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ABSTRACT

Dependency length minimization is widely regarded as a cross-linguistic universal reflecting
syntactic complexity in natural languages. A typical way to operationalize dependency length
in corpus-based studies has been to count the number of words between syntactically related
words. However, such a formulation ignores the syntactic nature of the linguistic material
that intervenes a dependency. In this work, we investigate if the number of syntactic heads
(rather than the number of words) that intervene a dependency better captures the syntactic
complexity across languages. We demonstrate that the dependency length minimization
constraint in terms of the number of words could arise as a consequence of constraints on the
intervening heads and the tree properties such as node arity. The current study highlights
the importance of syntactic heads as central regions of structure building during processing.
The results show that when syntactically related words are nonadjacent, increased structure
building in the intervening region is avoided.

INTRODUCTION

Natural languages have been argued to be shaped by communicative pressures as well as cer-
tain cognitive constraints such as limited working memory (Bickerton, 2003; Hawkins, 2014;
Hockett, 1960; Jaeger & Tily, 2011; Zipf, 1949). Such accounts contend that efficiency in for-
mulating and comprehending a language dictates its formal properties (Bybee, 2006; Croft,
2001; Gibson et al., 2019; Haspelmath, 2008; Hawkins, 1994; Piantadosi et al., 2012) and
is a vital determinant of a language’s communicative utility. In the sentence processing liter-
ature, a dominant way to operationalize and test this efficiency has been in terms of the linear
arrangement of syntactically related words (e.g., a verb and its nominal arguments) (Futrell
et al., 2020). The hypothesis, termed dependency length minimization (DLM), holds that,
on average, the distance between a head (e.g., a verb) and its dependent (e.g., a noun) is
minimized in natural languages (Behagel, 1930; Gibson, 1998; Gildea & Temperley, 2007;
Hawkins, 1990, 2014; Hudson, 1995; Rijkhoff, 1986; Temperley & Gildea, 2018). Why should
dependencies be short? Theories of sentence processing maintain that syntactic dependencies
(e.g., the syntactic relation between the verb “ate” and “John”/“a mango” in John ate a mango)
need to be established in order to comprehend or produce a sentence. Dependency resolution
between a pair of words typically involves one of the words to be temporarily retained in
memory. Under the assumption of limited working memory (Baddeley & Hitch, 1974; Cowan,
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2001; Miller, 1956; see Miyake & Shah, 1999, for an extensive overview), longer dependen-
cies could lead to retrieval failure due to decay or interference-driven constraints (Bartek et al.,
2011; Grodner & Gibson, 2005; Lewis & Vasishth, 2005). Indeed, longer syntactic dependen-
cies have been shown to pose more difficulty during both comprehension and generation
(Bartek et al., 2011; Grodner & Gibson, 2005; Scontras et al., 2017). Recent large-scale
cross-linguistic corpus investigations have provided a strong validation for the DLM hypothesis
(Futrell et al., 2015; Liu, 2008; Liu et al., 2017). Based on this line of research, DLM has been
claimed to be a linguistic universal showcasing the influence of communicative pressure and
cognitive constraints on language forms (Futrell et al., 2020). For example, it has been argued
to determine some critical properties of languages, such as, the rarity of discontiguous phrases
(Ferrer-i Cancho, 2006). Relatedly, it has been argued that the occurrence of the two most
frequent word orders (Subject-Verb-Object, and Subject-Object-Verb) across languages can
be explained by such minimization pressures during comprehension (Hawkins, 1990).

Dependency length in large-scale corpus studies (e.g., Futrell et al., 2015) has typically
been operationalized by counting the number of words between syntactically related words.
However, in the larger literature, dependency length has been computed using a variety of
ways, for example, number of discourse referents (Gibson, 1998), number of phrasal nodes
(Ferreira, 1991), number of words (Temperley, 2007), and so on. Previous studies comparing
the effectiveness of such metrics have argued that these metrics (e.g., counting number of
words vs. counting number of phrases) are largely interchangeable (Szmrecsányi, 2004;
Wasow, 1997). This would suggest that computing dependency length using any of these mea-
sures should be equally effective in capturing linguistic complexity. However, a large-scale
corpus study that tests the possible interaction or independence of various metrics is currently
lacking.

Operationalizing dependency length in terms of the number of words ignores the syntactic
nature of the linguistic material that intervenes a dependency. Given the limited memory
resource, it is reasonable to assume that more structure building in the intervening region
should lead to more difficultly in processing the unresolved dependency. Consistent with this
idea, there is evidence that not only the number but the complexity of the words that intervene
a syntactic dependency matters (e.g., Gibson & Thomas, 1999; Wasow & Arnold, 2003; Yadav
et al., 2020). For example, it has been shown that introducing clausal embeddings can lead to
forgetting effects during comprehension (Gibson & Thomas, 1999). Similarly, Wasow and
Arnold (2003) found an independent effect of phrasal complexity on noun phrase shifts and
dative alternations. Interestingly, while Wasow and Arnold (2003) argue for an independent
effect of both length and phrasal complexity, others have proposed that phrasal length is
not an appropriate metric to quantify syntactic complexity (Chomsky, 1975). This line of work
predicts that the complexity of the linguistic material that intervenes a syntactic dependency
will be minimized. We call this the intervener complexity minimization (ICM) hypothesis. In
this work, we operationalized complexity as the number of syntactic heads that intervene a
dependency (Yadav et al., 2017, 2020; see Figure 1).

The rationale behind using the number of intervening heads as a measure of complexity
comes from the proposal that both structural integrations and temporary storage of linguistic
items consume the same pool of limited resources (Gibson, 1998; Just & Carpenter, 1992). For
example, in Figure 1, the node Xd has to be actively maintained in memory until the compre-
hender resolves the dependency Xh → Xd. In Figure 1(b), compared to Figure 1(a), more num-
bers of structural integrations are required in the region intervening Xh and Xd, that is, Xj → Xi,
Xk → Xj need to be resolved. Since these integrations are assumed to consume the same pool
of limited resources, the maintenance of node Xd should become more difficult in Figure 1(b)
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compared to Figure 1(a), and hence cause more difficulty in resolving the Xh → Xd depen-
dency in Figure 1(b) than in Figure 1(a). In sum, the number of intervening heads represents
the amount of resource demand due to structural integrations in the intervening region of a
dependency.1 The ICM hypothesis states that the intervener complexity, that is, the number
of heads intervening a dependency, is minimized in natural languages. The DLM hypothesis
based on the number of words does not make any prediction regarding the nature of words
that intervene a dependency.

While the ICM hypothesis tests if intervener complexity (IC) is minimized in natural lan-
guage, it does not test how IC and dependency length (DL) interact. Recall that previous work
(Wasow & Arnold, 2003) suggests that both have independent influence on the complexity of
a sentence. Given that the dependency length is an upper bound on the intervener complexity
there are two ways in which DL and IC could interact in capturing syntactic complexity across
languages. The first possibility is that a constraint on IC and a constraint on DL independently
shape the pattern of linguistic structures. One can ask whether the intervener complexity is
minimized independent of the minimization of dependency length. We term this as the ICM
as an independent constraint hypothesis. The second possibility is that an IC-based measure is
better at capturing syntactic complexity compared to a DL-based measure. Thus, we also
investigate the DLM as an independent constraint hypothesis, that is, whether dependency
length is minimized independently of the constraint on intervener complexity. In sum, we test
three related hypotheses: (a) ICM hypothesis, (b) ICM as an independent constraint hypothesis,
and (c) DLM as an independent constraint hypothesis.

In order to test these hypotheses, we conduct a cross-linguistic corpus study where we com-
pare the real trees attested in dependency treebanks with random baseline trees that match the
real trees in certain properties. Such a methodology has previously been successfully
employed to demonstrate the cross-linguistic validity of DLM (e.g., Futrell et al., 2015; Liu,
2008; Liu et al., 2017). For the purpose of this study, we introduce novel random baselines
that are more restrictive compared to the baselines used previously. For instance, to evaluate
whether intervener complexity is minimized independent of constraint on dependency
lengths, we generate baseline trees controlled for the distribution of dependency lengths
and compare them with the real trees in terms of intervener complexity.

The article is arranged as follows: In Section 2, we discuss the baselines and statistical
methods used for testing the three hypotheses. In Section 3, we discuss the results for each

1 Indeed, such a prediction will also hold for proposals that do not make a distinction between temporary
storage and integrations (e.g., Lewis & Vasishth, 2005). Under such an account, increased structure building
due to intervening heads will lead to retrieval difficulty of the dependent Xd due to time-driven decay (or
similarity-based interference).

Figure 1. Dependency structures with varying intervener complexity for Xh → Xd. While the dependency lengths (number of words that
intervene Xh → Xd) in tree (a) and tree (b) are the same, the two structures differ in their intervener complexity (the number of intervening heads).
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hypothesis. We discuss the implications of the results in Section 4. Finally, we conclude the
article in Section 5.

MATERIALS AND METHODS

Random Baselines

We employ six random baselines to test the hypotheses stated in the previous section. Each
baseline controls for a particular set of tree properties relevant to the hypothesis.

Random baseline trees are generated by sampling from a uniform distribution over either
random tree structures or random linear arrangements. We apply further constraints (like
dependency length constraint) on these trees using rejection sampling to achieve the required
sample for each baseline. We try to generate one baseline tree for each tree in the dependency
treebank.

In all the baselines discussed below, we control the rate of crossing dependencies. In other
words, baseline trees match the real trees in the number of crossing dependencies.2 Since
crossing dependencies are rare in natural languages (Straka et al., 2015), random trees with
large number of crossings tend to be dramatically different from real trees. Controlling for the
rate of crossing, therefore, ensures a more strict baseline by preventing certain unrealistic
structural configurations.

The ICM hypothesis is tested using the random structures baseline and the random linear
arrangements (RLAs) baseline. In order to generate a random structures baseline tree for a given
real language tree, we first compute the number of nodes, that is, sentence length, and the num-
ber of crossing dependencies in the real tree. Then using Prüfer codes (Prüfer, 1918), we sample
trees from a uniform distribution over tree structures of a given number of nodes. Sampled trees
that match with the number of crossings in the real trees are accepted as valid samples for the
baseline. Hence, the random trees generated for this baseline are matched with real trees for the
sentence length and the number of crossing dependencies. Figure 2(b) shows a random struc-
ture tree corresponding to a tree for a real sentence attested in a treebank—Figure 2(a). The
RLAs baseline trees are sampled from a uniform distribution over all random linearizations of
a given tree structure t. Compared to the random structures baseline, the RLA baseline preserves
all the topological properties such as arity,3 tree depth, hubbiness, and so on, in addition to
sentence length and number of crossings. This makes the RLA baseline more conservative than
the random structures baseline (put differently, compared to the random structure trees, they are
more similar to the real trees). RLAs are generated by permuting the order of the nodes in a real
tree such that the dependency relations among the nodes are preserved. If a sampled tree
matches the number of crossings in the real tree, it is accepted as a valid sample for the baseline.
Figure 2(c) shows a sample RLA corresponding to a real tree in Figure 2(a).

In order to test the ICM as an independent constraint hypothesis, the random structures base-
line trees and RLAs discussed above are further constrained by only selecting those baseline
trees where the sequence of dependency lengths matches with the corresponding real tree.
In other words, the baseline trees are obtained by restricting the dependency length distribution
in the random structures and RLA trees. These baselines are termed respectively as DL-matched
random structures baseline and DL-matched RLAs. Figures 2(d) and 2(e) show DL-matched

2 A crossing dependency is formed when two dependencies cross each other. Formally, a dependency, h → d
with h as the head and d as its dependent, is a crossing dependency if and only if there is at least one node, say i,
that intervenes h and d such that h does not (directly or indirectly) dominate i.
3 Arity of a node in a tree is defined as the number of dependents of that node.
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random structure and DL-matched RLA, respectively, corresponding to a real tree in Figure 2(a).
Note that, since these baselines control the dependency length sequence, they allow for a com-
parison of intervener complexity between the real trees and baseline trees independent of the
influence of the dependency length distribution and topological properties like arity, and so on.
In other words, any difference in intervener complexity between the real trees and DL-matched
random structures baseline or DL-matched RLAs cannot be attributed to DL.

On similar lines, the DLM as an independent constraint hypothesis can be tested using the
IC-matched random structures baseline and the IC-matched RLAs. These trees are sampled by
restricting the intervener complexity distribution in the random structure and RLA trees, respec-
tively. Figures 2(f ) and 2(g) respectively show IC-matched random structure and IC-matched
RLA corresponding to a real tree in Figure 2(a). We again note that, since these baselines control
the IC sequence, they allow for a comparison of dependency length between the real trees and

Figure 2. Sample trees for various random baselines corresponding to a dependency tree from an English treebank.
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baseline trees independent of the influence of the intervener complexity and topological prop-
erties like arity, and so on. A summary of all the baselines can be found in Table 1.

The baselines mentioned above have the advantage of being quite constrained and there-
fore allow us to test various hypotheses rigorously. For example, the IC-matched RLA is a very
conservative baseline as it controls both the topological properties such as arity, depth, num-
ber of crossings, as well as the intervener complexity distribution. This baseline will be used to
test if there is any difference in dependency length distribution between real trees and baseline
trees when the intervener complexity is the same in the real and random trees. While the
above baseline allows us to test the DLM as an independent constraint hypothesis rigorously,
its complexity makes the generation process of such baseline trees prohibitively slow. This is
because we are controlling many properties of the baseline trees using rejection sampling.
Therefore, we take sentences up to length 12 in this work. We discuss the issue of generaliz-
ability of our results in Section 4.

Data

We use Surface-Syntactic Universal Dependencies (SUD) treebanks (version 2.4) (Gerdes
et al., 2018, 2019) to perform all the analyses. We use the data of 54 languages. This set
was obtained after excluding the treebanks for languages with fewer than 500 sentences
and treebanks for ancient languages such as Latin, Ancient Greek, Sanskrit, Old Church Sla-
vonic, Old Russian, and Old French. Our choice of SUD for the reported analysis is motivated
by the widespread assumptions regarding syntactic representation in sentence processing
research. In particular, this research subscribes to sentential representations consistent with
modern linguistic theories (e.g., Bresnan, 1982; Chomsky, 1995; Hudson, 1984; Mel’čuk,
1988; Pollard & Sag, 1994) where function words are held to be syntactic heads (cf. Dillon,
2011; Gibson, 1998; Lewis & Vasishth, 2005). See Osborne and Gerdes (2019) for a detailed
exposition on the syntactic assumptions in the SUD representation.

We compare the real trees attested in SUD treebanks with the baseline trees to test different
hypotheses. As stated earlier, we take sentences up to length 12 in this work.

Statistical Method

We want to test whether the distribution of intervener complexity or dependency length is
significantly different between real trees and the baseline trees. In order to do this, we fit linear

Table 1. An overview of all six baselines.

Random baseline
Controlled tree property

Sentence length DL-sequence IC-sequence Tree topology
Random structures baseline ✓ – – –

Random linear arrangements ✓ – – ✓

DL-matched random structures ✓ ✓ – –

DL-matched RLAs ✓ ✓ – ✓

IC-matched random structures ✓ – ✓ –

IC-matched RLAs ✓ – ✓ ✓

Note. DL = dependency length; IC = intervener complexity; RLA = random linear arrangement. Tree topology controls for arity and depth.

OPEN MIND: Discoveries in Cognitive Science 152

Reappraisal of Dependency Length Minimization Yadav et al.

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00060/2043148/opm
i_a_00060.pdf by guest on 07 Septem

ber 2023



mixed-effect models (Bates et al., 2015) with varying intercepts and random slope adjustments
for languages using the lme4 package in R (R Core Team, 2020).

Suppose ICij is the mean intervener complexity for ith sentence of the jth language, Sij is the
length of ith sentence of the jth language, Rij is a dummy variable that encodes whether the sen-
tence is a real tree (as 1) or a baseline tree (as 0), β0 is the intercept term, β1 and β2 are the slope
terms for themain effect of sentence length and real/baseline variable respectively, β3 is the inter-
action term, u0,j is the random intercept adjustment for jth language, u1,j, u2,j and u3,j are random
slope adjustments for the jth language. The model to predict ICij is shown below

ICij ¼ β0 þ u0;j
� �þ β1 þ u1;j

� �
Sij þ β2 þ u2;j

� �
Rij þ β3 þ u3;j

� �
Sij : Rij þ � (1)

Similarly, the model to predict mean dependency length for ith sentence of the jth language
is shown below.

DLij ¼ β0 þ u0;j
� �þ β1 þ u1;j

� �
Sij þ β2 þ u2;j

� �
Rij þ β3 þ u3;j

� �
Sij : Rij þ � (2)

For IC-related hypotheses, the dependent variable is the intervener complexity; for DL-
related hypotheses, the dependent variable is dependency length. We check the interaction

effect estimate β̂3 to test whether the data supports our hypotheses regarding ICM and DLM.

The interaction effect estimate β̂3 captures to what extent does the intervener complexity (or
dependency length) grows slower in real trees compared to baseline trees with respect to sen-
tence length. As an illustration, in order to test the ICM hypothesis, we check whether the
growth of intervener complexity with respect to sentence length is significantly slower in real
trees compared to random structure trees.

We note that the interaction parameter β3 is the effect of interest for testing our hypotheses
because an aggregate difference in dependency length or intervener complexity between real
trees and baseline trees (i.e., the main effect) could be subject to inaccuracies as the depen-
dencies are mixed from different sentence lengths (see Ferrer-i Cancho & Liu, 2013; Futrell
et al., 2015). In using the interaction effect for interpreting our results, we follow the recom-
mendation in Ferrer-i Cancho and Liu (2013) that dependency length should be considered as
a function of sentence length.

In addition to running the analysis on data for all the languages, we also tested the hypoth-
eses individually for each language. While doing so, we remove the random intercept and
slope adjustment for languages.

Prediction

Recall that the ICM hypothesis is tested with intervener complexity as the dependent variable
and uses the random structure and random linear arrangements baseline trees. The ICM as an
independent constraint hypothesis is tested with intervener complexity as the dependent var-
iable and uses the DL-matched random structure trees and DL-matched RLAs. Finally, the
DLM as an independent constraint hypothesis is tested with dependency length as the depen-
dent variable and uses the IC-matched random structure trees and IC-matched RLAs.

Each hypothesis predicts that the relevant dependent measure (IC or DL) grows slower in
real language trees with respect to sentence length compared to the respective baseline. In
particular, the ICM hypothesis predicts that the intervener complexity should grow slower
in real language trees with respect to sentence length compared to random structure baseline
trees and random linear arrangements. Similarly, the ICM as an independent constraint
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predicts that the intervener complexity should grow slower in real language trees with respect
to sentence length compared to DL-matched random structure trees and DL-matched RLAs.
Finally, the DLM as an independent constraint hypothesis predicts that the dependency length
grows slower in real language trees with respect to sentence length compared to IC-matched
random structure trees and IC-matched RLAs.

Therefore, if the estimated interaction effect coefficient β̂3 is negative (see Equations 1, 2), it
would be evidence in support for a particular hypothesis.

RESULTS

With regard to the ICM hypothesis, Figure 3 shows the distribution of intervener complexity
with respect to sentence length in real trees attested in treebanks and random baseline trees.
Table 2 shows the estimates from the fitted linear-mixed models.4 We find that the average

Figure 3. Fitted models showing the growth of intervener complexity with respect to sentence length in real language trees compared to
random structure trees and random linear arrangements (RLAs).

Table 2. ICM hypothesis: Estimates from the fitted linear-mixed models for random structures
baseline and random linear arrangements.

Random structures baseline Random linear arrangements
Estimate SE t value Estimate SE t value

Intercept 1.48 0.008 172.96* 1.52 0.013 116.89*

S.length 0.29 0.004 71.07* 0.22 0.004 47.25*

Real −0.28 0.015 −19.06* −0.29 0.019 −15.40*

S.length:Real −0.17 0.007 −24.46* −0.13 0.006 −19.73*

Note. S.length = sentence length.

4 All the data and reproducible analysis files are available at https://osf.io/j975y/.
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intervener complexity grows much slower in real language trees compared to random struc-

tures baseline trees (β̂3 = −0.17, t value = −24.5) and random linear arrangements (β̂3 = −0.13,
t value = −19.7). The notes S7 and S8 in the Supplemental Materials show the language-
specific analyses for the hypothesis.

A similar trend is observed with regard to the ICM as an independent constraint hypothesis,
see Figure 4. Table 3 shows the estimates from the fitted linear-mixed models. The effect was

found to be significant for both DL-matched random structures (β̂3 = −0.03, t value = −6.4) and
DL-matched RLAs (β̂3 = −0.02, t value = −4.8).5

Finally, with regard to DLM as an independent constraint hypothesis, the average depen-
dency length grows significantly slower in real trees compared to IC-matched random

Figure 4. Fitted models showing the growth of intervener complexity with respect to sentence length in real language trees compared to
dependency length (DL)-matched random structures and DL-matched random linear arrangement (RLAs).

Table 3. ICM as an independent constraint: estimates from the fitted linear-mixed models for
DL-matched random structures and DL-matched RLAs.

DL-matched random structures DL-matched RLAs
Estimate SE t value Estimate SE t value

Intercept 1.19 0.009 132.85* 1.24 0.012 96.27*

S.length 0.15 0.007 19.54* 0.11 0.007 15.99*

Real −0.03 0.003 −10.80* −0.02 0.004 −4.91*

S.length:Real −0.03 0.004 −6.40* −0.02 0.004 −4.82*

Note. DL = dependency length; ICM = intervener complexity minimization hypothesis; RLA =
random linear arrangement; S.length = sentence length.

5 The notes S9 and S10 in the Supplemental Materials show the language-specific analysis for the ICM as an
independent constraint hypothesis.
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structures (β̂3 = −0.07, t value = −12.9). However, this pattern does not hold for IC-matched
RLAs—the dependency length with respect to sentence length *does not* grow slower in real

language trees compared to that in IC-matched RLAs (β̂3 = 0.01, t value = 3.5). See Figure 5
and Table 4 for details.6

DISCUSSION

Our first key finding is that, cross-linguistically, the complexity of the linguistic material (mea-
sured as syntactic heads) intervening a syntactic dependency in treebank sentences is mini-
mized. Our second key finding is that this minimization of intervener complexity holds even
when the dependency length distribution is controlled in the random baseline trees. Finally,
and most surprisingly, the results show that dependency length in real trees is not minimized

Figure 5. Fitted models showing the growth of dependency length with respect to sentence length in real language trees compared to
intervener complexity (IC)-matched random structures and IC-matched random linear arrangement (RLAs).

Table 4. DLM as an independent constraint: Estimates from the fitted linear-mixed models for
IC-matched random structures and IC-matched RLAs.

IC-matched random structures IC-matched RLAs
Estimate SE t value Estimate SE t value

Intercept 1.85 0.014 131.97* 1.81 0.022 79.50*

S.length 0.34 0.009 36.85* 0.22 0.010 22.31*

Real −0.19 0.009 −21.71* −0.04 0.005 −8.17*

S.length:Real −0.07 0.005 −12.96* 0.01 0.003 3.51*

Note. DLM = dependency length minimization; IC = intervener complexity; RLA = random linear
arrangement; S.length = sentence length.

6 The notes S11 and S12 in the Supplemental Materials show the language-specific analysis for the DLM as an
independent constraint hypothesis.
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against a baseline controlled for IC-distribution and topological structure of the tree. Together
the results suggest that, cross-linguistically, intervener complexity captures syntactic complex-
ity better than DL. Table 5 provides a summary of the results.

Is DLM Epiphenomenal?

Results show that an optimal linear arrangement for minimizing intervener complexity could,
in turn, minimize DL. How can we interpret this finding?

We begin by noting that a particular dependency length can result from two types of inter-
vening structures: (a) Low intervener complexity structure having more intervening dependents
and fewer intervening heads, or (b) High intervener complexity structure having more interven-
ing heads and fewer intervening dependents.7 Figure 6 shows the two structures; the observed
dependency length of Xh → Xd in structure (a) is driven entirely by intervening dependents,
while in (b), it is primarily driven by intervening heads. Notice that a low intervener complex-
ity structure requires a high arity for at least one of the nodes in the structure (e.g., Xh in
Figure 6a).

Given these two intervener complexity configurations, results for the ICM as an indepen-
dent constraint hypothesis show that cross-linguistically a low intervener complexity structure
is preferred over a high intervener complexity structure. Recall that the hypothesis was tested
using DL-matched baselines where the distribution of dependency length is identical to the
real trees. The results for this hypothesis, therefore, are not driven by dependency length–
related constraints. We now assess the results for DLM as an independent constraint hypoth-
esis in the light of the constraint that natural languages prefer low intervener complexity
structures.

DL Minimization in Real Trees Against IC-Matched Random Structures Assuming the ICM con-
straint on real language trees, IC-matched random structures trees cannot posit syntactic
configurations with high-intervener complexity (see Figure 6). However, there is no restriction
on the topological structure of these random trees.8 Consequently, these random trees can

Table 5. Summary of evidence for each hypothesis.

Random baseline
Evidence for hypothesis

ICM hypothesis ICM as Independent Constraint DLM as Independent Constraint
Random structures baseline ✓ – –

Random linear arrangements ✓ – –

DL-matched random structures – ✓ –

DL-matched RLAs – ✓ –

IC-matched random structures – – ✓

IC-matched RLAs – – ✗

Note. ✓ means a baseline furnished evidence for tested hypothesis, ✗ means a baseline did not furnish any evidence for the hypothesis,
– signifies not relevant; ICM = intervener complexity minimization hypothesis; DL = dependency length; IC = intervener complexity; RLA =
random linear arrangement.

7 Intervening dependents here mean the terminal dependents that intervene a dependency.
8 Recall that IC-matched random structures trees match in intervener complexity distribution, however they

do not control for topological properties (e.g., arity) of the real trees.
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have more instances of structures with high arity compared to real trees. As a result, they could
still posit longer dependencies in spite of low-intervener complexity configurations (see
Figure 6). Figure 7 shows that arity in IC-matched random structures is higher than real trees,
especially for longer sentences. This demonstrates that arity distribution in real trees is an
important determinant of dependency length.

No Evidence for Dependency Length Minimization in Real Trees Against IC-matched RLAs Compared
to the IC-matched random structures trees, the possibility to posit longer dependencies due to
flexibility in topological structure gets severely restricted in IC-matched RLAs.9 As a conse-
quence, the two mechanisms that can drive long dependencies (see Figure 6) are less acces-
sible here. Consequently, IC-matched RLAs do not show conclusive evidence for dependency
length minimization in real trees. This suggests that, together, the constraints on intervener
complexity and constraints on topological structures of trees, like arity, could determine the
distribution of dependency length in natural language.

Figure 7. The distribution of tree arity in real trees and intervener complexity (IC)-matched random structures. IC-matched random struc-
tures use flexibility in topological structure to posit higher arity and hence longer dependency distance than real trees.

9 Recall that IC-matched RLAs control for intervener complexity as well as topological properties (such as
arity).

Figure 6. A schematic showing that a given dependency length (e.g., length = 4 for the dependency Xh → Xd) can be obtained by two types
of structures. Low intervener complexity structure (a) has higher arity and few heads. High intervener complexity structure (b) has low arity
and more number of intervening heads.
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Asymmetry in Constraints on Intervener Complexity Versus Dependency Length In order to under-
stand the nature of structures preferred by real trees for positing dependencies of a given IC or
a given DL, we did an exploratory analysis. We note the following:

1. For positing dependencies of a given length, the real trees use low-IC structures more
frequently compared to the DL-matched baseline trees (see Figure 8). This implies that
real trees prefer low-IC structures regardless of dependency length. This low-IC ten-
dency in real trees becomes even more stronger for longer dependencies.

2. By contrast, real trees do not show much preference for low-DL structures when com-
pared with IC-matched RLAs (see Figure 9). For positing structures with a given IC, the
real trees choose almost as many short dependencies as the baseline trees. Moreover,
the real trees and IC-matched RLAs have the same average DL for a given intervener
complexity (see Figure 10).

The above points suggest an asymmetry in constraints on IC versus DL in real trees:
Compared to a baseline controlled for DL, the real trees prefer low IC structures; but compared
to the RLAs controlled for IC, the real trees do not show much preference for shorter depen-
dencies. This asymmetry supports the ICM as an independent constraint hypothesis, but does
not support the DLM as an independent constraint hypothesis.

Notes on Methodology and Limitations of the Current Work

As stated earlier, multiple corpus-based work (e.g., Futrell et al., 2015; Gildea & Temperley,
2010; Liu, 2008) have previously provided evidence for DLM cross-linguistically using the
method similar to the one employed in the current study. Given that the methodology involves
the comparison of real trees with random baseline trees, the nature of these baseline trees

Figure 8. The number of low intervener complexity (IC) (≤ 2) structures in real trees and dependency length (DL)-matched random struc-
tures at each dependency length. Compared to the baseline trees, the real trees tend to use low IC structures for positing longer dependencies.
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Figure 9. The frequency of short (dependency lenth—DL ≤ 3) dependencies in real trees versus intervener complexity (IC)-matched
random linear arrangement (RLAs) at each intervener complexity. Compared to the baseline trees, the real trees do not show preference
for short dependencies for positing a given IC structure. Figure shows up to IC 4, because high IC (> 4) structures cannot be achieved by short
(DL ≤ 3) dependencies.

Figure 10. The average dependency length at each intervener complexity (IC) in real trees versus IC-matched random linear arrangement
(RLAs).
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becomes critical. Most previous work (e.g., Futrell et al., 2015; Liu, 2008) use baselines akin to
the random structures baseline and RLAs. In the current work, we wanted to directly assess the
evidence for the independence of two constraints—whether a certain constraint X on real trees
holds independent of another constraint Y. This required us to compare real trees against base-
line trees that were generated under constraint Y. Therefore, compared to previously used ran-
dom structures or RLAs, the baselines employed in the current work are strongly constrained.
For example, to test whether ICM occurs independent of DLM, we compare real trees against
baseline trees that have constraints on dependency-length distribution and tree topology. In
addition, unlike baselines in previous work, which either had only noncrossing trees or an
unreasonably large number of crossing dependencies, the baselines in the current work con-
trolled for the number of crossings. However, controlling for multiple properties makes the
generation process of these baselines very slow. Due to this reason, we have provided evi-
dence for the role of intervener complexity and arity in determining syntactic complexity in
natural languages using various baselines for sentence length < 12. So, while our baselines
allow for a rigorous evaluation of various hypotheses, they are based on relatively short sen-
tences. This could raise concerns regarding the generalizability of the current results. In order
to assuage such concerns, below, we provide some observation of IC/arity patterns in real trees
that suggests the results should hold for longer sentences as well.

1. Figure 11 shows that the rate of intervener complexity growth with sentence length is
almost the same for short and long sentences. This suggests that the constraint on inter-
vener complexity persists for longer sentences.

2. Figure 12 shows that arity in real sentences becomes severely restricted in longer sen-
tences, while intervener complexity grows at almost the same rate for short and long
sentences. This implies that IC-matched RLAs—the baseline trees that match in arity

Figure 11. Intervener complexity at various sentence lengths for various languages. The figure shows that intervener complexity grows with
sentence length at almost the same rate for short and long sentences cross-linguistically, which indicates that constraint on intervener com-
plexity persists for longer sentences.
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and intervener complexity with real trees—would have much stronger restrictions on
dependency length in longer sentences. This is because, as discussed earlier, positing
a longer dependency requires either a high arity or a high IC, but high-arity configura-
tions get severely restricted in longer sentences. This would predict that dependency
length in real trees would grow at almost the same rate or faster than IC-matched RLAs.
Figure 13 shows the rate of growth of dependency length in real trees up to sentence
length 30 and in baseline trees up to sentence length 11.

The above observations (and related figures) show that compared to short sentences, the
ICM/arity effects in real trees are even stronger in longer sentences. This provides a reasonable
basis to believe that the current results will hold for long sentences. We plan to take up base-
line generation for long sentences in the near future.

Additional concerns regarding our conclusions could be that (a) shorter sentences might
belong to nonrepresentative text in the corpus such as headlines, article headings, and (b)
we do not have enough power to accept the null hypothesis regarding DLM as an independent
constraint. For (a), we did an additional analysis by extracting clauses of length up to 12 words
from longer (> 12 words) sentences and compared them with corresponding IC-matched base-
line trees.10 We were able to replicate the results for DLM as an independent constraint
hypothesis: dependency length grows significantly slower in real trees from clausal data com-
pared to IC-matched random structures but not when compared with IC-matched RLAs (see
Note S5 in the Supplemental Materials). For (b), we did a Bayes factor analysis. We find mod-
erate to strong evidence in the favor of the null hypothesis (see Note S4 in the Supplemental
Materials for detailed results). The result suggests that the confidence in accepting the null
hypothesis regarding DLM as an independent constraint should be reasonably high.

10 We thank an anonymous reviewer for suggesting this method.

Figure 12. The figure compares the rate of growth of intervener complexity and arity with respect to sentence length. Intervener complex-
ity grows at almost the same rate for short and long sentences, while tree arity becomes increasingly restricted for longer sentences.

OPEN MIND: Discoveries in Cognitive Science 162

Reappraisal of Dependency Length Minimization Yadav et al.

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00060/2043148/opm
i_a_00060.pdf by guest on 07 Septem

ber 2023



Finally, the lack of evidence for the DLM as an independent constraint in this work has
been based on a lack of significant interaction in the right direction (see Table 4). However,
we do find a main effect of tree type (real vs. random): the average dependency length is shorter
in real trees compared to IC-matched RLAs at each sentence length (all t values < −2). As
pointed out by an anonymous reviewer, this pattern goes against our claim that DLM could
be a consequence of constraint on IC and tree topology. Our choice of using the interaction
effect to test the hypothesis is based on one of the definitive, large-scale corpus investigation
of dependency length minimization (Futrell et al., 2015) that uses the interaction effect estimate
to argue for the DLM hypothesis. Given the importance of the claims in Futrell et al. (2015), it is
imperative that a comparative study of DLM against a competing hypothesis should also use a
similar methodology. However, in the context of our last claim about potential nonindepen-
dence of DLM, different conclusions can be drawn based on the estimates of main effect (at
each sentence length) and the interaction effect. Considering this methodological issue, we
cannot conclusively argue that DLM might arise due to constraint on IC and arity restrictions.
The only certain conclusion from our study is that ICM is an independent constraint on lan-
guage while DLM may or may not be epiphenomena of ICM. Our additional analyses show
that ICM is indeed a stronger constraint compared to DLM in determining the distribution of
word order and syntactic choices in natural languages.

The current work, therefore, shows that, in shorter sentences, ICM is an independent con-
straint on natural languages. On the other hand, we do not find any conclusive evidence for
DLM as an independent constraint suggesting that DLM might arise as a consequence of ICM
and arity restrictions. However, it remains a possibility that our conclusions are driven by

Figure 13. Growth of dependency length with respect to sentence length in real trees versus baseline trees. Light gray lines represent
various real languages, thick gray line represents average growth across real trees, thick colored lines represent random baseline trees of
sentence length less than 12.
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methodological idiosyncrasies (i.e., we interpreted the interaction effects only) and/or nature of
the data (i.e., we used only shorter sentences). At the very least, the current work conclusively
shows ICM and arity restrictions to be an equally important determinant of syntactic complex-
ity as DLM.

Measuring Syntactic Complexity

Building syntactic structures efficiently is a key aspect of language processing. Numerous
research has highlighted that simple and easier structures are preferred during both compre-
hension (e.g., Ferreira et al., 2002; Ferreira & Patson, 2007; Fodor & Inoue, 2000; Frazier,
1985; Gibson, 1998; Lewis & Vasishth, 2005) and production (e.g., Bock & Warren, 1985;
Ferreira, 1991; Gibson et al., 2019; Hahn et al., 2020; Kurumada & Jaeger, 2015; MacDonald,
2013). Since syntactic heads can be assumed to be central regions of structural integrations
during processing, it is not surprising that these processing-intensive units should be avoided
while building a dependency.

Quantifying complexity as intervening heads is consistent with previous proposals where
the number of nonterminal nodes of a phrase structure tree has been assumed to be an
important determinant of processing difficulty11 (e.g., Ferreira, 1991; Frazier, 1985; Miller &
Chomsky, 1963; Yngve, 1960). The current work also highlights the key role of arity in deter-
mining syntactic complexity. Results show that real trees have lower arity than that found in
baselines such as IC-matched RLA. This is not surprising when we consider that the syntactic
requirements of heads are constrained in natural languages. For example, in English, it will
be rare to find verb lemmas where the number of arguments would be more than three.
The current work suggests that linguistic constraints related to a head’s requirements (e.g.,
verb’s argument structure) are important determinants of dependency length.

Overall, considerable previous work has designated phrasal complexity and number of
words to be two independent ways to quantify syntactic complexity in natural languages
(Ferreira, 1991; Szmrecsányi, 2004; Wasow, 1997; Wasow & Arnold, 2003). However, no
previous work, to our knowledge, has tested if one of these measures is better at capturing
complexity when the other is held constant. The current work introduces a method to evaluate
the relative performance of a complexity measure cross-linguistically using corpus data (also
see Yadav et al., 2019). Using our method, one can test whether a constraint on measure X
occurs independently of a constraint on measure Y. We can do this by comparing the distri-
bution of X in real trees with baseline trees matched in Y with real trees. Using this method, we
tested the independence of constraints on intervening heads and constraints on intervening
words. We found that the number of intervening heads is a better measure of complexity than
the number of intervening words. Thus, our methodology provides a principled way to eval-
uate new complexity measures against existing ones.

With regard to various heads intervening a dependency, the ICM hypothesis predicts a
greater avoidance of high-processing heads (i.e., those that involve a larger number of syntac-
tic integrations) compared to low-processing heads. Given varying syntactic constraints, it is
reasonable to assume a differential processing cost at various heads. For example, verbal
heads would typically involve more integrations than adjectival heads (cf. Frazier, 1985;
Gibson, 1998; Gibson & Thomas, 1999; Miller & Chomsky, 1963; Yngve, 1960). Future work

11 Intervener complexity might also seem related to the storage cost metric proposed in Gibson (1998), but they
are distinct. See Note S2 in the Supplemental Materials for more details.
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will extend the current work by reformulating the intervener complexity measure to capture
both the number and the type of intervening heads.

Syntactic Complexity and Linguistic Typology

The current work suggests that the number of intervening heads could be a better measure to
quantify syntactic complexity compared to the number of intervening words. Could typolog-
ically distinct languages differ in their distribution of intervening heads and words? More
importantly, could the results for ICM/DLM as an independent hypothesis differ based on lan-
guage typology?

We did an additional analysis to test these questions, specifically testing if (a) distribution of
intervening words/heads differ in Subject-Object-Verb (SOV) versus Subject-Verb-Object
(SVO) languages, and (b) if the results for ICM/DLM as an independent hypothesis on aggre-
gated data differ for SOV versus SVO languages. Regarding (a), results show that the number of
intervening heads, as well as the number of intervening words, are more in SOV languages com-
pared to SVO languages. Interestingly, a recent cross-linguistic corpus study by Yadav et al.
(2020) shows that the number of intervening heads is highly constrained across languages,
and this constraint shows less variability compared to the number of intervening words (see
Figure 14). Regarding (b), we find that both SOV and SVO languages show expected depen-
dency length and intervener complexity minimization that was found in the aggregated data,
that is, IC/DL grows significantly slower in real trees compared to random baseline trees (except
IC-matched RLAs). At the same time, the effect of minimization is weaker in SOV language
compared to SVO languages suggesting a degree of linguistic adaptability in SOV languages
(cf. Levy & Keller, 2013; Vasishth et al., 2010; Yadav et al., 2020).12 Together these additional
analyses suggest that results obtained on the aggregated data can be generalized to these typo-
logically distinct languages.

Figure 14. The distribution of dependency length and intervener complexity with respect to sentence length across language. Intervener
complexity shows less variability across languages and across sentence length compared to dependency length.

12 Note S6 in the Supplemental Materials provides detailed results for these analyses.
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CONCLUSION

This work presents a corpus investigation to show that dependency length minimization as a
cross-linguistic constraint is better operationalized as the minimization of the number of syn-
tactic heads that intervene a dependency rather than as the minimization of the number of
words. We use a novel method to demonstrate this result. In particular, we show that when
real trees are compared with random trees that control for intervening heads (and other tree
properties such as arity), there is no conclusive evidence for dependency length minimization
(in terms of the number of words) in the real trees. On the other hand, when real trees are
compared with random trees that control for dependency length and various tree properties,
we find evidence for intervener complexity minimization. These results suggest that, compared
to the number of words, intervener complexity could be a better measure to quantify cross-
linguistic syntactic complexity.
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