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ABSTRACT

There has been much work over the last century on optimization of the lexicon for efficient
communication, with a particular focus on the form of words as an evolving balance
between production ease and communicative accuracy. Zipf’s law of abbreviation, the
cross-linguistic trend for less-probable words to be longer, represents some of the strongest
evidence the lexicon is shaped by a pressure for communicative efficiency. However, the
various sounds that make up words do not all contribute the same amount of disambiguating
information to a listener. Rather, the information a sound contributes depends in part on what
specific lexical competitors exist in the lexicon. In addition, because the speech stream is
perceived incrementally, early sounds in a word contribute on average more information
than later sounds. Using a dataset of diverse languages, we demonstrate that, above and
beyond containing more sounds, less-probable words contain sounds that convey more
disambiguating information overall. We show further that this pattern tends to be strongest at
word-beginnings, where sounds can contribute the most information.

BACKGROUND

Human languages are characterized by hierarchically organized, nested structure: utterances
are composed of structured sequences of words, and words in turn are composed of structured
sequences of sounds. Many of the ways these structures are organized in language have been
argued to result in more efficient transmission of information than would occur otherwise (e.g.,
Fedzechkina, Jaeger, & Newport, 2012; Ferrer i Cancho, 2017; Futrell, Mahowald, & Gibson,
2015; Genzel & Charniak, 2002; Gibson et al., 2019; Gildea & Jaeger, 2015; Hale, 2003,
2006; Hawkins, 2010; Jaeger, 2010; Jaeger & Tily, 2011; Levy, 2008), suggesting that the
details of language structures evolve under pressure to optimize communicative efficiency. The
lexicon—roughly, the set of words in a language—is one of these possible loci of optimiza-
tion, and can be conceptualized as a code that maps meaningful lexical units (referred to here
as words) to word-forms, for example, a sequence of sounds, or segments. The relationship
between words and their word-forms is not fixed a priori, but can evolve over the course of
language change, such as when the original compound electronic mail shortened to email with
increasing use. Because the lexicon is a constantly evolving system, and because many lexical
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properties of interest—such as word length—can be straightforwardly measured, the lexicon
has been a focus for much prior research on the role of biases toward efficient communica-
tion in shaping language patterns. Many of these studies conclude that patterns in the lexicon
support the hypothesis that communicative efficiency is a driving pressure in the evolution of
word to form mappings (Ferrer i Cancho & Solé, 2003; Kanwal, Smith, Culbertson, & Kirby,
2017; Piantadosi, Tily, & Gibson, 2009, 2012; Zipf, 1949).

One of the most cross-linguistically robust observations in this domain is Zipf’s law of ab-
breviation: more-probable words tend to be shorter, while words that are less probable tend to
be longer (Bentz & Ferrer i Cancho, 2016; Piantadosi, Tily, & Gibson, 2011; Zipf, 1935).
In his Principle of Least Effort, Zipf (1949) proposed that this pattern arises as a trade-off
between a pressure for accuracy on the one hand, and lower effort on the other. As it stands,
there is robust evidence that the segment composition of word-forms is shaped for lower
production-effort beyond the effect of short length (Dautriche, 2015; Dautriche, Mahowald,
Gibson, & Piantadosi, 2017; Mahowald, Dautriche, Gibson, & Piantadosi, 2018; Meylan
& Griffiths, 2017). Here we investigate whether segment composition may also be optimized
to provide listeners greater disambiguating information as they identify words in the speech
stream.

We can conceptually divide the information available to listeners in word identifica-
tion into two sources: (a) the listener’s prior expectation that the word will occur, and (b)
the information provided by the word-form itself (reviewed in Hall, Hume, Jaeger, & Wedel,
2016). If word-forms evolve under pressure to balance accuracy and effort, the amount of in-
formation from these two sources should tend to trade-off: words that are on average more
probable should evolve word-forms that contain less informative material because they can
do so without compromising accuracy, and conversely, words that are less probable should
evolve word-forms that convey relatively more information.

All things being equal, a word-form with more segments is likely to possess more in-
formation overall. However, segments can differ in how much information they contribute
to disambiguating a word-form from others: a segment in a word-form that disambiguates
from many other forms in the lexicon provides more information than one that disambiguates
from few. Further, earlier segments in a word-form tend to contribute more disambiguating
information in word identification than later segments because listeners process word-forms
incrementally, progressively updating inferences about the intended word as the segment se-
quence unfolds in time (e.g., Allopenna, Magnuson, & Tanenhaus, 1998; Magnuson, Dixon,
Tanenhaus, & Aslin, 2007; Marslen-Wilson, 1987; see Dahan & Magnuson, 2006, and Weber
& Scharenborg, 2012, for review). For example, consider the word vacuum /vækjum/. Percep-
tion of the word-initial [v] is highly informative as it allows a listener to begin to discount the
large set of lexical items that begin with other segments. The final [m] contributes less informa-
tion because the previous segments [vækju...] already indicate vacuum as the most likely word.
Correspondingly, psycholinguistic studies show that listeners preferentially allocate attention
to word-beginnings, which has been attributed to the greater information provided by early
segments (Connine, Blasko, & Titone, 1993; Grosjean, 1996; Marslen-Wilson & Zwitserlood,
1989; Nooteboom, 1981; Salasoo & Pisoni, 1985).

Two related predictions for efficient lexical structure arise from the fact that different
segments can convey different amounts of disambiguating information. First, words that are
on average less probable should tend to not only have longer forms, but to have forms with
relatively higher information segments. Second, if the lexicon is structured to capitalize on
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incremental word processing, this association between segmental information and word prob-
ability should be strongest early in word-forms and decay at later positions. Early segments
more strongly narrow the range of lexical possibilities, and in parallel, narrow the prior con-
textual differences in word probability (for more on the benefit of early informativeness, see
Hawkins, 2010). A useful way to think of this second prediction is that segments should be-
come distributed throughout the lexicon such that the probability mass of competing words
drops more steeply for less-probable words during processing. This can potentially be achieved
with two conceptually distinct strategies, one focusing on the segmental network structure of
the lexicon, that is, the specific sequences of segments that distinguish words, and the other
on the relative word probabilities within the competing groups of words that exist.

In the first strategy, the lexicon evolves such that the segments in less-probable words act
to disambiguate from a greater number of competing words early on. As an example, the form
for the less-probable word sphinx begins with a nearly unique cluster, [sf], which immediately
disambiguates it from most of the lexicon. In the second, the lexicon evolves such that less-
probable words have segments that disambiguate from relatively high-probability competitors.
Both of these strategies have the effect of reducing the probability mass of competitors faster
for less-probable words.

Here, we explore these predictions, showing evidence that the lexicons of a diverse set
of languages are in fact structured to be an efficient code given incremental processing, both
in terms of the structure of the lexicon and the relative probabilities of competitors in that
structure.

METHODS

We investigated the relationship between segment information and word probability in phone-
mically transcribed corpora for 20 languages (see Table 1 in the Supplemental Materials; King
& Wedel, 2020). The dataset is reasonably typologically diverse, drawn from 10 different lan-
guage families from four continents, where 13 of the 20 languages are non-Indo-European.
All corpora except Hausa, Kaqchikel, Malay and Tagalog were morphologically annotated,
allowing us to focus the analysis on uninflected word stems. For each language, we limited
our investigation to the 10,000 most frequent word-types.

We used a context-free measure of word probability (see Equation 1) which allowed us
to include languages with fewer and less detailed linguistic resources.1

p(word) =
count(word)

∑word′ count(word′) (1)

Prior work on the effects of incremental word processing has measured segment informa-
tion as the -log2 conditional probability of a segment given the current cohort (Marslen-Wilson
& Welsh, 1978), that is, the set of word-forms in the lexicon that share identical segments until
that point. For example, the information of [f] in sphinx is determined by dividing the token-
count of words beginning with [sf] by the token-count of words beginning with [s], and then
taking the base-2 logarithm of the resulting quantity. This token-based measure (Equation 2)
has been previously shown to predict variation in information in the speech signal: lower

1 Though the use of larger contextual windows has been shown to provide a potentially better fit between
word probability and word length (Piantadosi et al., 2011), context-free probability is strongly correlated with
probability measured over larger context window sizes (see Cohen Priva & Jaeger, 2018, for more).
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token-based segment information correlates with shorter segment duration and less-distinct
articulation (Tang & Bennett, 2018; van Son & Pols, 2003; van Son & van Santen, 2005),
and lower average token-based segment information correlates with a greater probability of
segment deletion in casual speech (Cohen Priva, 2015, 2017). Below, we will show that a
parallel type-based measure provides similar results.

h(segn) = −log2
count(seg1...segn)

count(seg1...segn−1)
(2)

We emphasize that this general approach for estimating the segmental information avail-
able to a listener is coarse-grained relative to how the speech stream is actually processed. For
one, this measure treats segments as equivalently distinctive, abstract symbols, rather than as
phonetic signals, which are differentially perceptually distinctive from one another and dif-
ferentially robust to noise (Mielke, 2012; Smits, Warner, McQueen, & Cutler, 2003). We
anticipate that future work will benefit from using measures that take perceptual distance into
account (e.g., Gahl & Strand, 2016; Strand, 2014). Our current method also implies that
there is no uncertainty in perception, assuming listeners immediately discard alternatives not
compatible with each successive segment. Instead, there is evidence that lexical access is mod-
erately tolerant of segmental mis-ordering (Toscano, Anderson, & McMurray, 2013) and that
listeners can backtrack to some degree when new segmental information is incompatible with
previous information (Gwilliams, Linzen, Poeppel, & Marantz, 2018; McMurray, Tanenhaus,
& Aslin, 2009). Nonetheless, the method we use here should capture some portion of the infor-
mation flow during lexical processing and has the advantage of being broadly applicable. We
anticipate that more fine-grained, perceptually sophisticated measures will provide yet clearer
outcomes.

RESULTS

Mean Segmental Information

Less-probable word-forms tend to have more overall segmental information just by virtue of
having more segments (Piantadosi et al., 2011; Zipf, 1935). If all segments contributed equiv-
alent information to word identification, addition or subtraction of segments would be the
only way to change the information carried by a word-form. If this were the case, the mean
information contributed by each segment across a word-form would not correlate with word
probability in words of the same length. Conversely, if we find that less-probable words have
higher mean segment information when controlling for length, it suggests these words, in ad-
dition to having more segments, have more disambiguating information packed into those
segments.

We begin with the token-based measure of segment information described above be-
cause it is sensitive to both categorical cohort structure and word frequencies in those cohorts
(see below for parallel tests using a type-based measure). However, the token-based measure
carries a built-in correlation between word probability and segment information, because the
frequency of a word contributes to the calculation of information of its segments. To eliminate
this source of correlation, for the results presented in this section we used a modified form of
the equation in which we subtract a word’s frequency from the calculation of the information
of its own segments (Equation 3).

h∗(segn) = −log2
count(seg1...segn)− count(word)

count(seg1...segn−1)− count(word)
(3)
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Figure 1. Relationship between log word probability and mean token-based segment information
for words of length 4–8. Grayed area represents 95% confidence intervals. Less-probable words
contain higher information segments.

We calculated the mean segment information for each word-form including only the
segments before the uniqueness-point (cf. Marslen-Wilson & Welsh, 1978), that is, the point
at which it is the only remaining word in the cohort.2 We excluded post-uniqueness segments
because, by this method, they contribute zero information. As a result, if segment informa-
tion is averaged over the whole word, words with longer post-uniqueness-point sequences
systematically show lower mean segment information values. Note, however, the relationship
between word probability and mean segment information in this dataset remains significant
when post-uniqueness-point segments are included (not shown), indicating that less-probable
words have more incrementally informative segments on average across the entire word-form
(cf. Mahowald et al., 2018; Meylan & Griffiths, 2017, who show that less-probable words are
composed of phonotactically less-probable sequence types).

Figure 1 shows best-fit regression lines for mean token-based segment information by
word probability for word lengths 4–8 in each language. As predicted, less-probable words
contain more informative segments. Across all languages, all but three (94/97) of the by-length
regression models show a significant correlation between word probability and mean segment
information. When word length categories are pooled and word length is included as a separate
factor, the models show a significant effect of word probability for all languages (Table 2 in the
Supplemental Materials; King & Wedel, 2020).3

Using a token-based measure for segment information, the sum of the information con-
tributed by each segment in a word-form is equal to context-free word information, -log2

2 We added end-of-word boundary symbols to all words, setting the uniqueness-point to be the word length
plus one for words that do not have a word-internal uniqueness-point, e.g., cat, given the existence of catalog.

3 There is a significant, negative correlation between word length and mean segment information in each
language. Variance inflation factor (VIF) scores were below an acceptable threshold (<2) in all languages (see
O’brien, 2007, for discussion of VIF).
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Figure 2. Relationship between mean type-based segment information and log word probability
for words of length 4–8. Less-probable words more quickly reduce the cohorts of competing words.

p(word).4 As a consequence, the negative correlation that we find between mean segment in-
formation and word probability can only arise if the information in segments of less-probable
words are concentrated in fewer segments. This has the effect of more rapidly reducing the
probability mass of alternatives with each successive segment.

There are two conceptually distinct ways this more rapid reduction in probability mass
could be accomplished: (a) successive segments could categorically reduce the number of
competitors more quickly, or (b) successive segments could preferentially eliminate higher
probability cohort members. In the following sections we show evidence that lexicons are
optimized in both ways.

Segments in Less-Probable Words Reduce the Number of Competitors More Quickly

Cohort Size. To ask whether the segment sequences of less-probable words tend to more
rapidly disambiguate them from a greater number of competing word-types early in processing,
we used a type-based variant of the measure of segment information (Equation 2). For example,
the type-based information of [f] in sphinx is equal to the number of word-types that begin with
[sf] in a corpus divided by the number that begin with [s].

As above, we fit linear regression models to predict word probability given mean type-
based segment information for words of length 4–8 separately in all languages (Figure 2). In
all but two (95/97) cases, word probability showed significant negative correlation with mean
type-based segment information. Again, when all lengths were pooled together, word proba-
bility showed a significant, negative correlation with mean type-based segment information in
all languages (see Table 3 in the Supplemental Materials; King & Wedel, 2020). Because the

4 However, here it is not precisely equivalent, because we subtract a word’s frequency from the calculation
of information for its own segments.
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mean type-based segment information measure ignores word frequency, its significant correla-
tion with word probability indicates that segments in less-probable words disambiguate from
relatively more competitors, reducing cohort sizes more rapidly.

Position of Uniqueness-Point. If less-probable words contain segments that more quickly re-
duce cohort sizes, then the point at which their word-forms become unique should be earlier,
relative to length. As an example, the words thwart and story both have five segments, but
the uniqueness-point of the less-probable thwart comes in its second segment (i.e., no other
word in our English corpus begins with [Tw]), while the uniqueness-point of story falls in its
last segment, where it disambiguates from stork, storm, storage, and so on.

Linear regression models predicting the relative position of a word’s uniqueness-point
(i.e., uniqueness-point divided by number of segments) by word probability for lengths 4–8
separately showed that less-probable words do in fact have significantly earlier uniqueness-
points in all but four (93/97) by-length regressions (Figure 3). As above, when lengths are
pooled, we found that less-probable words have significantly earlier relative uniqueness-points
in all languages (Table 4 in the Supplemental Materials; King & Wedel, 2020). When included
as a factor in models to predict the nonrelative uniqueness-point position, we found an inde-
pendent, positive effect of word length, suggesting that longer words have later uniqueness-
points, on average (Table 5 in the Supplemental Materials; King & Wedel, 2020; cf. Strauss &
Magnuson, 2008).

Segments in Less-Probable Words Eliminate More-Probable Competitors

Comparison to Word Probability-Shuffled Baselines. Here we ask whether the significant rela-
tionship between word probability and token-based segment information is in part because
less-probable words tend to be grouped in cohorts with more-probable words, allowing early
segments in less-probable words to eliminate a greater probability mass of competitors, inde-
pendently of how many competitors they eliminate. To do this, we compared the real-world

Figure 3. Relationship between log word probability and relative position of uniqueness-point for
words of length 4–8. Less-probable words have relatively earlier uniqueness-points for all lengths.
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Figure 4. Distribution for Pearson’s correlation between log word probability and mean token-
based segmental information for 10,000 shuffled variants of the real-world lexicons. The x-axis
shows the number of standard deviations from the mean correlation in frequency-shuffled variants
(in log2 scale) and the red dashed lines indicate the correlation in the real-world lexicons. The
real-world lexicons show a significantly stronger correlation relative to shuffled variants.

lexicons of each of our tested languages against probability-randomized but structurally iden-
tical variants of the lexicon, created by shuffling the context-free probability for words of the
same length in each language and then recalculating segmental information.5 Shuffling word
probabilities within length classes creates variant lexicons in which the (potentially optimized)
probability relationship between words in cohorts is severed, while maintaining both the orig-
inal cohort structure as well as the original relationship between word probability and length.
For example, in a shuffled variant of the English lexicon, thwart might take on a higher proba-
bility, which would slightly reduce the information of word-initial [T].

For each language, we compared the Pearson’s correlation between mean segmental
information and log word probability in 10,000 probability-shuffled lexicons against the corre-
lation found in the real-word lexicon. In all cases, the correlation in the real-world lexicon was
significantly stronger (3+ standard deviations, p < .001) than in the shuffled lexicons (Figure 4),
indicating that the strength of the real-world correlation is greater than would be expected by
chance. This suggests that the real-world lexicons have evolved such that less-probable words

5 Here we use the unmodified form of segment information (Equation 2) because the built-in correlation
between word probability and token-based segment information is the same for the real-world and shuffled
lexicons.
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have segment sequences that preferentially eliminate higher probability competitors across the
word-form.

Segmental Information Distribution Within Words

The patterns we have presented so far show that less-probable words contain relatively higher
information segments. If the lexicon is structured for incremental processing, this bias should
be greatest at word beginnings, where high-information segments can better offset lower word
probability. If less-probable words evolve higher segment information early in the word, mean
segment information should be relatively higher when calculated in the forward than re-
verse order for less-probable words. Likewise, less-probable words should have earlier relative
uniqueness-points in the forward-order than in the reverse. As an example, the less-probable
word thwart has a high mean segment information and an early uniqueness-point due to the
rarity of its initial segments, while in the reverse lexicon, these values are less extreme because
of the large set of words that end in [aôt].

To test this, we compared the mean segment information and relative uniqueness-point
for words in each actual lexicon against those in the reverse-order lexicon. Each word in the re-
verse lexicon is the same as its forward counterpart in length and segment composition, but the
set of cohorts defined by each successive segment is different. For example, the initial cohort
for thwart comprises the relatively few words beginning with [T], while in the reverse lexicon
it comprises the many words ending in [t]. In these studies, we computed mean segment infor-
mation only up to the uniqueness-point, with the result that the same word can have different
mean segment information when calculated in the forward or backward lexicon. Note that
because our measure of segment information treats segments as abstract symbols defining a
network, using a reverse lexicon is licit even though it creates segment sequences that may not
be pronounceable. We fit linear mixed-effects models over a pooled dataset of all languages
to predict the forward and reverse values by (a) word probability, (b) a binary factor for lexi-
con order (reverse-order vs. forward-order), and (c) their interaction, with random intercepts
and slopes for word and language nested within family. In all models, the interaction between
order and word probability was significant with the expected sign, supporting the prediction
that less-probable words have higher early segmental information in the actual, as opposed to
the reverse lexicons (Tables 6, 7, 8 in the Supplemental Materials; King & Wedel, 2020).

To confirm these differences at the word-level (as opposed to just across the lexicons as
a whole), we constructed linear mixed-effects models to predict the difference in forward- and
reverse-order measures within each word, by subtracting the reverse from the forward-lexicon
value. These models provided the same outcomes, supporting the hypothesis that less-probable
words tend to evolve higher segment information early (Tables 9, 10, 11 in the Supplemen-
tal Materials; King & Wedel, 2020). Using this approach, we additionally carried out regres-
sions within each individual language (Figures 5, 6, 7 in the Supplemental Materials; King &
Wedel, 2020). We found that the majority, but not all languages showed the significant effects
apparent within the pooled dataset; see Discussion.

DISCUSSION

We have presented evidence that segments in less-probable words convey more disam-
biguating information in incremental processing. Further, in many languages this positive
correlation is concentrated at word-beginnings, where the potential difference in segmen-
tal information is greatest. These findings contribute compelling evidence that lexicons are
optimized efficient communication overall within the constraints of the language processing
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system (Dautriche et al., 2017; Ferrer i Cancho & Solé, 2003; Gibson et al., 2019; Mahowald
et al., 2018; Meylan & Griffiths, 2017; Piantadosi et al., 2011, 2012).

Evolution of Word-Forms in the Lexicon

How might these lexical patterns arise? Evidence from corpus studies suggest that less informa-
tive segments are more likely to be shortened or deleted in speech (Cohen Priva, 2015, 2017),
and are more likely to be replaced by similar sounds over time (Wedel, Kaplan, & Jackson,
2013). Parallel evidence shows that more-probable words are more likely to shorten (Bybee &
Hopper, 2001; Kanwal et al., 2017) and become more similar to other words (Frauenfelder,
Baayen, & Hellwig, 1993; Mahowald et al., 2018). Conversely, segments that provide more
information tend to be pronounced with greater clarity (Aylett & Turk, 2004, 2006; Buz,
Jaeger, & Tanenhaus, 2014; Nelson & Wedel, 2017; Sano, 2017; Seyfarth, Buz, & Jaeger,
2016; van Son & Pols, 2003; van Son & van Santen, 2005; Wedel, Nelson, & Sharp, 2018),
and are more likely to persist in a language over time (Wedel et al., 2013).

Because more-probable words require less segmental information to be accurately
understood (reviewed in Hall et al., 2016), these considerations predict that segments in
more-probable words should be more rapidly lost, or replaced over time with more-frequent
segments (see discussion in Bybee & Hopper, 2001; Piantadosi et al., 2011). Because of this
asymmetry, over long time periods more-probable words should drift into denser, phonotac-
tically probable cohorts, while less-probable words should preferentially retain less-common
segment sequences, leaving them in sparser regions of the lexicon’s network structure.

All languages in the dataset show a significant correlation between lower word probabil-
ity and greater incremental segment information. Why do some languages fail to show a skew
toward higher segment information at beginnings of less-probable words? Many of those partic-
ular languages have constraints that enforce denser lexical networks: for example, word-forms
in Hebrew and Arabic are based in tri-consonantal roots that constrain lexicon size (Ussishkin,
2005); words in Kaqchikel are based on single syllable roots (Bennett, 2016); words in Tagalog
and Malay have simple phonotactics and tend to be bi-syllabic (Blust, 2007); Swahili, likewise,
has simple phonotactics and a preference for bisyllabic word stems (Mohamed, 2001). These
language-specific constraints on word-forms result in denser lexical networks, which should
inhibit loss of information late in word-forms. Initial work indicates a significant link between
denser lexical networks and maintenance of late segment information in less-probable words.

Broader Implications

Zipf’s law of abbreviation is strikingly consistent across a wide range of tested languages (Bentz
& Ferrer i Cancho, 2016). Likewise, we find a similar pattern of correlation between word prob-
ability and segment information across a diverse set of languages. The fact that we see similar
correlations in each of these languages suggests that like Zipf’s law of abbreviation, this may
also be a robust, “statistically-universal” property of human languages (Dryer, 1998). Together
with the evidence that word-forms are shaped for efficient production by speakers (Dautriche,
2015; Mahowald et al., 2018; Meylan & Griffiths, 2017), the findings here support a broader
trend of linguistic evolution toward systems that benefit both speakers and listeners, in which
modulation of segment number and segment composition in words are complementary parts
of this larger process.

ACKNOWLEDGMENTS

The authors would like to thank Roger Levy and the two anonymous reviewers for their in-
sightful comments and suggestions during the preparation of this article. The authors would

OPEN MIND: Discoveries in Cognitive Science 10

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00030/1868433/opm
i_a_00030.pdf by guest on 07 Septem

ber 2023



Early Information for Low-Probability Words King, Wedel

also like to thank the attendees of CUNY 2016 and EvoLang XII for useful discussion and
feedback.

FUNDING INFORMATION

AK, NationalScience Foundation (NSF), Award ID: Graduate Research Fellowship (2016233374).

AUTHOR CONTRIBUTIONS

AK: Conceptualization: Lead; Data curation: Lead; Formal analysis: Equal; Methodology: Equal;
Resources: Lead; Visualization: Lead; Writing—Original Draft: Equal; Writing—Review & Edit-
ing: Equal. AW: Formal analysis: Equal; Methodology: Equal; Supervision: Equal; Writing—
Original Draft: Equal; Writing—Review & Editing: Equal.

REFERENCES

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998).
Tracking the time course of spoken word recognition using eye
movements: Evidence for continuous mapping models. Journal
of Memory and Language, 38, 419–439.

Aylett, M., & Turk, A. (2004). The smooth signal redundancy hy-
pothesis: A functional explanation for relationships between re-
dundancy, prosodic prominence, and duration in spontaneous
speech. Language and Speech, 47(1), 31–56.

Aylett, M., & Turk, A. (2006). Language redundancy predicts
syllabic duration and the spectral characteristics of vocalic syl-
lable nuclei. Journal of the Acoustical Society of America, 119,
3048–3058.

Bennett, R. (2016). Mayan phonology. Language and Linguistics
Compass, 10, 469–514.

Bentz, C., & Ferrer i Cancho, R. (2016). Zipf’s law of abbre-
viation as a language universal. Proceedings of the Leiden
Workshop on Capturing Phylogenetic Algorithms for Linguistics,
Leiden, Netherlands.

Blust, R. (2007). Disyllabic attractors and anti-antigemination in
Austronesian sound change. Phonology, 24(1), 1–36.

Buz, E., Jaeger, T. F., & Tanenhaus, M. K. (2014). Contextual confus-
ability leads to targeted hyperarticulation. In Proceedings of the
Annual Meeting of the Cognitive Science Society, 36. Retrieved
from https://escholarship.org/uc/item/7ph8539f

Bybee, J. L., & Hopper, P. J. (2001). Frequency and the emergence
of linguistic structure (Vol. 45). Amsterdam, Netherlands: John
Benjamins.

Cohen Priva, U. (2015). Informativity affects consonant duration and
deletion rates. Laboratory Phonology, 6, 243–278.

Cohen Priva, U. (2017). Informativity and the actuation of lenition.
Language, 93, 569–597.

Cohen Priva, U., & Jaeger, T. F. (2018). The interdependence of
frequency, predictability, and informativity in the segmental do-
main. Linguistics Vanguard, 4(s2).

Connine, C. M., Blasko, D. G., & Titone, D. (1993). Do the begin-
nings of spoken words have a special status in auditory word
recognition? Journal of Memory and Language, 32, 193–210.

Dahan, D., & Magnuson, J. S. (2006). Spoken word recognition. In
M. Traxler & M. Gernsbacher (Eds.), Handbook of psycholinguis-
tics (2nd ed., pp. 249–283). Amsterdam, Netherlands: Elsevier.

Dautriche, I. (2015). Weaving an ambiguous lexicon (Unpublished
doctoral dissertation). Université Sorbonne Paris Cité.

Dautriche, I., Mahowald, K., Gibson, E., & Piantadosi, S. T. (2017).
Wordform similarity increases with semantic similarity: An anal-
ysis of 100 languages. Cognitive Science, 41, 2149–2169.

Dryer, M. S. (1998). Why statistical universals are better than abso-
lute universals. In Papers from the 33rd Regional Meeting of the
Chicago Linguistic Society (pp. 1–23). Chicago, IL.

Fedzechkina, M., Jaeger, T. F., & Newport, E. L. (2012).Languagelearn-
ers restructure their input to facilitate efficient communication. Pro-
ceedings of the National Academy of Sciences,109, 17897–17902.

Ferrer i Cancho, R. (2017). The placement of the head that max-
imizes predictability. An information theoretic approach. arXiv
preprint arXiv:1705.09932.

Ferrer i Cancho, R., & Solé, R. V. (2003). Least effort and the ori-
gins of scaling in human language. Proceedings of the National
Academy of Sciences, 100, 788–791.

Frauenfelder, U. H., Baayen, R. H., & Hellwig, F. M. (1993). Neigh-
borhood density and frequency across languages and modalities.
Journal of Memory and Language, 32, 781–804.

Futrell, R., Mahowald, K., & Gibson, E. (2015). Large-scale evidence
of dependency length minimization in 37 languages. Proceed-
ings of the National Academy of Sciences, 112, 10336–10341.

Gahl, S., & Strand, J. F. (2016). Many neighborhoods: Phonological
and perceptual neighborhood density in lexical production and
perception. Journal of Memory and Language, 89, 162–178.

Genzel, D., & Charniak, E. (2002). Entropy rate constancy in text.
In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics (pp. 199–206). Stroudsburg, PA.

Gibson, E., Futrell, R., Piandadosi, S. T., Dautriche, I., Mahowald,
K., Bergen, L., et al. (2019). How efficiency shapes human lan-
guage. Trends in Cognitive Sciences. Retrieved from http://www.
sciencedirect.com/science/article/pii/S1364661319300580
https://doi.org/10.1016/j.tics.2019.02.003

Gildea, D., & Jaeger, T. F. (2015). Human languages order informa-
tion efficiently. arXiv preprint arXiv:1510.02823.

Grosjean, F. (1996). Gating. Language and Cognitive Processes, 11,
597–604.

Gwilliams, L., Linzen, T., Poeppel, D., & Marantz, A. (2018). In
spoken word recognition, the future predicts the past. Journal of
Neuroscience, 38, 7585–7599.

OPEN MIND: Discoveries in Cognitive Science 11

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00030/1868433/opm
i_a_00030.pdf by guest on 07 Septem

ber 2023

https://escholarship.org/uc/item/7ph8539f
http://www.sciencedirect.com/science/article/pii/S1364661319300580
http://www.sciencedirect.com/science/article/pii/S1364661319300580
https://https://doi.org/10.1016/j.tics.2019.02.003


Early Information for Low-Probability Words King, Wedel

Hale, J. (2003). The information conveyed by words in sentences.
Journal of Psycholinguistic Research, 32(2), 101–123.

Hale, J. (2006). Uncertainty about the rest of the sentence. Cognitive
Science, 30, 643–672.

Hall, K. C., Hume, E., Jaeger, F., & Wedel, A. (2016). The message
shapes phonology. Manuscript, University of British Columbia,
University of Canterbury, University of Rochester & Arizona Uni-
versity. Retrieved from http://psyarxiv.com/sbyqk

Hawkins, J. A. (2010). Processing efficiency and complexity in
typological patterns. In J. J. Song (Eds.), The Oxford handbook
of linguistic typology (pp. 206–226).New York: Oxford University
Press.

Jaeger, T. F. (2010). Redundancy and reduction:Speakers manage syn-
tactic information density. Cognitive Psychology, 61(1), 23–62.

Jaeger, T. F., & Tily, H. (2011). On language “utility”: Process-
ing complexity and communicative efficiency. Wiley Interdisci-
plinary Reviews: Cognitive Science, 2, 323–335.

Kanwal, J., Smith, K., Culbertson, J., & Kirby, S. (2017). Zipf’s law of
abbreviation and the principle of least effort: Language users opti-
mise a miniature lexicon for efficient communication. Cognition,
165, 45–52.

King, A., & Wedel, A. (2020). Supplemental material for “Greater
early disambiguating information for less-probable words: The
lexicon is shaped by incremental processing.” Open Mind: Dis-
coveries in Cognitive Science, 4. doi:10.1162/opmi_a_00030

Levy, R. (2008). Expectation-based syntactic comprehension. Cog-
nition, 106, 1126–1177.

Magnuson, J. S., Dixon, J. A., Tanenhaus, M. K., & Aslin, R. N.
(2007). The dynamics of lexical competition during spoken word
recognition. Cognitive Science, 31(1), 133–156.

Mahowald, K., Dautriche, I., Gibson, E., & Piantadosi, S. T. (2018).
Word forms are structured for efficient use. Cognitive Science,
42, 3116–3134.

Marslen-Wilson, W. (1987). Functional parallelism in spoken word-
recognition. Cognition, 25(1–2), 71–102.

Marslen-Wilson, W., & Welsh, A. (1978). Processing interac-
tions and lexical access during word recognition in continuous
speech. Cognitive Psychology, 10(1), 29–63.

Marslen-Wilson, W., & Zwitserlood, P. (1989). Accessing spoken
words: The importance of word onsets. Journal of Experimental
Psychology: Human Perception and Performance, 15, 576–585.

McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2009). Within-
category vot affects recovery from “lexical” garden-paths: Evi-
dence against phoneme-level inhibition. Journal of Memory and
Language, 60(1), 65–91.

Meylan, S. C., & Griffiths, T. L. (2017). Word forms—not just their
lengths—are optimized for efficient communication. arXiv pre-
print arXiv:1703.01694.

Mielke, J. (2012). A phonetically based metric of sound similarity.
Lingua, 122(2), 145–163.

Mohamed, M. A. (2001). Modern Swahili grammar. Kampala,
Uganda: East African Publishers.

Nelson, N. R., & Wedel, A. (2017). The phonetic specificity of com-
petition: Contrastive hyperarticulation of voice onset time in con-
versational English. Journal of Phonetics, 64, 51–70.

Nooteboom, S. G. (1981). Lexical retrieval from fragments of spoken
words: Beginnings vs. endings. Journal of Phonetics, 9, 407–424.

O’brien, R. M. (2007). A caution regarding rules of thumb for vari-
ance inflation factors. Quality & Quantity, 41, 673–690.

Piantadosi, S. T., Tily, H. J., & Gibson, E. (2009). The communicative
lexicon hypothesis. In The 31st Annual Meeting of the Cognitive
Science Society (cogsci09) (pp. 2582–2587). Austin, TX.

Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths are op-
timized for efficient communication. Proceedings of the National
Academy of Sciences, 108, 3526–3529.

Piantadosi, S. T., Tily, H., & Gibson, E. (2012). The communicative
function of ambiguity in language. Cognition, 122, 280–291.

Salasoo, A., & Pisoni, D. B. (1985). Interaction of knowledge sources
in spoken word identification. Journal of Memory and Language,
24(2), 210–231.

Sano, S.-I. (2017, October). Minimal pairs and hyperarticulation of
singleton and geminate consonants as enhancement of lexical/
pragmatic contrasts. Paper presented at the 48th conference of
North East Linguistic Society (NELS 48), University of Iceland,
Reykjavík.

Seyfarth, S., Buz, E., & Jaeger, T. F. (2016). Dynamic hyperarticula-
tion of coda voicing contrasts. Journal of the Acoustical Society
of America, 139(2), EL31–EL37.

Smits, R., Warner, N., McQueen, J. M., & Cutler, A. (2003). Un-
folding of phonetic information over time: A database of Dutch
diphone perception. Journal of the Acoustical Society of America,
113, 563–574.

Strand, J. F. (2014). Phi-square lexical competition database (phi-
lex): An online tool for quantifying auditory and visual lexical
competition. Behavior Research Methods, 46(1), 148–158.

Strauss, T., & Magnuson, J. S. (2008). Beyond monosyllables:
Word length and spoken word recognition. In Proceedings of
the 30th Annual Conference of the Cognitive Science Society
(pp. 1306–1311). Washington, DC.

Tang, K., & Bennett, R. (2018). Contextual predictability influences
word and morpheme duration in a morphologically complex lan-
guage (Kaqchikel Mayan). Journal of the Acoustical Society of
America, 144, 997–1017.

Toscano, J. C., Anderson, N. D., & McMurray, B. (2013). Recon-
sidering the role of temporal order in spoken word recognition.
Psychonomic Bulletin & Review, 20, 981–987.

Ussishkin, A. (2005). A fixed prosodic theory of nonconcatena-
tive templaticmorphology. Natural Language & Linguistic Theory,
23(1), 169–218.

van Son, R., & Pols, L. C. (2003). How efficient is speech. Proceed-
ings of the Institute of Phonetic Sciences, 25, 171–184.

van Son, R., & van Santen, J. P. (2005). Duration and spectral balance
of intervocalic consonants: A case for efficient communication.
Speech Communication, 47(1–2), 100–123.

Weber, A., & Scharenborg, O. (2012). Models of spoken-word
recognition. Wiley Interdisciplinary Reviews: Cognitive Science,
3, 387–401.

Wedel, A., Kaplan, A., & Jackson, S. (2013). High functional load in-
hibits phonological contrast loss: A corpus study. Cognition, 128,
179–186.

Wedel, A., Nelson, N., & Sharp, R. (2018). The phonetic speci-
ficity of contrastive hyperarticulation in natural speech. Journal
of Memory and Language, 100, 61–88.

Zipf, G. K. (1935). The psycho-biology of language. Boston:
Houghton Mifflin.

Zipf, G. K. (1949). Human behavior and the principle of least effort.
Reading, MA: Addison-Wesley.

OPEN MIND: Discoveries in Cognitive Science 12

D
ow

nloaded from
 http://direct.m

it.edu/opm
i/article-pdf/doi/10.1162/opm

i_a_00030/1868433/opm
i_a_00030.pdf by guest on 07 Septem

ber 2023

http://psyarxiv.com/sbyqk
doi:10.1162/opmi_a_00030

