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ABSTRACT

Envelope and frequency-following responses (FFRENV and FFRTFS) are scalp-recorded
electrophysiological potentials that closely follow the periodicity of complex sounds such as
speech. These signals have been established as important biomarkers in speech and learning
disorders. However, despite important advances, it has remained challenging to map altered
FFRENVand FFRTFS to altered processing in specific brain regions. Here we explore the utility of
a deconvolution approach based on the assumption that FFRENV and FFRTFS reflect the linear
superposition of responses that are triggered by the glottal pulse in each cycle of the
fundamental frequency (F0 responses). We tested the deconvolution method by applying it to
FFRENV and FFRTFS of rhesus monkeys to human speech and click trains with time-varying
pitch patterns. Our analyses show that F0ENV responses could be measured with high signal-to-
noise ratio and featured several spectro-temporally and topographically distinct components
that likely reflect the activation of brainstem (<5 ms; 200–1000 Hz), midbrain (5–15 ms;
100–250 Hz), and cortex (15–35 ms; ∼90 Hz). In contrast, F0TFS responses contained only
one spectro-temporal component that likely reflected activity in the midbrain. In summary,
our results support the notion that the latency of F0 components map meaningfully onto
successive processing stages. This opens the possibility that pathologically altered FFRENV

or FFRTFS may be linked to altered F0ENV or F0TFS and from there to specific processing stages
and ultimately spatially targeted interventions.

BACKGROUND

Envelope and frequency-following responses (FFRENV and FFRTFS) are scalp-recorded
electrophysiological potentials that closely follow the periodicity of complex sounds such as
speech (Aiken & Picton, 2008; Chandrasekaran & Kraus, 2010; Skoe & Kraus, 2010). Initially
thought to reflect activity arising mostly from the cochlear nucleus and inferior colliculus
(Chandrasekaran & Kraus, 2010), current thinking assumes multiple sources distributed across
brainstem, midbrain, and cortex (Coffey et al., 2019). Over the past two decades, altered
FFRENV and FFRTFS have been established as an important biomarker in speech and learning
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disorders (Anderson et al., 2010; Banai et al., 2005, 2009; Chandrasekaran et al., 2009;
Cunningham et al., 2001; Hornickel et al., 2012; Hornickel & Kraus, 2013; Russo et al.,
2009). Given the emerging view of FFRENVand FFRTFS as signals arising from widely distributed
sources, there are many different potential anatomical substrates for pathologically altered
responses. Understanding the anatomical substrate of altered FFRENVand FFRTFS is a critical first
step in the process of understanding and ultimately ameliorating the deficits with spatially tar-
geted interventions. However, despite important advances, it has remained challenging to map
altered FFRENVand FFRTFS features to altered processing in specific brain regions. As a result, the
potential of FFRENV and FFRTFS to reveal spatially specific insights into the function of different
auditory processing stages has not been fully unlocked.

For “classical” auditory evoked onset responses, important information about the neural
origin can be gleaned from their latency and topography. Depending on their latency, neural
responses have been coarsely attributed to auditory brainstem (<10 ms), midbrain (10–50 ms),
or cortex (>50 ms) (Alain & Winkler, 2012). Topography, i.e., the spatial distribution of electric
or magnetic fields across the scalp, can then be analyzed using source modeling approaches
to further narrow down the exact spatial location of the underlying neural generators. Recent
work has shown that source modeling can also be leveraged to better understand the neural
generators of the FFR (Bidelman, 2015; Coffey et al., 2016; Gerken et al., 1975; Gorina-Careta
et al., 2021). However, because of its dependence on high channel-count electroencephalo-
graph (EEG) and/or magnetoencephalograph (MEG) recordings, source modeling is often not
feasible for clinical FFRENV and FFRTFS data which is typically recorded with a 3-electrode
montage.

An alternative approach can be derived from the hypothesis that FFRENV and/or FFRTFS
reflect the linear superposition of responses to each glottal pulse (F0 response) that sequen-
tially activates processing stages in brainstem, midbrain, and cortex (Figure 1) (Bidelman,
2015; Dau, 2003; Gerken et al., 1975; Janssen et al., 1991). Despite its theoretical relevance,
the superposition hypothesis has not been subject to much empirical scrutiny (Bidelman,
2015). If the superposition hypothesis is accurate, FFRENV and/or FFRTFS would arise as the
convolution of the F0 response with a series of impulses, mathematically described as Dirac
pulses, whose time and amplitude reflect the onset and intensity of each glottal pulse, or more
generally, each F0 cycle. Furthermore, it should be possible to compute the underlying F0
responses by deconvolution. Deconvolution approaches have successfully been used in a
wide range of neuroscientific applications (Aquino et al., 2014; Teichert & Ferrera, 2015),
including the closely related 40 Hz auditory steady state response (Bohórquez & Özdamar,
2008) and continuous speech (Maddox & Lee, 2018; Polonenko & Maddox, 2021). To date,
however, deconvolution has never been used to recover the F0 response underlying FFRENV

or FFRTFS to stimuli with time-varying pitch. Thus, it is unknown how well a linear superpo-
sition model can account for the considerable spectro-temporal complexity of FFRENV and
FFRTFS, and how much of their variance it can capture. If the F0 responses indeed account
for a substantial portion of FFRENV and/or FFRTFS, they may provide useful information about
the functional integrity of the different generators underlying FFRENV and/or FFRTFS.

Based on results from the 40 Hz steady state response and continuous speech (Bohórquez &
Özdamar, 2008; Maddox & Lee, 2018; Polonenko & Maddox, 2021), we hypothesized that
the F0ENV responses can explain a large portion of the FFRENV. It is less clear if the same would
be true for the FFRTFS. If successful at explaining much of the variance, the F0ENV and F0TFS
may help link altered FFRENV and FFRTFS to altered function in specific auditory processing
stages. As a first step in that direction, we addressed three main questions: (i) What percentage
of the variance of FFRENV and FFRTFS can be explained by the linear superposition of F0

F0 response, or convolution kernel:
The hypothetical neural response to
the onset of an individual F0 cycle.
“Convolution kernel” (or kernel for
short) is a mathematical term that
refers to the fact that the F0 response
is a kernel estimated via
deconvolution.

Envelope FFR (FFRENV):
Reflects neural responses to periodic
fluctuations of envelopes of various
carrier frequencies at the rate of the
fundamental frequency.

Frequency Following
Response (FFR):
Umbrella term for several types of
electrophysiological potentials that
closely follow the periodicity of
complex sounds such as speech.
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responses? (ii) How reliably can F0 responses be estimated? (iii) Is there any evidence that the
latencies of F0 responses can be linked to anatomically distinct processing stages?

We decided to perform our experiments in macaque monkeys for three reasons: First, the
monkey is a well-established model for the human auditory system in general because
their auditory system shares important functional (Bigelow & Poremba, 2014; Fishman &
Steinschneider, 2012; Gil-da-Costa et al., 2013; Javitt et al., 2000; Steinschneider et al.,
1992) and structural (Chaplin et al., 2013; Sweet et al., 2005) similarities with humans.
Second, macaques are known to exhibit human-like FFRENV (Ayala et al., 2017; Brugge
et al., 2009; Fishman et al., 2013; Gnanateja et al., 2021; Steinschneider et al., 1998,
2003). Third, this species will ultimately allow us to use invasive recordings to confirm the
predictions of the deconvolution method by directly measuring FFRENV and FFRTFS along
different stages of the auditory pathway.

METHODS

Subjects

Data reported here was collected from two adult male macaque monkeys (Macaca mulatta).
All experiments were performed in accordance with the guidelines set by the U.S. Department
of Health and Human Services (National Institutes of Health) for the care and use of laboratory
animals. All methods were approved by the Institutional Animal Care and Use Committee at
the University of Pittsburgh. The animals had previously been exposed to pure tone and click-
stimuli in passive and active listening paradigms.

Figure 1. Linear superposition hypothesis of the FFR. (A) Schematic of a hypothetical feedforward
model with nodes in brainstem, midbrain, and cortex (AN: auditory nerve, CN: cochlear nucleus,
SOC: superior olivary complex, NLL: nucleus of lateral lemniscus, IC1,2 inferior colliculus, Thal:
thalamus, L3/4, L5/6: layer 3/4 and 5/6 of primary auditory cortex). (B) Response of each node to
a single click-like event (F0 response). Hypothetical EEG response arises as the sum of activity over
all nodes. (C) Because the model is linear, the response to several click-like events in close temporal
proximity (FFR-like response) is identical to the sum of the same events presented in isolation
(convolution). In theory, the F0 response can be recovered from the FFR-like response using
deconvolution.
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Stimuli

Two types of stimuli were used: (a) synthesized Mandarin tones (Figure 2A) and (b) click train
versions thereof (Figure 2B). Mandarin tones: The synthesized Mandarin tones used the vowel
/yi/ in the context of four distinct F0 patterns: T1 (high-level, F0 = 129 Hz), T2 (low-rising, F0
ranging from 109 to 133 Hz), T3 (low-dipping, F0 ranging from 89 to 111 Hz), and T4 (high-
falling, F0 ranging from 140 to 92 Hz). Mandarin tones were synthesized based on the F0
patterns derived from natural male speech production (Xie et al., 2017). All stimuli had a
sampling rate 96000 Hz and were 250 ms in duration and were presented at 78 dB SPL.
The stimuli were presented in both condensation and rarefaction polarities. By computing
either the sum or the difference of the two polarities, it was possible to highlight the neural
responses to either the temporal periodicity envelope (FFRENV) or the temporal fine structure
(FFRTFS) (Krizman & Kraus, 2019).

The stimuli were presented in a randomized manner, with randomly selected inter-stimulus
intervals between 300 and 500 ms. In each 40 min long recording session, we presented 500
repetitions of each tone and polarity for a total of 4,000 sweeps. Click train stimuli: From each
of the four synthesized Mandarin tone stimuli, we prepared a click train version that consisted
of trains of 0.1 ms long monophasic impulses. Timing and amplitude of the clicks in the click
trains matched the timing and amplitude of the F0 cycles of the Mandarin tone stimuli. The
timing of the F0 cycles was operationalized as the time of the peak pressure (Figure 2C, second
F0 cycle); the intensity was operationalized as twice the absolute amplitude of the peak activ-
ity to account for the fact that speech sounds are modulated bi-directionally.

The rationale for using the Mandarin tone sets was twofold. First, we were interested in
using a stimulus set that had already been used to study FFRENV and FFRTFS in numerous basic
and clinical studies (Chandrasekaran et al., 2014; Lau et al., 2021; Xie et al., 2018). If success-
ful, the deconvolution technique may be able to extract further information from these existing
data sets. Second, we were interested in a stimulus set with a wide range of fundamental fre-
quencies, because otherwise the solution to the deconvolution is not unique. We introduced
the click-train stimuli to create a scenario that would be particularly amenable to the super-
position hypothesis and thus to our deconvolution-based analytic approach.

Experimental Setup

All experiments were performed in a small (40 × 40 × 80) sound-attenuating and electrically
insulated recording booth (Eckel Noise Control Technology). The animal was positioned and

Figure 2. Stimuli. (A) The four synthetic Mandarin tones in the time domain. (B) The corresponding click train stimuli. (C) A snippet containing
two F0 cycles of a Mandarin tone stimulus in the time (black line) and time-frequency domain (color). Timing of the clicks in the click train
stimuli matched the time of the highest pressure peak (second F0 cycle). We subsequently defined the onset of an F0 cycle as the first positive
pressure peak that coincides with the first of several peaks of power in the third formant that follows the opening of the glottis (first F0 cycle).

Temporal fine structure of the FFR,
or spectral FFR (FFRTFS):
Reflects the entrainment of neural
responses to individual cycles of
carrier frequencies below a certain
physiological limit.
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head-fixed in a custom-made primate chair (Scientific Design). Neural signals were recorded at a
sampling rate of 30 kHz with a 256-channel digital amplifier system (RHD2000, Intan).

Experimental control was handled by a Windows PC running an in-house modified version
of the Matlab (https://www.mathworks.com/) software package monkeylogic. Sound files were
generated prior to the experiments and presented by a subroutine of the Matlab package
Psychtoolbox. The sound files were presented using the right audio channel of a high-
definition stereo PCI sound card (M-192 from M-Audiophile) operating at a sampling rate of
96 kHz and 24-bit resolution. The analog audio signal was then amplified by a 300-watt ampli-
fier (QSC GX3). The amplified electric signals were converted to sound waves using a single
element 4-inch full-range driver (Tang Band W4-1879) located 20 cm in front of the animals.
Over the relevant range of presented frequencies the sound pressure level of the speaker varied
±7.5 dB SPL.

To determine sound onset with high accuracy, a trigger signal was routed through the
unused left audio channel of the sound card directly to one of the analog inputs of the record-
ing system. Thus, sound onset could be determined at a level of accuracy that was limited only
by the sampling frequency of the recording device (30 kHz: corresponding to 33 μs).

Cranial EEG

EEG activity was recorded from 33 EEG electrodes that were chronically implanted in 1 mm
deep non-penetrating holes in the cranium (Purcell et al., 2013; Teichert, 2016; Woodman
et al., 2007). Electrodes were positioned across the entire accessible part of the cranium at
positions approximately homolog to the international 10-20 system in the human (Li &
Teichert, 2020). More details of the EEG recording setup have been provided in earlier work
(Teichert, 2016; Teichert et al., 2016). Data were recorded with an Intan RHD 2000 digital
amplifier. The midline electrode immediately anterior to Oz served as the recording reference
and ground electrode. Data were referenced offline to the Oz electrode. In one animal, all
electrodes were functional, allowing us to perform the deconvolution for all electrodes and
thus visualize topographies of the F0 responses. In the second animal only a subset of the
electrodes was functional, thus preventing topographical analyses.

Pre-Processing

The raw data were band-pass filtered using a second-order zero-phase shift Butterworth filter
with cutoff frequencies of 60 and 2000 Hz. Time-locked epochs were extracted and down-
sampled to a rate of 10 kHz. Epochs that exceeded an artifact-rejection criterion based on
the distribution of peak-to-peak amplitudes for each individual channel were excluded from
further analyses for that channel. If an epoch exceeded the relative amplitude criterion in two
or more channels, it was rejected for all channels. This relative amplitude criterion allowed us
to process a range of channels with different noise levels simultaneously, i.e., using the same
(relative) criterion. The valid epochs were averaged separately for the four tones to obtain a
total of four waveforms. In addition, the valid epochs were also averaged separately for all
tones and polarity to obtain eight waveforms.

Deconvolution Approach

Click trains

The starting points for the click train deconvolution approach were click onset times and their
amplitudes. The amplitudes were further normalized to an average value of 1 across all 4 click
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trains. The onset times were then shifted in steps of 0.1 ms (i.e., the sampling rate of the data)
between 0 and 79.0 ms, for a total of 800 regressors. We then fit a linear model to the FFRENV

and FFRTFS using all 800 regressors. To that aim, FFRENVor FFRTFS, respectively, from all stimuli
and the corresponding regressors were concatenated into a single time series padded with
NaN (Not a Number) values between them to avoid cross talk between the end of one stimulus
and the beginning of the next. The FFRENVor FFRTFS kernel was then defined as the weights of
the 800 regressors. The deconvolution approach thus identified the kernel that best explained
the observed FFRENV or FFRTFS as the linear sum of overlapping responses to each individual
click in the click train. The time axis of the kernel thus corresponded to time after click onset.
Similarly, the latency of specific components of the kernel were measured in time after click
onset. Note that the FFRENVor FFRTFS to all four stimuli were explained by a single 80 ms long
kernel. The deconvolution approach was implemented in the statistical software R, using an
in-house written deconvolution package (deconvolvR).

Mandarin tones

An almost identical procedure was used to create the predictors for the tone FFRENV and
FFRTFS. However, to create the click trains, we placed individual clicks at the time of the peak
pressure of each F0 cycle (Figure 1C, second F0 cycle). This choice may have been subopti-
mal, as peak pressure does not coincide with the timing of the actual glottal pulse. We thus
identified an approach and operationalized the onset of each F0 cycle as the first positive pres-
sure peak that coincided with a peak of power in the third harmonic (Figure 1C, first F0 cycle).
The two different approaches yielded highly similar timing, but the estimated F0 onsets pre-
ceded the time of peak pressure very reliably by 1.01 ms. Tone FFRENV kernels were estimated
from both types of predictors based on the timing of the peak pressure and glottal pulse. Both
yielded almost identical results. However, the FFRENV kernels from the peak pressure were
delayed by approximately 1 ms, and they explained a somewhat lower amount of variance.
Furthermore, the timing of the tone kernel based on the glottal pulse matched the timing of the
click kernel much better than the tone kernel based on peak pressure. Following the theoret-
ical arguments and the empirical support, we report the tone FFRENV and FFRTFS kernels using
the glottal onset time rather than the time of peak pressure.

Nonlinear–Linear Model

We also developed a nonlinear–linear model to account for a very specific limitation of the
linear deconvolution model. The first nonlinear stage of the model accounts for short-term
adaptation in the early auditory system. The short-term adaptation stage uses two parameters,
tau and U, to estimate how quickly and how strongly early stages of the auditory system adapt
to the repeated F0 onsets (Teichert et al., 2016). The parameters U and tau were estimated
using a gradient descent approach. The output of the nonlinear stage corresponds to a series
of Dirac pulses whose amplitude reflects both the amplitude of the F0 cycle, and the degree of
adaptation accrued by responses to previous F0 cycles.

In addition to the nonlinear stage, we also modified the linear stage to include a stimulus
onset regressor. This allows for the possibility that the very first F0 onset triggers a stimulus
onset response that is qualitatively distinct from the remaining F0 responses. To keep the
number of regressors similar, we reduced the lag from 80 ms (800 regressors) to 45 ms for both
types of response (2 × 450 = 900 regressors). As before, the model was fit to the training set,
and model fit was evaluated in the testing set.
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Quantification of Model Fit

The primary variable used to quantify the quality of the model fit was percentage variance
explained. Percentage variance explained is typically calculated as 100 * (TMS − RMS)/
TMS. Here RMS stands for the mean of the squares of the residuals, and TMS for the mean
of the squares of the total signal, i.e., including variance pertaining to the actual FFR as well
as measurement noise. Since no model can be expected to account for measurement noise,
this traditional metric cannot reach 100% unless there is no measurement noise. The limit of
percentage variance a model can explain is given by 100 − 100/signal-to-noise ratio. As a
result, the metric is only comparable for data sets with similar signal-to-noise ratio. Because
some of our recording sessions have a range of different signal-to-noise ratios, we decided to
use an alternative metric that adjusts for different signal-to-noise ratios. This metric sets out to
quantify how much of the “explainable” variance, i.e., the portion of the variance that exceeds
the variance of the baseline, can be explained by the model: 100 * (TMS − RMS)/(TMS − BMS).
In this context, BMS stands for the mean of the squares of the signal on the baseline, defined as
the 50 ms period before stimulus onset, and the period from 320 to 390 ms after stimulus
onset, i.e., 70 to 140 ms after stimulus offset. We had found the variance on the post-stimulus
baseline to be systematically smaller than on the pre-stimulus baseline. Hence the decision to
use the average of both periods.

Unless mentioned otherwise, we will refer to this signal-to-noise ratio-corrected measure of
percentage variance explained throughout the article. Percentage variance explained was cal-
culated across the entire simulation period (0 to 280 ms after stimulus onset), as well as the
sustained period which excluded both on- and offset responses (50 to 250 ms). Note that in all
cases, the kernel was estimated by fitting it to the entire temporal duration of the data. Con-
sequently, any difference in percentage variance explained is not caused by requiring the
model to fit a simpler subset of the data, but rather depends on how well the same underlying
model accounts for the data in different epochs.

Furthermore, we performed a wavelet decomposition of the signal as well as the residuals
and evaluated percentage variance explained in three different frequency bands, the fre-
quency range of the fundamental frequency F0 (70–170 Hz), the frequency range of the first
formant F1 (180–300 Hz), and the frequency range of harmonics beyond the first formant Fx
(400–1200 Hz). To account for the temporal smearing of the wavelet decomposition, the time
ranges of all periods were shrunk by 20 ms on each side.

Data split control

To prevent overfitting caused by determining the kernel and the percentage variance explained
from the same data set, we randomly split the data of each recording session into two equally
sized subsets. The first subset of data (training set) was used to estimate the kernel. This kernel
was then used to determine percentage variance explained of the second subset (testing set). In
the context of the work presented here, the approach was only used for the data averaged
across all sessions.

Cross-day control

At the single session level, we used a different approach to prevent overfitting. Specifically, to
explain FFRENV from one recording session we only used kernels extracted from different
recording sessions. The data fit metric for the session in question, e.g., percentage variance
explained, was then defined as the average of that metric using kernels from all other sessions.
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Shuffle control

To control for the large number of predictors in the linear model (80 [ms] × 10 [samples per
ms] = 800) we included a shuffle-control. The shuffle control used the same averaged data and
the same predictors. However, the timing of the Dirac pulses was shuffled such that the timing
and amplitude designed to match the F0 onsets for tone 2 were used to predict data for tone 1,
the timing and amplitude designed for tone 3 were used for tone 2, and so on. This approach
was used for data averaged across all recording sessions as well as for data of individual
recording sessions.

Data Quality and Rejection of Recording Sessions

For the click train stimuli we recorded a total of 31 EEG sessions (animal B: 17, animal J: 14).
For the Mandarin tone stimuli we recorded a total of 20 EEG sessions (animal B: 2, animal J:
18). Sessions were included in the analyses if the noise of the averaged FFRs on the baseline
was below 0.008 uV2. Data quality for animal J was variable between sessions, and approx-
imately half of the sessions did not meet the criterion (animal J, click train stimuli: 8/14 ses-
sions; tone: 9/18 sessions). Data quality for animal B was consistently high. Only one of the
click train sessions needed to be excluded because of noise. In addition, we excluded one of
the click train sessions because the signal amplitude was less than half of the other sessions, a
clear outlier given the tight distribution of values for the other sessions. In summary, we used
2/2 tone sessions and 15/17 click train sessions for animal B.

Noise amplitude on the excluded sessions were distributed bimodally: a small fraction of
recording sessions with an increase of well over tenfold, and a larger fraction with an increase
below twofold. Including the sessions with less than a twofold increase did not change the
main conclusions. However, it did increase variability of the results between sessions and
decrease the percentage variance explained by a relatively modest amount. The key takeaway
from including the noisier sessions is not very unexpected: If data quality is lower, less
variance can be explained.

RESULTS

Electrophysiological responses were recorded in response to two types of stimuli: (i) four syn-
thetic Mandarin tones using the syllable /yi/ and (ii) click train versions of these Mandarin tone
stimuli. Click train stimuli were created by converting the four Mandarin tone stimuli into series
of monophasic clicks whose timing and amplitude matched the estimated time of onset of each
F0 cycle (Figure 2A, see Methods for details). We report data from a total of 23 EEG recording
sessions using the click train stimuli (15 sessions animal B; 8 sessions animal J) and 11 sessions
using the Mandarin tone stimuli (2 sessions animal B; 9 sessions animal J). Each session lasted
40 min and contained a total of 4,000 stimuli, 500 from each type and polarity.

By computing either the sum or the difference of responses to the two polarities, the data can
highlight either the neural responses to individual cycles of carrier frequencies below a physi-
ological threshold (FFRTFS), or neural responses to periodic envelopemodulations (FFRENV). Our
results will initially focus on data averaged across both polarities, and thus FFRENV. The second
half of the Results section will focus on difference between polarities, and thus the FFRTFS.

Tone and Click Train FFRENV

As expected, both types of stimuli elicited periodic FFRENV-like responses in both animals.
Figure 3 depicts the Mandarin tone stimuli as well as the grand average FFRENV in the time

Neurobiology of Language 448

Linear superposition model of envelope & frequency following responses

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/3/3/441/2035773/nol_a_00072.pdf by guest on 07 Septem
ber 2023



and time-frequency domains for both subjects. In the time domain, we observed a wide diver-
sity of shapes of the FFRENV as F0 changed both within and between different Mandarin tone
stimuli. In the time-frequency domain, we observed modulation of the fundamental frequency
(F0) and the first harmonic (H1) in concert with the dynamically changing fundamental
frequency of the Mandarin tone stimuli. Figure 4 depicts the click train FFRENV in the time

Figure 3. Mandarin Tone FFRENV. Representation of Mandarin tone stimuli and the corresponding FFRENV in the time and time-frequency
domain. (A–D) Stimuli. (E–F) Monkey B FFRENV. (I–L) Monkey J FFRENV.

Figure 4. Click train FFRENV. Representation of click train FFRENV in the time and time-frequency domains. (A–D) Monkey B click train
FFRENV. (E–H) Monkey J click train FFRENV.
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and time-frequency domains. The click train FFRs were qualitatively similar, but of larger
amplitude than the Mandarin tone FFRENV. In the time-frequency domain, we observed power
above the first harmonic. Especially for animal B, there was evidence of a second harmonic
(F2) in cases when F0 was low, such as for click train #3 or toward the end of click train #4.
Furthermore, we often observed power beyond the second harmonic in even higher frequency
bands >400 Hz. In contrast to the first and second harmonic, the frequency of these higher-
frequency components did not change in line with the fundamental frequency of the stimulus.
These higher frequencies were also present for the tone FFRENV, but harder to distinguish due
to their lower amplitude. Based on the time-frequency decomposition of the FFRENV, we will
focus on three different frequency bands: the frequency range of the fundamental frequency F0
(70–170 Hz), the frequency range of the first harmonic H1 (180–300 Hz), and the frequency
range beyond the second harmonic Hx (400–1200 Hz).

Deconvolution of Click Train FFRENV

We next set out to test if FFRENV with such a complex phenomenology both in the time and time-
frequency domains can be explained by a simple linear superposition model. Given their larger
amplitude and thus higher signal-to-noise ratio, we first focused on the click train FFRENV. To
further improve signal-to-noise ratio, we initially focused on data averaged across all recording
sessions. To that aim, data from each session was randomly split into two equally sized sets,
subsequently referred to as the training set and test set, respectively. Within each set, trials were
averaged across the four different click train stimuli. The deconvolution was performed on the
four click train FFRENV averaged across all training sets. The model fit was then evaluated by
comparing the model predictions derived from the training set with the data from the testing set.

Figure 5 visualizes the deconvolution process, the F0ENV response, also referred to as the
FFRENV kernel, and the model fits in the time domain for animal B. All key features of the click

Figure 5. Deconvolution of grand average click train FFRENV for animal B. (A) Click train regressor for the four click train stimuli. The F0
contour of click train #1 matches the high tone, #2 the rising tone, #3 the dipping tone, and #4 the falling tone. (B) Recovered kernel which can
be viewed as the impulse response to one click. (C) Observed click train FFRENV (color) and model fit (black). (D) Enlargement of the steady
state period of the FFRENV response.
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train FFRENV were well-captured by the convolution model (black lines in Figure 5C, D). It is
noteworthy that the wide range of shapes of the click train FFRENV could be accounted for with
just one underlying kernel. The different shapes of the click train FFRENV were created exclu-
sively by slight variations of constructive and destructive interference driven by subtle timing
and amplitude differences from otherwise identical F0ENV responses to individual clicks. In
both animals, the extracted kernels contained two key spectro-temporal features: a series of
brisk peaks and troughs with short latencies and high-frequency, as well as wavelet-like
responses at longer latencies and a lower frequency (Figure 5B).

Figure 6 visualizes the deconvolution process for animal J in the time and time-frequency
domains. This visualization confirmed that the model captured key aspects in all relevant fre-
quency bands and not just the fundamental frequency. Note that the model captured the com-
ponents whose frequency changed dynamically with F0 (fundamental and first harmonic), as
well as the higher frequency components above F2 whose frequency is unaffected by dynamic
F0 of the stimulus (or the ensuing FFRENV).

Figure 7 visualizes the deconvolution process for the Mandarin tone stimuli in the time
domain. Other than using FFRENV recorded in response to Mandarin tone, the procedure for
obtaining the F0 kernels was identical, and the results closely resembled the ones obtained for
the click train stimuli.

While the convolution model captured all key aspects of the data, we also observed regions
of systematic deviations. In particular, the model underestimated the response amplitudes
during the first ∼50 ms of the stimulus. In part to compensate for this, the model tended to

Figure 6. Deconvolution of grand average click train FFRENV for animal J in the time and time-frequency domains. (A–D) Click train FFRENV.
(E–H) Fit of the deconvolution model. (I–J) Residuals of the model fit.
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over-estimate the amplitudes for the remainder of the stimulus. This effect may likely be
caused by short-term adaptation, a nonlinear effect that cannot be accounted for by a strictly
linear model. We will briefly touch on this issue later in the article by introducing a nonlinear–
linear convolution approach that resolves most of the remaining systematic misfit during the
onset period.

Percentage Variance Explained: Click Train FFRENV

We next quantified the performance of the model as the percentage variance explained, either
calculated across the entire stimulation period (0 to 280 ms after stimulus onset), or the sus-
tained period which excluded both on- and offset responses (50 to 250 ms). Furthermore, we
evaluated percentage variance explained in three different frequency bands, the frequency
range of the fundamental frequency F0 (70–170 Hz), the frequency range of the first formant
F1 (180–300 Hz), and the frequency range beyond the first formant Fx (400–1200 Hz). See
Methods for details.

Because no model can be expected to account for measurement noise, percentage variance
explained cannot exceed a threshold of 100 − 100/signal-to-noise ratio. As a result, the tradi-
tional metric of percentage variance explained is only comparable for data sets with similar
signal-to-noise ratio. Thus, we decided to quantify how much of the “explainable” variance,
i.e., the portion of the variance that exceeds the variance of the baseline, can be explained by
the model. See Methods for details.

In both animals, the convolution model explained the vast majority of the explainable var-
iance (monkey B: 79%; monkey J: 90%, solid circles in Figure 8A). This value was even higher
in the sustained period that excluded on- and offset responses (monkey B: 95%; monkey J:
97%; solid circles in Figure 8B). Within the sustained period, there was a gradient of percent-
age variance explained by frequency range. The largest fraction of variance could be
explained in the F0 range, followed by the H1 and Hx ranges (F0 range: 95% and 98%, for

Figure 7. Deconvolution of grand average tone FFRENV for animal J. Conventions as in Figure 4. Note that the click trains in panel A refer to
the predictors used in the deconvolution, not the Mandarin tone stimulus used to drive the FFRENV.

Neurobiology of Language 452

Linear superposition model of envelope & frequency following responses

D
ow

nloaded from
 http://direct.m

it.edu/nol/article-pdf/3/3/441/2035773/nol_a_00072.pdf by guest on 07 Septem
ber 2023



monkey B and J, respectively; F1 range: 96% and 95%; Fx range: 92% and 92%, solid circles
and lines in Figure 8C).

We next tested if the high percentage of explained variance was caused by overfitting. To
that aim, we used a shuffle control in which the number of predictors remained constant but
no longer matched the timing and amplitude of the actual F0 onsets (see Methods for details).
This shuffling dramatically attenuated the percentage variance explained (animal B: 7%,
animal J: 5%, open circles in Figure 8A). The percentage variance explained was even smaller
in the sustained period (animal B: 1%, animal J: 2%, open circles in Figure 8B). The lower values
for the sustained period likely occurred because the shuffled model tended to capture variance
at stimulus onset (which is identical for all stimuli) at the expense of the sustained period.

We next set out to quantify how much of the click train FFRENV can be explained by the
linear kernel in more common experimental settings, i.e., from data collected in individual
recording sessions. To that aim, we calculated the kernel from data averaged across one
recording session and evaluated the fit by comparing the predictions to the FFRENV of all
other recording sessions. The results largely replicated the findings at the level of the grand
averages and confirmed that a substantial amount of the explainable variance could be

Figure 8. Percentage variance explained. (A) Percentage variance explained across the entire FFRENV as a function of baseline noise. Solid
points indicate fits to the grand averages across all sessions. Solid diamonds indicate fits to individual sessions. Unfilled symbols indicate
fits using shuffled predictors. (B) Same as (A) but percentage variance explained is only evaluated for steady state portion of the FFRENV

(50–250 ms). (C) Percentage variance explained by frequency band. (D–F) same as (A–C) but for Mandarin tone stimuli.
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captured by the linear model even at the level of individual recording sessions (animal B: 75 ±
2.7%, animal J: 85 ± 2.7%, mean standard deviation, solid diamonds in Figure 8A). An even
higher percentage of the variance was captured during the sustained period (animal B: 90 ±
4.0%, animal J: 92 ± 2.9%, solid diamonds in Figure 8B). Results from the shuffle control
predictor confirmed that overfitting was also not a major concern for the single session data
(animal B: 4 ± 0.9%, animal J: 2 ± 0.9%, open diamonds in Figure 8A). The percentage
variance explained by the shuffle predictor was even smaller in the sustained period (animal B:
−2 ± 1.3%, animal J: 0 ± 0.9%, open diamonds in Figure 8B). The negative values for animal B
indicate that the shuffle predictor inflated the variance in the sustained period.

Furthermore, the single-session analysis confirmed that the model captured the most
variance in the frequency range of the F0 (animal B: 91 ± 4.4%, animal J: 94 ± 3.3%, solid dia-
monds in Figure 8C), followed by the frequency range of the F1 (animal B: 92 ± 2.7%, animal J:
82 ± 4.8%), and the highest frequency range Fx (animal B: 86 ± 2.9%, animal J: 82 ± 4.8%).

Percentage Variance Explained: Mandarin Tone FFRENV

The results so far suggest that the deconvolutionmethodworks rather well on artificial click train
stimuli. By itself, this is an important finding. However, given the substantial differences between
click trains and speech, we then tested if the method also explains much of the variance of the
FFRENV in response to the spectro-temporally complex and realistic Mandarin tones.

As for the click train stimuli, we first computed the deconvolution on data combined across
all recording sessions for each animal. Kernels were fit to a training set and the quality of the
fits were then evaluated by comparing the predictions to the FFRENV of the test set. In both
animals, the convolution model explained a large proportion of the explainable variance
(monkey B: 77%; monkey J: 72%, solid circles in Figure 8D). This value was even higher in
the sustained period that excluded on- and offset responses (monkey B: 89%; monkey J: 88%,
solid circles in Figure 8E). Within the sustained period, there was a clear gradient of percent-
age variance explained by frequency range. The largest fraction of variance could be
explained in the F0 range, followed by the H1 and Hx ranges (F0 range: 93% and 92%, for
monkey B and J, respectively; F1 range: 82% and 90%; Fx range: 69% and 77%, solid circles
and lines in Figure 8F).

As for the click train stimuli, using the shuffled predictor dramatically attenuated the
percentage variance explained (animal B: 6%, animal J: 4%, open circles in Figure 8D).
The percentage variance explained was even smaller in the sustained period (animal B: 1%,
animal J: −1%, open circles in Figure 8E).

Despite the overall lower signal amplitudes for the tone FFRENV, a large proportion of the
variance was captured by the linear convolution model even on a session-by-session basis
(animal B: 75 ± 3.5%, animal J: 63 ± 4.0%, mean ± standard deviation, solid diamonds in
Figure 8D). Excluding on- and offset responses, the percentage variance explained is even
higher (animal B: 87 ± 3.9%, animal J: 77 ± 4.6%, filled diamonds in Figure 8E). As for the
grand averages, shuffling dramatically attenuated the percentage variance explained at the
single session level (animal B: 4.0 ± 1.8%, animal J: 3.0 ± 1.9%, open diamonds in
Figure 8D; sustained period: animal B: −1 ± 2.4%, animal J: −1 ± 2.9%, open diamonds in
Figure 8E), again confirming that overfitting was not a substantial contribution to the high
percentage of variance explained.

Furthermore, the single-session analysis confirmed that the model captured the most vari-
ance in the frequency range of the F0 (animal B: 93 ± 1.1%, animal J: 84 ± 3.8%, solid
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diamonds in Figure 8F), followed by the frequency range of the F1 (animal B: 76 ± 2.5%,
animal J: 66 ± 11.1%), and the highest frequency range Fx (animal B: 73 ± 8.7%, animal J:
47 ± 19.5%).

Consistency of Deconvolution Approach Across Recording Sessions

The ability to explain the FFRENVof one recording day using the kernel from a different session,
suggests that the kernels are remarkably similar between days. Figure 9A, B confirms the high
degree of similarity for the click train kernels. Especially early features of the kernel (<5 ms)
were highly preserved across sessions, to the point that it was hard to even distinguish the
presence of more than one trace. Above 5 ms, differences between sessions became some-
what more apparent. The largest between-session variability was observed for the late
wavelet-like response between 15 and 35 ms. We quantified the similarity of the kernels as
the Pearson correlation coefficient, which was found to be 0.97 ± 0.02 for both animals (mean
plus minus standard deviation). Note that while the kernels for different sessions were highly
similar, the kernels for the two animals were quite distinct from each other. In particular, the
early features of the kernels below 5 ms are like a fingerprint that uniquely identifies the
subject with high confidence on the basis of a single session.

Cross correlations for kernels of the Mandarin tone stimuli (Figure 9C, D) were similarly
high (animal B: 0.98 ± NA, animal J: 0.91 ± 0.08; standard deviation was not available for
animal B, since only two sessions were recorded, resulting in a single cross-correlation value.
For monkey J, the average cross-correlation was attenuated mostly by one session. As a result
of the leftward skew of the distribution, the median correlation coefficient was a good bit
higher and probably a more robust estimate (median correlation coefficient monkey J: 0.95).

Figure 9. Comparison of F0ENV responses across sessions, stimuli, and subjects. (A, B) Click train
F0ENV responses for individual sessions of animals B and J. (C, D) Mandarin tone F0ENV responses for
individual sessions of animals B and J.
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Spectro-Temporal Features of the F0ENV Responses

Based on the time domain description of the kernels, they could be split into three epochs:
(1) a short-latency period from 1 to 5 ms that featured a series of brisk peaks and troughs;
(2) a transition period at middle latencies from 5 to 15 ms; (3) a long-latency period from
15 to ∼45 ms that featured 3 peaks and 2 troughs of a large amplitude and relatively slow,
wavelet-like oscillation. In the short-latency period, both animals exhibited a prominent
trough at ∼2 ms and a prominent peak at ∼4.5 ms. In between the two, animal B featured
two peaks at 2.9 and 3.7 ms, while animal J featured only one intermittent peak at 3.1 ms.
The peak at ∼4.5 ms likely corresponds to wave Vof the brainstem auditory evoked potential.
Transforming the kernels into the time-frequency domain revealed a complex spectral compo-
sition that confirmed the notion of distinct periods in the kernel (Figure 10A, B, top panels). At
short latencies, both animals exhibited prominent high-frequency components above 500 Hz:
In animal B, they manifested in two distinct spectral peaks at 600 and 1050 Hz. In animal J,
they manifested as a single peak at 700 Hz. In addition, both animals show spectral power at
frequencies around 200 Hz. For both animals, activity in this frequency range extended into
the middle latency period. The key spectro-temporal feature of the kernel was an extended
period of power in the lower frequency range between 70 and 120 Hz. Closer inspection
revealed a gradual decrease of frequency over time: In animal B the frequency decreased from
90 Hz to 70 Hz, in animal J the frequency decreased from 105 to 75 Hz. It is unclear if this

Figure 10. Comparison of F0ENV responses across stimuli and subjects in the time-frequency
domain. (A, B) Average click train F0ENV responses for animals B and J. (C, D) Average Mandarin
tone F0ENV responses for animals B and J.
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decrease resulted from the gradual change of frequency of a single component, or from the
transition between two components with slightly different frequencies.

The detailed description of the kernels in Figures 9 and 10 enables a direct comparison of
the tone and click train kernels. The most striking difference is the overall reduced amplitude
of the kernels, which matches the overall reduced amplitudes of the tone FFRENV themselves
(Figure 9). However, most of the key features of the kernels were preserved. In particular, the
timing and polarity of most peaks were identical. Only the earliest putative brainstem compo-
nents were affected more strongly. In both animals the initial trough that was evident at ∼2 ms
for the click train kernels was reduced in amplitude, temporally smeared and delayed to
∼3 ms. In animal B, this temporal smearing may have contributed to the cancellation of the
first of the three subsequent positive peaks that occurs at 2.9 ms in the click train kernel.
Figure 10 highlights another interesting distinction that is not visible in the time domain.
For both animals, the tone kernels included power in an even lower frequency band centered
around 50 Hz that was not active for the click train kernels.

Topography of the Click Train F0ENV Responses

It is tempting to link these different spectro-temporal features of the kernel to processing in
brainstem, midbrain, and cortex, respectively. If correct, it would support the notion that the
deconvolution method was indeed able to partially disentangle these different generators
whose activity is temporally completely overlapping in the FFRENV. If different latencies of
response components in the FFRENV kernel indeed reflect the gradual activation of successively
higher stages of auditory processing, then this should be reflected in different topographies for
early relative to late components. In one subject, animal B, we had access to an entire grid of
33 EEG electrodes. We thus set out to estimate the kernels for all 33 EEG electrodes in this
animal. The resulting topographies are summarized in Figure 11. The topographies of the
putative cortical components indeed closely resembled the topographies of classical evoked
potentials that are believed to arise from core auditory regions in the superior temporal plane
(Teichert, 2016). In contrast, the putative brainstem topographies were much more varied, and,
except for the peak at 4.2 ms, clearly not of cortical origin. The topographies of the putative
midbrain components were diverse. While the topography of the component at 6 ms was not
unlike the classical cortical topography, the component at 11 ms was clearly not suggestive of
cortical origin.

Nonlinear–Linear Deconvolution Model

For both stimulus types, the linear model could predict a surprisingly large amount of the
variance. However, in both cases, even the click train FFRENV, the linear model fell short of
explaining a substantial amount of variance around stimulus onset. The observed pattern of
misfit suggests that short-term adaptation prevents the linear model from providing an even

Figure 11. Topography of click train F0 responses. Topography of different peaks and troughs of
the F0 onset response for animal B. Different components are tentatively grouped into brainstem,
midbrain, and cortex based on latency, frequency, and topography.
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better account of the data. To confirm this hypothesis, we developed a two-stage model that
includes a nonlinear first stage to account for short-term adaptation, and the linear convolution
model as a second stage. The short-term adaptation model uses two parameters, tau and U, to
estimate how quickly and how strongly early stages of the auditory system adapt to the
repeated F0 onsets. In addition, the model included a stimulus onset regressor. To keep the
total number of regressors comparable, we reduced the number of lags from 800 to 450 for
both regressors (see Methods for details).

In both animals, the nonlinear–linear convolution model improved model fits for the click
train stimuli, especially in the onset period (monkey B: 58% to 91%, monkey J: 72% to 92%).
Noticeable improvements could also be found when focusing on the entire FFRENV (monkey B:
79% to 92%; monkey J: 90 to 94%). Importantly, percentage variance improved or remained
constant even in the sustained period (monkey B: 95% to 97%; monkey J: unchanged at 97%),
even though fewer degrees of freedom were used to model the sustained period (rather than
800 parameters, the nonlinear–linear model used only two nonlinear parameters plus 450 F0ENV

response parameters to model the sustained period; the 450 predictors for stimulus onset have
no direct effect on the sustained period). Similar improvements were found for the Mandarin
tone stimuli in the onset period (monkey B: 55% to 90%, monkey J: 42% to 91%), across the
entire FFRENV (monkey B: 77% to 88%, monkey J: 72% to 87%), and in the sustained period
(monkey B: 89% to 92%, monkey J: 88% to 88%).

The time constants tau of the short-term synaptic depression that provided the best fit were
well below 100 ms for the click train stimuli (monkey B: 63 ms, monkey J: 26 ms) and the
Mandarin tone stimuli (monkey B: 74 ms, monkey J: 13 ms). Such short time constants are
consistent with a locus of adaptation in the early auditory system.

Temporal Fine Structure of Mandarin Tone FFR

The analyses so far have focused exclusively on the FFRENV. In the following we will focus on
the temporal fine structure of the FFR, or FFRTFS, which is highlighted by subtracting the aver-
ages of the two polarities.

Figure 12 displays Mandarin tone FFRTFS for both animals in the time and time-frequency
domains. FFRTFS for the click train stimuli were so small that we did not attempt to model them
with the deconvolution approach. Compared to FFRENV, FFRTFS showed weaker responses to
the fundamental frequency, thus highlighting responses to higher harmonics.

Despite the different theoretical interpretation of the FFRTFS, it can readily be modeled using
the same deconvolution approach. Figure 13 shows the deconvolution process for FFRTFS to
Mandarin tone stimuli in one example animal. Figure 14 visualizes the fitting process in the
time and time-frequency domains for the second animal. Because of the lower signal-to-noise
ratio of FFRTFS, the correspondence between data and model is not as clear as for the FFRENV.
Nevertheless, the model correctly captures the fact that FFRTFS contains power mostly in the
range of the first formant, rather than the F0 as is the case for the FFRENV. A second key obser-
vation is that most of the power of the FFRTFS kernel is centered at relatively short latencies
between 5 and 10 ms. This is a clear deviation from the FFRENV kernels that contained most of
their power at latencies between 15 and 35 ms.

Percentage Variance Explained: Mandarin Tone FFRTFS

Because FFRTFS have a substantially lower signal-to-noise ratio, it is not surprising that the
deconvolution model also explained a substantially lower percentage of the total variance.
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Figure 13. Deconvolution of grand average tone FFRTFS for animal J. Conventions as in Figure 7.

Figure 12. Mandarin tone FFRTFS. (A–D) Representation of Mandarin tone FFRTFS in the time and time-frequency domains. (E–H) Monkey B
click train FFRTFS. (I–L) Monkey J Mandarin tone FFRTFS.
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However, even when correcting for the lower signal-to-noise ratio, the model explained a sub-
stantially lower fraction of the explainable variance (monkey B: 38%; monkey J: 35%). Inter-
estingly, the deconvolution approach captured a clearly distinct pattern of variance. First, in
contrast to the FFRENV, the model provided a better fit to the Mandarin tone rather than the
click train FFRTFS (click train data not shown). Second, in contrast to the FFRENV, we observed
only a negligible improvement when restricting our analysis to the sustained portion of the
response (monkey B: 44%; monkey J: 36%). This is consistent with the notion that the onset
responses, which complicate the analysis of the FFRENV, are subtracted out for FFRTFS. Finally,
we observed the highest percentage variance explained for the F1 rather than F0 frequency
range as was the case for FFRENV (F0 range: 44% and 57%, for monkey B and J, respectively;
F1 range: 85% and 73%; Fx range: 12% and 18%). Note that the F1 values are surprisingly
high. This suggests that the decent quality of the fits is somewhat obscured by noise in the
frequency ranges above and below the F1. The massive drop in performance for Fx range is
consistent with the notion that auditory nerve cells cannot follow carrier frequencies above a
certain limit.

FFRTFS Kernels (F0TFS Responses)

Because the deconvolution operation is linear, the FFRTFS kernels correspond to the difference
of the kernels for the two different polarities (Figure 15). For the click train stimuli, the
two polarities were quantitively almost identical, except for a minor deviation at a latency
of ∼7 ms. Note that while the effect was extremely small in absolute terms, it was replicable
between sessions and present in both animals.

Figure 14. Deconvolution of grand average tone FFRTFS for animal B in the time and time-frequency domains. (A–D) tone FFRTFS. (E–H) Fit of
the deconvolution model. (I–J) Residuals of the model fit.
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A qualitatively similar, but substantially larger effect emerged for the tone stimuli: The dif-
ference between the two polarities was most evident in the late brainstem and early midbrain
latencies. In both animals, the putative component V of the brainstem response was strongly
attenuated in the rarefaction condition (Figure 15B, E, orange arrow). In its stead, a new peak
at a latency of ∼7 ms that was superposed over the trough was also observed at this latency
(Figure 15B, E, blue arrow).

DISCUSSION

In this study, we characterized a deconvolution approach to recover F0ENV and F0TFS
responses from FFRENVand FFRTFS elicited by stimuli with time-varying pitch in the non-human
primate. Our ultimate goal is to link pathologically altered FFRENV or FFRTFS to specific laten-
cies of the corresponding F0ENVand F0TFS responses and thus to narrow down their anatomical
substrate. Such an approach would be particularly useful in clinical settings that often derive
FFRENV and FFRTFS with a simple three-electrode montage (Bidelman, 2015), and are thus not
amenable to sophisticated source reconstruction analyses.

The most promising advances were made for the FFRENV. First, we were able to show that
the convolution model captures a substantial portion of the variance of the Mandarin tone and
click train FFRENV. Second, we were able to show that the kernels indeed have distinct spectro-
temporal features that emerge at distinct latencies and likely reflect the sequential activation of
generators in brainstem, midbrain, and cortex. Third, we were able to show that the FFRENV

kernels can be estimated with high signal-to-noise ratio. Lastly, we were able to show that the
method also works for FFRTFS, and that the resulting kernels have most power at middle laten-
cies, consistent with sources in the midbrain. In the following we will discuss the implications
of these advances in more detail.

Figure 15. Effect of stimulus polarity on F0 responses. (A, B) Effect of stimulus polarity on click train kernels for monkeys B and J (orange:
condensation, blue: rarefaction). (C, D) Same for Mandarin tone kernels.
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F0ENV Onset Response Captures Much of the Variance of Mandarin Tone and Click Train FFRENV

A key novelty of our study is that it allowed us to quantify how much variance of the FFRENV

can be explained by the F0ENV responses. This is important, because it determines the likeli-
hood that the approach will be able to account for altered FFRENV in future work. To clarify
why this is so important, we point out that the convolution approach can be viewed as data
compression algorithm: Complex and high-dimensional FFRENV consisting of ∼12,000 data
points (4 tones times ∼300 ms duration times 10 samples per ms) are represented by a much
simpler kernel consisting of 800 data points (80 ms duration times 10 samples per ms). As with
any data-compression algorithm, and especially for one with such a high compression ratio, its
utility is determined by the amount of information loss. The less variance the algorithm cap-
tures, the more likely is a scenario where FFRENV differ meaningfully between conditions but
the F0ENV responses do not, simply because the relevant features of the FFRENV were not cap-
tured by the linear model.

In the best-case scenario, i.e., when excluding on- and offset responses and when using
high signal-to-noise grand averages, the F0 responses can account for an average of 96% of
the variance of the click train FFRENV and for 88% of the variance of the tone FFRENV. Even
at the level of single sessions, the model was able to explain on average 91% of the variance
for the click train FFRs and 82% of the variance for the tone FFRENV. Our finding that such a
substantial portion of the FFRENV was explained by the convolution method increases the odds
that F0ENV responses will be able to capture many clinically relevant FFRENV phenomena.
Since the F0ENV responses capture more variance for the click train FFRENV, one could argue
in favor of using the click train stimuli in clinical settings. However, this would only be war-
ranted if the click train FFRENV can be shown to be equally sensitive to pathological changes as
other commonly used FFRENV stimuli.

It is worth noting that the F0ENV responses are less adept at capturing variance in the higher
frequency ranges. This drop-off is particularly pronounced for the Mandarin tone stimuli and
for single sessions (rather than grand averages). Based on the observed latencies of features in
the F0ENV responses, the higher frequencies are likely generated at short latencies, i.e., by gen-
erators in brainstem. It is known that the latency of brainstem responses changes with sound
intensity. Such changes of latency cannot be captured by the linear deconvolution model and
may thus contribute to the reduction in percentage variance explained. Due to this and poten-
tially other nonlinearities, the sensitivity of the linear deconvolution method will likely be
reduced for pathologies in brainstem. However, it should be possible to capture such well-
known nonlinearities by adjusting the nonlinear–linear model described above.

F0ENV Responses Compress FFRENV Into a Meaningful Format

We were also able to address a second key question that determines the utility of the decon-
volution approach, namely whether or not the F0ENV responses represent information about
the FFRENV in a meaningful format. Specifically, we had speculated that the latency of different
features of the F0ENV response would represent the latency of different neural generators being
activated sequentially along the ascending auditory hierarchy. Indeed, we were able to iden-
tify distinct spectro-temporal features that emerge at distinct latencies and likely reflect the
sequential activation of generators in brainstem (<5 ms; 400–1000 Hz), midbrain (5–15 ms;
180–300 Hz), and cortex (15–45 ms; ∼90 Hz).

This hypothesis was supported by two observations. First, the putative brainstem compo-
nent of the F0ENV responses very closely resembles actual brainstem responses recorded in
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response to individual clicks. In fact, the responses to the very first click of each click train
(Figure 4C) showcase the exact same pattern and latencies of peaks and troughs as the
F0ENV responses of the click trains. Second, a cortical origin of the long-latency components
is supported by distinct topographies (Figure 10) and direct intracranial recordings in primary
auditory cortex of the monkey (Gnanateja et al., 2021). This leaves without strong empirical
support only the putative midbrain components of the F0ENV response. To date, we have not
yet confirmed their putative origin using invasive recordings, but are planning to do so in the
near future. These studies should be particularly relevant given the dominant role of the puta-
tive midbrain components of the F0TFS response to the FFRTFS (Figure 15). Given the well-
established role of the midbrain in FFRENV and FFRTFS in general (Chandrasekaran & Kraus,
2010; Greenberg et al., 1987; Smith et al., 1975), it would be surprising to find that the mid-
brain does not contribute to the F0ENV response at all, or that it contributes at latencies other
than the expected mid-latency range.

Our results are consistent with and extend some closely related earlier studies. Bidelman
(2015) tested if the FFRENV to a click train stimulus can be explained as the superposition of
empirically measured 12 ms long auditory brainstem responses to each click in the train. The
conclusion from that article was that the FFRENV was not satisfactorily explained by auditory
brainstem responses, suggesting that other structures must contribute to the FFRENV. Our results
are consistent with this conclusion. In order to explain the FFRENV well, it was necessary to
allow the kernel to be at least 45 ms long, thus extending well beyond the temporal range of
auditory brainstem latencies. Our results are also consistent with an earlier study showing that
the auditory steady state response can be modeled as the linear superposition of onset
responses to each individual 40 Hz cycle (Bohórquez & Özdamar, 2008). Our findings extend
this work into a higher frequency range and into the realm of spectro-temporally complex
speech sounds. More recent work, conducted in parallel with studies reported here, has used
a similar deconvolution approach to calculate the F0 response from continuous speech
(Polonenko & Maddox, 2021). In line with our findings, they also identified F0 responses that
are consistent with the notion that they result from the sequential activation of generators
along the ascending auditory pathway. Our work extends their findings by showing that
F0ENV responses account for the bulk of the FFRENV and likely also speech-evoked responses
in general. In addition, our results point out the limitations of the linear superposition approach
and how to address them by including a simple short-term adaptation component that
adjusts the effective amplitudes of the F0 cycles.

F0ENV Responses Can Be Measured With High Signal-to-Noise

Finally, we were able to show that the F0ENV responses can be estimated with high signal-to-
noise ratio. The mean pairwise correlation coefficient between F0 responses estimated on
different days was above 0.90 for both animals and both stimulus types. Such a high signal-
to-noise ratio is possible because F0ENV response is estimated from approximately 120,000 F0
cycles (4,000 trials, each of which contains on average 30 F0 cycles). The high signal-to-noise
ratio of the F0ENV responses suggest that even small effects can be detected with a very rea-
sonable number of sessions or subjects and may thus provide a solid basis for downstream
statistical inference.

Comparison Between FFRENV and FFRTFS

While there are several reports of FFRENV in the monkey, our study is the first to report FFRTFS in
this species. Two key observations stand out. First, the signal-to-noise ratio of FFRTFS is much
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smaller than FFRENV. Second, the FFRTFS was much weaker for the click train compared to the
Mandarin tone stimuli. This finding is consistent with the notion that FFRTFS reflects neural
responses to individual cycles of relatively low frequencies, which are much more pro-
nounced for the Mandarin tone compared to the click train stimuli.

FFRTFS and FFRENV are typically believed to arise from rather distinct neural mechanisms.
The simplifying assumptions of the deconvolution model are arguably less appropriate for the
FFRTFS. Nevertheless, the deconvolution method captured important aspects of the FFRTFS, and
confirmed several established differences between the FFRTFS and FFRENV. This increases our
confidence both in the model system and in the utility of the deconvolution method. For exam-
ple, the recovered FFRTFS kernels had most of their power in a rather narrow middle latency
range, thus suggesting an anatomically less diverse array of generators in the midbrain. This
contrasts with the more wide-spread range of latencies of the FFRENV kernels.

Furthermore, the spectral power of the FFRTFS was more closely linked to the spectral power
of the stimulus. Specifically, both stimulus and FFRTFS have most power in the intersection of
the first and second harmonic with the first formant. In contrast, FFRENV has most power in the
fundamental frequency, and higher harmonics are not modulated in line with the formants.
The FFRENV contains substantial power in the Fx range, even though the stimulus itself has
no power in that band. In summary, the spectral content of the FFRENV is mostly determined
by the spectral content of the kernel, while the spectral content of the FFRTFS is mostly deter-
mined by the stimulus.

Limitations of the Linear Convolution Model

The high degree of variance that can be captured with the F0ENV responses suggests that the
neural responses to each click in the click train were able to propagate through subsequent
stages of the auditory processing hierarchy largely without interference from previous or sub-
sequent clicks that were being processed at the same time in higher or lower processing stages.
Given the rich recurrent connections between different stages of the auditory hierarchy, and
numerous well-established nonlinearities at the earliest stages of auditory processing (Dau,
2003; Heinz et al., 2001; Zilany et al., 2014), one might have predicted that a linear convo-
lution model would be sorely insufficient to capture much of the spectro-temporal complexity
of the FFRENV.

However, it is also important to keep in mind that the linear model fell short of capturing all
of the variance, especially around stimulus onset. Accounting for stimulus onset with an addi-
tional onset regressor and allowing the amplitudes of the click responses to be subject to short-
term adaptation were able to increase percentage variance explained to above 90% even in
the onset period. These results show that relatively minor deviations from the assumption of
linearity can lead to substantial additional improvements.

Furthermore, it is important to mention that the deconvolution model explained substan-
tially less variance for the FFRTFS. This likely reflects the lower signal-to-noise ratio of the
FFRTFS data, as well as the fact that the simplifying assumptions of the deconvolution model
are less in line with the neural mechanisms generally believed to underly the FFRTFS.

Future Directions

While the results so far are promising, several additional steps need to be taken before the
method can be used to identify which processing stages are the cause of altered FFRENV

and FFRTFS. Most importantly, the findings need to be confirmed in humans. Our own
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preliminary results as well as work with continuous “peaky” speech (Polonenko & Maddox,
2021) suggest very similar effects in humans. But the percentage of variance that is captured by
the F0ENV and F0TFS responses remains to be determined for human participants. Furthermore,
it is likely that at least initially latency by itself is not sufficient to unequivocally identify an
underlying generator. Even for extremely well-established classical onset responses such as
the different auditory brainstem response waves or the different mid-latency components,
there is considerable debate about their more fine-grained origin. Consequently, we propose
that the method should initially be calibrated in a sample data set with high-density EEG/MEG
recordings to leverage both latency and topography of the F0ENV and F0TFS responses. Once
the origin of different peaks and troughs has been established, subsequent analyses will be less
reliant on high-density EEG recordings.

Furthermore, the ability of the deconvolution approach to correctly identify generators
based on the latency of the F0ENV and F0TFS responses needs to be validated empirically by
recording FFRENVand FFRTFS directly from these structures. Published work from our group has
already taken advantage of invasive recordings in monkey auditory cortex to confirm its pre-
sumed contribution to the later components of the F0ENV response (Gnanateja et al., 2021).
Additional work will need to focus on recordings in midbrain to confirm the contribution of
these structures to FFRENV and FFRTFS.

It is known that the FFRTFS can mirror the formant structure of the underlying vowel
(Arenillas-Alcón et al., 2021). The current experiments were performed exclusively using
the vowel /yi/, so it remains an open question if and how the F0TFS responses may be modu-
lated by the formant structure of different vowels.

The current linear models do not consider the longer timescale contextual effects that mod-
ulate the FFRENV and FFRTFS, which are attributed to putative corticofugal pathways. Future
work needs to incorporate the potential role of stimulus context to improve explained variance
and to comprehensively characterize the contribution of bottom-up and top-down pathways to
the FFRENV and FFRTFS (Chandrasekaran et al., 2009; Xie et al., 2018).

Conclusion

Based on our studies in the rhesus macaque, we conclude that the deconvolution method can
be used to compress complex and high-dimensional FFRENV and FFRTFS to stimuli with time-
varying pitch into a short and interpretable F0ENV and F0TFS response. The deconvolution
method captures a decent amount of variance for the FFRTFS and a substantially larger amount
of the variance of the FFRENV. The different latencies of the peaks and troughs likely reflect the
sequential activation of structures along the auditory pathway, and may at some point be use-
ful to map altered FFRENV and FFRTFS in disease to altered function in specific brain regions.

There are already a large number of different ways to analyze FFRENV and FFRTFS, including
broadband timing, F0 periodicity, phase consistency, and stimulus response correlation, to
name just a few (Krizman & Kraus, 2019) that primarily reflect encoding fidelity. We propose
that the value of the deconvolution approach arises from three main points: (1) the F0
responses are a lower-dimensional summary that captures and condenses much of the vari-
ance of the original FFRENV and to a lesser degree of the FFRTFS; (2) the latency of different
features of the F0ENV and F0TFS responses is meaningful, and likely reflects the latency of dif-
ferent generators, thus linking altered F0ENV and F0TFS responses to specific anatomical sub-
strates; and (3) the F0ENV and F0TFS responses can be measured with higher signal-to-noise
ratio than the raw signals, thus providing an opportunity for increasing the sensitivity and
power of subsequent statistical analyses.
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