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ABSTRACT

The use of co-occurrence data is common in various domains. Co-occurrence data often needs
to be normalized to correct for the size effect. To this end, van Eck and Waltman (2009)
recommend a probabilistic measure known as the association strength. However, this formula,
based on combinations with repetition, implicitly assumes that observations from the same
entity can co-occur even though in the intended usage of the measure these self-co-occurrences
are nonexistent. A more accurate measure based on combinations without repetition is
introduced here and compared to the original formula in mathematical derivations, simulations,
and patent data, which shows that the original formula overestimates the relation between a pair
and that some pairs are more overestimated than others. The new measure is available in the
EconGeo package for R maintained by Balland (2016).

1. INTRODUCTION

The use of co-occurrence data is popular in numerous scientific domains, such as scientometrics
(e.g., Leydesdorff & Vaughan, 2006; van Eck &Waltman, 2009), computational linguistics (e.g.,
Schutze, 1998), community ecology (e.g., Peres-Neto, 2004), development economics (e.g.,
Hidalgo, Kilinger et al., 2007), molecular biology (e.g., Maslov & Sneppen, 2002) and evolu-
tionary economic geography (e.g., Boschma, Balland, & Kogler, 2015). Its use is widespread and
closely related to the popularity of network analysis across disciplines.

Co-occurrence data is used to infer the relation (referred to as relatedness here, following
Hidalgo et al. [2007]), between entities, which can be species of fish, authors, or technological
classes, by observing how each of these co-occur with others in places such as streams, articles,
or patents. However, the total number of co-occurrences between a pair of entities cannot be
used straightforwardly to reflect the relatedness between them because entities with more ob-
servations are more likely to co-occur than entities with fewer observations. To correct for this
size effect, a normalization measure is applied to the data1. van Eck and Waltman (2009)

1 Note that it depends on the goal of the research if it is necessary to correct for the size effect or that absolute
counts are more relevant. In the research cited here and in van Eck and Waltman (2009), normalization is
assumed to be necessary. The exact definitions of occurrences, co-occurrences, and the size effect are given
in Section 3.
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review the most popular normalization measures and make a convincing case for the use of a
probability-based measure known as the association strength. This measure is based on dividing
the observed number of co-occurrences over the expected numbers of co-occurrences when as-
suming observations are randomly distributed over co-occurrences2.

In this paper, it is shown that the probability formula for the association strength, as proposed
by van Eck and Waltman (2009), is not optimized to calculate the expected number of co-
occurrences. The formula of van Eck andWaltman (2009) is proportional to probability calculations
based on combinations with repetition, which means that when estimating the probability that two
entities co-occur, the first observation drawn is assumed to be available for drawing again when
drawing the second observation. However, in the use of co-occurrence data the co-occurrence of
observations from the sameentity is disregarded3. Authors, for example, do not coauthor paperswith
themselves (Leydesdorff & Vaughan, 2006). Therefore, van Eck andWaltman (2009) suggest setting
these self co-occurrences to missing values4. This makes the possibility of drawing the same obser-
vation or any other observation from the same entity impossible in the second draw once an obser-
vation from this entity has been drawn in the first draw.

Therefore, an improved formula for the association strength is introduced using a probability
measure based on combinations without repetition but with a noticeable change. In combina-
tions with repetition, one cannot draw an observation in the second draw if it has been drawn in
the first draw. In this setting, none of the observations belonging to the same entity as the first
observation can be drawn in the second draw. Furthermore, two refinements are proposed in this
paper regarding the inputs to the formula, which in the current definition do not properly take
into account how the number of observed co-occurrences is calculated.

The improved formula is compared to the original formula in a theoretical setting, a number
of simulations, and a real-world application using patent data. It is shown that, first, the original
formula overestimates the relatedness between a pair of entities when this pair has at least one
co-occurrence. This indicates that the original formula can wrongly identify two entities as
related when in fact they are not; and, second, the original formula overestimates the related-
ness between some pairs more than others. This indicates that the overestimation is not pro-
portional and that the differences between the relatedness values for each pair are also
distorted.

In the theoretical analysis, the improved formula is subtracted from the original formula to
obtain a formula for the difference. By considering the domain of each variable, it is shown that
the original formula underestimates the number of expected occurrences in all cases and there-
fore overestimates the relationship between two entities when there is at least one observed
co-occurrence. Continuing the theoretical exploration, the first-order partial derivatives of the
difference with respect to each variable is taken, which shows that the overestimation is not
equal across all possible types of co-occurrence matrices.

Just taking the partial derivatives is not sufficient to show the size of the difference for each
case, as the values of the variables are interconnected in ways that do not allow for analytical
solving. Therefore, simulations are run in which four different exemplary cases are taken to the

2 A value of one indicates that exactly the same number of co-occurrences are observed as are expected. A value
above one or below one indicates, respectively, a stronger relation or a weaker relation between the two
entities.

3 This holds for the work referred to in this paper and those by van Eck and Waltman (2009).
4 In this paper, the suggestion is made to set them to zero (see Section 2), which is also often used (Ahlgren,
Jarneving & Rousseau, 2003).
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extreme to demonstrate the effect on the difference. The simulations show that the overestimation
by the original formula can be close to 0% but also close to 100% of the relatedness value given
by the improved formula, depending on the specificities of the co-occurrence matrix.

To measure to what extent these theoretical simulations are representative of real-world ap-
plications of research on co-occurrence data, a number of patent samples, containing data on
the technology classes per document, is treated to compare the results of both formulas. In these
samples, the overestimation of relatedness values for individual pairs varies between close to 0%
to up to 3.234% of the value given by the improved formula, and therefore does not attain the
most extreme values obtained in the simulation. Nonetheless, it clearly confirms that some pairs
are more overestimated than others. The results also show that some pairs are misidentified as
being related by the original formula, but that this is only the case for a rather small share of the
pairs, up to about 0.29% of the number of pairs identified by the original formula.

Therefore, it is advisable to use the improved formula when working with co-occurrence
data where self-co-occurrences are nonexistent or irrelevant. The reformulation of the proba-
bility measure does not in any way alter the conclusion by van Eck and Waltman (2009) that
probability-based measures outperform so-called set-theoretic measures in normalizing co-
occurrence data. The improved measure, including the recommended method of implemen-
tation, is available in the EconGeo package for R maintained by Balland (2016).

This paper is organized as follows: Section 2 gives a short overview of the use of co-
occurrence data and the association strength; Section 3 discusses the refinements; Sections 4
to 6 explore the overestimation by the original formula respectively in a theoretical setting,
simulations, and a real-world example using patent data; and Section 7 concludes.

2. NORMALIZING CO-OCCURRENCE DATA THROUGH PROBABILISTIC
SIMILARITY MEASURES

Co-occurrence data is generally derived from a binary occurrencematrixO of some orderm × n.
The rows ofO correspond to the places in which the observations occur and the columns to the
entities to which they belong5. There is a large variety of what these places and entities can be6.
The example in Matrix 1 shows three patents that contain a reference to, respectively, only class
c, class c and class d, and all classes a to d.

Matrix 1

Class a Class b Class c Class d
Patent 1 0 0 1 0
Patent 2 0 0 1 1
Patent 3 1 1 1 1

0
BB@

1
CCA

5 This type of matrix, inwhich two sets of vertices, here places and entities, are connected by the co-occurrences
in such a way that each link is between one entity and one place, is also known as a bipartite matrix in graph
theory (Latapy, Magnien, & Vecchio, 2008).

6 There are, for example, occurrencematrices of scientific publications by authors (e.g., Leydesdorff &Vaughan,
2006) or by research institutions (e.g., Hoekman, Frenken, & Tijssen, 2010); countries by industries (e.g.,
Hidalgo et al., 2007); streams by fish species (e.g., Peres-Neto, 2004); and patent documents by technology
classes (e.g., Boschma et al., 2015).
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By multiplying the transpose of O by O itself the co-occurrence matrix C is obtained7, in
which both the rows and the columns represent the entities and the matrix gives how often they
co-occur with the other.

In the case of our example, this would yield the co-occurrence matrix C given in Matrix 2.
Where class a co-occurs once with b, c, and d; class b co-occurs once with a, c, and d; class c
co-occurs once with a and b, and twice with d; and class d co-occurs once with a and b, and
twice with c.

The diagonal is set to zero as the reference to a certain class does not entail a co-occurrence
between that class and itself in the line of research for which the formula is intended. Ahlgren
et al. (2003), Leydesdorff and Vaughan (2006) and van Eck and Waltman (2009) suggest setting
the diagonal to missing values. This leads to the same results. However, it is advisable to use
zeros, because missing values often results in errors when using statistical software8. Setting
the diagonal to zero has important implications down the line.

Matrix 2

Class a Class b Class c Class d
Class a 0 1 1 1
Class b 1 0 1 1
Class c 1 1 0 2
Class d 1 1 2 0

0
BBBB@

1
CCCCA

Inmany applications of co-occurrence data, such as the concept of relatedness, the raw num-
bers of co-occurrences between entities cannot straightforwardly be interpreted as giving the
strength of the relation between each pair of entities. There is a so-called size effect, as some
classes co-occur more often with others for the simple reason that these classes have more oc-
currences in the first place. In our example, d has more co-occurrences with c than with a or b
but c also has more occurrences in total and therefore is more likely to co-occur with any class.

To correct the absolute number of co-occurrences for the size effect a normalization proce-
dure is applied to the data (van Eck & Waltman, 2009)9. Correcting co-occurrence data for the
size effect to derive relationships between entities is done through direct similarity measures10.
van Eck and Waltman (2009) wrote an extensive review of the most popular direct similarity
measures: the cosine, the Jaccard index, the inclusion index, and the association strength. Of
these, the last is a probabilistic measure, while the others are set-theoretic measures. The authors
show that set-theoretic measures do not properly correct for the size effect and argue in favor of
the association strength.

7 If the rows of O indicate the entities and the columns indicate the places where they co-occur, then it is the
other way around, and O should be multiplied by its transpose.

8 Ahlgren et al. (2003) also mention the option of setting the diagonal equal to the number of times an entity
occurs at least twice in a place. This option is unsuitable for probabilistic similarity measures, such as the
association strength, because the number of times an entity occurs at least twice does not entail a co-
occurrence between i and j. Therefore, when estimating the probability of a co-occurrence between i and j
one cannot draw the observations on the diagonal even though these are added to the total, and therefore the
pool of observations fromwhich one can draw. This becomes clearer when discussing the formula in Section 3.

9 In some cases, more normalization measures are deemed necessary. For example, Neffke, Henning, and
Boschma (2011) who look at the co-occurrence of products in the production process of the same plant, also
correct for the profitability of the respective products.

10 Another option to derive similarities or relationships between entities is by comparing the co-occurrence pro-
files of the entities, which are known as indirect similarity measures (van Eck & Waltman, 2009).
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The usability of their formula exceeds the domain of scientometrics. Hidalgo et al. (2007)
developed an influential network analysis tool to derive the relatedness between entities on
the basis of co-occurrences. Although they use a different probabilistic direct similarity measure
than the ones covered by van Eck and Waltman (2009), other authors (e.g., Balland, Rigby, &
Boschma, 2015) building on the framework of Hidalgo et al. (2007) do opt for the association
strength, as defined by van Eck and Waltman (2009)11.

Albeit influential, refinements to the work of van Eck and Waltman (2009) are in place. The
probabilistic formula should be based on a specific case of combinations without repetition in-
stead of with repetition. Furthermore, the definitions of the inputs for the formula are imprecise.
These points will be treated in the following section. It should be noted that the refinements to
the measure do not undermine in any way the statement of van Eck and Waltman (2009) that
probabilistic measures outperform set-theoretic measures in normalizing co-occurrence data to
control for the size effect.

3. REFINEMENT TO THE ASSOCIATION STRENGTH

The objective of the association strength is to estimate the number of expected co-occurrences
for each pair, assuming that these are randomly distributed, and compare this to the number of
observed co-occurrences to give an indication of the relation between a pair of entities when
corrected for the size effect. The challenge therefore is to correctly estimate the number of
expected co-occurrences per combination.

As an intuitive example, Matrix 3 gives a co-occurrence matrix C in which three classes (a, b,
and c) exist and co-occur exactly once with each other12:

Matrix 3

Class a Class b Class c
Class a 0 1 1
Class b 1 0 1
Class c 1 1 0

0
BB@

1
CCA

As each class has two observations and two possible other classes to co-occur with, the
expected number of co-occurrences is logically 2

2 = 1 for each combination (a& b, a& c, and b& c).

In this case, the matrix of expected co-occurrences is exactly the same as the matrix of
observed co-occurrences given in Matrix 3. Therefore, we observe as many co-occurrences
as expected and Observed

Expected should be equal to one for each combination.

11 Hidalgo et al. (2007) look into the co-occurrence of specializations in exporting industries in a country. Their
formula consists of taking the smallest value of the conditional probability of effectively exporting product j
knowing that a country effectively exports i and the conditional probability of effectively exporting product i
knowing that a country effectively exports j. This does not properly correct for the size effect because each
conditional probability corrects for the size of only one of the two, the former of i and the latter of j; by picking
the smallest of the two conditional probabilities, the other size effect still remains. Furthermore, the probability
if a country meets the condition of effectively exporting product j or i is neglected by taking the conditional
probabilities. These reasons make it understandable that other authors following the line of Hidalgo et al.
(2007) have opted for the association strength of van Eck and Waltman (2009).

12 This matrix Cwould result from our exampleO in Matrix 1 if one were to remove class d and its observations.
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For the association strength, van Eck andWaltman (2009) use a simplified formula in themain
text but describe Eq. 1 on p. 163613,14:

SOriginal Cij; Si; Sj; T;m
� � ¼ Cij

Si
T
Sj
T þ

Sj
T
Si
T

� �
m
; i ≠ j; (1)

In which Si and Sj are the number of occurrences of entity i (respectively j ) involved in co-
occurrences where i ≠ j. To calculate Si one can use the row sum of row i of the matrix C when
the diagonal is set to zero15. This slightly diverges from the explanation of van Eck and
Waltman (2009)16. T is the total number of occurrences and equal to

Pn
i¼1 Si, with n being

the total number of entities, and m is the total number of n co-occurrences and therefore equal

to
Pn

i¼1
Si

2 , which is half of T as each co-occurrence involves two occurrences. This definition also
diverges from van Eck and Waltman (2009)17. Cij is the number of observed co-occurrences
between i and j.

In essence, the denominator gives that the chance of encountering a co-occurrence between
an observation of class i and an observation of class j is equal to the probability of first drawing
one of the observations of class i out of the total number of occurrences times the chance of
drawing an observation belonging to class j out of the total number of occurrences plus the
probability of first drawing j and then i times the total number of co-occurrences.

13 I argue that it is more advantageous to use the full formula, which entails exactly dividing the number of ob-
served co-occurrences over the number of expected co-occurrences, as it gives a clear threshold of one when
Observed = Expected. As such, values below one indicate that fewer co-occurrences are observed than could
be expected given a random distribution, whereas values above indicate the opposite. This threshold holds in
all cases, even when matrices with different numbers of occurrences are compared. In contrast, the simplified
formula would have a different value indicating that the number of observed co-occurrences equals the ex-
pected number, depending on the matrices, even though it is proportional to the more detailed formula by a
factor of 2m.

14 This formula is also presented in rewritten form in Eq. 1 in Waltman, van Eck, and Noyons (2010).
15 Taking the column sum of column i gives the same value as the row sum of row i.
16 van Eck andWaltman (2009, p. 1636) state that for Si both the number of occurrences of entity i can be used or

the number of co-occurrences in which i is involved. However, it is important to emphasize that single occur-
rences, as in Patent 1 of the exampleO in Matrix 1, should be ignored, as these do not lead to co-occurrences.
This also holds for self co-occurrences of i with i, as both of these cannot be part of Cij where i ≠ j. Setting the
diagonal to zero resolves both these issues. This is also the reason that setting the diagonal equal to the number
of times an entity occurs at least twice in a place, as suggested by Ahlgren et al. (2003), is unsuitable for this
probabilistic measure.

17 van Eck and Waltman (2009, p. 1648) state thatm should be equal to “the number of documents.” However,
this only holds when the number of documents is equal to the number of co-occurrences. In the exampleO in
Matrix 1 patent 1 is one document but only refers to one class, so it does not involve any co-occurrences and is
therefore not equal to one co-occurrence. Patent 3, on the other hand, is also a single document but refers to all
classes a to d and therefore leads to six unique co-occurrences (a&b, a&c, a&d, b&c, b&d, c&d ). All together
the example consists of three documents and seven unique co-occurrences. As a result, in this case using the
number of documents formwould underestimate the expected number of co-occurrences, as the probability of
encountering a co-occurrence is multiplied by too small a number of co-occurrences than are actually possi-
ble. This explanation is the same as inWaltman et al. (2010). From this follows that the size effect is the result of
the fact that some entities are involved in more co-occurrences than others, which means more observations
and therefore an increased likelihood to co-occur with any other entity. This means that the raw probabilities of
co-occurrence cannot be compared straight away and a normalization measure is needed, such as the one
introduced in this paper.
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Calculating this formula for our example C in Matrix 3 would yield Relatedness Matrix R
given in Matrix 4:

Matrix 4

Class a Class b Class c
Class a 0 1:5 1:5
Class b 1:5 0 1:5
Class c 1:5 1:5 0

0
BB@

1
CCA

It is clear that the formula does not provide the intuitive answer of 1 but actually overestimates
the relationship by returning that each pair co-occurs more often than could be expected given a
random distribution.

The flaw cannot lie in the numerator, which is equal to the number of observedco-occurrences.
Therefore the problem lies in the denominator. The formula to calculate the expected number of
co-occurrences includes the possibility that when an occurrence of a certain entity is drawn the
same occurrence or another occurrence of the same entity (if present) can be drawn in the next
draw to complete the co-occurrence. This is known as combinations with repetition. However, as
self co-occurrences are nonexistent one knows that one cannot redraw the same occurrence, but
also none of the other occurrences of that class.

In the case of our example, the denominator of Eq. 1 yields an expected number of 2
3 co-

occurrences. This is because the formula observes two occurrences for each class and three
possible partners to co-occur with, even though there are only two possible partners. Class a
can co-occur with class b and class c but not with itself18.

In the case of co-occurrence data in which none of the observations belonging to the pre-
viously drawn entity can be drawn in the second draw the correct probabilistic measure would
be Eq. 2:

SImproved Cij; Si; Sj; T;m
� � ¼ Cij

Si
T

Sj
T−Si

þ Sj
T

Si
T−Si

� �
m
; i ≠ j; (2)

Here, the denominator gives that the chance of encountering a co-occurrence between an
observation of class i and an observation of class j is equal to the probability of first drawing one
of the observations of class i times the chance of drawing an observation belonging to class j
knowing that none of the observations of class i can be drawn plus the chance of first drawing
one of the observations of class j times the chance of drawing an observation belonging to class i
knowing that any other observations of class j cannot be drawn.

The implications of using Eq. 1 instead of Eq. 2 are that the relatedness between a pair is
overestimated when at least one co-occurrence is observed and that the overestimation is
larger for certain pairs than others. These implications are demonstrated and further explored
in the following parts: first in a theoretic setting, then by running simulations and concluding
with the analysis of a real-world example using patent data.

18 To be exact, the denominator of Eq. 1 would be equal to (26
2
6 +

2
6
2
6)3 for each pair outside of the diagonal in the

matrix of this example.
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4. THEORETICAL EXPLORATION OF THE OVERESTIMATION

An obvious first notion from observing Eqs. 1 and 2 is that there is no difference in outcomewhen
the number of observed co-occurrences is zero, as the numerator Cij will then be zero.

Furthermore, it can be assumed that Eq. 1 overestimates the relation between two entities
when there is at least one co-occurrence. The assumption in the probabilistic measure of
Eq. 1 is that the same observation and other observations from the same entity can be drawn
again but this is not possible. This enlarges the total pool fromwhich observations can be drawn
and therefore decreases the likelihood that a certain co-occurrence can be drawn. This leads to
the denominator, which contains the expected number of co-occurrences, in Eq. 1 being smaller
than the one in Eq. 2 in all cases, as was the case for the example Matrix 3, where the denom-
inator indicated a co-occurrence probability of 23 for each pair where actually only two options

instead of three existed and therefore 2
2 should have been the answer.

Due to the smaller expected probability, Eq. 1 divides the number of observed co-occurrences
over too small a number of expected co-occurrences and therefore the relatedness these two
entities is overestimated, when at least one co-occurrence is observed.

That the denominator of Eq. 1 underestimates the expected number of co-occurrences can
also be proven analytically. The original probabilistic measure of van Eck and Waltman (2009)
in the denominator of Eq. 1 is rewritten and given in Eq. 3, while the improved probabilistic
measure used in the denominator of Eq. 2 is rewritten and given in Eq. 4:

E Cij
� �

Original Si; Sj; T
� � ¼ SiSj

T
; i ≠ j; (3)

E Cij
� �

Improved Si; Sj; T
� � ¼ SiSj 2T − Si − Sj

� �

2 T − Sið Þ T − Sj
� � ; i ≠ j; (4)

Let Dprobability be equal to E(Cij)Improved − E(Cij)Original. It can be shown that this difference
Dprobability is equal to Eq. 5.

Dprobability Si; Sj; T
� � ¼ SiSj SiT þ SjT − 2SiSj

� �
2T T − Sið Þ T − Sj

� � ; i ≠ j; (5)

For E(Cij)Improved to be larger than E(Cij)Original Eq. 5 gives that SiT + SjTmust be larger than 2SiSj.
As Si ≥ 1, Sj ≥ 1, and T = Si + Sj + Sk +… + Sn it is clear that T > Si and T > Sj and therefore SiT +
SjT > 2SiSj must hold19.

This means thatDprobability is positive in all circumstances, which indicates that the improved
formula predicts in all cases that more co-occurrences can be expected between i and j. This
makes sense, as the improved formula excludes the possibility of drawing a combination of i
and i, making it more likely to draw a combination between i and j.

Because the number of observed co-occurrences, Cij, is divided over the number of expected
co-occurrences, the original Eq. 1 leads to larger results than the improved Eq. 2 in all possible

19 If entities can partially occur in a place then the values for Si and Sj can be below one, but in any case not below
or equal to zero, and therefore same statements hold.
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cases, when Cij > 0. This can also be shownmathematically: LetDFormula be equal to SOriginal (Cij,
Si, Sj, T ) − SImproved(Cij, Si, Sj, T )

20. It can be shown that the difference DFormula is equal to Eq. 8
after rewriting Eq. 1 to Eq. 6 and Eq. 2 to Eq. 7.

SOriginal Cij; Si; Sj; T
� � ¼ TCij

SiSj
; i ≠ j; (6)

SImproved Cij; Si; Sj; T
� � ¼ 2 T − Sið Þ T − Sj

� �
Cij

SiSj 2T − Si − Sj
� � ; i ≠ j; (7)

DFormula Cij; Si; Sj; T
� � ¼ SiT þ SjT − 2SiSj

� �
Cij

SiSj 2T − Si − Sj
� � ; i ≠ j; (8)

Three important notions can be derived from Eq. 8. First, it is confirmed that when there are no
observed co-occurrences (i.e.,Cij= 0) the difference is zero. Second, if and only ifCij> 0 then Si ≥
Sj ≥ 1 and T ≥ Si + Sj and therefore (SiT + SjT > 2SiSj). This indicates that Eq. 1 yields larger out-
comes than Eq. 2 in all possible cases, with at least one observed co-occurrence, effectively
overestimating the relation between entity i and j. Third, for different values of Si, Sj, Cij, and T
the difference between Eqs. 1 and 2 will also vary. This means that the difference between the
formulas is not proportional for each pair but the relatedness between certain pairs is more
strongly overestimated than for other pairs.

To explore the difference due to different values of Si, Sj, Cij, and T the partial derivatives are
taken ofDFormulawith respect to each. Because T is a function of Si, Sj, and all other co-occurrences,Pn

k≠i;j Sk. T is replaced by Si + Sj + L in Eq. 8 in which L =
Pn

k≠i;j Sk and its range is equal to or larger

than zero.

The partial derivatives δDFormula
δCij

, δDFormula
δSi

, and δDFormula
δL are respectively given in Eqs. 9, 10,

and 1121.

δDFormula

δCij
¼

S2i þ S2j þ SiLþ SjL
� �

SiSj Si þ Sj þ 2L
� � ; i ≠ j; (9)

δDFormula

δSi
¼

Cij S2i Sj þ S2i Lþ 2SiL2 − 2SiSjL − S3j − 3L − 2SiL − 2SjL2
� �

S2i Sj Si þ Sj þ 2L
� �2 ; i ≠ j; (10)

δDFormula

δL
¼ −Cij Si − Sj

� �2
SiSj Si þ Sj þ 2L

� �2 ; i ≠ j; (11)

Given the domain of each formula, Eq. 9 is always positive, and, when at least one co-occurrence
exists, Eq. 10 can be positive or negative depending on the respective inputs and Eq. 11 is always
negative.

This last statement suggests that a relationship between two entities will be more overesti-
mated by Eq. 1 when there is a smaller amount of other possibilities to co-occur with.

20 Note that the order of the original formula and the improved formula has been altered compared to the previous
calculation of the difference of the respective probabilistic measures.

21 The partial derivatives δDFormula
δSi

and δDFormula
δSj

are very similar in the sense that one can interchange the Si and Sj
to obtain the same formula; therefore δDFormula

δSj
is not shown.
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Despite being informative, partial derivatives give an incomplete picture of the discrepancy
between the two formulas, as these give the direction of a function with respect to an infinitesimal
increase in one of the variableswhile keeping the others equal, even though in reality it is impossible
to keep the other variables equal, as the inputs are all related to each other. NecessarilyCij consists of
Si and Sj, and if not all Si co-occur with Sj then Lmust at least have enough occurrences to co-occur
with the remaining i, and js. In other words, the following logical conditions hold: Cij ≤ min{Si, Sj};
and L ≥ |Si − Sj|. In the next section theoretical simulations are run in which these conditions can
be met.

5. SIMULATIONAL EXPLORATION OF THE OVERESTIMATION

For the theoretical simulations a simple co-occurrence matrix C depicted in Matrix 5 is used.
Although it is simple, this matrix allows for some exploration of the numerical difference between
Eq. 1 or Eq. 2 for different values of Si, Sj, Cij, and L. In four different simulations, hypothetical and
rather extreme situations are simulated to get insight into the effects of increasing the values of each
of the variables Si, Sj, Cij, and L, while meeting the conditions Cij ≤ min{Si, Sj}; and L ≥ |Si − Sj|.

Matrix 5

Classes a b c d
a 0 1 1 1
b 1 0 1 1
c 1 1 0 1
d 1 1 1 0

0
BBBB@

1
CCCCA

In the first simulation, Matrix 5 is taken and the number of co-occurrences between c & d is
increased by 1 in each step k, ceteris paribus. Matrix 6 gives this simulation.

Matrix 6

Classes a b c d
a 0 1 1 1
b 1 0 1 1
c 1 1 0 1þ k
d 1 1 1þ k 0

0
BBBB@

1
CCCCA

In each step k the resulting relatedness matrix using Eq. 1 is subtracted from the resulting
relatedness matrix using Eq. 2 and divided over the value of Eq. 2 to express the difference in
percentages. The relatedness values for the pairs a & b and c & d are then plotted for each step.
Each of these two changing relationships represent a different scenario:

• a& b. The changing difference in relatedness for the pair a& b simulates a steady increase
in L, keeping Cij = 1 and Si = Sj = 3. This result is depicted in Figure 1.

• c & d. The changing difference in relatedness between classes c & d simulates a steady
increase inCij but also in Si and Sj, keeping L= 6. To increaseCij beyond themaximumvalue
of Si and Sj, Si and Sj also have to increase. From the partial derivatives it can be derived that
an increasing Cij would increase the difference, whereas an increase in Si and Sj can both
increase or decrease the difference. The result of the simulation is depicted in Figure 2.

The absolute difference between the calculated relatedness of Eqs. 1 and 2 for the pair a &
b is equal to 1/3 across the entire simulation. However, as the number of other co-occurrences
L increases, potential co-occurrence candidates increase as well, and therefore the expected
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number of co-occurrences for a & b decreases. As a result, relatedness values are higher as L
increases and the relative difference decreases, as can be seen in Figure 1.

For pair c & d, L remains equal to 6 but Ccd, Sc, and Sd increase. Figure 2 depicts how the
difference in the estimated relatedness increases asymptotically, converging from 33.3% to the

Figure 1. The difference in relatedness between the original formula and the improved formula for
class a & b when L increases.

Figure 2. The difference in relatedness between the original formula and the improved formula for
class c & d when Ccd, Sc, and Sd increase.
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value of 100%. As the Observed
Expected should be close to 1 when two entities are close to having 100% of

the occurrences in the sample, but the values of the original Eq. 1 converge to 2 the difference is
close to 100% of the correct value.

To simulate an increase in Cij while keeping Si, Sj, and L equal, ceteris paribus, another simu-
lation is needed: Matrix 1 is altered by replacing the number of co-occurrences between entities
a & b and c & d by a large amount of co-occurrences x.

Then in each step k of the simulation a co-occurrence is subtracted from this amount x and
added to the co-occurrences between entities a& d and b& c: SeeMatrix 6. This keeps Si, Sj, and
L equal but increases Cij for the relatedness between a & d. Note that the result is insensitive to
the exact value of x, as the resulting change in the denominator and numerator cancel each
other out.

Matrix 7

Classes a b c d
a 0 x − k 1 1þ k
b x − k 0 1þ k 1
c 1 1þ k 0 x − k
d 1þ k 1 x − k 0

0
BBBB@

1
CCCCA

The result is a stable overestimation of 33.3% for all values of k. When a & d co-occur more
often but the total number of co-occurrences in the sample stays the same, the relatedness
between a & d naturally increases. Nonetheless, the increase in relatedness is proportional for
the two formulas and therefore the difference remains 33.3%.

Last, an increase in Si and Sj while keeping Cij equal is simulated. The simulation is very
similar to the first simulation except that in addition to increasing the co-occurrences between
c & d also those between b & c are increased in each step k: See Matrix 4. As a result, Sb and Sc
increasewhileCbd is kept at 1. L necessarily increases aswell in the formof Sc tomatch the added
co-occurrences of Sb and Sd.

Matrix 8

Classes a b c d
a 0 1 1 1
b 1 0 1þ k 1
c 1 1þ k 0 1þ k
d 1 1 1þ k 0

0
BBBB@

1
CCCCA

Once again the percentage difference between calculating the level of relatedness for the pair
b& d using Eqs. 1 and 2 is stable at 33.3% for all values k. This time the relatedness between b&
d decreases as k increases because their total number of occurrences Sb and Sd increase but their
number of co-occurrences remains 1.

The simulations in this section show that the difference can range between close to 100% and
close to 0. In real-world applications of co-occurrence data the bias introduced by using Eq. 1
instead of Eq. 2 will be somewhere in between the extreme scenarios simulated here, in which
each respective value in the relatedness matrix will be closer to a specific scenario than others.
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6. REAL-WORLD DATA-BASED EXPLORATION OF THE OVERESTIMATION

The theoretical and simulational explorations demonstrate that Eq. 1 overestimates the related-
ness between entities compared to Eq. 2 in a way that disproportionately affects certain pairs
more than other pairs. However, the question remains how close these examples are to real-
world applications.

Therefore, the outcomes of Eqs. 1 and 2 are compared using United States Patent and
Trademark Office (USPTO) technology class data: See Hall, Jaffe, and Trajtenberg (2001) and
USPTO, from utility patents in periods of 5 years from 1855 to 201422.

In the occurrence matrix O of each time period the rows indicate patent numbers and the
columns technology classes, like the example in Matrix 1. By multiplying the transpose of O
by O itself a technology classes by technology classes co-occurrence matrix C is obtained. As
before, the diagonal ofC is set to zero and Si can then be calculated as the column sumof column
i or the row sum of row i23. Next Eqs. 1 and 2 are calculated using the C of each time period and
the results are compared in Table 1.

Table 1 gives a number of statistics for each time period mentioned in the respective header.
The first row gives the number of different technology classes (n) referred to on the patents. This
number is equal to the number of columns/rows in C. The second line gives the number of pairs
that have a value higher than 1 according to Eq. 1 by van Eck and Waltman (2009); these relat-
edness pairs have more or just as many observed co-occurrences as expected and are therefore
seen as related in research within this domain (see, for example, Balland et al., 2015). The third
line gives the same statistic but employs the improved Eq. 2. On line four the difference between
the number of related pairs according to each formula is given24. Difference (%) expresses this
difference as a percentage of the number of related pairs according to the improved Eq. 2.

By focusing on these first five statistics it can be seen that in 1855–1859 patents made refer-
ences to 327 different technology classes and that according to Eq. 1 5,154 pairs of technology
classes can be seen as related, whereas Eq. 2 identifies 5,150 related pairs. As a result, Eq. 1
identifies four pairs or 4

5150 × 100 = 0.07% more as related than Eq. 2.

In later time periods the differences increase both in absolute terms and in relative terms with
a maximum in relative terms of 0.29% in 1885–1889 and a maximum in absolute terms with
62 pairs wrongly seen as related in 1955–1959.

In addition to the overestimation, another problem of using Eq. 1 instead of Eq. 2 is that the
relatedness between some pairs is more overestimated than between other pairs. The last four
statistics explore this disproportionality. The largest difference in value gives the largest difference
in the relatedness value of a single pair between Eqs. 1 and 2, and its percentage counterpart gives
the largest overestimation relative to the value given by Eq. 2. In relative terms the highest over
estimation is 3.23% and occurs in 2000–2004, and this percentage is way below some of the ex-
treme scenarios simulated in Section 5. The largest absolute difference is 0.837 in 1860–1864.

The last two statistics are similar but give the smallest difference whenCij > 025.When at least
one co-occurrence exists between a pair its relation is overestimated, as already shown mathe-
matically in Section 4. The values are close to zero both in absolute terms and in relative terms

22 A period of 5 years is also used by Boschma et al. (2015).
23 Note that the relatedness function in the EconGeo package for R (Balland, 2016) sets the diagonal of the input

co-occurrence matrix to zero automatically.
24 Note that there are no pairs identified as related by Eq. 2 that are identified as unrelated by Eq. 1, as Eq. 1 > Eq. 2,

when Cij > 0. See also Section 4.
25 When Cij = 0 both formulas return 0 and the difference is therefore also zero and obviously the smallest.
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Table 1. Patent comparison results

1855–9 1860–4 1865–9 1870–4 1875–9 1880–4 1885–9 1890–4

Number of technology classes 327 335 343 356 361 372 379 385

Number of related pairs
(Original formula)

5,154 4,902 7,910 8,954 10,100 12,396 13,438 13,484

Number of related pairs
(Improved formula)

5,150 4,898 7,892 8,934 10,080 12,370 13,398 13,464

Difference 4 4 18 20 20 26 40 20

Difference (%) 0.07 0.08 0.22 0.22 0.19 0.21 0.29 0.14

Largest difference in value 0.827 0.837 0.788 0.786 0.822 0.662 0.593 0.63

Largest difference (%) in value 2.643 2.177 2.009 1.961 2.258 2.333 2.425 2.36

Smallest difference in value 0.00599 0.00505 0.00234 0.00169 0.0011 0.00107 0.00084 0.00082

Smallest difference (%) in value 0.0294 0.0268 0.01 0.0075 0.0085 0.0037 0.004 0.0032

1895–9 1900–4 1905–9 1910–4 1915–9 1920–4 1925–9 1930–4

Number of technology classes 385 387 390 394 403 404 405 415

Number of related pairs
(Original formula)

14,196 15,866 16,372 16,742 17,784 18,036 19,560 21,432

Number of related pairs
(Improved formula)

14,160 15,842 16,338 16,694 17,754 17,990 19,528 21,396

Difference 36 24 34 48 30 46 32 36

Difference (%) 0.25 0.15 0.20 0.28 0.16 0.25 0.16 0.16

Largest difference in value 0.625 0.515 0.586 0.666 0.645 0.753 0.711 0.677

Largest difference (%) in value 2.568 2.341 2.303 2.441 2.536 2.173 1.933 1.872

Smallest difference in value 0.00063 0.00056 0.00042 0.00051 0.00038 0.00039 0.00023 0.00018

Smallest difference (%) in value 0.0026 0.0054 0.0055 0.0071 0.0052 0.0023 0.0036 0.0071

1935–9 1940–4 1945–9 1950–4 1955–9 1960–4 1965–9 1970–4

Number of technology classes 414 417 413 423 427 430 432 434

Number of related pairs
(Original formula)

22,852 23,430 23,336 25,104 24,422 25,326 25,932 25,590

Number of related pairs
(Improved formula)

22,814 23,388 23,280 25,060 24,360 25,280 25,902 25,544

Difference 38 42 56 44 62 46 30 46

Difference (%) 0.16 0.17 0.24 0.17 0.25 0.18 0.11 0.18

Largest difference in value 0.557 0.56 0.525 0.492 0.557 0.529 0.579 0.661

Largest difference (%) in value 1.641 1.76 1.772 1.726 1.51 1.561 1.602 1.892

Quantitative Science Studies 791

Improvement on the association strength

D
ow

nloaded from
 http://direct.m

it.edu/qss/article-pdf/2/2/778/1930681/qss_a_00122.pdf by guest on 08 Septem
ber 2023



and therefore in strong contrast to the highest values, showing that some pairs get more over-
estimated than others.

The results also show that there is not necessarily a direct connection between the number of
technology classes and the number of related pairs or the overestimation. In 2000–2004, there is
the second highest number of different technology classes, and the number of related pairs is
lower than in 1950–1954 when fewer technology classes were in use.

When comparing these specific time periods, 2000–2004 turns out to have a much more
concentrated co-occurrence matrix C than the one in 1950–1954. In 2000–2004 each row or
column i contains a few pairs with a lot of observations whereas others have relatively few ob-
servations. This contrasts with themore even spread of observations acrossC in 1950–1954. The
average Gini coefficient per row of C in 2000–2004 is 0.936 versus 0.909 in 1950–1954.

Very much like the simulation based on Matrix 7, where Si and Sj were increased while
keepingCij equal, the pairs with little co-occurrence are less overestimated when there are more
occurrences of the same technology class with other classes, as is more the case in 2000–2004.
The pairs with relatively high numbers of co-occurrences have a larger share of the sample in
2000–2004 compared to 1950–1954, as in Matrix 6, where Cij is increased while Si and Sj are
kept equal; these pairs are more overestimated in 2000–2004. The pairs with relatively many
co-occurrences are likely to pass the threshold of 1 using either formula, and the stronger over-
estimation for these pairs in 2000–2004 does not lead to much change with respect to passing
this threshold. This is not the case for the pairs with relatively fewer co-occurrences, which are
less overestimated in 2000–2004 than in 1950–1954. Therefore, in 2000–2004 these are less
likely to pass the threshold irrespective of whether Eq. 1 or Eq. 2 is used, and in 1950–1954

Smallest difference in value

1935–9

0.00015

1940–4

0.00015

1945–9

0.00022

1950–4

0.00014

1955–9

0.00014

1960–4

0.00011

1965–9

0.00009

1970–4

0.00008

Smallest difference (%) in value 0.003 0.0034 0.0063 0.0019 0.0029 0.0018 0.0015 0.0006

1975–9 1980–4 1985–9 1990–4 1995–9 2000–4 2005–9 2010–4

Number of technology classes 436 435 435 435 431 437 436 438

Number of related pairs
(Original formula)

25,350 25,012 24,712 23,982 24,120 24,422 24,356 26,382

Number of related pairs
(Improved formula)

25,324 24,980 24,676 23,928 24,084 24,388 24,310 26,348

Difference 26 32 36 54 36 34 46 34

Difference (%) 0.10 0.12 0.14 0.22 0.14 0.13 0.18 0.12

Largest difference in value 0.684 0.694 0.69 0.524 0.501 0.581 0.592 0.64

Largest difference (%) in value 2.29 2.52 2.192 2.293 2.404 3.234 3.176 2.834

Smallest difference in value 0.00008 0.00008 0.00006 0.00005 0.00005 0.00004 0.00003 0.00002

Smallest difference (%) in value 0.0018 0.0033 0.004 0.0028 0.0033 0.0036 0.0013 0.0012

Notes: A pair is seen as related when the respective formula returns a value of 1 or higher for a certain pair. The statistics expressed in percentages are taken with
respect to the value returned by the improved Eq. 2.

Table 1. (continued )
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these pairs are more likely to pass the threshold using Eq. 1 but not when using Eq. 2. As a result,
2000–2004 has larger overestimations of individual relatedness values but fewer pairs that are
wrongly identified as related.

The comparison shows that using Eq. 1 instead of Eq. 2 in research can lead to nonnegligible
differences and that some pairs and matrices are affected disproportionately. Note that with an
incorrect specification of Si, Sj, and m Eq. 1 becomes even more inaccurate: See Section 4. It is
unlikely that papers employing Eq. 1 instead of Eq. 2 would have reached fundamentally
different conclusions, but a risk is more present in some cases than others. It is recommended
to use Eq. 2 in future research.

7. CONCLUSION

Co-occurrence data is commonly used in various domains. Researchers generally apply normal-
ization measures to correct for the size effect. To this end, van Eck andWaltman (2009) make a
convincing case to use a probability-based measure known as the association strength, in which
the number of observed co-occurences is divided over the number of expected co-occurrences,
assuming that observations are randomly distributed over co-occurences.

However, the probability formula to calculate the expected number of co-occurrences is not
suited for the co-occurrence analysis it is recommended for, which is when self-co-occurrences
are nonexistent or irrelevant26. The formula assumes combinations with repetition, meaning that
an observation from an entity can be drawn again after being picked in the first draw, even
though neither this occurrence nor any other occurrence belonging to the same entity can be
drawn in this line of work.

This paper introduces a formula that is based on, but not equal to, combinationswithout rep-
etition inwhich the probability of drawing entity i and j together is calculated as the probability of
drawing i first and then j, knowing that none of the observations pertaining to i can be drawn plus
the probability of drawing j and then i, knowing that none of the observations pertaining to j can
be drawn. This formula gives the correct results, as was demonstrated in an intuitive example.

Furthermore, it is shown that the original formula overestimates the relatedness between a
pair of entities compared to the improved formula introduced here when there is at least one
observed co-occurrence, and that the overestimation is not proportional across pairs.
Simulations show that the overestimation of the relatedness can range between virtually 0%
and almost 100% of the correct value given by the improved formula. In a real-world example,
a number of patent samples showed that the overestimation of individual values was between
virtually 0% and 3.234%, and the difference in the number of pairs that can be seen as related
can be 0.29% more than the number of pairs identified as related by the improved formula.

This paper shows that the formula presented here is better equipped for the analysis of
co-occurrence data. The formula, following all recommendations for inputs and treatment, is
available in the EconGeo package for R maintained by Balland (2016).
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