 articles were mainly from Main Panel A (33,256) overseeing UoAs 1–6, Main
Panel B (30,354) overseeing UoAs 7–12, and Main Panel C (26,013) overseeing UoAs 13–24,
with a much smaller number from Main Panel D (4,209) overseeing UoAs 25–34. The number
per UoA 2014–18 varied by several orders of magnitude, from 56 (Classics) to 12,511 (Engi-
neering), as shown below in a results table. The number of articles affects the accuracy of
machine learning and there were too few in Classics to build machine learning models.

2.2. Machine Learning Inputs

We used textual and bibliometric data as inputs for all the machine learning algorithms. We
used all inputs shown in previous research to be useful for predicting citations counts, as far as
possible, as well as some new inputs that seemed likely to be useful. We also adapted inputs
used in previous research to use bibliometric best practice, as described below. The starting
point was the set of inputs used in a previous citation-based study (Thelwall, 2022) but this was
extended. The nontext inputs were tested with ordinal regression before the machine learning
to help select the final set.

The citation data for several inputs was based on the normalized log-transformed citation
score (NLCS) or the mean normalized log-transformed citation score (MNLCS) (for detailed
explanations and justification; see Thelwall, 2017). The NLCS of an article uses log-
transformed citation counts, as follows. First, we transformed all citation counts with the nat-
ural log: ln(1 + x). This transformation was necessary because citation count data is highly
skewed and taking the arithmetic mean of a skewed data set can give a poor central tendency
estimate (e.g., in theory, one extremely highly cited article could raise the average above all
the remaining citation counts). After this, we normalized the log-transformed citation count for
each article by dividing by the average log-transformed citation count for its Scopus narrow
field and year. We divided articles in multiple Scopus narrow fields instead by the average of
the field averages for all these narrow fields. The result of this calculation is an NLCS for each
article in the Scopus data set (including those not in the REF). The NLCS of an article is field
and year normalized by design, so a score of 1 for any article in any field and year always

Table 1. Descriptive statistics for creation of the experimental data set

Set of articles Journal articles
REF2021 journal articles supplied 148,977

With DOI 147,164 (98.8%)

With DOI and matching Scopus 2014–20 by DOI 133,218 (89.4%)

Not matching Scopus by DOI but matching with Scopus 2014–20 by title 997 (0.7%)

Not matched in Scopus and excluded from analysis 14,762 (9.9%)

All REF2021 journal articles matched in Scopus 2014–20 134,215 (90.1%)

All REF2021 journal articles matched in Scopus 2014–20 except score 0 134,031 (90.0%)

All nonduplicate REF2021 journal articles matched in Scopus 2014–20 except score 0 122,331 [90.0% effective]

All nonduplicate REF2021 journal articles matched in Scopus 2014–18 except score 0.
These are the most accurate prediction years

87,739

All nonduplicate REF2021 journal articles matched in Scopus 2014–18 except score 0
and except articles with less than 500 character cleaned abstracts

84,966
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means that the article has had average log-transformed citation impact for its field and year.
We calculated the following from the NLCS values and used them as machine learning inputs.

• Author MNLCS: The average NLCS for all articles 2014–20 in the Scopus data set
including the author (identified by Scopus ID).

• Journal MNLCS for a given year: The average NLCS for all articles in the Scopus data set
in the specified year from the journal. Averaging log-transformed citation counts instead
of raw citation counts gives a better estimate of central tendency for a journal (e.g.,
Thelwall & Fairclough, 2015).

2.2.1. Input set 1: bibliometrics

The following nine indicators have been shown in previous studies to associate with citation
counts, including readability (e.g., Didegah & Thelwall, 2013), author affiliations (e.g., Fu &
Aliferis, 2010; Li, Xu et al., 2019a; Qian, Rong et al., 2017; Zhu & Ban, 2018), and author
career factors (e.g., Qian et al., 2017; Wen, Wu, & Chai, 2020; Xu, Li et al., 2019; Zhu &
Ban, 2018). We selected the first author for some indicators because they are usually the most
important (de Moya-Anegon, Guerrero-Bote et al., 2018; Mattsson, Sundberg, & Laget, 2011),
although corresponding and last authors are sometimes more important in some fields. We
used some indicators based on the maximum author in a team to catch important authors that
might appear elsewhere in a list.

1. Citation counts (field and year normalized to allow parity between fields and years,
log transformed to reduce skewing to support linear-based algorithms).

2. Number of authors (log transformed to reduce skewing). Articles with more authors
tend to be more cited, so they are likely to also be more highly rated (Thelwall & Sud,
2016).

3. Number of institutions (log transformed to reduce skewing). Articles with more insti-
tutional affiliations tend to be more cited, so they are likely to also be more highly
rated (Didegah & Thelwall, 2013).

4. Number of countries (log transformed to reduce skewing). Articles with more country
affiliations tend to be more cited, so they are likely to also be more highly rated
(Wagner, Whetsell, & Mukherjee, 2019).

5. Number of Scopus-indexed journal articles of the first author during the REF period (log
transformed to reduce skewing). More productive authors tend to be more cited (Abramo,
Cicero, & D’Angelo, 2014; Larivière & Costas, 2016), so this is a promising input.

6. Average citation rate of Scopus-indexed journal articles by the first author during the
REF period (field and year normalized, log transformed: theMNLCS). Authors with a track
record of highly cited articles seem likely to write higher quality articles. Note that the first
author may not be the REF submitting author or from their institution because the goal is
not to “reward” citations for the REF author but to predict the score of their article.

7. Average citation rate of Scopus-indexed journal articles by any author during the REF
period (maximum) (field and year normalized, log transformed: the MNLCS). Again,
authors with a track record of highly cited articles seem likely to write higher quality
articles. The maximum bibliometric score in a team has been previously used in
another context (van den Besselaar & Leydesdorff, 2009).

8. Number of pages of article, as reported by Scopus, or the UoA/Main Panel median if
missing from Scopus. Longer papers may have more content but short papers may be
required by more prestigious journals.
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9. Abstract readability. Abstract readability was calculated using the Flesch-Kincaid
grade level score and has shown to have a weak association with citation rates
(Didegah & Thelwall, 2013).

2.2.2. Input set 2: bibliometrics + journal impact

Journal impact indicators are expected to be powerful in some fields, especially for newer articles
(e.g., Levitt & Thelwall, 2011). The second input set adds a measure of journal impact to the first
set. We used the journal MNLCS instead of JIFs as an indicator of average journal impact because
field normalized values align better with human journal rankings (Haddawy, Hassan et al., 2016),
probably due to comparability between disciplines. This is important because the 34 UoAs are
relatively broad, all covering multiple Scopus narrow fields.

10. Journal citation rate (field normalized, log transformed [MNLCS], based on the cur-
rent year for older years, based on 3 years for 1–2-year-old articles).

2.2.3. Input set 3: bibliometrics + journal impact + text

The final input set also includes text from article abstracts. Text mining may find words and
phrases associated with good research (e.g., a simple formula has been identified for one psychol-
ogy journal: Kitayama, 2017). Text mining for score prediction is likely to leverage hot topics in
constituent fields (e.g., because popular topic keywords can associate with higher citation counts:
Hu, Tai et al., 2020), as well as common methods (e.g., Fairclough & Thelwall, 2022; Thelwall &
Nevill, 2021; Thelwall &Wilson, 2016), as these have been shown to associate with above aver-
age citation rates. Hot topics in some fields tend to be highly cited and probably have higher
quality articles, as judged by peers. This would be more evident in the more stable arts and
humanities related UoAs but these are mixed with social sciences and other fields (e.g., comput-
ing technology for music), so text mining may still pick out hot topics within these UoAs. While
topics easily translate into obvious and common keywords, research quality has unknown and
probably field-dependent translation into research quality (e.g., “improved accuracy” [comput-
ing] vs. “surprising connection” [humanities]). Thus, text-based predictions of quality are likely to
leverage topic-relevant keywords and perhaps methods as indirect indicators of quality rather
than more subtle textual expressions of quality. It is not clear whether input sets that include both
citations and text information would leverage hot topics from the text, because the citations
would point to the hot topics anyway. Similarly, machine learning applied to REF articles may
identify the topics or methods of the best groups and learn to predict REF scores from them, which
would be accurate but undesirable. Article abstracts were preprocessed with a large set of rules to
remove publisher copyright messages, structured abstract headings, and other boilerplate texts
(available: https://doi.org/10.6084/m9.figshare.22183441). See the Appendix for an explanation
about why SciBERT (Beltagy, Lo, & Cohan, 2019) was not used.

We also included journal names on the basis that journals are key scientific gatekeepers
and that a high average citation impact does not necessarily equate to publishing high-quality
articles. Testing with and without journal names suggested that their inclusion tended to
slightly improve accuracy.

11–1000. Title and abstract word unigrams, bigrams, and trigrams within sentences (i.e.,
words and phrases of two or three words). Feature selection was used (chi
squared) to identify the best features, always keeping all Input Set 2 features.
Journal names are also included, for a total of 990 text inputs, selected from the
full set as described below.
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2.3. Machine Learning Methods

We used machine learning stages that mirror those of a prior study predicting journal impact
classes (Thelwall, 2022) with mostly the same settings. These represent a range of types of
established regression and classification algorithms, including the generally best performing
for tabular input data. As previously argued, predictions may leverage bibliometric data and
text, the latter on the basis that the formula for good research may be identifiable from a text
analysis of abstracts. We used 32 machine learning methods, including classification, regres-
sion, and ordinal algorithms (Table 2). Regression predictions are continuous and were con-
verted to three class outputs by rounding to integers and rounding down (up) to the maximum
(minimum) when out of scale. These include the methods of the prior study (Thelwall, 2022)
and the Extreme Gradient Boosting Classifier, which has recently demonstrated good results
(Klemiński, Kazienko, & Kajdanowicz, 2021). Accuracy was calculated after training on 10%,
25%, or 50% of the data and evaluated on the remaining articles. These percentages represent
a range of realistic options for the REF. Although using 90% of the available data for training is

Table 2. Machine learning methods chosen for regression and classification. Those marked with
/o have an ordinal version. Ordinal versions of classifiers conduct two binary classifications (1*–3*
vs. 4* and 1*–2* vs 3*–4*) and then choose the trinary class by combining the probabilities from
them

Code Method Type
bnb/o Bernoulli Naive Bayes Classifier

cnb/o Complement Naive Bayes Classifier

gbc/o Gradient Boosting Classifier Classifier

xgb/o Extreme Gradient Boosting Classifier Classifier

knn/o k Nearest Neighbors Classifier

lsvc/o Linear Support Vector Classification Classifier

log/o Logistic Regression Classifier

mnb/o Multinomial Naive Bayes Classifier

pac/o Passive Aggressive Classifier Classifier

per/o Perceptron Classifier

rfc/o Random Forest Classifier Classifier

rid/o Ridge classifier Classifier

sgd/o Stochastic Gradient Descent Classifier

elnr Elastic-net regression Regression

krr Kernel Ridge Regression Regression

lasr Lasso Regression Regression

lr Linear Regression Regression

ridr Ridge Regression Regression

sgdr Stochastic Gradient Descent Regressor Regression
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standard for machine learning, it is not realistic for the REF. Training and testing were repeated
10 times, reporting the average accuracy.

The main differences between the current study and the prior paper (Thelwall, 2022) are as
follows.

• Human REF scores instead of journal rankings converted to a three-point scale.
• An additional machine learning method, Extreme Gradient Boosting.
• Hyperparameter tuning with the most promising machine learning methods in an

attempt to improve their accuracy.
• REF UoAs instead of Scopus narrow fields as the main analysis grouping, although we

still used Scopus narrow fields for field normalization of the citation data (MNLCS and
NLCS).

• Additional preprocessing rules to catch boilerplate text not caught by the rules used for
the previous article but found during the analysis of the results for that article.

• Abstract readability, average journal impact, number of institutional affiliations, and
first/maximum author productivity/impact inputs.

• In a switch from an experimental to a pragmatic perspective, we used percentages of
the available data as the training set sizes for the algorithms rather than fixed numbers
of articles.

• Merged years data sets: we combined the first 5 years (as these had similar results in the
prior study) and all years as well as assessing years individually. The purpose of these is
to assess whether grouping articles together can give additional efficiency in the sense
of predicting article scores with less training data but similar accuracy.

• Merged subjects data sets: we combined all UoAs within each of the four Main Panel
grouping of UoAs to produce four very broad disciplinary groupings. This assesses
whether grouping articles together can give additional efficiency in the sense of pre-
dicting article scores with less training data but similar accuracy.

• Active learning (Settles, 2011). We used this in addition to standard machine learning.
With this strategy, instead of a fixed percentage of the machine learning inputs having
human scores, the algorithm selects the inputs for the humans to score. First, the system
randomly selects a small proportion of the articles and the human scores for them (i.e.,
the provisional REF scores) are used to build a predictive model. Next, the system selects
another set of articles having predicted scores with the lowest probability of being cor-
rect for human scoring (in our case supplying the provisional REF scores). This second
set is then added to the machine learning model inputs to rebuild the machine learning
model, repeating the process until a prespecified level of accuracy is achieved. For the
current article, we used batches of 10% to mirror what might be practical for the REF.
Thus, a random 10% of the articles were fed into the machine learning system, then up
to eight further batches of 10% were added, selected to be the articles with the lowest
AP prediction probability. Active learning has two theoretical advantages: Human
coders score fewer of the easy cases that the machine learning system can reliably pre-
dict, and scores for the marginal decisions may help to train the system better.

• Correlations are reported.

The most accurate classifiers were based on the Gradient Boosting Classifier, the Extreme
Gradient Boosting Classifier, and the Random Forest Classifier, so these are described here. All
are based on large numbers of simple decision trees, which make classification suggestions
based on a series of decisions about the inputs. For example, Traag and Waltman (2019)
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proposed citation thresholds for identifying likely 4* articles (top 10* cited in a field). A deci-
sion tree could mimic this by finding a threshold for the NLCS input, above which articles
would be classified as 4*. It might then find a second, lower, threshold, below which articles
would be classified as 1*/2*. A decision tree could also incorporate information from multiple
inputs. For example, a previous VQR used dual thresholds for citations and journal impact
factors and a decision tree could imitate this by classing an article as 4* if it exceeded an NLCS
citation threshold (decision 1) and a MNLCS journal impact threshold (decision 2). Extra rules
for falling below a lower citation threshold (decision 3) and lower journal impact threshold
(decision 4) might then classify an article as 1*/2*. The remaining articles might be classified
by further decisions involving other inputs or combinations of inputs. The three algorithms
(gbc, rfc, xgb) all make at least 100 of these simple decision trees and then combine them
using different algorithms to produce a powerful inference engine.

We did not use deep learning because there was too little data to exploit its power. For
example, we had metadata for 84,966 articles analyzed in 34 nonoverlapping subsets,
whereas one standard academic data set used in deep learning is a convenience sample of
124 million full text papers with narrower topic coverage (https://ogb.stanford.edu/docs/lsc
/mag240m/). A literature review of technologies for research assessment found no deep learn-
ing architectures suitable for the available inputs and no evidence that deep learning would
work on small input sets available (Kousha & Thelwall, 2022).

Figure 1. The percentage accuracy above the baseline for the most accurate machine learning method, trained on 50% of the 2014–18 Input
Set 3: Bibliometrics + journal impact + text, after excluding articles with shorter than 500-character abstracts and excluding duplicate articles
within each UoA. The accuracy evaluation was performed on the articles excluded from the training set. No models were built for Classics due
to too few articles. Average across 10 iterations.
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3. RESULTS

3.1. RQ1, RQ2: Primary Machine Learning Prediction Accuracy Tests

The accuracy of each machine learning method was calculated for each year range (2014, 2015,
2016, 2017, 2018, 2019, 2020, 2014–18, 2014–20), separately by UoA and Main Panel. The
results are reported as accuracy above the baseline (accuracy − baseline)/(1 − baseline), where
the baseline is the proportion of articles with the most common score (usually 4* or 3*). Thus, the
baseline is the accuracy of always predicting that articles fall within the most common class. For
example, if 50% of articles are 4* then 50% would be the baseline and a 60% accurate system
would have an accuracy above the baseline of (0.6 − 0.5)(1 − 0.5) = 0.2 or 20%. The results are
reported only for 2014–18 combined, with the graphs for the other years available online, as are
graphs with 10% or 25% training data, and graphs for Input Set 1 alone and for Input Sets 1 and 2
combined (Thelwall et al., 2022). The overall level of accuracy for each individual year from
2014 to 2018 tended to be similar, with lower accuracy for 2019 and 2020 due to the weaker
citation data. Combining 2014 to 2018 gave a similar level of accuracy to that of the individual
years, so it is informative to focus on this set. With the main exception of UoA 8 Chemistry, the
accuracy of the machine learning methods was higher with 1,000 inputs (Input Set 3) than
with 9 or 10 (Input Sets 1 or 2), so only the results for the largest set are reported.

Six algorithms tended to have similar high levels of accuracy (rfc, gbc, xgb, or ordinal var-
iants) so the results would be similar but slightly lower overall if only one of them had been
used. Thus, the results slightly overestimate the practically achievable accuracy by cherry-
picking the best algorithm.

Figure 2. As for the previous figure but showing raw accuracy.
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Table 3. Article-level Pearson correlations between machine learning predictions with 50% used for training and actual scores for articles
2014–18, following Strategy 1 (averaged across 10 iterations). L95 and U95 are lower and upper bounds for a 95% confidence interval

Data set
Articles
2014–18

Predicted
at 50%

Pearson
correlation L95 U95

1: Clinical Medicine 7,274 3,637 0.562 0.539 0.584

2: Public Health, Health Services & Primary Care 2,855 1,427 0.507 0.467 0.545

3: Allied Health Professions, Dentistry,
Nursing & Pharmacy

6,962 3,481 0.406 0.378 0.433

4: Psychology, Psychiatry & Neuroscience 5,845 2,922 0.474 0.445 0.502

5: Biological Sciences 4,728 2,364 0.507 0.476 0.536

6: Agriculture, Food & Veterinary Sciences 2,212 1,106 0.452 0.404 0.498

7: Earth Systems & Environmental Sciences 2,768 1,384 0.491 0.450 0.530

8: Chemistry 2,314 1,157 0.505 0.461 0.547

9: Physics 3,617 1,808 0.472 0.435 0.507

10: Mathematical Sciences 3,159 1,579 0.328 0.283 0.371

11: Computer Science & Informatics 3,292 1,646 0.382 0.340 0.423

12: Engineering 12,511 6,255 0.271 0.248 0.294

13: Architecture, Built Environment & Planning 1,697 848 0.125 0.058 0.191

14: Geography & Environmental Studies 2,316 1,158 0.277 0.223 0.329

15: Archaeology 371 185 0.283 0.145 0.411

16: Economics and Econometrics 1,083 541 0.511 0.446 0.571

17: Business & Management Studies 7,535 3,767 0.353 0.325 0.381

18: Law 1,166 583 0.101 0.020 0.181

19: Politics & International Studies 1,595 797 0.181 0.113 0.247

20: Social Work & Social Policy 2,045 1,022 0.259 0.201 0.315

21: Sociology 949 474 0.180 0.091 0.266

22: Anthropology & Development Studies 618 309 0.040 −0.072 0.151

23: Education 2,081 1,040 0.261 0.203 0.317

24: Sport & Exercise Sciences, Leisure & Tourism 1,846 923 0.265 0.204 0.324

25: Area Studies 303 151 0.142 −0.018 0.295

26: Modern Languages and Linguistics 630 315 0.066 −0.045 0.175

27: English Language and Literature 424 212 0.064 −0.071 0.197

28: History 583 291 0.141 0.026 0.252

29: Classics 56 0 – – –

30: Philosophy 426 213 0.070 −0.065 0.203
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Articles 2014–18 in most UoAs could be classified with above baseline accuracy with at
least one of the tested machine learning methods, but there are substantial variations between
UoAs (Figure 1). There is not a simple pattern in terms of the types of UoA that are easiest to
classify. This is partly due to differences in sample sizes and probably also affected by the
variety of the fields within each UoA (e.g., Engineering is a relatively broad UoA compared
to Archaeology). Seven UoAs had accuracy at least 0.3 above the baseline, and these are from
the health and physical sciences as well as UoA 16: Economics and Econometrics. Despite this
variety, the level of machine learning accuracy is very low for all Main Panel D (mainly arts
and humanities) and for most of Main Panel C (mainly social sciences).

Although larger sample sizes help the training phase of machine learning (e.g., there is a
Pearson correlation of 0.52 between training set size and accuracy above the baseline), the
UoA with the most articles (12: Engineering) had only moderate accuracy, so the differences
between UoAs are also partly due to differing underlying machine learning prediction difficul-
ties between fields.

Table 3. (continued )

Data set
Articles
2014–18

Predicted
at 50%

Pearson
correlation L95 U95

31: Theology & Religious Studies 107 53 0.074 −0.200 0.338

32: Art and Design: History, Practice and Theory 665 332 0.028 −0.080 0.135

33: Music, Drama, Dance, Performing Arts,
Film & Screen Studies

350 175 0.164 0.016 0.305

34: Communication, Cultural & Media Studies,
Library & Information Management

583 291 0.084 −0.031 0.197

Table 4. Institution-level Pearson correlations between machine learning predictions with 50% used for training and actual scores for articles
2014–18, following Strategy 1 (averaged across 10 iterations) and aggregated by institution for UoAs 1–11 and 16

UoA
Actual vs. machine learning
predicted average score

Actual vs. machine learning
predicted total score

1: Clinical Medicine 0.895 0.998

2: Public Health, Health Services and Primary Care 0.906 0.995

3: Allied Health Professions, Dentistry, Nursing & Pharmacy 0.747 0.982

4: Psychology, Psychiatry and Neuroscience 0.844 0.995

5: Biological Sciences 0.885 0.995

6: Agriculture, Food and Veterinary Sciences 0.759 0.975

7: Earth Systems and Environmental Sciences 0.840 0.986

8: Chemistry 0.897 0.978

9: Physics 0.855 0.989

10: Mathematical Sciences 0.664 0.984

11: Computer Science and Informatics 0.724 0.945

16: Economics and Econometrics 0.862 0.974
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Figure 3. The percentage accuracy for themost accuratemachine learningmethodwith andwithout hyperparameter tuning (out of themain six), trained
on 50% of the 2014–18 articles and Input set 3: bibliometrics + journal impact + text; 1,000 features in total. The most accurate method is named.

Figure 4. Probability of a machine learning prediction (best machine learning method at the 85% level, trained on 50% of the data 2014–18
with 1,000 features) being correct against the number of predictions for UoAs 1–11, 16. The articles are arranged in order of the probability of
the prediction being correct, as estimated by the AI. Each point is the average across 10 separate experiments.
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The individual inputs were not tested for predictive power but the three input sets were
combined and compared. In terms of accuracy on the three sets, the general rule for predictive
power was bibliometrics < bibliometrics + journal impact < bibliometrics + journal impact +
text. The differences were mostly relatively small. The main exceptions were Chemistry (bib-
liometrics alone is best) and Physics (bibliometrics and bibliometrics + journal impact + text
both give the best results) (for details see Thelwall et al., 2022).

The most accurate UoAs are not all the same as those with highest accuracy above the base-
line because there were substantial differences in the baselines between UoAs (Figure 2). The
predictions were up to 72% accurate (UoAs 8, 16), with 12 UoAs having accuracy above 60%.
The lowest raw accuracy was 46% (UoA 23). If accuracy is assessed in terms of article-level
correlations, then the machine learning predictions always positively correlate with the human
scores, but at rates varying between 0.0 (negligible) to 0.6 (strong) (Table 3). These correlations
roughly match the prediction accuracies. Note that the correlations are much higher when
aggregated by institution, reaching 0.998 for total institutional scores in UoA 1 (Table 4).

Hyperparameter tuning systematically searches a range of input parameters for machine
learning algorithms, looking for variations that improve their accuracy. Although this margin-
ally increases accuracy on some UoAs, it marginally reduces it on others, so has little differ-
ence overall (Figure 3). The tuning parameters for the different algorithms are in the Python
code (https://doi.org/10.6084/m9.figshare.21723227). The same architectures were used for
the tuned and untuned cases, with the tuning applying after fold generation to simulate the
situation that would be available for future REFs (i.e., no spare data for separate tuning).

Figure 5. As in Figure 4, but trained on 25% of the data.
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3.2. RQ3: High Prediction Probability Subsets

The methods used to predict article scores report an estimate of the probability that these pre-
dictions are correct. If these estimates are not too inaccurate, then arranging the articles in
descending order prediction probability can be used to identify subsets of the articles that
can have their REF score estimated more accurately than for the set overall.

The graphs in Figure 4 for the UoAs with the most accurate predictions can be used to read
the number of scores that can be predicted with any given degree of accuracy. For example,
setting the prediction probability threshold at 90%, 500 articles could be predicted in UoA 1.
The graphs report the accuracy by comparison with subpanel provisional scores rather than
the machine learning probability estimates. The graphs confirm that higher levels of machine
learning score prediction accuracy can be obtained for subsets of the predicted articles. Nev-
ertheless, they suggest that there is a limit to which this is possible. For example, no UoA can
have substantial numbers of articles predicted with accuracy above 95% and UoA 11 has few
articles that can be predicted with accuracy above 80%.

If the algorithm is trained on a lower percentage of the articles, then fewer scores can be
predicted at any high level of accuracy, as expected (Figure 5).

Figure 6. Active learning on UoAs 1–11, 16 showing the results for the machine learning method with the highest accuracy at 90% and
1,000 input features. Results are the average of 40 independent full active learning trials.
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3.3. Active Learning Summary

The active learning strategy, like that of selecting high prediction probability scores, is successful
at generating higher prediction probability subsets (Figure 6). Active learning works better for
some UoAs relative to others, and is particularly effective for UoAs 1, 4, and 5 in the sense that
their accuracy increases faster than the others as the training set size increases. The success of the
active learning strategy on a UoA depends on at least two factors. First, UoAs with fewer articles
will have less data to build the initial model from, so will be less able to select useful outputs for
the next stage. Second, the UoAs that are more internally homogeneous will be able to train a
model better on low numbers of inputs and therefore benefit more in the early stages.

Active learning overall can predict more articles at realistic thresholds than the high pre-
diction probability strategy (Table 5). Here, 85% is judged to be a realistic accuracy threshold
as a rough estimate of human-level accuracy. In the 12 highest prediction probability UoAs,
active learning identifies more articles (3,688) than the high prediction probability strategy
(2,879) and a higher number in all UoAs where the 85% threshold is reached. Active learning
is only less effective when the threshold is not reached.

Table 5. The number of articles that can be predicted at an accuracy above 85% using active learning or high prediction probability subsets
in UoAs 1–11,16. Overall accuracy includes the human scored texts for eligible and ineligible articles

UoA
Human scored

articles
Human scored
articles (%)

Active learning
accuracy (%)

Machine learning
predicted articles

High prediction
probability articles

1: Clinical Medicine 5,816 80 87.6 1,458 952*

2: Public Health, Health
Serv. & Primary Care

2,565 90 86.7 290 181

3: Allied Health Prof.,
Dentist., Nurs. Pharm.

6,962 100 – 0 163

4: Psychology, Psychiatry
& Neuroscience

5,845 100 – 0 66

5: Biological Sciences 4,248 90 86.8 480 308

6: Agriculture, Food &
Veterinary Sciences

2,212 100 – 0 86

7: Earth Systems &
Environmental Sciences

2,484 90 85.3 284 142

8: Chemistry 1,617 70 85.1 697 402*

9: Physics 3,249 90 85.9 368 362

10: Mathematical Sciences 3,159 100 – 0 86

11: Computer Science &
Informatics

3,292 100 ** 0 29

16: Economics &
Econometrics

972 90 86.9 111 102

Total 3,688 2,879

* 25% training set size instead of 50% training set size because more articles were predicted.

– The 85% active learning threshold was not reached.
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3.4. RQ4: HEI-Level Accuracy

For the U.K. REF, as for other national evaluation exercises, the most important unit of analysis is
the institution, because the results are used to allocate funding (or a pass/fail decision) to institu-
tions for a subject rather than to individual articles or researchers (Traag &Waltman, 2019). At the
institutional level, there can be nontrivial score shifts for individual institutions, even with high
prediction probabilities. UoA 1 has one of the lowest average score shifts (i.e., change due to
human scores being partly replaced by machine learning predictions) because of relatively large
institutional sizes, but these are still nontrivial (Figure 7). The score shifts are largest for small insti-
tutions, because each change makes a bigger difference to the average when there are fewer
articles, but there is also a degree of bias, in the sense that institutions then benefit or lose out
overall from themachine learning predictions. The biggest score shift for a relatively large number
of articles in a UoA (one of the five largest sets in the UoA) is 11% (UoA 7) or 1.9% overall
(UoA 8), considering 100% accuracy for the articles given human scores (Table 6). Although
1.9% is a small percentage, it may represent the salaries of multiple members of staff and so is a
nontrivial consideration. The institutional score shifts are larger for Strategy 1 (not shown).

Bias occurs in the predictions from active learning, even at a high level of accuracy. For
example, in most UoAs, larger HEIs, HEIs with higher average scores, and HEIs submitting

Figure 7. The average REFmachine learning institutional score gain onUoA 1: Clinical Medicine for the most accurate machine learningmethod
with active learning, stopping at 85% accuracy on the 2014–18 data and bibliometric + journal + text inputs, after excluding articles with shorter
than 500 character abstracts. Machine learning score gain is a financial calculation (4* = 100% funding, 3* = 25% funding, 0–2* = 0% funding).
The x-axis records the number of articles with predicted scores in one of the iterations. The right-hand axis shows the overall score gain for all REF
journal articles, included those that would not be predicted by AI. Error bars indicate the highest and lowest values from 10 iterations.
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Table 6. Maximum average machine learning score shifts for five largest Higher Educational Institution (HEI) submissions and for all HEI
submissions with active learning with an 85% threshold. The same information for the largest machine learning score shifts rather than the
average score shifts. Overall figures include all human coded journal articles

UoA or Panel
Human

scores (%)

Max. HEI av.
score shift

(overall) (%)

Max. top 5 HEIs
av. score shift
(overall) (%)

Max HEI largest
score shift

(overall) (%)

Max. top 5 HEIs
largest score shift
(overall) (%)

1: Clinical Medicine 80 12 (1.5) 1.9 (0.2) 27 (3.4) 5.4 (0.7)

2: Public Health, H. Services & Primary Care 90 27 (1.7) 13 (0.8) 75 (4.7) 16 (1.0)

3: Allied Health Prof., Dentist Nurs Pharm 100

4: Psychology, Psychiatry & Neuroscience 100

5: Biological Sciences 90 63 (3.9) 7.3 (0.5) 75 (4.7) 10 (0.6)

6: Agriculture, Food & Veterinary Sciences 100

7: Earth Systems & Environmental Sciences 90 32 (2.0) 11 (0.7) 75 (4.7) 16 (1.0)

8: Chemistry 70 11 (2.1) 10 (1.9) 75 (14) 14 (2.6)

9: Physics 90 10 (0.6) 3.7 (0.2) 75 (4.7) 10 (0.6)

10: Mathematical Sciences 100

11: Computer Science & Informatics 100

16: Economics and Econometrics 90 35 (2.2) 5.1 (0.3) 75 (4.7) 19 (1.2)

Figure 8. Institution-level Pearson correlations between institutional size (number of articles submitted to REF) or submission size (number of
articles submitted to UoA) or average institutional REF score for the UoA and average REF machine learning institutional score gain on UoA 1:
Clinical Medicine to UoA 16: Economics and Econometric for the most accurate machine learning method with active learning, stopping at
85% accuracy on the 2014–18 data and bibliometric + journal + text inputs, after excluding articles with shorter than 500 character
abstracts. Captions indicate the proportion of journal articles predicted, starred if the 85% accuracy active learning threshold is met.
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more articles to a UoA tend to be disadvantaged by machine learning score predictions
(Figure 8). This is not surprising because, other factors being equal, high-scoring HEIs would be
more likely to lose from an incorrect score prediction. This is because they would have a
higher proportion of top scoring articles (which would always be downgraded by errors). Sim-
ilarly, larger HEIs tend to submit more articles and tend to have higher scores.

3.5. RQ5: Accuracy on Scopus Broad Fields

If the REF articles are organized into Scopus broad fields before classification, then the most
accurate machine learning method is always gbco, rfc, rfco, or xgbo. The highest accuracy

Figure 9. The percentage accuracy above the baseline on Scopus broad fields for the three most
accurate machine learning methods and their ordinal variants, trained on 50% of the 2014–18
Input Set 3: Bibliometrics + journal impact + text, after excluding articles with shorter than 500-
character abstracts, zero scores, or duplicate within a Scopus broad field.
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above the baseline is generally much lower in this case than for the REF fields, with only
Multidisciplinary having accuracy above the baseline above 0.3, with the remainder being
substantially lower (Figure 9). The lower accuracy is because the Scopus broad fields are effec-
tively much broader than UoAs. They are journal based rather than article based and journals
can be allocated multiple categories. Thus, a journal containing medical engineering articles
might be found in both the Engineering and the Medicine categories. This interdisciplinary,
broader nature of Scopus broad fields reduces the accuracy of the machine learning methods,
despite the field-normalized indicators used in them.

4. DISCUSSION

The results are limited to articles from a single country and period. These articles are self-
selected as presumably the best works (1 to 5 per person) of the submitting U.K. academics
over the period 2014–2020. The findings used three groups (1*–2*, 3*, 4*) and finer grained
outputs (e.g., the 27-point Italian system, 3–30) would be much harder to predict accurately
because there are more wrong answers (26 instead of 2) and the differences between scores
are smaller. The results are also limited by the scope of the UoAs examined. Machine learning
predictions for countries with less Scopus-indexed work to analyze, or with more recent work,
would probably be less accurate. The results may also change in the future as the scholarly
landscape evolves, including journal formats, article formats, and citation practices. The accu-
racy statistics may be slightly optimistic due to overfitting: running multiple tests and reporting
the best results. This has been mitigated by generally selecting strategies that work well for
most UoAs, rather than customizing strategies for UoAs. The main source of overfitting is prob-
ably machine learning algorithm selection, as six similar algorithms tended to perform well
and only the most accurate one for each UoA is reported.

The results generally confirm previous studies in that the inputs used can generate above-
baseline accuracy predictions, and that there are substantial disciplinary differences in the
extent to which article quality (or impact) can be predicted. The accuracy levels achieved here
are much lower than previously reported for attempts to identify high-impact articles, however.
The accuracy levels are also lower than for the most similar prior study, which predicted jour-
nal thirds as a simple proxy for article quality, despite using less training data in some cases
and a weaker set of inputs (Thelwall, 2022). Collectively, this suggests that the task of predict-
ing article quality is substantially harder than the task of predicting article citation impact. Pre-
sumably this is due to high citation specialties not always being high-quality specialties.

Some previous studies have used input features extracted from article full texts for collec-
tions of articles where this is easily available. To check whether this is a possibility here, the
full text of 59,194 REF-submitted articles was supplied from the core.ac.uk repository of open
access papers (Knoth & Zdrahal, 2012) by Petr Knoth, Maria Tarasiuk, and Matteo Cancellieri.
These matched 43.3% of the REF articles with scores and strategy 1 was rerun with this
reduced set, using the same features with added word counts, character counts, figure counts,
and table counts extracted from the full text, but accuracy was lower. This was probably partly
due to the full texts often containing copyright statements and line numbers as well as occa-
sional scanning errors, and partly due to the smaller training set sizes. Tests of other suggested
features (supplementary materials, data access statements) found very low article-level corre-
lations with scores, so these were not included.

The practical usefulness of machine learning predictions in the REF is limited by a lack of
knowledge about the reliability of the human scores. For example, if it were known that
reviewing team scores agreed 85% of the time (which was the best, but very crude estimate

Quantitative Science Studies 567

Predicting article quality scores with machine learning

D
ow

nloaded from
 http://direct.m

it.edu/qss/article-pdf/4/2/547/2136363/qss_a_00258.pdf by guest on 07 Septem
ber 2023



from the REF data, as in Section 3.2.1 of Thelwall et al., 2022) then machine learning predic-
tions that are at least 85% accurate might be judged acceptable. Nevertheless, assessing this
level of accuracy is impossible on REF data because each score is produced by two reviewers
only after discussion between themselves and then the wider UoA group, supported by REF-
wide norm referencing. Because of this, comparing the agreement between two human
reviewers, even if REF panel members, would not reveal the likely agreement rate produced
by the REF process. The REF score agreement estimate of 85% mentioned above was for arti-
cles in a UoA that seemed to have “accidentally” reviewed multiple copies of the same arti-
cles, giving an apparently natural experiment in the consistency of the overall REF process.

This article has not considered practical issues, such as whether those evaluated would
attempt to game a machine learning prediction system or whether it would otherwise lead
to undesirable behavior, such as targeting high-impact journals or forming citation cartels.
These are important issues and led to the recommendation in the report that this article is
derived from that even the technically helpful advisory system produced should not be used
because of its possible unintended consequences (Thelwall et al., 2022, p. 135). Thus, great
care must be taken over any decision to use machine learning predictions, even for more
accurate solutions than those discussed here.

It is unfortunate that the REF data set had to be destroyed for legal and ethical reasons, with all
those involved in creating,managing, and accessing REF output scores being required to confirm
that they had permanently deleted the data in 2022. Although a prior study used journal impact
calculations to create an artificial data set for similar experiments (Thelwall, 2022), its design
precludes the use of journal-related inputs, which is a substantial drawback, as is the use of
journals as proxy sources of article quality information. It does not seem possible to create an
anonymized REF data set either (for REF2028) because article titles and abstracts are identify-
ing information and some articles probably also have unique citation counts, so almost no
information could be safely shared anonymously without the risk of leaking some REF scores.

5. CONCLUSION

The results show that machine learning predictions of article quality scores on a three-level scale
are possible from article metadata, citation information, author career information, and
title/abstract text with up to 72% accuracy in some UoAs for articles older than 2 years, given
enough articles for training. Substantially higher levels of accuracy may not be possible due to
the need for tacit knowledge to understand the context of articles to properly evaluate their con-
tributions. Although academic impact can be directly assessed to some extent through citations,
robustness and originality are difficult to assess from citations and metadata, although journals
may be partial indicators of these in some fields and original themes can in theory be detected
(Chen,Wang et al., 2022). The tacit knowledge needed to assess the three components of quality
may be more important in fields (UoAs) in which lower machine learning prediction accuracy
was attained.Higher accuracymaybepossiblewith other inputs included, such as article full text
(if cleaned and universally available) and peer reviews (if widely available).

The results suggest, somewhat surprisingly, that Random Forest Classifier and the Gradient
Boosting Classifier tend to be the most accurate (both classification and ordinal variants) rather
than the Extreme Gradient Boosting Classifier. Nevertheless, xgb is the most accurate for some
UoAs, and especially if active learning is used.

If high levels of accuracy are needed, small subsets of articles can be identified in some
UoAs that can be predicted with accuracy above a given threshold through active learning.
This could be used when phased peer review is practical, so that initial review scores could be
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used to build predictions and a second round of peer review would classify articles with low-
probability machine learning predictions. Even at relatively high prediction probability levels,
machine learning predictions can shift the scores of small institutions substantially due to sta-
tistical variations and larger institutions due to systematic biases in the machine learning pre-
dictions, such as against high-scoring institutions.

Although it would be possible to use the models built for the current paper in the next REF
(probably 2027), their accuracy could not be guaranteed. For example, the text component
would not reflect newer research topics (e.g., any future virus) and future citation data would
not be directly comparable, as average citation counts may continue to increase in future years
in some specialties.

Finally in terms of the technical side, unless other machine learning approaches work substan-
tially better than those tried here, it seems clear that machine learning prediction of scores is irrel-
evant for the arts and humanities (perhaps due to small article sets), most of the social sciences, and
engineering, and is weak for some of the remaining areas. It would be interesting to try large lan-
guage models such as ChatGPT for journal article quality classification, although they would pre-
sumably still need extensive scored training data to understand the task well enough to perform it.

From the practical perspective of the REF, the achievable accuracy levels, although the
highest reported, were insufficient to satisfy REF panel members. This also applied to the pre-
diction by probability subsets, despite even higher overall accuracy (Thelwall et al., 2022).
Moreover, the technically beneficial and acceptable solution of providing machine learning
predictions and their associated prediction probabilities to REF assessors to support their
judgments in some UoAs for articles that were difficult for the experts to classify was not rec-
ommended in the main report due to unintended consequences for the United Kingdom
(emphasizing journal impact despite initiatives to downplay it: Thelwall et al., 2022). In the
U.K. context, substantially improved predictions seem to need more understanding of how
peer review works, and close to universal publication of machine readable clean full text ver-
sions of articles online so that full text analysis is practical. Steps towards these would therefore
be beneficial and this might eventually allow more sophisticated full text machine learning
algorithms for published article quality to be developed, including with deep learning if even
larger data sets can be indirectly leveraged. From ethical and unintended consequences per-
spectives, however, the most likely future REF application (and over a decade in the future) is
to support reviewers’ judgments rather than to replace them.
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APPENDIX: INPUT FEATURES CONSIDERED BUT NOT USED

The set of inputs used is not exhaustive because many others have been proposed. We
excluded previously used inputs for the following reasons: peer review reports (Li, Zhao
et al., 2019b) because few are public; topic models built from article text (Chen & Zhang,
2015) because this seems unnecessarily indirect given that article topics should be described
clearly in abstracts; citation count time series (Abrishami & Aliakbary, 2019) due to not being
relevant enough for quality prediction; citation network structure (Zhao & Feng, 2022), as this
was not available and is not relevant enough for quality prediction; and language (Su, 2020),
because most U.K. articles are English. Other excluded inputs, and corresponding reason for
exclusion, were: funding organization (Su, 2020), because funding is very diverse across the
REF and the information was not available; research methods and study details (Jones & Alam,
2019), because full text was not available for most articles; semantic shifts in terms (Tan, Yang
et al., 2020), because this was too complex to implement in the time available (it would require
network calculations on complete Scopus data, not just UK REF data, and including years from
before the REF) and the limited evidence that it works on different data sets so far, although it
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seems promising; altmetrics (Akella, Alhoori et al., 2021) because these can be manipulated;
and specific title features, such as title length or the presence of colons (vanWesel, Wyatt, & ten
Haaf, 2014), because these seem too superficial, minor, and with varied results.

The most important omission was SciBERT (Beltagy et al., 2019). SciBERT converts terms
into 768 dimensional vectors that are designed to convey the sense of words in the contexts
in which they are used, learned from a full text scientific document corpus. We could have
used SciBERT vectors as inputs instead of unigrams, bigrams, and trigrams, replacing 768 of
them with SciBERT vectors and retaining the remaining 222 dimensions (out of the 990 avail-
able for text features) for journal names selected by the feature selection algorithm. SciBERT
gives good results on many scientific text processing tasks and may well have generated slight
improvements in our results. We did not use it for our primary experiments because 768
dimensional vectors are nontransparent. In contrast we could (and did: Thelwall et al.,
2022) analyze the text components of the text inputs to understand what was influential, find-
ing writing styles and methods names, which gave important context to the results. For exam-
ple, the journal style features led to abandoning an attempt to create more “responsible” (in the
sense of Wilsdon et al., 2015) solutions from text and bibliometrics, ignoring journal names
and impact information, because abstract text was being leveraged for journal information. We
had intended to repeat the study with SciBERT (and deep learning experiments) after the main
set but ran out of time because most of the two-months data access we were given was needed
for data cleaning and matching, troubleshooting, and testing different overall strategies. It is
not certain that SciBERT would improve accuracy, as specific terms such as “randomized con-
trol trial” and pronouns were powerful, and these may not be well captured by SciBERT.
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