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ABSTRACT

Language neuroscience currently relies on two major experimental paradigms: controlled
experiments using carefully hand-designed stimuli, and natural stimulus experiments. These
approaches have complementary advantages which allow them to address distinct aspects of
the neurobiology of language, but each approach also comes with drawbacks. Here we
discuss a third paradigm—in silico experimentation using deep learning-based encoding
models—that has been enabled by recent advances in cognitive computational neuroscience.
This paradigm promises to combine the interpretability of controlled experiments with the
generalizability and broad scope of natural stimulus experiments. We show four examples of
simulating language neuroscience experiments in silico and then discuss both the advantages
and caveats of this approach.

INTRODUCTION

One major goal of language neuroscience is to characterize the function of different brain
regions and networks that are engaged in language processing. A large body of work has inves-
tigated different aspects of language processing—such as semantic knowledge representation
(Binder et al., 2009; Huth et al., 2016; Mitchell et al., 2008), syntactic processing (Friederici
et al., 2000), and phonological mapping (Chang et al., 2010)—and characterized the proper-
ties of the language network like the processing timescale (Lerner et al., 2011), convergence
with different sensory systems (Popham et al., 2021), role in bilingual representations (Chan
et al., 2008), and more. To study these questions, language neuroscientists have developed a
suite of experimental designs, ranging from highly specific controlled experiments to natural
stimulus experiments and, more recently, deep learning-based approaches for computational
modeling.

Each experimental design can be thought of as an investigative tool for understanding the
brain’s response Rv = fv(S ), where fv is the function that some brain element v (e.g., a single
neuron, voxel, brain area, or magnetoencephalography [MEG] sensor) computes over a given
language stimulus S to produce responses Rv. Some experimental designs—like contrast-based
studies—aim to directly compare certain aspect of fv, such as the response to different word
categories. Others—like experiments with complex stimuli that are paired with encoding
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models—approximate fv using computational tools, and this allows for the prediction of activ-
ity related to new stimuli. In this paper we describe an alternative to existing paradigms:
in silico controlled experimentation using computational models of naturalistic language pro-
cessing. This hybrid approach combines the strengths of controlled and naturalistic paradigms
to achieve high ecological generalizability, high experimental efficiency and reusability, high
interpretability, and sensitivity to individual participant effects.

We first compare and contrast experimental designs based on their effectiveness and effi-
ciency for revealing fv. Then we introduce the in silico experimentation paradigm with deep
learning models. We discuss four different neuroimaging studies that use this paradigm to
investigate different linguistic phenomena in the brain. And finally, we discuss the potential
of this approach to alleviate the problems of reproducibility in language neuroscience, as well
as caveats and pitfalls of in silico experimentation.

EXPERIMENTAL DESIGNS IN LANGUAGE NEUROSCIENCE

Controlled Experimental Design: Contrast-Based Studies

Language is a rich and complex modality that humans are uniquely specialized to process.
Given this complexity, neuroscientists have traditionally broken language down into specific
processes and properties and then designed controlled experiments to test each separately
(Binder et al., 2009; Friederici et al., 2000). Consider the example of investigating which areas
of the brain are responsible for encoding specific types of semantic categories like “actions”
(Kable et al., 2002; Noppeney et al., 2005; Wallentin et al., 2005). A simple and effective
approach is to collect and compare brain responses to action words and pair them with min-
imally different words, perhaps similar length and frequency “object” words. If some brain
element v responds more to stimuli containing the property being tested than the control
stimuli—that is, fv(“action” words) > fv(“object” words)—the experimenter concludes that v
is involved in processing action words. Similarly, the N400 effect (Kutas & Hillyard, 1984)
is assessed by testing whether an elements’ fv reflects surprise with respect to some context.
If fv(expected word|context) < fv(unexpected word|context), it would suggest that the brain
element is capturing word surprisal.

In order for a contrast-based study to be interpretable, it is vital to remove any confounds
that could corrupt observed responses and lead to false positives. Binder et al. (2009) charac-
terize three types of confounds: the main and control conditions could differ in low-level pro-
cessing demands (phonological/orthographic); the main and control conditions could differ in
working memory demands, attention demands, and so forth; and, in passive tasks, the partic-
ipants might engage in different mental imagery or task-related thoughts in the two conditions.
If such confounds are controlled effectively, one can assume that the observed brain response
will be identical in all respects unless v specifically captures the property being studied. For
example, if the action and object words are matched on all other properties, fv(“action” words)
and fv (“object” words) will only differ if v selectively encodes action or object concepts. Con-
sequently, the contrast-based paradigm has high interpretability, as any variations in observed
response can be attributed to the hypothesis. This clear and direct relationship between
hypothesis and result ensures that the experiment has scientific value even when a hypothesis
or theory is incorrect. The controlled experimental design has thus been fundamental in
revealing many important aspects of brain function, such as the specialization of parts of tem-
poral cortex for speech processing (reviewed in S. K. Scott, 2019) and distinct neural systems
for concrete versus abstract concepts (Binder et al., 2005, 2009).

In silico experimentation:
Simulating experiments by predicting
brain responses with a computational
model to test generalizability and do
efficient hypothesis testing.
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While this paradigm has been hugely influential and effective in language neuroscience, it
is not without flaws. Perhaps the biggest drawback of most contrast-based designs is the lack of
ecological generalizability (Hamilton & Huth, 2018; Matusz et al., 2019). To avoid confounds,
controlled experiments often employ the simplest linguistic constructions required to demon-
strate an effect, such as single words in the action versus object contrast. While we are fully
capable of identifying action words in isolation, it is not necessary that the brain employs the
same networks to understand such words in real-world settings (Matusz et al., 2019), for exam-
ple, as used in a conversation or a story. In contrast to such studies, those using naturalistic
stimuli have found more engagement and activation in higher order cortical regions, likely due
to the incorporation of long-range structure (Deniz et al., 2021; Lerner et al., 2011). Further-
more, due to practical limitations, controlled studies typically use small stimulus sets that span
a limited domain. For example, neuroimaging studies of the action contrast often use fewer
than 100 words in each condition. This raises the probability that there is something peculiar
or nonrepresentative about the experimental stimuli, making it more difficult to reproduce the
effect or establish generalizability to a broader stimulus domain (Yarkoni, 2022). Small stimu-
lus sets can also artificially inflate the observed statistical significance (Westfall et al., 2017).

While controlled studies offer a very clear and direct relationship between the hypothesis
and experimental result, their value depends entirely on the quality of the hypothesis. In many
cases, narrowing the experimental hypothesis to focus on contrasts of a particular stimulus
property may be misleading, and may fail to account for interactions between several other
stimulus properties. For example, standard statistical models for assessing the “action” contrast
assume that brain response is identically distributed for any subcategorization of this semantic
concept. However, studies such as Hauk et al. (2004) have found that different regions across
cortex selectively encode hand-related, foot-related, or mouth-related actions. This type of
subcategory specificity decreases the statistical power of the overall action contrast, thereby
increasing the probability of false negatives. Worse, if the overall action contrast has unevenly
sampled these subcategories, the statistical power to detect action selectivity will vary in an
unexpected and unknown fashion between brain areas. This issue can occur in any contrast-
based experiment and is difficult or even impossible to detect by the experimenter. One poten-
tial solution would be to combine data across different contrast-based experiments, which
could reveal interactions between effects. However, separate controlled experiments often
do not share analysis methods, stimulus sets, or subjects, making it difficult to combine data
or compare effect sizes across experiments. Lastly, for each language property that one wishes
to investigate using a controlled experiment, one needs to design specific controls and repeat-
edly measure Rv. This results in limited reusability of experimental data, slowing down the
process of scientific discovery.

Naturalistic Stimuli

To combat the lack of stimulus generalization and limited reusability, there has been a rising
trend toward naturalistic experimental paradigms (Brennan et al., 2012; Hamilton & Huth,
2018; Hasson et al., 2008; Lerner et al., 2011; Regev et al., 2013; Shain et al., 2020). With
the development of better neuroimaging/recording technology, we now have access to high
quality brain recordings of humans while they perceive engaging, ecologically valid stimuli
like podcasts (Huth et al., 2016; Lerner et al., 2011; J. Li et al., 2022; Nastase et al., 2021;
S. Wang et al., 2022), fictional books (Bhattasali et al., 2020; Wehbe, Murphy, et al., 2014),
and movies (J. Chen et al., 2017)—all examples of stimuli humans encounter or seek out in
their everyday lives. Recent work has further developed this naturalistic paradigm to incorpo-
rate communication and social processing, beyond passive perception (Bevilacqua et al.,

Naturalistic stimuli:
Stimuli that subjects could be
exposed to in real life; not artificially
constructed for an experiment.
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2019; Redcay & Moraczewski, 2020). Naturalistic stimulus data sets are easier to construct
and often larger than controlled stimuli. For example, J. Chen et al. (2017) publicly released
a data set collected on a 50 min movie, Wehbe, Murphy, et al. (2014) released data collected
on an entire chapter from the Harry Potter books, comprising more than 5,000 words, and
LeBel et al. (2022) released data collected on over 5 hr of English podcasts per participant.
These stimuli also provide a diverse test bed of linguistic phenomena—from a broad array
of semantic concepts to rich temporal structure capturing discourse-level information. Further-
more, they do not directly constrain the hypotheses the experimenter can test and thus facil-
itate high reusability of the data. However, this also means that natural stimulus data have low
statistical power with respect to any specific hypothesis, and it is necessary to carefully design
analyses to control for confounding effects. This makes interpretation of the observed effects
much more challenging than contrast-based experiments.

Naturalistic Experimental Design: Controlled Manipulations of Naturalistic Stimuli

To reap the benefits of both interpretable controlled experiments and generalizable naturalistic
stimuli, some studies have deployed a hybrid experimental design (Chien & Honey, 2020;
Deniz et al., 2019; Lerner et al., 2011; Overath et al., 2015; Yeshurun et al., 2017). Here,
natural stimuli are manipulated to change or remove some specific language cue or property
(e.g., scrambling the words in a story) and the sensitivity of different brain regions to this
manipulation is measured, for example, fv(intact story) vs. fv(scrambled story). This can reveal
properties across the brain like the timescale of information represented (Lerner et al., 2011,
2014) or specificity to the type of naturalistic stimulus, such as human speech (Overath et al.,
2015). This experimental design accounts for ecological validity by restricting analyses to
brain regions that robustly respond to the naturalistic stimuli. Furthermore, it has the same
advantage of controlled experiments when it comes to interpretation: Assuming effective con-
trol of confounds, any observed change in brain activity is likely to be an effect of the stimulus
manipulation. However, this approach also has disadvantages: The manipulated stimuli are
often unnatural (like reversed or scrambled speech) and restrict the types of interactions the
experimenter can observe. For example, the scrambled story experiment assumes that all
regions processing short timescale information will behave identically. The manipulated stim-
uli also limit the reusability of the experiment, meaning that a new experiment needs to be
designed for each effect of interest.

Naturalistic Experimental Design: Predictive Computational Modeling

Encoding models are an alternative computational approach for leveraging naturalistic exper-
imental data (Bhattasali et al., 2019; Caucheteux & King, 2022; Goldstein et al., 2021; Huth
et al., 2016; Jain et al., 2020; Jain & Huth, 2018, p. 20; Schrimpf et al., 2021; Wehbe, Vaswani,
et al., 2014). These predictive models learn to simulate elicited brain responses Rv = fv(S ) to
natural language stimuli S by building a computational approximation to the function fv for
each brain element v, typically in every participant individually. Here, R can be captured
by any neuroimaging or neural recording technique. Given limitations on data set sizes, the
search for fv is typically constrained to linearized encoding models, gv(Ls(S )) (M. C.-K. Wu
et al., 2006), where gv is a linear combination of features extracted from the stimulus by a
function Ls. While gv is termed a linear model, of particular interest is the linearizing transform
Ls. Contrast-based experimental designs test a hypothesis by comparing responses elicited by
different conditions. Each condition is composed of stimuli that share some features (e.g., all
words that describe actions). Encoding models can test the same hypothesis by incorporating
these features into Ls. For example, for every word in the natural stimulus, one could create an

Ecological validity:
Determiniation whether an
experiment is likely to faithfully
reflect and generalize to situations
encountered in real life.

Linearized encoding model:
Model that learns to predict elicited
response in a brain element as a
linear function of features of interest
extracted from stimuli.
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indicator feature Iaction that is 1 if the word describes an action and 0 otherwise. Feature spaces
consisting of 1s and 0s are equivalent to a contrast-based experimental design, assuming other
confounds have been eliminated.

Encoding models can also adopt much more complex and high-dimensional functions for
Ls. This makes it possible to account for multiple, interacting stimulus properties that may
affect the response Rv. For example, Ls could indicate multiple levels of semantic categories.
In the example of action and object words, the feature space could indicate that hand-related,
foot-related, and mouth-related words were all types of actions, and distinguish all action
words from multiple subcategories of objects. One recent example of such a high-dimensional
feature space that captures semantic similarity (Mikolov et al., 2013; Pennington et al., 2014)
is word embeddings, which have been used Q1to characterize semantic language representations
across the human brain (de Heer et al., 2017; Huth et al., 2016; Wehbe, Murphy, et al., 2014;
Wehbe, Vaswani, et al., 2014). With a suitably rich linearizing transform Ls, this approach
vastly expands the set of hypotheses that can be reasonably explored with a limited data
set. The expandable feature space also allows encoding models great flexibility to test addi-
tional hypotheses without collecting new data, leading to high reusability. Estimating the brain
response as a function of the nonlinear feature space is made possible by collecting large data
sets that are partitioned into a portion for training (estimating) the model and a portion for
testing the model on unseen data. Typically, regularized linear regression is used to estimate
the linear relationship gv based on the feature space Ls. This is used to predict new responses

R̂v ¼ gv Ls Sð Þð Þ
to unseen stimuli. Finally, the model is evaluated by measuring how well it predicts brain
responses, ρ(fv(Snew), g(Ls(Snew))). Thus, unlike other approaches, encoding models explicitly
measure generalizability by testing on new, naturalistic stimuli. In contrast-based designs, a gen-
eralization test is usually achieved through replication with an independent data set, often from a
different lab where protocols and analysis details may differ. With encoding models, the same
experimenter usually runs their own generalization test and directly estimates how much of
the neural response Rv is explained by the model, holding all other variables constant. Encoding
models can also be used to investigate if the same brain region under different tasks have the same
tuning. For example, Deniz et al. (2019) show that semantic tuning is preserved between reading
and listening, while Çukur et al. (2013) show that the tuning of different regions in visual cortex
when attending to a given category is biased toward the attended category. Encoding models can
also be used to compare tuning of two different regions (Toneva, Williams, et al., 2022 Q2).

Artificial Neural Networks as a Rich Source of Linguistic Features

The most important choice that an experimenter makes when using encoding models is that of
the linearizing transform. To find useful linearizing transforms, neuroscience has mostly
followed advances in computational linguistics or natural language processing (NLP) where,
in recent years, deep learning (DL) models trained using self-supervision have seen great suc-
cess. One such cornerstone model is the neural language model—a self-supervised artificial
neural network (ANN) that learns to predict the next word in a sequence,wt+1, from the context
provided by previous words (w1, w2 … wt). Several recent studies have shown that representa-
tions derived from LMs capture many linguistic properties of the preceding sequence (w1, w2 …

wt) like dependency parse structure, semantic roles, and sentiment (see Mahowald et al., 2020,
for a review; Clark et al., 2019; Conneau et al., 2018; Gulordava et al., 2018; Haber & Poesio,
2021; Hewitt & Liang, 2019; Hewitt & Manning, 2019; Lakretz et al., 2019; B. Z. Li et al., 2021;
Linzen & Leonard, 2018; Marvin & Linzen, 2018; Prasad et al., 2019; Tenney, Das, et al., 2019;

Neural language models:
Types of artificial neural networks
that learn to predict the next word in
a sequence from past context.
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Tenney, Xia, et al. 2019). While this by Q3no means is a complete representation of phrase mean-
ing (Bender & Koller, 2020), using a language model as a linearizing transform has been shown
to effectively predict natural language responses in both the cortex and cerebellum, with dif-
ferent neuroimaging techniques and stimulus presentation modalities (Abnar et al., 2019;
Anderson et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2021; Jain et al., 2020; Jain
& Huth, 2018; Kumar et al., 2022; LeBel et al., 2021; Reddy & Wehbe, 2020; Schrimpf et al.,
2021; Toneva, Mitchell, et al., 2022 Q4; Toneva & Wehbe, 2019; Wehbe, Murphy, et al., 2014;
Wehbe, Vaswani, et al., 2014; S. Wang et al., 2020). Moreover, these models easily outperform
earlier word embedding encoding models that use one static feature vector for each word in the
stimulus and thus ignore the effects of context (Antonello et al., 2021; Caucheteux & King,
2022; Jain & Huth, 2018). Deep LMs have also been used to investigate the mapping between
ANN layer depth and hierarchical language processing (Jain & Huth, 2018). Along similar lines
and at a lower-level, supervised and self-supervised models of speech acoustics have been used
to develop the best current models of auditory processing in human cortex to date (Kell et al.,
2018; Y. Li et al., 2022; Millet et al., 2022; Millet & King, 2021; Vaidya et al., 2022).

The unprecedented success of DL-based approaches over earlier encoding models can
likely be attributed to several important factors. First, features extracted from the DL-based
models have the ability to represent many different types of linguistic information, as discussed
above. Second, DL-based models serially process words from a language stimulus to generate
incremental features. This mimics causal processing in humans and thus offers an important
advantage over static representations like word embeddings, which cannot encode contextual
properties. Third, recent work has shown that these models often recapitulate human errors
and judgments, such as effectively predicting behavioral data of human reading times
(Aurnhammer & Frank, 2018; Futrell et al., 2019; Goodkind & Bicknell, 2018; Merkx & Frank,
2021; Wilcox et al., 2021). This again suggests some isomorphism between human language
processing and DL-based models. The next word prediction objective also enables language
models to perform well on psycholinguistic diagnostics like the cloze task, although there is
substantial room for improvement (Ettinger, 2020; Pandia & Ettinger, 2021). Finally, self-
supervised ANNs, that is, networks that predict the next word or speech frame, transfer well
to downstream language tasks like question answering and coreference resolution, and to
speech tasks like speaker verification and translation across languages (Z. Chen et al., 2022;
A. Wu et al., 2020). This suggests that the self-supervised networks are learning representations
of language that are useful for many tasks that humans may encounter.

These factors have contributed to the increasing popularity of DL-based encoding models
as an investigative tool of brain function. This approach has revealed aspects of how the brain
represents compositional meaning (Toneva, Mitchell, et al., 2022), provided fine-grained esti-
mates of processing timescales across cortex (Jain et al., 2020), and uncovered new evidence
for the cerebellum’s role in language understanding (LeBel et al., 2021).

Yet despite these successes, DL-based encoding models are hard to interpret. The represen-
tations produced by language models are entirely learned by black-box neural networks, and
thus cannot be understood with the same ease as the indicator features described in the above
section Q5. While the representations themselves are opaque, one potential avenue is to interpret
the success of a DL-based model at predicting some brain area as suggesting a commonality
between that brain area and the objective that model was trained for (e.g., word identification
(Kell et al., 2018) or 3D vision tasks (A. Wang et al., 2019)). However, the fact that similar
representations can be derived from DL-based models that are trained for different objectives
puts this type of interpretation on shaky ground (Antonello & Huth, 2022; Guest & Martin,
2023). These difficulties have left the field at something of an impasse: We know that DL-based
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models are extremely effective at predicting brain responses, but we are unsure why and
unsure what these models can tell us about how the brain processes language.

Pièce De Résistance: In Silico Experimentation With DL-Based Encoding Models

Controlled experiments and encoding models using naturalistic stimuli both have distinct
advantages and disadvantages. However, it may be possible to combine these paradigms in
a way that avoids the disadvantages and retains the advantages. To this end, we present an
experimental design that combines these two paradigms: in silico controlled experimentation
using encoding models. This paradigm first trains encoding models on an ecologically valid,
highly generalizable naturalistic experiment. Then, it uses the encoding models to simulate
brain activity to controlled stimulus variations or contrasts. Notably, this does not require addi-
tional data to be collected for every condition.

The first use of in silico experimentation is to test if effects discovered in controlled, non-
ecologically valid setups generalize to naturalistic stimuli. This experimental design also facil-
itates quick and efficient hypothesis testing. Experimenters can prototype new controlled
experiments and narrow down the desired contrasts or stimuli without having to repeatedly
measure in vivo. While this is a complement to and not a substitute for in vivo experiments
that should follow the prototyping phase, in silico experimentation can greatly reduce the cost
of generalizability and hypothesis testing, and accelerate scientific discovery.

In Figure 1, we present a controlled experimental design with its in silico counterpart.
Figure 1A shows an experimental paradigm that was designed to understand linguistic

Figure 1. Example of an in silico adaptation of a controlled experiment. (A) The original MEG study investigated composition over two-word
phrases (Bemis & Pylkkänen, 2011). This was done by presenting three different types of phrases to participants to solve a picture matching
task. By contrasting the elicited brain responses in the composition condition with the responses in the list and non-word conditions, the
authors could infer which brain regions are engaged in compositional processing of two-word phrases. (B) This experimental paradigm can
be conceptually simulated with LM-based fMRI encoding models of naturalistic stimuli. The composition and list conditions can be tested by
using the learned encoding model to predict each voxel’s response to a large, diverse corpus of phrases. The non-word condition can be
simulated by replacing the first word in a phrase with a non-word, extracting new ablated features of the phrase from the LM and using
the encoding model to predict the brain’s response to the ablated phrase. If a voxel’s response is highly sensitive to the removal of the first
word, it would suggest that the voxel combines information over both words to arrive at meaning. This provides a data-efficient way to test for
compositional processing across diverse types of phrase constructions. fMRI = functional magetic resonance imaging; LM = language model;
MEG = magnetoencephalography.
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composition of two-word phrases (Bemis & Pylkkänen, 2011). Participants were presented
with phrases in which meaning can be composed across constituent words and contrasting
conditions where it cannot (word list and non-word). This experiment can be conceptually
simulated in silico, as shown in Figure 1B (Jain & Huth, 2023). Instead of collecting separate
neuroimaging data for each type of phrase construction, the in silico experiment was done
with DL-based encoding models trained on two-word sequences. The learned models were
first used to predict brain responses to a large, diverse corpus of phrases that contained both
noun–noun and adjective–noun constructs among others. Next, the non-word condition was
simulated by replacing the first word in the phrase with a non-word, extracting a new ablated
feature, and finally predicting each functional magnetic resonance imaging (fMRI) voxel’s
response to the ablated phrase. Assuming that the DL-based encoding model captures com-
positional effects, this in silico experiment can ameliorate the disadvantages of both controlled
and encoding model-based experimental designs. First, since simulating responses is trivial in
both time and cost, the simulated experiment can use thousands or even millions of two-word
phrases instead of the hundreds that can be tested in vivo. This ameliorates problems that arise
with limited stimulus sets that may fail to account for key properties or generalize to natural-
istic contexts. Second, by simulating and then comparing responses under conditions that are
derived from linguistic theory (composition vs. single word, or word list), this in silico exper-
iment provides results that are easily and explicitly interpretable, unlike encoding models with
natural stimuli. However, one major concern raised by this approach is whether the encoding
model can capture how the brain responds to the language properties of interest. To address
this it is important to verify both that the encoding model is highly effective at predicting brain
activity, and that it is sufficiently complex to capture the desired property.

Similar in silico experimentation has recently become popular in vision neuroscience.
There, DL-based encoding models of the visual system are first trained on ethologically valid
tasks like object recognition. Then they are probed to understand brain function (Yamins &
DiCarlo, 2016). For example, Bashivan et al. (2019) used DL-models to synthesize images that
maximally drive neural responses. This provided a noninvasive in silico technique to control
and manipulate internal brain states. Similarly, Ratan Murty et al. (2021) synthesized images
from end-to-end DL models trained on brain data to provide stronger evidence for the cate-
gorical selectivity of different brain regions. In silico experimentation with explicit computa-
tional models has also been used in studies of the medial temporal lobe. In Nayebi et al.
(2021), computational models of the medial entorhinal cortex were used to investigate the
functional specialization of heterogeneous neurons that do not have stereotypical response
profiles. By doing ablation in silico, they found that these types of cells are equally important
for downstream processing as are grid- and border-cells. Each of these studies first relied on the
encoding model’s ability to generalize to new stimuli. This was an indication that the features
learned by the DL-based models encoded similar information to the brain regions that they
predicted well. Second, these studies leveraged the predictive ability of encoding models to
simulate brain activity in new, controlled conditions as a lens into brain function. This enabled
the researchers to explore aspects of brain function that would otherwise be highly data inten-
sive or impossible to do.

In language, in silico experimentation is a promising area that is under development, bol-
stered by the successes in vision neuroscience and growing efforts to understand artificial lan-
guage systems. One of its earliest uses is the BOLDpredictions simulation engine (Wehbe
et al., 2018, 2021), an online tool that allows the user to simulate language experiments that
contrast two conditions, each defined by a list of isolated words. BOLDpredictions relies on an
encoding model from a natural listening experiment that predicts brain activity as a function of
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individual word embeddings (Huth et al., 2016). In the following sections, we review in silico
adaptations of four different language experiments based on four separate data sets. Each of
these in silico experiments uses a single naturalistic experiment to train the encoding models,
illustrating how a single data set and experimental approach can provide a flexible test bed for
many different hypotheses about natural language. The first experiment uses the BOLDpredic-
tions engine to simulate a semantic contrast comparing concrete and abstract words (Binder
et al., 2005), testing its generalizability to naturalistic settings. The next experiment focuses on
a contrast-based study of composition in two-word phrases (Bemis & Pylkkänen, 2011), testing
generalizability over a broader, more diverse stimulus set. The third experiment adopts con-
trasts from a group-level study investigating the temporal hierarchy for language processing
across cortex by manipulating naturalistic stimuli (Lerner et al., 2011). This simulation checks
if effects persist at the individual-level and demonstrates how a successful replication can be
used to validate computational model constructs themselves. Finally, the last experiment con-
ceptually replicates a study on forgetting behavior in the cortex that also uses controlled
manipulations of naturalistic stimuli (Chien & Honey, 2020). This simulation demonstrates
the possibility of misinterpretation with the in silico approach, arising from fundamental com-
putational differences between neural language models and the human brain.

In the experimental simulations described below, voxelwise encoding models were fit to
fMRI data collected from a naturalistic speech perception experiment. Participants listened
to natural, narrative stories from The Moth Radio Hour (Allison, 2009–) while their whole-
brain BOLD responses were recorded (N = 8 for study 1; N = 7 for studies 2 and 3). In each
study, encoding models were fit for each voxel in each subject individually using ridge regres-
sion. The learned models were then tested on one held-out story that was not used for model
estimation, and encoding performance was measured as the linear correlation between pre-
dicted and true BOLD responses. Statistical significance of the encoding performance was
measured using temporal blockwise permutation tests (p < 0.001, false discovery rate (FDR)
corrected; Benjamini & Hochberg, 1995). Finally, in silico analyses were conducted on voxels
that were significantly predicted by the encoding model, broadly covering the temporal, pari-
etal, and frontal lobes.

Semantic contrasts: Wehbe et al. (2018)

Binder et al. (2005) investigated the brain regions responsive to abstract and concrete con-
cepts. Subjects read individual stimulus strings and pressed one of two buttons to indicate
whether each one was a word or a non-word. The study reported that concrete words acti-
vated bilateral language regions such as the angular gyrus more than abstract words, and
abstract words activated left inferior frontal regions more than concrete words. In total, the
authors found 15 cluster peaks.

Wehbe et al. (2018) evaluated the reproducibility of these results using an encoding model
trained on naturalistic stimuli. They simulated a contrast between the lists of concrete words
and abstract words that were kindly shared by Binder et al. (2005). Figure 2 shows the signif-
icance map for subject 1 and the group-averaged significance map showing the number of
subjects for which the null hypothesis is rejected. The reported regions of interest (ROIs) are
shown as an overlay on the flattened cortical maps. Each ROI is originally reported as a single
coordinate in brain space and is estimated to have a radius of 10 mm. For every one of the
eight subjects, many voxels were significantly more activated for concrete words over abstract
words (with p < 0.05, FDR corrected permutation test over the words in each condition), spe-
cifically in areas bordering the visual cortex and parts of the inferior frontal gyrus. Some
reported ROIs had a high overlap with the significance map (specifically in the angular gyri,

Generalizability testing:
Testing to see if effects observed on
a particular data set extend to a
new data set not used for model
estimation.
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in the posterior cingulate gyri, the right precuneus, and the middle temporal gyri). The signif-
icant effect in those ROIs can be considered to be replicated by BOLDpredictions. However,
the reported ROIs and the significance map did not always agree, with the effect in some
regions being reported only by Binder et al. (2005) or only by Wehbe et al. (2018).

There are many possible reasons for non-generalizability of individual reported ROIs,
including the stochasticity of brain activity, variations in experimental paradigms and analysis
techniques, and lack of reproducibility. The authors of BOLDpredictions (Wehbe et al., 2018,
2021) note that any scientific finding needs to be reproduced in a series of experiments that
would create a body of evidence toward this finding, and the in silico experimentation using
BOLDpredictions is one additional piece of evidence. The authors also note that expanding
the engine to different data sets, models, and so forth will establish the robustness of the in
silico effects and help determine if the original contrast-based experiment lacks reproducibility
(Wehbe et al., 2018).

Semantic composition contrasts: Jain and Huth (2023)

In the second in silico experiment, Jain and Huth (2023) simulated and expanded on studies of
combinatorial processing in 2-word phrases across cortex, first described in Bemis and
Pylkkänen (2011). The original controlled experiment consisted of participants reading two
word adjective–noun phrases (“red boat”) and doing a picture matching task while brain
responses were recorded using MEG. To contrast this compositional condition, a list control
was introduced wherein participants were presented with two-word noun–noun phrases (“cup
boat”) along with a non-word control consisting of a non-word and a word (“xkq boat”). Note
that participants were instructed to avoid composing meaning in the word list, but no explicit
control was introduced. To isolate regions involved in two-word composition, the study con-
trasted the adjective–noun condition with the controls. The experimenters tested 25 base
nouns, six color adjectives, and six non-words. Overall, they found that areas in ventral medial

Figure 2. Generalizability test using BOLDpredictions of the concrete vs. abstract contrast of Binder et al. (2005). The authors compared fMRI
activity when subjects processed concrete and abstract words. Wehbe et al. (2016) used the published stimulus to simulate the contrast for
each subject and run a permutation test. After MNI space transformation, the number of subjects for which the null hypothesis was rejected is
computed at each voxel. The simulated statistical maps are shown on flattened maps and inflated 3D hemispheres. Results for subject 1 are
shown in subject 1’s native cortical space. Results for the average of eight subjects are shown in the MNI space. Published ROIs are estimated
as 10 mm radius spheres, shown in red hatch on the flatmaps (distortion due to the flattening process). A comparison of the overlap of the
reported ROIs and the statistical maps reveals that Wehbe et al. (2016) achieve a relatively high overlap for specific ROIs (in the angular gyri, in
the posterior cingulate gyri, the right precuneus, and the middle temporal gyri) and not for others. Therefore, BOLDpredictions predicts that the
contrast from Binder et al. (2005) generalizes to naturalistic conditions, to a certain extent. MNI = Montreal Neurological Institute; ROIs =
regions of interest.
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prefrontal cortex (vmPFC) and left anterior temporal lobe both selectively responded to the
composition condition.

Jain and Huth (2023) conceptually replicated the original study by building encoding
models that approximate every voxel’s response to a naturalistic two-word phrase as a non-
linear function of the words in the phrase. For each (overlapping) two-word phrase in the
natural language stimuli, features were first extracted from a powerful language model, the
generative pretrained transformer (GPT; Radford et al., 2018). Then, voxelwise encoding
models were trained to learn a linear function from the phrase features to the elicited response
after the second word. Using the encoding models, each voxel’s response to a large corpus of
over 147,000 two-word phrases was predicted and ranked. This stimulus set comprised both
adjective–noun phrases like “red boat” and noun–noun phrases like “picnic table.” Next, for a
given phrase selected by a voxel, the first word was replaced with a non-word (i.e., the word
was ablated) and the ablated phrase feature was extracted from GPT. Using the learned encod-
ing model, the voxel’s response to the ablated phrase was predicted. Finally, the sensitivity of
the voxel to the presence of the ablated word was measured. If the ablated word is important
for the voxel to process the phrase, removing it should notably change its response and give
high sensitivity. This was done to simulate the compositional versus non-word condition in the
original study.

The resultant ablation sensitivity of voxels across cortex is visualized in Figure 3. Overall,
the in silico experimentation produced similar results to the original study in vmPFC and left
anterior temporal lobe—both of these regions exhibit sensitivity to the presence of a

Figure 3. In silico adaptation of a study examining compositional processing in two-word phrases. The original study compared the MEG
responses of participants with three different types of two-word phrases: adjective–noun, noun–noun and non-word–noun (Bemis & Pylkkänen,
2011). The in silico simulation of the first two conditions was done by constructing a larger diverse corpus of phrases and using LM-based
encoding models to predict fMRI voxel responses to each phrase. The non-word–noun condition was simulated by replacing the first word
in a phrase with a non-word (i.e., word ablation), extracting new phrase features from the LM, and then predicting the voxel’s response to
the ablated phrase. A large change in a voxel’s response upon word ablation indicated its sensitivity to the first word in the phrase and suggested
that the voxel relied on the first word to process the phrase. Similar to the original study, the in silico experiment revealed high sensitivity in
ventral medial prefrontal cortex and left anterior temporal lobe. However, the experiment also found that several other areas across cortex
combined meaning over the two words in a phrase and moreover, captured diverse semantic concepts arising from the composition. fMRI =
functional magetic resonance imaging; LM = language model; MEG = magnetoencephalography.
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compositional word. Beyond areas reported originally, other regions like right inferior parietal
and dorsal prefrontal also showed high sensitivity. This finding corroborates other studies of
phrase composition (e.g., Boylan et al., 2015; Graves et al., 2010). The in silico study was able
to analyze two-word composition in broader regions of cortex by simulating activity for each
voxel independently and over a much larger stimulus set that comprises diverse concepts and
constructions. While the simulation does not guarantee causal involvement of any region in
two-word composition, it demonstrates the utility of broadly sampling stimuli and raises the
possibility that many more regions are involved in this process. Moreover, in the in silico study
Jain and Huth (2023), this paradigm was extended to much longer phrases (10 words) to
understand the relationship between semantic representations and word-level integration
across cortex. This would be difficult to implement in real-world settings as doing single-word
ablations on increasingly longer phrases is combinatorially explosive.

Construction timescale contrast: Vo et al. (2023)

In the third in silico experiment, Vo et al. (2023) tested whether voxelwise encoding models
based on features from a neural LM can capture the timescale hierarchy observed during
human natural language comprehension. In Lerner et al. (2011), subjects listened to a first-
person narrative story that was either intact, reversed, or temporally scrambled at the word
level, sentence level, or paragraph level.

The scrambling manipulations altered the temporal coherence of the natural language stim-
ulus, and allowed the researchers to measure the reliability of fMRI responses to each condi-
tion using intersubject correlation. This revealed an apparently hierarchical organization of
temporal receptive windows, with information over short timescales processed in auditory cor-
tex and long timescales processed in parietal and frontal cortex. For the in silico adaptation,
the authors trained a multi-timescale long short-term memory (MT-LSTM) network as a lan-
guage model. Then they used the features from the MT-LSTM to predict fMRI responses for
each voxel using the data set described above. To mimic the manipulations of the original
study, they generated 100 scrambled versions of a held-out test story. This enabled the authors
to examine the predicted fMRI responses within each voxel in each subject. Rather than mea-
suring intersubject reliability, they chose to measure an analogous intrasubject reliability
value, testing whether the scrambling condition caused a significant drop in this value across
conditions. The authors show through simulations that their metric (based on the variance in
the simulated fMRI response) is directly analogous to intersubject correlation measures, which
is supported by other work (Blank & Fedorenko, 2017; Hasson et al., 2009).

The results of this experiment compared to a schematized version of the original results are
shown in Figure 4. This in silico experiment reproduced the pattern of the temporal hierarchy
along the temporoparietal axis. It did find that some regions in frontal cortex appear to inte-
grate over shorter timescales than the original work, similar to a later replication of the work
(Blank & Fedorenko, 2020) and to a different in-silico replication of the experiment that used
GPT-2, rather than a MT-LSTM language model (Caucheteux et al., 2021). Furthermore, the
fine-grained resolution of the single-voxel analyses revealed substantial variability across sub-
jects. Taken together, the in silico results suggest that timescales are not as uniform across
broad regions as previously reported. This is in agreement with single-neuron studies that show
a heterogeneity of intrinsic timescales within a brain region (Cavanagh et al., 2020).

Forgetting timescale contrast: Vo et al. (2023)

In the last experiment, the authors used the same MT-LSTM encoding models as experiment 3
to simulate how different brain regions forget information in naturalistic narrative stimuli
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(Chien & Honey, 2020). While Chien and Honey Q6found that all brain regions forget informa-
tion at the same rate (Figure 5A), the in silico results suggested that low-level regions such as
auditory cortex forget information at a faster rate than high-level regions like the precuneus
(Figure 5B). To better understand this discrepancy, the authors investigated forgetting behavior
in the MT-LSTM itself. The results first indicated that every unit in MT-LSTM forgot information
at a specific rate tied to its processing timescale (Figure 5C). The authors further hypothesized
that the discrepancy could stem from the MT-LSTM’s inability to forget information, even if the
preceding context is noisy/uninformative (Figure 5D). To test this, they measured the language
model’s cross entropy (lower is better) for a paragraph in three conditions: preceded by the
correct paragraph (actual context), preceded by no paragraph (no context) and preceded by
random paragraphs in the story (box plot of 100 different incorrect contexts). The story was
scrambled by dividing it into non-overlapping chunks of 9, 55, 70, 80, or 200 words or at
the actual sentence and paragraph boundaries (hand-split). Overall, smaller differences were
observed between the conditions as the scrambled context became longer (increased chunk
size) and closer to the intact story. With fixed-size chunks, the model performed better when it
had no context than when it had access to incorrect information. In contrast, with actual
sentences/paragraphs, the model had better performance with incorrect context than no con-
text at all. In both cases, the type of context influences the model performance suggesting that
the model retains information from the past. Second, it retains this context even if it is not
useful, as in the fixed-chunk conditions. The model could have simply ignored the wrong con-
text to perform better but it did not (or was unable to). This highlights the language model’s
inability to forget information that is then reflected in the encoding model results. The authors

Figure 4. In silico adaptation of a study mapping the hierarchy of temporal receptive windows. (Top) original results adapted from Lerner
et al. (2011). The authors played an audio clip of a narrative story, either intact, reversed, or scrambled at different temporal scales. The figure
shows an overlay of several intersubject correlation maps, which measured the cross-subject reliability of the fMRI response in each condition.
(Bottom) Results from the in silico experiment of temporal receptive windows, shown for every significantly predicted voxel on a single subject.
The in silico experiment suggests that temporal processing windows for different brain regions are not as uniform as previously reported. CS =
central sulcus; IPS = intrapariental sulcus; LS = lateral sulcus; mPFC = medial prefrontal cortex; TPJ = temporoparietal junction.
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hypothesized that with hand-split sentences and paragraphs, the incorrect context still pro-
vides relevant information to predict the next word, leading to better performance than no
context at all.

DISCUSSION

Advantages of the in Silico Experimental Design

In the following sections, we discuss the advantages of using in silico experimental design with
DL-based encoding models and its potential impact on language neuroscience.

Hypothesis development and testing

Each of the studies above conceptually replicated controlled analyses of different linguistic
properties using voxelwise encoding models fit on a single naturalistic fMRI data set. Overall,
the studies reproduced several effects reported in the original experiments. Interestingly, how-
ever, the in silico experiments also found new effects that had not been explored originally. For
example, the first experiment suggested that regions in inferior frontal gyrus were more active
for concrete words than abstract words. In the second experiment, the investigation of com-
position in phrases was expanded to a much larger stimulus set and longer phrases. This cor-
roborates earlier results, but the in silico paradigm also enables experimenters to explore

Figure 5. In silico adaptation of a study on forgetting behavior during natural language comprehension. In the original study, Chien and
Honey (2020) scrambled paragraphs in a story and analyzed how quickly different brain regions forgot the incorrect context preceding each
paragraph. The in silico adaptation used the MT-LSTM based encoding model to predict brain activity at different points in a paragraph when it
was preceded by incorrect context. (A) The original study reported that each brain region (denoted by different colored lines) forgot information
at a similar rate, despite differences in construction timescales. (B) In contrast, the in silico replication estimated that regions with longer
construction timescales also forgot information slowly. (C) Within the MT-LSTM itself, the forgetting rate of different units was related to its
attributed timescale. (D) Next, the MT-LSTM’s language modeling abilities were tested on shuffled sentences or paragraphs. The DL model
achieved better performance at next-word prediction by using the incoherent, shuffled context as opposed to no context at all. This shows that
the DL model retains the incoherent information, possibly because it helps with the original language modeling task it was trained on or
because the model has no explicit mechanism to flush-out information when context changes (at sentence/paragraph boundary). The com-
putational model’s forgetting behavior thus differs from the brain, revealing specific flaws in the in silico model that could be improved in
future versions, such as a modified MT-LSTM. DL = deep learning; MT-LSTM = multi-timescale long short-term memory; rSI = correlation
between scrambled and intact chunks.

Neurobiology of Language 14

In silico language neuroscience

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/doi/10.1162/nol_a_00101/2074539/nol_a_00101.pdf by guest on 07 Septem
ber 2023



interactions between the effect of interest (here, linguistic composition) and other important
linguistic properties, such as semantic category. The third experiment found more diversity
in timescales in regions like prefrontal cortex than previously reported, closely matching more
recent studies of timescale distribution across cortex (Blank & Fedorenko, 2020; Caucheteux
et al., 2021) and single-neuron studies (Cavanagh et al., 2020). This demonstrates how the in
silico experimental design can be used not only to reproduce and test the generalizability of
controlled studies, but also to conduct large-scale exploratory and data-driven analyses that
can reveal new aspects of brain function.

Beyond these examples, it is possible to test new hypotheses using in silico experiments
before collecting data for a controlled experiment. Wehbe et al. (2016) showcase how Q7BOLD-
predictions and in silico experimentation can be used to design new experiments. While the in
silico results may not precisely match the eventual data collected on a human population, they
would reveal areas where the underlying DL model has failed to match human-level process-
ing and present possible areas of improvement. This has the potential to advance our under-
standing of both neural network language models and biological language processing. In
particular, the in silico paradigm can both draw upon large-scale multidisciplinary efforts to
build tools and methods for interpreting neural network language models (Ettinger et al., 2018;
Hewitt & Manning, 2019; Ravfogel et al., 2020; Sundararajan et al., 2017), as well as con-
tribute to them by providing a human neural benchmark. Furthermore, more interpretable
models allow for novel causal intervention experiments that perturb and control ANNs in
ways that biological neural networks cannot be perturbed (Zhang et al., 2022).

Testing for generalizability of effects and experimental construct validity

One way to ensure the observed effects of the in silico experiments are not due to the specific
task design is to test the generalizability of effects across model architectures, training tasks,
neuroimaging data sets and modalities. Unlike reproducibility tests in traditional neuroimaging
experiments, these tests do not rely on laborious and time-consuming data collection. More-
over, there are increasingly more tools and techniques to interpret DL models (Clark et al.,
2019; Ettinger, 2020), and we can target investigations to these. For example, in the forgetting
experiment, the authors checked how the model represented the cognitive process itself. We
note that some drawbacks of DL models persist across architectures and tasks. For instance,
current language models still perform poorly on common sense reasoning and struggle with
capturing long-term dependencies in language. However, with technological advancements,
the types of inferences we can make with the in silico paradigm will greatly improve. A case in
point is the modeling of contextual processing in the brain. Until recently, language encoding
models were largely restricted to static word embeddings that made it difficult to analyze how
the brain processed word sequences. However, with the advent of neural language models,
this has changed dramatically.

In vision neuroscience, the functional profile of the fusiform face area was established
through contrast experiments that evolved over a long period of time (Anzellotti et al.,
2014; Gauthier et al., 2000; Kanwisher et al., 1997; Liu et al., 2010; Sergent et al., 1992;
Suzanne Scherf et al., 2008; Xu, 2005). Each new experiment was designed to address a con-
found that was not accounted for previously. Today, however, in silico experiments with vision
models have enabled neuroscientists to efficiently contrast large, diverse sets of stimuli and
establish the functional specificity of different regions (Ratan Murty et al., 2021). Similarly,
in language neuroscience, encoding models have been used to evaluate the semantic selec-
tivity of many regions going beyond semantic contrasts that are tested for a handful of condi-
tions at a time (Huth et al., 2016; Mitchell et al., 2008). This demonstrates how the in silico
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paradigm allows scientists to quickly design and test multiple experiments that get at the same
underlying question. This means that in silico experiments, despite using similar manipulations
to controlled experiments, can provide an additional way to test the construct validity of the
experiment (Yarkoni, 2022). When coupled with generalizability testing, we run a lower risk of
over-claiming or over-generalizing.

Establishing the validity of model constructs

The in silico approach uniquely facilitates experimenters to evaluate and improve the design
of computational models based on observed in silico behavior, going beyond good prediction
performance. For example, in the forgetting experiment, the authors identified that the
MT-LSTM language model does not instantaneously switch context, and this could influence
the observed effects. One possible solution to the nonreplication would be to then train the
language model on a new task that encourages forgetting. Alternatively, it could prompt the
need for designing alternate architectures that have a built-in forgetting mechanism closer to
observed human behavior. Artificial neural networks can be investigated through causal inter-
vention experiments and perturbations, whereas it is very difficult to impossible to do this for
human language systems. By analyzing the behavior of DL models in many in silico experi-
ments, we can create a check-and-correct cycle to build better computational models of the
brain and establish the validity of model constructs.

An analogous paradigm has also risen in popularity in NLP. Moving beyond better perfor-
mance with larger language models, there has been a growing effort toward curating diverse
language tasks like syntactic reasoning and multistep inference to understand the limitations of
current models and establish a benchmark for future innovation. In the same vein, we believe
that many different in silico experiments can be used together to establish the validity of dif-
ferent model constructs and provide a benchmark to test future innovations in computational
language modeling. We hope that this pushes the field past solely testing encoding model
performance on different architectures. Ultimately, this paradigm is a bridge between compu-
tational models and experimental designs in neuroscience, such that we can make joint infer-
ences on both and improve them in tandem.

Preserving individual participant differences

One potential advantage of in silico encoding model experiments is that the models are typically
estimated with single-subject data, allowing experiments to test for effects in individuals rather
than over a group average. While group averaging is a common method to improve the signal-
to noise ratio (SNR) of neuroimaging studies, it can lead to an underestimation of effect size
(Fedorenko, 2021; Handwerker et al., 2004) and hide effects that can be seen with more fine-
grained functional anatomical data (Popham et al., 2021). Finally, individual participant analysis
does not preclude the estimation of how prevalent an effect is at the population level (Ince et al.,
2021); however, it does enable experimenters to account for individual differences, which can be
critical to establish links between brain and behavior (Hedge et al., 2018). Consequently, there
has been a rising trend toward language studies that analyze participants individually and report
consistency of effects across the group (Blank & Fedorenko, 2020; Huth et al., 2016; Wehbe,
Vaswani, et al., 2014). While this requires the experimenter to collect more samples per subject
to improve the SNR, this approach does not make assumptions about anatomical alignment
and preserves spatial resolution important for inferring brain function. The improved sensitivity
provides better control for Type 1 errors (by allowing the experimenter to see which effects
replicate across participants) and Type 2 errors (by allowing a flexible mapping that can identify
important regions in each participant, even if they do not match perfectly in anatomy).

Construct validity:
Determinination whether a
theoretical, experimental, or
computational construct faithfully
reflects the true phenomena.
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However, the individual-participant analytic approach raises important questions about
how to isolate functionally consistent regions across participants and infer consistency of
effects. One solution is to use a common set of functional localizer stimuli across participants
to isolate functionally homologous networks. For example, the auditory and visual language
localizers developed by Fedorenko et al. (2010) and T. L. Scott et al. (2017) have been shown
to robustly identify regions across cortex that are important for language processing. This
approach enables future studies to consistently isolate language processing regions and char-
acterize their function. Modeling approaches such as hyperalignment (Haxby et al., 2020) and
probabilistic mapping of the cortical surface (Huth et al., 2015) offer solutions to compute
group-level maps from functional data of individual participants. Nevertheless, these
approaches do not provide a computational framework to model individual-participant effects.
Encoding models, on the other hand, learn a different function for each brain element in each
subject. This enables them to effectively model individual participants and retain high spatial
resolution.

Improving reproducibility in language neuroscience

There has been an increasing concern in the sciences about the lack of reproducibility for
many types of experiments (Pashler & Harris, 2012; Simmons et al., 2011), a problem to which
neuroscience is not immune. Several papers have discussed the prevalence of analysis vari-
ability, software errors, nontransparent reporting of methods, and lack of data/code sharing as
primary causes for low reproducibility and generalizability in neuroscience (see Barch &
Yarkoni, 2013, and Poldrack et al., 2020, for introductions to special issues on reproducibility
in neuroimaging; Button et al., 2013; Evans, 2017). These studies have also identified issues in
statistical analyses, like low statistical power (and, consequently, inflated effect sizes), HARK-
ing, and p-hacking. We believe that the in silico experimentation paradigm can help alleviate
some of these issues by providing access to and encouraging open tools for scientific research.
When combined with open access to naturalistic data, preprocessing methods, and analysis
code, the in silico paradigm can enable scientists to use a standard setup as they test a variety
of different hypotheses and thus reduce the “researcher degrees of freedom.” Platforms such as
BOLDpredictions can help with this. Indeed, BOLDpredictions is intended as a community
tool to allow easy in silico experimentation and generalization testing. It is intended to allow
other researchers to contribute their encoding models for other experiments (even outside of
language) so that in silico experiments can be available to all. Furthermore, competitions such
as Brain-Score (https://www.brain-score.org/competition/) and the SANS’22 Naturalistic fMRI
data analysis challenge (https://compsan.org/sans_data_competition/content/intro.html) can
align scientific work toward a common goal and facilitate verifiability. Since naturalistic exper-
iments broadly sample the stimulus space, the in silico paradigm can also act as a test bed for
generalizability.

Caveats and the Possibility of Overinterpretation

The in silico paradigm leverages the advantages of both controlled and naturalistic experimen-
tal designs with DL-based encoding models. However, it is important to recognize the caveats
of this approach so as to minimize the risk of overinterpretation. Here we discuss a number of
potential issues.

Limitations in the natural language stimulus

One critical advantage of naturalistic stimuli over controlled designs is the access to many
diverse examples of language use. However, this also means that the experimenter has little
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control over the rate of occurrence of different types of linguistic features. Word frequency is
an example of uncontrolled variation in natural stimuli (e.g., high frequency of words describe
everyday objects like “table” and “book” as opposed to low-frequency words like “artillery”
and “democracy”). This presents an important challenge in naturalistic paradigms as the rare
variables will have low power and could lead to incorrect or incomplete inferences of brain
function. For example, if a voxel encodes semantic concepts related to politics and gover-
nance, but this category is not well represented in the naturalistic stimuli, the experimenter
runs the risk of incorrectly inferring the voxel function. This can be addressed by building
larger, freely available data sets collected from diverse sources and encouraging replication
of effects on them.

Another issue with naturalistic paradigms is that they currently rely on the passive percep-
tion of language. Many studies have shown that turn-taking in conversation is an important,
universal aspect of communication and has implications on how we learn, understand and
generate language (Levinson, 2016). Despite a rising trend toward stimuli that take into
account social and contextual information, we are still far from studying truly natural use of
language with neuroimaging. Some work has investigated aspects of conversational commu-
nication (Bögels et al., 2015; Gisladottir et al., 2015; Magyari et al., 2014; Sievers et al., 2020),
but the field is still behind in modeling these effects with encoding models or ANNs. Richer
data sets will be key to developing these approaches, such as the real-world communication
data collected in Bevilacqua et al. (2019) or multimodal movie stimuli discussed in Redcay
and Moraczewski (2020). This is an important future direction for the naturalistic paradigm to
understand the brain mechanisms of language processing in ethological settings.

Limitations in the DL-based feature space

Perhaps the most important factor guiding the in silico experimental design is the success of
DL models at predicting brain activity. This paradigm allows neuroscientists to inspect brain
function by conducting simulations on the computational model instead, which is easier to
perturb, interpret, and control. However, this also means that the types of effects we can
observe are limited by the capabilities of the DL model. For example, the forgetting experiment
by Vo et al. (2023) demonstrates how the computational model has different behavior than the
human brain, affecting the observed in silico behavior. Domain shift presents another common
issue for neural networks, although recent studies has proposed that fine-tuning on the target
domain/task (Radford et al., 2018) and dynamic data selection during training (Aharoni &
Goldberg, 2020; van der Wees et al., 2017) can greatly alleviate this problem for language
models. Several encoding model studies explicitly fine-tuned the language model to operate
in set (Jain et al., 2020) or trained the language model on a corpus specifically curated to
resemble the experimental task (Jain & Huth, 2018; Wehbe, Vaswani, et al., 2014). Further-
more, while ANNs like language models have been successfully employed for a wide range
of tasks, their syntactic, common sense, and logical reasoning abilities are still far from those of
humans (Ettinger, 2020; Linzen, 2020; Pandia & Ettinger, 2021; Wilcox et al., 2021). Overall, it
is important to note that building good encoding models of brain activity and understanding
brain function with the in silico paradigm are both contingent on better artificial models of
language processing.

Limitations in computational modeling

Another source of confounds in encoding models and the in silico paradigm is incorrect
modeling assumptions. For example, Jain et al. (2020) highlight that many fMRI encoding
models rely on a downsampling technique that incorrectly transforms slowly varying features,

Fine-tuning:
A secondary learning procedure that
modifies an already trained artificial
neural network to adapt to a new task
or data set.
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making them highly correlated with local word rate. Consequently, an experimenter may
(incorrectly) conclude that a brain region that is well predicted by the downsampled features
is selective for the slowly varying information (e.g., discourse) it captures, when, in fact, the
brain region merely responds to the rate of words. In other cases, it may be important to model
several different sources of noise, which has been pursued in other work simulating fMRI data
(Ellis et al., 2020). Current neuroimaging modalities also have low SNR, limiting the predictive
performance of computational models. Because all modeling approaches likely have caveats
and edge cases for which their assumptions fail, it is important to clearly articulate and discuss
these issues in future work.

Inappropriate causality and zone generalization

Unlike contrast-based experiments and encoding models with simple interpretable features
like indicator variables, DL-based encoding models rely on ANNs that are themselves hard
to interpret. To this end, any significant correlation observed between brain activity and model
predictions leaves many possibilities for interpretation. An experimenter may conclude that
the task or objective function the DL model was trained on closely resembles a task the brain
solves, when this may not be the case. For example, one might falsely infer that the brain does
predictive coding for language because it is well predicted by features from a language model
that is trained to predict the next word in a sequence. Guest and Martin (2023) elaborate on
this issue by discussing the logical fallacies in inferences drawn between brain behavior or
activity, and DL models of language. Specifically, they highlight that studies analyzing paral-
lels between the brain and computational models of language often attribute inappropriate
causality by assuming that predictive ability is sufficient to claim task similarity or model
equivalence. On the contrary, the direction of causality should be that if an artificial model
closely resembles the brain, it can mimic brain behavior and activity, or that a lack of predic-
tion abilities clearly indicates a lack of model equivalence. This is a pertinent issue for in silico
experimentation as the paradigm uses computational models of language processing in the
brain to simulate its behavior. However, it is important to note that in all of the in silico exam-
ples presented here, the authors were using the generalizability of the encoding models to
predict brain responses in different conditions. This only suggests that the encoding models
can effectively capture the brain’s behavior for language tasks but is not a sufficient account
to conclude model equivalence.

Another issue with logical inference in DL-based encoding models relates to the functional
equivalence of two brain regions that are both well predicted by a given feature space. In their
recent study, Toneva, Williams, et al. (2022) discuss this issue in detail for language encoding
models and provide a computational framework to analyze the extent to which brain regions
share computational mechanisms solely based on their encoding performance.

The three main sources of confounds—naturalistic stimuli, DL-based feature spaces, and
modeling assumptions—can intersect in interesting ways and raise the probability of incorrect
interpretation. False causality stemming from spurious correlations are a problem for in silico
experiments, much like controlled experiments. To this end, it is important to emphasize trans-
parent analysis methods, better interpretability tools for DL models, and rigorous tests of repro-
ducibility with diverse data sources.

Although reproducibility is traditionally viewed as the replication of effects across partici-
pant pools/data sets, with in silico experimentation we can add another layer of replicability,
across different models that have different intrinsic biases (architectures, training objectives,
etc.), and learn different types of representation.

Zone generalization:
Determination whether two brain
regions process stimuli similarly.
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Important Factors of Consideration

Before doing in silico experimentation, one important consideration is determining if the
encoding model is “good enough.” While there is no quantitative threshold above which a
model can be considered suitable, we suggest the following.

Statistical significance of encoding model performance on a diverse, held-out test set

It is imperative that experimenters test whether encoding model performance is statistically
significant at the individual brain element level. Any in silico experimentation should only
be done on brain elements that are significantly predicted by the computational model. A
well-established approach in language encoding modes is to correlate the true and predicted
responses for a held-out test set. Following this, a permutation test can be done to check if the
correlation is statistically significant.

We also emphasize the importance of using diverse test sets to effectively gauge generali-
zation. If a brain element is selective for features that are not present in the test set, then it may
falsely be labeled as poorly predicted. One feasible solution is to use a leave-one-out testing
procedure. This can be done by fitting an ensemble of encoding models, each of which
excludes one unique set of training data in the model estimation. Statistical significance can
then be measured for encoding model predictions on all held-out data. This procedure
increases diversity in the test set and improves statistical power.

Feature-space selection

Given the diversity of function across the brain, it is possible that no one feature space or
computational model best predicts all brain regions. Thus, experimenters should test several
different features spaces and models (Nunez-Elizalde et al., 2019) and individually choose the
one with best held-out set performance for each brain element. This is especially important for
DL models as different neural language models or their layers predict different brain regions
well. In this case, we would use the neural language model (layer) that best predicts held-out
stories for each element and, further, passes construct validity tests (ie., has well-understood
behavior to the controlled manipulation). For example, in the in silico semantic composition
experiment, Jain and Huth (2023) found that the lower layers of the neural language model
were generally indifferent to ablating words farther in the past (Khandelwal et al., 2018). Con-
sequently, these layers cannot be used to conduct the ablation study, as they do not respond to
the manipulation in the first place.

Interpreting the DL-models

To establish the validity of computational model constructs, we suggested the use of interpret-
ability tools and techniques to understand how the DL-model itself represents a cognitive pro-
cess. This would allow the experimenter to directly investigate sources of confounds.

It is also important to consider the types of questions the in silico paradigm is most suited to
answer. As demonstrated here, this paradigm can be used to estimate functional properties in
the brain, such as selectivity to different word categories or the processing timescale. It cannot,
however, be used to test the causal involvement of a brain area or the exact computational
mechanism. For example, many regions in the experiments above are shown to capture
semantic properties in language. Whether these regions play a causal role in semantic tasks,
can only be determined by an in vivo measurement.
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Conclusion and Future Directions

In this article, we highlight the promises of in silico experimentation and detail how it brings
together the advantages of controlled experiments and naturalistic experiments paired with
encoding models. We showcase four different in silico experiments that all rely on naturalistic
language experiments to simulate four different previous studies. We survey the advantages
and potential caveats of in silico experimentation and highlight how it can take advantage
of recent work in DL to simulate experiments with diverse types of language stimuli.

Current work on DL-based encoding models for language is largely restricted to self-
supervised models. This is expected since self-supervised models have been trained on large
amounts of data and consequently learn highly useful and transferable linguistic representa-
tions. However, it remains to be seen if task-based experimental designs in neuroscience can
be simulated and adapted with more goal-directed artificial language networks. Additionally, it
is also important to investigate and characterize which types of neuroscientific results can be
explored with self-supervised models and what aspects of language meaning are beyond the
scope of the next-word-prediction objective.

Lastly, DL-based language encoding models rely on feature extraction from language or
speech ANNs (linearizing transform) and learn a linear function atop the features. We believe
that the in silico paradigm can become more powerful if language encoding models directly
update the parameters of the ANN itself, resulting in an end-to-end system. While this has
been popularized in vision (e.g., Bashivan et al., 2019), it is yet to be explored for language.
This approach can potentially introduce diversity into the computational mechanisms of the
ANNs, such as recurrence, linear readout from a memory store, and so forth, to integrate pro-
cessing in different brain structures (hippocampus, cortex, etc.). This could allow us to under-
stand parallel mechanisms like linguistic function, working memory access, and attention
using this same approach.
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