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ABSTRACT

Many interesting use cases of research data classifiers presuppose that a research data
item can be mapped to more than one field of study, but for such classification mechanisms,
reproducible evaluations are lacking. This paper closes this gap: It describes the creation of a
training and evaluation set comprised of labeled metadata, evaluates several supervised
classification approaches, and comments on their application in scientometric research.
The metadata were retrieved from the DataCite index of research data, pre processed, and
compiled into a set of 613,585 records. According to our experiments with 20 general fields
of study, multi layer perceptron models perform best, followed by long short-term memory
models. The models can be used in scientometric research, for example to analyze
interdisciplinary trends of digital scholarly output or to characterize growth patterns of
research data, stratified by field of study. Our findings allow us to estimate errors in applying
the models. The best performing models and the data used for their training are available
for re use.

1. INTRODUCTION

By research data, we understand all digital input or output of those activities of researchers that
are necessary to produce or verify knowledge in the context of the sciences and humanities1.
Fields of study are concepts used to structure academic institutions hosting these activities into
faculties or to characterize the branch of knowledge that a journal contributes to; typically,
fields of study are not applied identically on every occasion, but the different classification
schemes overlap substantially.

Metadata for research data often include a title or even a longer description that permits
identification of the field of study of the research data item and can thus be used as a place-
holder to classify it. Classification in this context can be understood in two ways: Either an item
must be mapped to one, and only one, class out of a fixed set of classes, in which case this task
is called a multiclass classification in the literature, or the item may be mapped to one or sev-
eral classes, which is called multilabel classification. The latter approach is more appropriate
for research data, because they can often be mapped to multiple fields of study and these
mappings are typically not exclusive (research data can belong to both statistics and economics,

1 Definition according to Weber and Kranzlmüller (2018).
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or to both medicine and biology). As both the amount and the growth of research data are too
extensive for manual routines to classify them, automatic classifiers are needed for many use
cases2.

Three of these use cases illustrate the usefulness of such an automated classifier and help to
specify the requirements for the methodological approach of this paper:

1. Scientometric research: During scientometric analyses, normalization problems arise.
Metrics for publications are an example: To compare the values (citations, usage, etc.)
across fields, these must be normalized to values typical for a specific field or com-
munity of research. Only automated classification procedures allow scientometri-
cians to find these values for large and unclassified data sets. An automated
classifier can also be used to take stratified samples from large collections of research
data.

2. Assistant systems: Providers of research data services can take advantage of automated
classification to assist users of their repositories. Assistant systems can suggest labels
for research data based on the metadata submitted. This not only eases the work of
the submitters, users, and curators but improves the overall quality of available
metadata.

3. Value-adding services: Research data aggregation services, such as DataCite3 or BASE4

collect metadata across different fields of study. Enriching the collected metadata by
adding classification information enables value-adding services such as a faceted
search, publication alarms for specific fields, or other services relevant only to a selec-
tion of fields.

The three use cases have different requirements: When an automated classifier is used in
scientometric research (e.g., for sampling research data), a wrongly assigned label has a
greater impact on the application compared to a missed label. Assistant systems, on the other
hand, ideally identify all correct labels; as humans can correct the suggestions in this con-
text, a wrongly assigned label is not as bad as a missed label. The former use case therefore
stresses the precision of the classifier, which is the probability that a classification is correct,
while the latter use case stresses its recall, which is the probability that no correct label
is missed by the classifier. In the third use case (value-adding services) both qualities are
equally important.

This paper reproducibly evaluates different approaches to automatically classify research
data along the requirements of the three use cases. To achieve that, the following steps have
been taken:

1. Retrieval of openly available metadata for research data;
2. Crosswalks to map the different classification schemes to one common scheme;
3. Extraction of title, description, and keywords from the metadata;
4. Cleaning and preparation of the data for the application of machine learning

algorithms;
5. Evaluation of different approaches along the three use cases presented above.

2 For example, Bell, Hey, and Szalay (2009) or Peters, Kraker, et al. (2017).
3 https://datacite.org/
4 https://base-search.net/
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As evaluation candidates we used the multilabel-enabled classifiers provided by the scikit-
learn framework5 and neural networks as supported by tensorflow6.

The main contributions of this paper are

• A methodical evaluation of selected classification models for each of the use cases;
• The publication of the data set used for this evaluation, which allows others to reproduce

or supersede our findings;
• The publication of the complete source code used to clean the data and map them to

our base classification scheme;
• Suggestions on how these models can be used for scientometric research.

The remainder of this paper is structured as follows: Section 2 discusses the relations of our
approach to a selection of published work. In Section 3 we summarize how the data set was
retrieved and processed; the processing includes the identification of a common classification
scheme and the mapping of the research data onto this scheme. The machine learning models
and data vectorization workflows are introduced in Section 4. The methodological approach
to evaluate the models is described in Section 5. Section 6 gives an overview of the results.
These results are discussed in Section 7, which includes a comment on threats to validity. The
last section concludes and suggests how to take advantage of our findings in scientometric
applications.

2. RELATED WORK

This section lists approaches to realize an automated classification of research data by field of
study and their common shortcomings and discusses the available data to evaluate the
approaches.

2.1. Automatic Classification by Field of Study

Waltinger, Mehler, et al. (2011) use a Support Vector Machine (SVM) model to classify accord-
ing to the Dewey Decimal Classification (DDC), in three hierarchy levels. The problem is de-
scribed as a multilabel classification task with hierarchical predictions. Hierarchical
predictions presuppose a classification scheme with different levels (e.g., science on the first
level and biology, physics, etc. on the second level). The presented prediction scores are only
partial due to the sparseness of the used training set on some levels, which was compiled out
of the data available via the BASE service (Bielefeld Academic Search Engine)7. at that time:
On the first level of the DDC hierarchy 5,868 English and 7,473 German metadata records
were available, and on the second and third levels 20,813 English and 37,769 German
metadata records were available. The English classifier had an f1-score of 0.81 (classification
over base classes; that is, 10 labels); for the deeper levels only partial data are available. It is
not specified, whether the score is averaged over the whole data set (micro) or the mean scores
for each label (macro). In comparison to Waltinger et al. (2011), our data set is more than
20 times larger.

5 This framework only includes well-established models and algorithms; see Pedregosa, Varoquaux, et al.
(2011).

6 Tensorflow offers hardware support for graphic processing units (GPUs) to speed up the training of neural
networks, and is generally better equipped for neural networks than scikit; see Abadi, Agarwal, et al. (2015).

7 https://base-search.net/
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Wang (2009) also discusses the application of machine learning algorithms on bibliographic
data labeled with DDC numbers. They evaluate their approach with a data set comprised of
publications8, (i.e., journal articles, conference papers, books, and book chapters). Their clas-
sification scheme is limited to the DDC classes 500 and 600 (science and technology) with
88,400 mostly single-labeled records. The author suggests flattening the hierarchy to reduce
the number of labels (18,462). Although the proposed classification approach achieves an ac-
curacy score of nearly 90%, it is not a viable option for our use cases, as it is based on a multi-
class approach (classification over multiple labels, which are taken as exclusive) and not fully
automated. As already stated, that approach is limited to a relatively narrow selection of fields
of research.

Another approach to use SVM models to predict DDC fields of study is presented by Golub,
Hagelbäck, and Ardö (2018). The authors characterize the problem as multiclass, but their
classifier honors the hierarchy of DDC. The used data set includes 143,838 records from
the Swedish National Union Catalogue ( joint catalogue of the Swedish academic and research
libraries). They report a peak accuracy of 0.818.

In general, classifiers targeting DDC (Golub et al., 2018; Waltinger et al., 2011; Wang,
2009), face the problem that predicting the first DDC level is typically not very useful (only
10 classes, one of which is “Science”), whereas classifiers targeting DDC’s second level
need to provide training data for 100 labels. For the latter task to succeed, the reported data
sets are too small or too sparsely populated on certain labels; the results are as a conse-
quence partial at best. Our analysis of the DataCite index furthermore indicates that DDC
is not necessarily the most used classification scheme for research data, despite its popular-
ity among information specialists and librarians (see Table 2). These problems could be cir-
cumvented by using a classification scheme that is expressive enough in the first level, as
proposed by us. As a conclusion of the review of the literature we furthermore decided to
not include hierarchy predictions in our problem. Hierarchies add a second layer on top of
the classification problem at hand: Classifying base classes is one layer and determine the
depth in a hierarchy another. The second layer could itself be understood (recursively) as a
multilabel classification problem. While we hope to contribute to the former, we do not
claim to solve the latter.

All the approaches that we found in the literature have at least one of the following
shortcomings:

• The classification task is characterized as multiclass, that is, selecting only one field of
research, and not multilabel, which would include the possibility to select more than
one field of research per research data item.

• The reported classification performance is not comparable to other approaches, because
important values are missing or reported values are too unspecific.

• The domain of classification only includes publications in the classical sense ( journal
articles, conference papers, books, and book chapters) as opposed to the more general
class of research data (also including tabular data, source code, models, etc.).

• The evaluation of the approaches is limited to a subset of the possible base classes or
labels.

• The classification routine is not automated (i.e., includes human interaction).

8 Publications are considered a subclass of research data in this paper.
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Our approach shares none of the named shortcomings. The literature furthermore concen-
trates on linear machine learning models (most prominently SVMs), which is why we concen-
trated our resources on other models and excluded them from the evaluation.

2.2. Data Publications to Evaluate Classification Approaches

A general problem we found in the course of reviewing the available literature is that the re-
ported results are often not comparable; incomplete or incommensurable performance metrics
are not the only issue: The values could have been recalculated if the data were available.
With one exception (Joorabchi & Mahdi, 2011), all the publications we found do not include
enough information to retrieve the data used to evaluate the presented approach. Additionally,
different data sets probably lead to different results; there is no single, canonical data set which
is used to evaluate the different approaches.

Lösch, Waltinger, et al. (2011) present an approach to compile an annotated corpus of
metadata based on the OAI-PMH standard, the Dublin Core metadata scheme, and the
DDC classification scheme. The authors created a partially manual routine to determine the
DDC label9. The resulting data set includes 52,905 English records annotated with one of
the 10 top-level DDC classes. We build on their approach, but adapt it by using the DataCite
metadata scheme10, which supports qualified links to classification schemes. This allowed us to
compile a larger data set with a finer set of base classes and the possibility to integrate different
classification schemes into our approach. We found the resulting data set in a similar imbalance
as the data set presented by Lösch et al. (2011) (see Section 3).

We hope to contribute not only with our classification approach but also by providing a
large data set that can be used to evaluate future approaches and reproduce the findings of
already proposed approaches.

3. DATA RETRIEVAL AND PROCESSING

This section explains the steps that were taken to create the training and evaluation set.
Figure 1 lists the steps and specifies the size of the outcome in metadata records after each
step. The following subsections are aligned with the workflow depicted in Figure 1.

3.1. Data Source: The DataCite Index of Metadata

The training and evaluation data have been retrieved from the DataCite index of metadata of
research data11 via OAI-PMH12. DataCite is a service provider that aggregated research data
over more than 1,100 publishers and 750 institutions in 2017 (Robinson-Garcia, Mongeon,
et al., 2017). An analysis of the publishers present in our final training and evaluation set gives
evidence that the number of publishers has grown since then. DataCite metadata are openly
available and they mirror a broad range of institutions, fields of study, and countries, although
the distribution is skewed to data depositions in figshare and to German institutions (cf.
Table 1). The heterogeneity of this data source allows us to create a training and evaluation

9 See also Bäcker, Pietsch, et al. (2017).
10 See DataCite Metadata Working Group (2019).
11 https://datacite.org/
12 http://www.openarchives.org/OAI/openarchivesprotocol.html
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set that includes data publications curated both by information professionals13 and by re-
searchers themselves14.

DataCite is not only the name of the index but also the name of a metadata schema15. In the
data retrieved from the index, a broad range of versions of this schema are present; all versions
prescribe six mandatory fields (identifier, title, creator, publisher, year of publication, and type
of resource). The remaining heterogeneity of the retrieved records does not carry too much
weight for our purpose (to create a training and evaluation set), because there are continuities
across the different versions:

• All versions prescribe a Digital Object Identifier (DOI), which allows us to easily identify
some types of duplicates.

• Specifying a title is mandatory in all versions.
• The way descriptions and subjects are specified has been very similar since version 2.016.

The data retrieval took place in May 2019. The total number of items in the index at this
time was approximately 16 million records17. In February 2020, the DataCite index already
included more than 20 million metadata records for research data.

3.2. Step 1: Metadata with Qualified Links

The retrieved metadata include records uploaded from June 2011 to May 2019. We used a
customized GeRDI-Harvester18 to retrieve only those metadata in DataCite format that were
qualified records; a qualified record is understood as a metadata record with at least one

13 It is assumed that the contents provided by libraries (Table 1) are curated by information specialists.
14 It is assumed that researchers usually upload their data on platforms such as figshare or the Open Science

Framework (OSF) without an intermediary.
15 Specified by DataCite Metadata Working Group (2019).
16 All versions specify the same scheme for descriptions (including the specification of a type of description)

and subjects (including the specification of a scheme of subjects). Later versions add new syntactical ele-
ments that do not break the general specification of descriptions and subjects.

17 The exact number is not available due to the length of the time span over which the harvesting process took,
in which ingests to and deprovisions from the DataCite index took place.

18 Generic Research Data Infrastructure, https://www.gerdi-project.de/

Figure 1. Overview of the retrieval and cleaning process.
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Table 1. Research data publishers in the final training and evaluation set

Publisher Records Percentage
Figshare 374,903 61.10%

Leibniz Institut für Astrophysik Potsdam (AIP) 121,782 19.85%

German Medical Science GMS Publishing House 17,216 2.81%

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany

7,110 1.16%

Universität Stuttgart 7,032 1.15%

Technische Universität Berlin 6,477 1.06%

Universitätsbibliothek Tübingen 4,658 0.76%

Deutsches Elektronen-Synchrotron, DESY, Hamburg 3,960 0.65%

Universitätsbibliothek der Ludwig-Maximilians-Universität
München

3,900 0.64%

Technische Universität Dortmund 3,224 0.53%

RWTH Aachen University 3,184 0.52%

The American Physical Society 2,587 0.42%

Universität des Saarlandes 2,581 0.42%

Universitäts- und Landesbibliothek Sachsen-Anhalt 2,350 0.38%

PsyArXiv 2,161 0.35%

Open Science Framework 1,730 0.28%

SocArXiv 1,623 0.26%

Humboldt-Universität zu Berlin,
Wirtschaftswissenschaftliche Fakultät

1,492 0.24%

Kentucky Transportation Center,
University of Kentucky

1,458 0.24%

Humboldt-Universität zu Berlin 1,422 0.23%

Barcode of Life Data Systems 1,383 0.23%

Universität Tübingen 1,379 0.22%

INA-Rxiv 1,313 0.21%

Technische Informationsbibliothek u.
Universitätsbibliothek

1,283 0.21%

Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät I

1,229 0.20%

Note: n = 5781 (not checked for duplicate entries of institutions; only the 25 most occurring publishers are listed
here).
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subject field that is qualified either with a URI to a scheme (DataCite specifies a schemeURI
attribute) or a name for a scheme (DataCite specifies a subjectScheme attribute).

In sum, 2,476,959 metadata records are qualified records.

3.3. Step 2: Fields of Study

Five classification schemes for fields of study are frequently used throughout the retrievedmetadata;
our method supports four of them (see Table 2). The scheme missing from the table is linsearch,
which is a classification scheme that is derived from automatic classification (Bähr, Hannover, &
Denecke, 2008; Waltinger et al., 2011). We decided to exclude the linsearch scheme to avoid
amplifier effects: Data sets that are classified by machine learning models are necessarily biased
toward the model used in particular and what a machine can classify in general.

The classification scheme we used (see Table 3) is identical to the base classes of the most
common scheme, the Australian and New Zealand Standard Research Classification
(ANZSRC), except for two adaptions: Two pairs of classes were merged to map the other clas-
sification scheme to the common classification scheme:

• “Earth Sciences” and “Environmental Sciences” are divisions 04 and 05 respectively of
the ANZSRC classification scheme and became “Earth and Environmental Sciences” in
the common classification scheme.

• “Engineering” and “Technology” are divisions 09 and 10 respectively of the ANZSRC
classification scheme and became “Engineering and Technology” in the common clas-
sification scheme.

These merges enabled a mapping from the other classification schemes to ANZSRC without
arbitrary splits or losing records due to mismatches of the schemes. The resulting classification
scheme has been flattened (projection to the base classes) and therefore has no hierarchy.

The supported schemes (Table 2) were mapped in crosswalks to the classification scheme of
this paper (Table 3). The crosswalks were created after the consultation of the available docu-
mentation of the schemes found in Table 2 and adapted after checking a sample of several re-
sulting labels. A schematic overview is hard to create in the context of this paper, but the exact
mapping rules (more than 1,700 lines of code) are available for analysis and improvement19.

19 See the file code/clean/cleanDataHelpers.py in Weber and Fromm (2019).

Table 2. Supported classification schemes

Name Records (after cleaning)
Australian and New Zealand Standard Research Classification
(ANZSRC)

374,948

Dewey Decimal Classification 219,946

Digital Commons Three-Tiered Taxonomy of Academic Disciplines 11,683

Basisklassifikation 7,028

Note: n = 613,585; a record can be qualified by more than one scheme.
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After this step 1,213,154 records remained; 1,263,805 records were filtered out as “not
annotatable” (i.e., there was no mapping to a field of study available). Typical reasons for a
missing mapping include unclear identification of the source scheme and a different domain
of the scheme, meaning the scheme is not (solely) designed to classify fields of study.

3.4. Step 3: Deduplication

The deduplication of qualified records was realized along two criteria: identity of identifier
(DOI) and identity of payload20. After this step 702,809 records remained; 510,345 records

20 As the data processing was parallelized, not all other records were available for comparison at all times.
Some deduplications therefore only happened after step 4; step 3 and step 4 are thus conceptually separated,
but overlap in the source code.

Table 3. Fields of study and their frequency of occurrence in the retrieved metadata

Class 1 label 2 labels 3+ labels best total % �#labels �wc wc (med.)
Mathematical Sciences 9,138 13,633 23,719 45,916 46,490 7.58 2.55 111 59

Physical Sciences 138,231 8,559 13,418 138,231 160,208 26.11 1.26 48 21

Chemical Sciences 16,337 27,091 37,953 57,052 81,381 13.26 2.44 141 105

Earth and Environmental Sciences 13,327 24,747 35,344 57,042 73,418 11.97 2.48 144 97

Biological Sciences 67,861 88,643 71,184 86,305 227,688 37.11 2.11 124 66

Agricultural and Veterinary Sciences 1,851 891 420 3,125 3,162 0.52 1.62 141 75

Information and Computing Sciences 27,688 15,613 27,076 51,915 70,377 11.47 2.17 114 73

Engineering and Technology 25,096 6,453 2,195 29,845 33,744 5.50 1.35 165 146

Medical and Health Sciences 68,096 46,710 42,666 86,304 157,472 25.66 1.93 134 77

Built Environment and Design 1,795 1,107 359 3,173 3,261 0.53 1.61 147 87

Education 2,476 1,333 1,258 4,865 5,067 0.83 1.91 124 99

Economics 5,209 1,241 1,119 6,635 7,569 1.23 1.62 151 133

Commerce, Management, Tourism and Services 5,126 1,122 495 6,156 6,743 1.10 1.36 132 116

Studies in Human Society 6,653 4,178 1,284 9,219 12,115 1.97 1.65 137 129

Psychology and Cognitive Sciences 11,407 4,701 1,805 15,312 17,913 2.92 1.52 138 138

Law and Legal Studies 1,045 181 147 1,332 1,373 0.22 1.42 173 155

Studies in Creative Arts and Writing 1,106 281 324 1,497 1,711 0.28 1.58 142 107

Language, Communication and Culture 4,432 929 606 5,265 5,967 0.97 1.40 117 89

History and Archaeology 2,205 599 266 2,825 3,070 0.50 1.39 72 19

Philosophy and Religious Studies 474 724 391 1,571 1,589 0.26 2.02 124 111

Total 409,553 124,368 79,664 – 613,585 – 1.50 112 57

Note: Columns 2 labels and 3+ labels do not sum to their total as records are counted twice, or three times or more times.
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were filtered out as duplicates. The high number of duplicates can be explained by the occur-
rence of DOI-versioning21, which is the publication of several versions of a research data item
under different DOIs and one “concept DOI,” which maintains references to the different ver-
sions. As a result, a lot of payloads are identical if the title, description and subject tags do not
change over versions.

3.5. Step 4: Length and Language

In the last step the payload was created from the following three components:

• one or more titles (title is a mandatory field);
• zero or more descriptions; and
• the subset of the subjects/keywords of the research data containing only those fields that

have not been used to determine the labels.

The order of concatenation is depicted in Figure 2. Only those components are included
that consist mainly of English words22. The language detection module relies on a seed to
reproduce the same language detection23. If the resulting string contained fewer than 10 words
(separated by white space), it was discarded.

After this step 613,585 records remained; 89,224 were filtered out as not fit for our purpose.

3.6. Overview of the Resulting Training and Evaluation Set

Table 3 provides some statistics for the resulting training and evaluation data set:

• 1/2/3+ label(s): all metadata records with exactly one, two, and three or more labels;
• best: all metadata records for which this field of study is the best label for stratification

(see below);
• total: all metadata records labeled with this field of study (the sum of all these values is

greater than the number of final records, because a record can have more than one
label);

• %: percentage of metadata records labeled as this field, rounded to two decimal places;
• �#labels: arithmetical mean of the number of labels per record of the records including

that label (rounded to two decimal places);
• �wc: arithmetical mean of the number of words per record with that label (rounded to a

whole number); and
• wc (med.): median of the number of words per record with that label.

21 See Nowak, Ioannidis, et al. (2018).
22 We used a python port of the langdetect library (see citetlangdetect) to determine the language of the fields:

https://pypi.org/project/ langdetect/
23 We used the randomly created seed 1914088464.

Figure 2. Concatenation of the payload parts.
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The distribution of the different fields of study is unbalanced, which is in accordance
with the findings in the literature24. The imbalance of labels necessitates additional thought
on the selection of evaluation metrics in Section 5 and on the configuration of the different
models.

Payloads labeled as “Physical Sciences” and “History and Archaeology” are noteworthy
outliers, because they have fewer words compared with records from other fields. The average
number of labels is highest in “Mathematical Sciences”; this can be explained by the fact that
statistics is part of this category: Using certain statistical methods justifies this label, and those
methods are used in a broad variety of fields. With one exception all the fields of study have a
distribution of word counts that is skewed to shorter payloads (median < mean), meaning that
there are lengthwise outliers. “Psychology” shows the same mean as median.

The label cardinality (average number of labels per record) is 1.5; the label density (average
proportion of labels per record) is 0.0725. The data set includes 952 different labelsets (com-
binations of labels for a research data item); this number is relatively small compared to the 220

theoretically possible labelsets.

A challenging issue is the stratified split of training and evaluation set to guarantee the same
distribution of fields of study in both subsets: 171 labelsets occur only once, which makes a
stratified split along the 952 labelsets impossible. To enable stratified splitting we followed a
“best label” approach:26

1. All records with only one label are assigned that label.
2. Iterating over the remaining records, the “best” label out of the labelset is selected,

which is the label that is selected the least often at the current state of the loop.

These “best” labels are used in stratified sampling and feature selection (see following
section), but not as labels for the training itself.

4. VECTORIZATION AND MODEL SELECTION

In this section the vectorization methods and evaluated models are presented. We evaluated
twoways to vectorize the payloads described in the last section, they are presented in Section 4.1.
The models we used on these vectorized payloads are described in Section 4.2. As a result three
different combinations are evaluated:

1. “Classic” machine learning models combined with bag of words vectorization; ap-
proaches that have already been evaluated (linear models) or that do not support
multilabel classification natively have been excluded;

2. Multilayer perceptrons, combined with bag of words vectorization;
3. A model used in contemporary Natural Language Processing, the Long Short Term

Memory (LSTM) model, combined with word embedding vectorization.

24 See, for example, Golub et al. (2018), Kraker, Lex, et al. (2015), Peters, Kraker, et al. (2016), or Waltinger
et al. (2011).

25 See Tsoumakas and Katakis (2009) for a formal definition.
26 Sechidis, Tsoumakas, and Vlahavas (2011) propose an algorithm to realize a “relaxed interpretation of strat-

ified sampling for multilabel data.” The base idea is to distribute the data items over several subsets, starting
with all data items labeled with the least common label (greedy approach). As our data include a substantial
part with only one label, we took the following approach, which is easier to implement.
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The section concludes with a short description of the hyper-parameter tuning of the model/
vectorization combinations.

4.1. Vectorization

Before vectorization, the data are split into a training set (552,226 records) and an evaluation
set (61,359 records) with a ratio of 9:1. The split is stratified (i.e., the distribution of the “best”
labels in the test and training sets is approximately identical). For the deep learning models the
training set is again split by the same approach (497,003 training and 55,223 validation re-
cords)27. Both vectorized data sets (see following paragraphs) are split identically (i.e., they
were derived from the same data sets to gain comparable results). The split and the vectoriza-
tion are executed three times, for small (s), medium (m), and large (l) vectorized representation
of the payloads; the definitions of the sizes will be given in the following sections.

4.1.1. Bag of Words (BoW)

One way to vectorize the corpus of all documents (i.e., all payloads of the metadata records) is
the “Bag of n-grams”-approach; that is, each document is treated as a row in a matrix in which
the columns are the terms (1-grams and 2-grams). Some terms were filtered out by a stop word
list28. A stop word list is designed to filter out noninformative parts of the documents. We
chose to create our own stop word list (with 240 entries). The list of stop words includes

• words that are generally considered unspecific (e.g., “the,” “a,” “is”);29

• numbers and numerals ≤ 10;
• words that are unspecific in the context of data (e.g., “kb,” “file,” “metadata,” “data”);

and
• words that are unspecific in the academic context (e.g., “research,” “publication,”

“finding”).

For each term t in a document—that is, for each cell of the matrix of documents and terms—
the term frequency-inverted document frequency (tf-idf ) was calculated using the default set-
tings of scikit-learn30 (except for the stop word list). Tf-idf does not solely rely on occurrences
of any given term, but also takes its frequency of occurrence throughout the document space
into calculation. Therefore, the final td-idf value of a term decreases if the term occurs in mul-
tiple documents. This reduces the weight of terms with broader usage.

The vectorization resulted in 4,087,639 possible features.

27 Deep learning models typically need validation sets during training. These validation sets are also stratified
by “best” label (see above).

28 Nothman, Qin, and Yurchak (2018) voice concerns with regard to stop word lists in vectorizing text data
(controversial words, incompatible tokenization rules, incompleteness). Additionally, the contextuality of
stop word lists is a problem: If the context of a set of documents is given, certain words are likely to lose
discriminatory potential, although they would not qualify as stop words in a more general context. We de-
cided to extend an existing stop word list, but specify it for reproducibility. This allows us to take advantage
of the context of data.

29 These stop words are a subset of the English stop words list of the nltk software package; see Bird, Klein and
Loper (2009).

30 Pedregosa et al. (2011).
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The best features were selected in three modes:

• s: 1,000 features per label, 20,000 features in total;
• m: 2,500 features per label, 50,000 features in total; and
• l: 5,000 features per label, 100,000 features in total.

The selection is based on an ANalysis Of VAriance (ANOVA) of the features31. This allows
us to identify the features that are best suited to discriminate between the classes. This is the
second and last time that the “best” labels were used.

4.1.2. Word embeddings

Another approach for vectorization is using word representations, like word2vec32. Such an
approach can utilize either continuous bag-of-words (CBOW)33 or continuous skip-gram34.
The CBOW model predicts the current word from a window spanning over context words.
The skip-gram model uses the current word to predict the context surrounding the word. In
our work we used pretrained word2vec embeddings35 that were trained on the Google News
data set (about 100 billion words). The embeddings were trained with the CBOW approach
and consist of 300-dimensional word vectors representing three million words. Compared to
BoW, word embeddings provide a low-dimensional feature space and encode semantic rela-
tionship among words.

To apply the vectorization method, each document needs to be tokenized:

• s: up to 500 words of the document are tokenized;
• m: up to 1,000 words of the document are tokenized; and
• l: up to 2,000 words of the document are tokenized.

4.2. Machine Learning Models with Support for Multilabel Classification

4.2.1. Classic machine learning models

We did not include linear models in our evaluation, because preliminary tests did not indicate
that they could reach the performance of neural networks. As linear models such as Support
Vector Machines (SVM) have already been used for the task at hand, we decided to exclude
them for the evaluation. The published data and source code allow others to supersede our re-
sults with a linear model and a combination of hyperparameters that we might have missed36.

• DecisionTreeClassifier37: This classifier uses a decision tree to find the best suited classes for
each record. The nodes of the tree are used to split the records into two sets based ona feature,
eventually resulting in a leaf that ideally represents a certain class or a certain labelset. The
training consists in finding the best features to split the data set. Multilabel classification of
unseen data works by following the decision path until a leaf is reached. All labels that are
present in the majority of the data items in the leaf are returned as the classification result.

31 Fisher (1973).
32 Mikolov, Sutskever, et al. (2013).
33 citetcbow.
34 Mikolov et al. (2013b).
35 https://code.google.com/archive/p/word2vec/
36 See Duan and Keerthi (2005) for an approach to testing SVMs.
37 Breiman, Friedman, et al. (1984).
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• RandomForestClassifier38: This classifier is based on the DecisionTreeClassifier, by
building an ensemble of multiple decision trees. The general idea is that a bias that trees
typically have by overfitting a training set is remedied by building multiple decision
trees based on different random subsets of the features. In ideal cases the bias in differ-
ent directions corresponds to different aspects of the data. The training consists in fitting
n trees by using a random subset of features and a random subset of the training set. The
classification is then achieved by a voting procedure among the trees in the ensemble.

• ExtraTreesClassifier39: This classifier is similar to the RandomForestClassifier. Both are
ensembles of trees, but this classifier is based on the ExtraTreeClassifier (note the missing
s) which introduces more randomness by selecting the feature to split by totally at ran-
dom. (DecisionTreeClassifiers in random forests, by contrast, select the best feature out
of a subset sampled at random).

4.2.2. Multilayer Perceptron (MLP)

A multilayer perceptron (MLP)40 is a neural network and consists of one input layer, one out-
put layer and n intermediate layers of perceptrons. The input layer corresponds to the vector-
ized data (e.g., a vector of 20,000 values in the s-sized BoW approach) and the output layer
has the shape of the labels (i.e., a vector with 20 elements). Backpropagation is used to train
the the model for the given data; we used the Adam optimizer for this task41. By using a sig-
moid function as the activation function of the output layer, the MLP can predict the proba-
bility for multiple labels (multilabel).

4.2.3. Recurrent network

Recurrent networks form a class of neural networks that are used to process sequential data of
different length. This design furthermore allows it to make use of temporal dynamic behavior
(e.g., recurrences of terms in a text). The recurrent network architecture we use in our work is
an Bidirection Long Short-Term Memory (BiLSTM) model42. We use word2vec43 embeddings
as described in Section 4.1.2 as input to the model44. The embeddings are frozen and not
further trained in the classification process. On top of the BiLSTM layer we use a dense layer
with a sigmoid activation function to classify multilabels. The BiLSTM layer and the dense
layer are trained by an Adam optimizer.

4.3. Weights and Hyper-Parameter Tuning

An important parameter in the training of multilabel classification problems based on unbal-
anced training sets is the weight given to each label. All the classes of algorithms we used
allow us to give more weight to underrepresented labels. We calculated the weights based
on the label frequencies found in the training set:

weight labelð Þ ¼ 1
frequencies labelð Þ
max frequenciesð Þ

:

38 Breiman (2001).
39 Geurts, Ernst, and Wehenkel (2006).
40 Rumelhart, Hinton, et al. (1988).
41 Kingma and Ba (2014).
42 Hochreiter and Schmidhuber (1997).
43 Mikolov et al. (2013).
44 Any other kind of word embeddings can be used too.
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For each model we executed semi automated parameter tuning, following this procedure:

1. List selected hyper-parameters in the order of expected impact to the evaluation metrics.
2. For each hyper-parameter or combination thereof, execute a grid search to find the best

candidate(s).
3. Fix the selected parameters and repeat step 2 with the next parameter or parameter

combination.

The space of possible solutions is too big to be exhaustively searched with a reasonable use
of resources, so it might be that using a different combination of hyper-parameters results in
better scores than reported by us.

5. EVALUATION PROCEDURE

For each use case (see Section 1) an evaluationmetric has been identified that takes the imbalance
of the label distribution into account, as stated in Section 3. The use cases differ in the weight they
put on recall and precision. Recall for label l is the ratio between true positives and positives for
label l (sum of true positives and false negatives for l ). Precision for label l is the ratio between true
positives and predicted positives (sum of true positives and false positives for l )45.

These values alone are easy to game, which is why they should be combined: The fβ -score
puts them in a relation to each other that allows us to modify the weights we give to precision
and recall respectively:

fβ ¼ 1þ β2
� �

⋅
precision ⋅ recall

β2 ⋅ precisionþ recall
:

The value of β controls the weight give to recall and precision:

• If β < 1, precision is highlighted; a value of 0.5 has been chosen for the “scientometric
research” use case.

• If β > 1, recall is highlighted; a value of 2 has been chosen for the “assistant system” use
case.

• If β = 1, precision and recall are treated equally; this is chosen for the “value-adding
services” use case.

Precision and recall are calculated for each label, and the arithmetical mean over all labels
is taken as the input for the calculation of the fβ-score. This macro average approach takes the
imbalance of the base classes (and therefore of the labels) into account. It can be interpreted as
the chance of a correct classification when a stratified sample is drawn. This is the basis for the
evaluation of the approaches for the presented use cases.

Themicro average approach averages the values over all data sets, without the intermediate
aggregation over the labels. It can be interpreted as the chance of a correct classification when
a completely random sample is drawn. In unbalanced scenarios, micro scores tend to be
skewed by the predominant labels; because these often perform better (more training data),
micro scores are often too optimistic when the performance of the model with regard to all

45 Formal definitions are provided by Sorower (2010).
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labels is the target. Although microaverages are not used in this paper to evaluate the models,
we nevertheless report them for the sake of comparability.

We refrain from reporting accuracy (ratio of the sum of true positives and true negatives for
label l to the size of the evaluation set), as it is biased toward negative classifications, which in
our case are much more frequent than positive classifications.

The final evaluation is based on the fβ-macroscores calculated on all three evaluation sets.
In this way, each model is tested against the same unseen set of data (see Section 3).

6. RESULTS

6.1. Model Performance

For each of the evaluated model and data pairs the best performance results are shown in
Table 4. The macro and micro scores are derived from the same models and the models
are selected by their best f0.5, f1, and f2 scores, respectively.

For all three use cases the MLPClassifier was the best performing model according to our
tests (cf. Table 4). The MLPClassifiers trained on the l-sized data are in almost all cases better
performing than the model trained on the m-sized data, with one exception (the value-adding
service use case/f1) and only by a small amount. With one exception (the best performing f1-
models trained on s-sized data), all LSTMClassifiers perform worse compared to their
MLPClassifier counterparts, and they took essentially longer to train than the MLP models.
The lead of the MLPClassifier might be explained by the number of short payloads and the
missing structure of the payloads in the data set: The median word count (57 words) is left
of the mean (111.9 words), and 25 words is the value of the first quartile46. As shown in
Figure 2, title(s), description(s), and keyword(s) are simply concatenated—the resulting pay-
load therefore has no “macro” structure typical for texts. Many of the records’ payloads might
be too short and too unstructured for the LSTM model to play out its ability to detect semantic
relationships beyond the statistical approach used by the MLP based on BoW.

The results of tree-based models are far behind the results achieved by the deep learning
models. Trees and Ensembles perform best on s-sized data, and with the exception of
DecisionTreeClassifiers, all models performed better in terms of precision than in recall ( f0.5
scores are greater than f2 scores).

6.2. Use Cases

6.2.1. Scientometric research

The performance scores of the best model for the use case “scientometric research” ( f0.5-
scores) are shown in Table 5;47 this table lists the scores for each field of study. The f0.5-score
correlates positively with the number of records (total in Table 3): 0.747 (Pearson correlation).
None of the fields with more than 10,000 labeled payloads scored a smaller f0.5 value than
0.78, while on the other side of the scale (fewer than 5,000 labeled payloads) no comparable
tendency could be detected. The results for this use case ( f0.5-values) show the best scores
compared to the other use cases. With the exceptions of “Biological Sciences” and
“Chemical Sciences,” all field-specific values for precision are larger than the recall scores.

46 25% of the records were at most 57 words long, with 10 words being the minimum.
47 The (hyper)parameters for thebest-f0.5-MLPClassifier canbe found inWeber, Fromm,anddeSousa (2019) (evaluation.

csv) filtering for the pHash value 57508ee7a55735685fa52312df873dadcba64ac79f8bde3ac995bef84eca71e7.
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The reported recall and precision values allow us to estimate errors when the classifier is applied
to a large input set (see Section 7.3).

6.2.2. Assistant systems

Table 6 shows the performance scores analogous to Table 5, but for the use case “assistant
systems” ( f1-scores)

48. A field-by-field comparison of the two tables reveals that some fields
dropmore than others. One of the common features of those “dropping” fields is their relatively low
number of total payloads. The effect of the imbalance of the fields is thus smaller on precision than
on recall; in accordance with this finding is a stronger correlation between the number of records
and f2-scores: 0.819 (Pearson correlation). Assistant systems based on the proposed models
are possible, although their acceptance by users seems doubtful if they fail to suggest obvious
labels. They might be acceptable in contexts in which the worst-scoring fields “Agricultural
and Veterinary Sciences” and “Philosophy and Religious Studies” play no or minor roles.

6.2.3. Value-adding services

The performance scores of the best performing model for the use case “valued-adding ser-
vices” are listed in Table 749. Unsurprisingly, the f1-scores of the best models lie between their

48 The (hyper)parameters for the best-f2-MLPClassifier can be found in Weber et al. (2019) (evaluation.csv) filtering
for the pHash value fa5f1c09aa4dfc69680b0e35bb5255c31d4c6aa1def78dbc61b2054f89cb7c85.

49 The (hyper)parameters for the best-f1-MLPClassifier can be found in Weber et al. (2019) (evaluation.csv) filtering
for the pHash value fa5f1c09aa4dfc69680b0e35bb5255c31d4c6aa1def78dbc61b2054f89cb7c85.

Table 4. Best performance scores for each model + size combination

Model Size f0.5 (macro) f0.5 (micro) f1 (macro) f1 (micro) f2 (macro) f2 (micro)
DecisionTreeClassifier s 0.278 0.501 0.302 0.520 0.354 0.542

DecisionTreeClassifier m 0.248 0.461 0.264 0.483 0.306 0.507

DecisionTreeClassifier l 0.255 0.477 0.273 0.493 0.317 0.509

ExtraTreesClassifier s 0.483 0.700 0.341 0.547 0.277 0.449

ExtraTreesClassifier m 0.453 0.686 0.316 0.520 0.255 0.419

ExtraTreesClassifier l 0.422 0.673 0.289 0.495 0.232 0.392

RandomForestClassifier s 0.567 0.738 0.424 0.624 0.352 0.540

RandomForestClassifier m 0.534 0.728 0.392 0.601 0.323 0.511

RandomForestClassifier l 0.508 0.719 0.365 0.581 0.299 0.488

LSTMClassifier s 0.779 0.851 0.739 0.833 0.704 0.816

LSTMClassifier m 0.756 0.822 0.684 0.796 0.630 0.771

LSTMClassifier l 0.765 0.831 0.701 0.804 0.651 0.780

MLPClassifier s 0.780 0.845 0.736 0.833 0.703 0.822

MLPClassifier m 0.792 0.859 0.753 0.845 0.720 0.832

MLPClassifier l 0.798 0.861 0.751 0.850 0.721 0.847
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neighboring extremes,50 but slightly closer to the f2-scores than to the f0.5-scores. This is due to
the fact that the f1-score is the harmonic mean between recall and precision, which tends to
stress the lower values. Analogous to the previous use case, value-adding services based on
the proposed model should be tested by interaction studies to determine whether users will
accept their performance.

7. DISCUSSION

7.1. Field-Related Differences

There are fields of research that are in general easier for the models to detect, above all
“Physical Sciences,” which is the field of study with the highest number of records. Besides

50 As does the correlation of number of records with f1-scores: 0.766.

Table 5. Best model for scientometric research ( f0.5): MLPClassifier (l-sized)

Label Value Recall Precision
Mathematical Sciences 0.79 0.72 0.80

Physical Sciences 0.96 0.93 0.97

Chemical Sciences 0.82 0.82 0.82

Earth and Environmental Sciences 0.80 0.78 0.80

Biological Sciences 0.89 0.90 0.88

Agricultural and Veterinary Sciences 0.70 0.40 0.86

Information and Computing Sciences 0.82 0.78 0.82

Engineering and Technology 0.78 0.72 0.79

Medical and Health Sciences 0.84 0.83 0.85

Built Environment and Design 0.76 0.58 0.83

Education 0.78 0.61 0.84

Economics 0.74 0.60 0.79

Commerce, Management, Tourism and Services 0.72 0.51 0.80

Studies in Human Society 0.79 0.63 0.84

Psychology and Cognitive Sciences 0.85 0.77 0.87

Law and Legal Studies 0.80 0.53 0.92

Studies in Creative Arts and Writing 0.80 0.52 0.93

Language, Communication and Culture 0.79 0.62 0.84

History and Archaeology 0.80 0.61 0.88

Philosophy and Religious Studies 0.73 0.44 0.88
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this apparent correlation of number of records with the fβ-scores, other correlations of the fβ-
scores with variables of the data set lead to the following insights:

• Number of words per payload: All fβ-scores correlate negatively with the median num-
ber of words per payload (Pearson correlation): −0.405 ( f0.5), −0.379 ( f1), −0.32 ( f2).
These numbers indicate that the use of a concise vocabulary in the metadata improves
the chance to be classified correctly. In the BoW approach, fields of research with a
smaller vocabulary have a better relative representation in the set of terms finally
selected. With regard to the LSTM/embedding approach, a possible explanation for
the correlation is that shorter texts are easier for the model to “digest,” meaning that
further textual content does not improve the performance if it does not contain an
equivalent semantic surplus.

• Number of labels per payload: The Pearson correlation between the mean number of
labels and the fβ-scores is rather weak: 0.017 ( f0.5), 0.155 ( f1), 0.242 ( f2). The number of

Table 6. Best model for value-adding services ( f2): MLPClassifier (l-sized)

Label Value Recall Precision
Mathematical Sciences 0.74 0.72 0.80

Physical Sciences 0.94 0.93 0.96

Chemical Sciences 0.82 0.82 0.82

Earth and Environmental Sciences 0.76 0.75 0.82

Biological Sciences 0.89 0.89 0.89

Agricultural and Veterinary Sciences 0.53 0.50 0.72

Information and Computing Sciences 0.80 0.79 0.82

Engineering and Technology 0.74 0.72 0.80

Medical and Health Sciences 0.82 0.81 0.86

Built Environment and Design 0.65 0.64 0.69

Education 0.69 0.67 0.79

Economics 0.68 0.68 0.69

Commerce, Management, Tourism and Services 0.60 0.58 0.72

Studies in Human Society 0.71 0.70 0.77

Psychology and Cognitive Sciences 0.82 0.81 0.82

Law and Legal Studies 0.65 0.63 0.79

Studies in Creative Arts and Writing 0.62 0.60 0.77

Language, Communication and Culture 0.69 0.66 0.79

History and Archaeology 0.69 0.67 0.79

Philosophy and Religious Studies 0.59 0.56 0.73
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labels is therefore no explanation for the performance in general, at least not from the
aggregated perspective51.

7.2. Discussion of Misclassifications

This section discusses explanations of the reported misclassifications and presents strategies to
mitigate the identified problems or improve the performance by trying out other approaches
than presented in this paper.

The following sections focus on different aspects of the presented approach:

• data processing; and
• vectorizing approaches.

51 The same applies to the ratio of 1-labeled payloads to total payloads average number of labels (Pearson
correlation): 0.028 ( f0.5), −0.109 ( f1), −0.187 ( f2).

Table 7. Best model for assistant systems ( f1): MLPClassifier (m-sized)

Label Value Recall Precision
Mathematical Sciences 0.75 0.71 0.80

Physical Sciences 0.95 0.93 0.96

Chemical Sciences 0.81 0.80 0.83

Earth and Environmental Sciences 0.78 0.77 0.80

Biological Sciences 0.89 0.89 0.89

Agricultural and Veterinary Sciences 0.56 0.44 0.78

Information and Computing Sciences 0.80 0.76 0.85

Engineering and Technology 0.76 0.74 0.78

Medical and Health Sciences 0.83 0.79 0.86

Built Environment and Design 0.66 0.56 0.80

Education 0.74 0.68 0.81

Economics 0.68 0.60 0.78

Commerce, Management, Tourism and Services 0.66 0.59 0.74

Studies in Human Society 0.74 0.71 0.77

Psychology and Cognitive Sciences 0.83 0.78 0.89

Law and Legal Studies 0.71 0.66 0.77

Studies in Creative Arts and Writing 0.72 0.62 0.86

Language, Communication and Culture 0.75 0.70 0.81

History and Archaeology 0.78 0.74 0.83

Philosophy and Religious Studies 0.67 0.54 0.87
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While we discuss some possible limitations of our approach in this context, a third ap-
proach to reduce misclassification is left out: model and/or hyper-parameter selection. As al-
ready stated, the solution space (models + hyper-parameter combinations) is too vast to be
exhaustively searched with reasonable efficiency. However, we publish sufficient information
and resources along with this paper for others to use them to supersede our findings or use
them to benchmark other approaches (see Section 7.4).

7.2.1. Data issues

There are two promising explanations for misclassifications based on a critical review of the
training/evaluation set:

• Some payloads may be labeled wrongly, which means that in such a case the model
performs better than the person who originally labeled the research data item. There
are structural explanations available for this assumption that go beyond simple clas-
sification errors: Some repositories might only allow or encourage one field of re-
search per data set or data sets are not curated over time (e.g., by adding fields
after submission). Unfortunately, there is no approach known to us to automate a pro-
cedure to identify and correct such types of misclassifications other than manual
checks:
– Ordering of all false positives by the probability the model assigns to the misclassified

labels in decreasing order: The higher the probability, the more likely the model’s
classification is to be correct.

– Manual relabeling if the machine’s classification seems warranted.
• Some payloads could be of insufficient quality for both model and human expert to

unambiguously classify the research data item. This means that the model would be
“justified” in a false negative, because the payload in question would be too short
and/or too unspecific. As with the previous idea, there is only a manual approach
known to us to detect and handle such cases:
– Ordering of all false negatives by the probability the model assigns to the mis-

classification and number of words (both in increasing order): The lower the
probability and shorter the payload, the more likely the model’s classification
is to be warranted.

– Manual assessment of the payload (does it contain enough information for a human
expert to make a sound classification decision?) If the payload is not found to be
sufficient for a classification, it can be ignored by future training runs.

Both these approaches focus on the quality of the training/evaluation data, whereas another
idea is to enlarge these data by using additional sources, such as the Bielefeld Academic
Search Engine (BASE)52, Crossref53, or the new records included in the DataCite index since
our data retrieval.

All three approaches lead to a newer version of the training and evaluation data set, which
necessitates a retraining of the models to assess the improvements by the baseline presented in
this paper.

52 https://base-search.net/
53 https://crossref.org/
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7.2.2. Vectorization issues

• BoW: The large number of input features for the best performing model (100,000) slows
down prediction and increases the size of the model. Aside from these rather technical
issues, 3,987,639 features are not exploited to increase the performance of the models.
With dimension-reduction mechanisms such as Principal Component Analysis (PCA),
this unused information might be exploited to further reduce the misclassifications,
while the dimension of the input layer of the network is reduced at the same time (with
beneficial consequences for the prediction latency and model size). Another approach
is to test what impact the selection of another list of stop words would have.

• Embeddings: Using another embedding data set to vectorize the payloads might allow
us to reduce the number of misclassifications, if these embeddings were trained on a
context closer to the use cases of this paper than the context of the Google News data
set. Another approach is to train the embeddings from scratch or update an existing
embedding model during the classification process.

7.3. Estimates of Classification Errors

The best performing MLPCLassifier and LSTMClassifier models are available for reuse in a py-
thon package54. If the models are used to explore big, unclassified sets of metadata, the reported
precision and recall values for each field of study can be used to estimate the errors of the used
classifier.

The precision for each field of study can be used to estimate the number of records that the
model falsely classified for a given label:

Wrong predictions labelð Þ ¼ ♯ predicted values labelð Þ ⋅ 1− precision labelð Þð Þ:
This value can be used to determine the lower bound of the expected error. If the best perform-
ing model (MLPClassifier trained on l-sized data) results in 200 records classified as “Physical
Science,” the (rounded) expected number of wrongly classified records for this label would be
six and the (rounded) lower error bound would be 194.

The recall for each field of study can be used to estimate the number of records the model
missed to classify as a given label:

Missed predictions labelð Þ ¼ ♯ predicted values labelð Þ ⋅ 1− recall labelð Þð Þ:
This value can be used to determine the upper bound of the expected error. If the best per-
forming model (MLPClassifier trained on l-sized data) results in 200 records classified as
“Physical Science,” the (rounded) expected number of missed records would be 14 and the
(rounded) upper error bound would be 214.

7.4. Notes on Reproducibility

The presented procedure to retrieve, clean, and vectorize the data, and evaluate different ma-
chine learning models on the results is based on several assumptions, which were motivated in
this paper. In general, the solution space is so vast that it is currently unreasonable to check
every hyper-parameter combination or promising learning algorithm considering the resources
necessary.

54 https://github.com/tgweber/fosc/
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Besides the explanation for the choices we gave in this paper, we followed an approach
that allows us to retrace each step taken, so different configurations and hyper-parameters can
be tested. Nevertheless, to guarantee comparability, it is crucial to keep those parts of the data
processing and the learning pipeline fixed that do not diverge from our approach. To ease such
a procedure, the data, source code, and all configurations, are made publicly available:

• Raw retrieved data: Weber (2019c);
• Cleaned and vectorized training and evaluation data:

– small: Weber (2019d);
– medium: Weber (2019b);
– large: Weber (2019a);

• Source code with submodules for the steps presented in this paper, Weber and Fromm
(2019), with the following components:
– code/retrieve, corresponding to Section 3.1;
– code/clean, corresponding to Sections 3.2–3.5;
– code/vectorize, corresponding to Section 4.1;
– code/evaluate, corresponding to Section 5;
– config, includes all configurations and the stop word list; and

• Statistical data for this paper and evaluation data of all training evaluation runs: Weber
et al. (2019).

7.5. Threats to Validity

The decision for a classification scheme is necessarily a political statement. How borders be-
tween fields are drawn, which research activities are aggregated under a label, and which
fields are considered to be “neighbors” should be open to reflection and debate. The selection
of the common classification scheme for this paper was steered by technical reasoning to min-
imize the effort while maximizing the classifiers’ performance (see Section 3). The methodo-
logical approach, and therefore the code, allows the use of another classification scheme if
mappings are provided from the found schemes to this alternative target scheme.

Another potentially arbitrary feature of the presented approach lies both in the subject clas-
sifications found in the raw data and in the process to streamline them during the cleaning
step. DataCite aggregates over many sources, and therefore over many curators and scientists
who make the first type of decision; Robinson-Garcia et al. (2017) report that 762 worldwide
organizations were included as data centers in the DataCite index in April 2016; our findings
indicate that this number has grown essentially since then (cp. Table 1). This bandwidth
hopefully leads to a situation where prejudice and error are averaged out. Even if some cultural
and socialized patterns in classification remain and some classification schemes are more
prominent than others (ANZSRC, DDC), this approach is to our knowledge the best available.
By filtering out metadata that were clearly classified by other automatic means (e.g., the lin-
search classification scheme), we hope to minimize an amplifier effect (models trained on data
classified by other models). We managed the second type of arbitrariness (mapping the found
labels to a common scheme) by making each of the 613,585 mapping decisions transparent
and reproducible, so that possibly existing biases and mistakes are correctable.

8. CONCLUSION AND OUTLOOK

This paper reports how training and evaluation metadata describing research data are re-
trieved, cleaned, labeled, and vectorized in order to test the best machine learning model
to classify the metadata by the fields of study of the research data.
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As this is a multilabel problem, both training and evaluation procedure must be aligned
with technical best practices, such as stratified sampling or using macro averaged scores.

MLP models perform well enough for use in the context of scientometric research, while the
use of the evaluated models in assistant systems and value-adding services of research data
providers should only be considered after user interaction studies. Ideas for improvement of
performance are mostly targeted at the training and evaluation data.

Ideas for scientometric application of the models on data sources such as DataCite and
BASE include, but are not limited to, answering the following questions:

• Is research becoming more or less interdisciplinary? This question can be answered by
using the automated classifiers on time-indexed data sets (such as DataCite, which in-
cludes the year of publication as a mandatory field). The classified data sets will display
a trend: whether the number of labels increases, decreases, or stays stable.

• How does each field contribute to the growth of research data? This question can be
answered by analyzing data sources such as DataCite or BASE after their contents have
been classified by the presented models.

This paper provides the means to quantify the expected error in such investigations, based
on the reported precision and recall scores (see Section 7.3). The models are published and
wrapped in a Python module, which can be used without background in the development of
machine learning modules55.

Our understanding is that it is still an open question how models honoring the hierarchical
nature of most classification schemes could be trained and implemented at scale for the use
cases at hand.
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