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ABSTRACT

Robust and efficient speech perception relies on the interpretation of acoustically variable
phoneme realizations, yet prior neuroimaging studies are inconclusive regarding the degree
to which subphonemic detail is maintained over time as categorical representations arise. It is
also unknown whether this depends on the demands of the listening task. We addressed these
questions by using neural decoding to quantify the (dis)similarity of brain response patterns
evoked during two different tasks. We recorded magnetoencephalography (MEG) as adult
participants heard isolated, randomized tokens from a /ba/-/da/ speech continuum. In the
passive task, their attention was diverted. In the active task, they categorized each token as ba or
da. We found that linear classifiers successfully decoded ba vs. da perception from the MEG
data. Data from the left hemisphere were sufficient to decode the percept early in the trial, while
the right hemisphere was necessary but not sufficient for decoding at later time points. We also
decoded stimulus representations and found that they were maintained longer in the active
task than in the passive task; however, these representations did not pattern more like discrete
phonemes when an active categorical response was required. Instead, in both tasks, early
phonemic patterns gave way to a representation of stimulus ambiguity that coincided in time
with reliable percept decoding. Our results suggest that the categorization process does not
require the loss of subphonemic detail, and that the neural representation of isolated speech
sounds includes concurrent phonemic and subphonemic information.

INTRODUCTION

Speech perception is defined as “the process that transforms speech input into a phonological
representation of that input” (Samuel, 2011, p. 50). Whether that process is attributed to catego-
rization (Holt & Lotto, 2010), pre-lexical abstraction (Obleser & Eisner, 2009), or recovery of the
speaker’s motor intention (Liberman & Mattingly, 1985), the brain must undoubtedly solve a
many-to-one mapping problem when confronted with a world of highly acoustically variable
phoneme realizations. One clue to the nature of the neural solution to this problem is the be-
havioral phenomenon of categorical perception, in which sounds that vary continuously along
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acoustic dimensions are perceived to fall into discrete, linguistically meaningful categories,
which suggests that the neural representation of speech input may undergo a rapid—perhaps
obligatory—loss of subphonemic detail. In this study, we explored whether time-resolved
multivariate analyses and techniques for capturing representational structure would reveal such
a transformation. We report a novel application of these approaches to studying the categorical
perception of isolated speech syllables and the fate of subphonemic detail under different
task demands.

Categorical vs. Continuous Perception: Behavior

Evidence of categorical speech perception comes from laboratory paradigms in which partici-
pants perform identification and discrimination tasks on stimuli drawn from a synthetic acoustic
continuum. Perception is said to be categorical when discrimination performance is predicted
by the identification function: Two stimuli identified as belonging to different categories will be
well discriminated, while two equally distant stimuli belonging to the same category will be
poorly discriminated. This pattern is observed reliably for consonants more so than for vowels
(Altmann et al., 2014; Eimas, 1963; Pisoni, 1973), both for voicing continua (e.g., /da/-/ta/, /ba/-/pa/)
and for place-of-articulation continua (e.g., /ba/-/da/, /da/-/ga/). Nevertheless, sensitivity to within-
category differences has been demonstrated experimentally (Barclay, 1972; Massaro & Cohen,
1983; Pisoni & Tash, 1974; Samuel, 1977), suggesting that listeners can and do access subphone-
mic detail under some conditions. Indeed, positing the existence of both an auditory (continuous)
mode and a phonemic (categorical) mode of perception has long been an empirically supported
compromise position (Dehaene-Lambertz et al., 2005; Pisoni, 1973).

Categorical vs. Continuous Perception: Neuroimaging

Evidence from functional magnetic resonance imaging (fMRI) suggests that specific cortical
regions, principally in the left hemisphere, perform categorical processing of speech input above
and beyond acoustic analysis: the superior temporal sulcus (Joanisse et al., 2007; Liebenthal
et al., 2005), the supramarginal gyrus (Joanisse et al., 2007; Raizada & Poldrack, 2007), and
the inferior frontal sulcus (Myers et al., 2009). The diversity of results across studies may be
due to differences in the task performed in the scanner (e.g., passive habituation, active discrim-
ination, monitoring for an orthogonal stimulus dimension), and to the way that neurocognitive
processes of various latencies and durations manifest in low time-resolution fMRI.

Methods with superior time resolution have also been used to test the intuition that speech
processing proceeds through a series of stages and transformations from acoustic details to pho-
neme representations and beyond. As early as ~50 ms after stimulus onset, auditory evoked
fields carry information about a consonant’s place of articulation (Gage et al., 2002; Obleser
et al., 2003; Tavabi et al., 2007). However, results at ~100 ms have not been unequivocal.
An event-related potentials (ERP) study demonstrated continuous encoding of voice onset time
in N1 amplitude (Toscano et al., 2010), while an electrocorticography study reported that
categorical place-of-articulation information was strongest at 110–150 ms (E. F. Chang et al.,
2010). A magnetoencephalography (MEG) study characterized the N100m as “higher-level
and abstract” (Tavabi et al., 2007, p. 3161), while an ERP study found that the P300 still reflected
“subtle phonetic changes” (J. Y. Lee et al., 2019, p. 129). If there is indeed a transformation from
continuous encoding of acoustic-phonetic detail to abstract categories, it has not been defini-
tively identified. Moreover, it is not clear from prior reports whether the emergence of the ab-
stract category involves the loss of acoustic-phonetic detail. As with the fMRI studies reviewed

Magnetoencephalography (MEG):
A functional brain-imaging
technology that noninvasively
records the magnetic fields
generated by neurons’ electrical
activity.

Phonemes:
Individual speech sounds: vowels
and consonants. A phoneme is
the smallest unit of speech that
distinguishes two words in a
language, such as the /b/ in bin
vs. the /d/ in din.
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above, the top-down influences of various task demandsmay have contributed to the differences
observed among studies.

Task Effects

Since the initial report of categorical speech perception (Liberman et al., 1957), further research
has shown that its canonical behavioral patterns respond to manipulations of task structure and
stimulus context. For example, categorical responses to speech-like formant patterns depend on
perceiving the stimuli as speech and not as another type of environmental sound (Mattingly
et al., 1971); prior experience with sequential presentation and discrimination of continuum
itemsmakes perception less categorical (Pisoni & Lazarus, 1974); selective exposure to one end-
point of a continuum shifts the location of listeners’ category boundary (Diehl, 1975). In other
words, the (dis)similarity of items along a continuum is malleable. However, the effect on per-
ception of asking listeners to categorize or label stimuli cannot be measured from behavior be-
cause passive listening, as a baseline condition, has no direct output.

To understand the effects of task, researchers have turned to neuroimaging and neural recording
while manipulating behavioral relevance, often by directing attention to one stimulus attribute to
the exclusion of others, or by contrasting the presence vs. absence of goal-directed behavior.
Selective attention exerts measurable influence on the neural representations that underpin
perceptually guided behaviors, a phenomenon that has been extensively documented in the visual
domain (Bugatus et al., 2017; Cukur et al., 2013; Erez & Duncan, 2015; Nastase et al., 2017), as
well as in speech perception (e.g., attending to one of two speakers [Mesgarani & Chang, 2012] or
attending to the speaker vs. the content [Bonte et al., 2014]). More relevantly to the present study,
the presence vs. absence of an explicit task (i.e., directing attention to phonology) during speech
presentation engagesmore left-lateralized brain networks (reviewed in Turkeltaub&Coslett, 2010),
but the effect on neural representations of speech is far from clear.

A handful of studies have directly compared neural representations evokedbypassive exposure
to speech sounds with those evoked during either an incidental listening task or active categori-
zation of the stimuli, but withmixed results. Feng et al. (2018) identified abstract representations of
Mandarin lexical tones in fMRI that generalized across passive and active tasks, although this study
did not address how an acoustic continuum gives way to a categorical tone representation.
Bidelman and Walker (2017) found that ERPs elicited by a vowel continuum patterned categori-
cally into prototypical and ambiguous, but only during active categorization. Using MEG, Alho
et al. (2016) observed phonetic category-specific adaptation to a /da/-/ga/ continuum during an
incidental listening task but not during passive exposure. However, at the same early latencies
of this adaptation, Chang et al. (2010) demonstrated categorical neural response patternswith only
passive exposure to a /ba/-/da/-/ga/ continuum. This raises the possibility that a categorical trans-
formation is an obligatory part of bottom-up speech processing, such as might be undertaken by a
specialized biological module (Liberman & Mattingly, 1985). Probing this unresolved question
was a motivation of the present experiment.

A Neural Decoding Approach

Two gaps in the categorical perception literature can be uniquely addressed with a neural de-
coding approach. First, it is unknownwhether categorical perception is the result of a bottom-up/
obligatory or a top-down/task-driven process.We address this question by varying task demands
during MEG: The task’s effect on stimulus dissimilarity is indexed not by behavioral discrimina-
tion, but by the extent to which the evoked neural patterns are correctly classified by amachine-
learning algorithm. Second, it is unknown whether stimulus-classification accuracy will reveal

Neural decoding:
Describes the attempt to determine
what stimulus, event, or intent elicited
a given pattern of brain activity.
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that subphonemic detail decays vs. persists over time, and how this phenomenonmight bemod-
ulated by task demands. Previous studies of continuum perception were able to infer category
structure based on whether a stimulus change of a given magnitude yielded release from adap-
tation (e.g., Altmann et al., 2014) or a mismatch response (e.g., Dehaene-Lambertz, 1997;
Sharma &Dorman, 1999), but these paradigms may influence the strength and timing of decod-
able information by establishing perceptual expectations (Demarchi et al., 2019; Kok et al.,
2017). Here, we perform a direct comparison of active vs. passive task demands on the repre-
sentation of isolated, randomized speech tokens by examining neural pattern dissimilarity with
high temporal resolution, inferring category structure from the classifier’s ability to discriminate
pairs of stimuli.

Broadly, we expected that active vs. passive listening conditions would affect the readout of
neural information. One hypothesis was that the demands of the active task would non-
selectively boost the decoding of stimuli via attentional mechanisms. Attention and behavioral
relevance are known to strengthen stimulus representations such that they can be reliably de-
coded from neural patterns (Bonte et al., 2014; Erez & Duncan, 2015; Kaiser et al., 2016).
Relatedly, because the active task would require a perceptual decision (and, eventually, a motor
response), we hypothesized that representations would bemaintained (i.e., decodable) for a lon-
ger time in active trials than in passive trials—a correlate of working memory and/or decision
processes (S. H. Lee & Baker, 2016). Time-resolved neural decoding analyses have previously
distinguished different stages of information processing that contribute to categorization and
decision-making (De Lucia et al., 2012).

Another hypothesis was that the active task would reshape the neural representation of an
acoustic continuum to reflect the nonlinear way it is perceived, with less pattern dissimilarity
within categories and greater pattern dissimilarity between categories, supporting the cognitive
demand of category assignment. Such a result has been obtained with neural recordings in the
auditory cortices of mice that had learned to categorize high- and low-frequency sounds; impor-
tantly, this reorganization of tuning occurred during the active task but not during passive listen-
ing (Xin et al., 2019). To our knowledge, no study in humans has examined how a categorization
task affects the structure of neural representations of auditory continuum stimuli. However, there
may be a parallel in the visual domain: Like the acoustic-phonetic properties of speech, color
varies along a continuum whose subtle gradations are discriminable with effort, but humans di-
vide up the space into just a few discrete categories. In an intriguing fMRI experiment that com-
pared a color-naming task to diverted attention, the task not only strengthened the signal in
visual areas, but also induced categorical clustering of neural color spaces, aligned with partic-
ipants’ perception of categories along the color spectrum (Brouwer & Heeger, 2013). Thus, we
hypothesized that a phoneme-naming taskmight alter the structure of neural representations in a
similar top-down manner. The correlate of this hypothesis is that subphonemic detail would be
discarded as categories emerged, much as in the conscious experience of categorical percep-
tion, in which only the abstract representation rises to the level of awareness. A neural decoding
approach allows us to determine whether information about stimulus goodness or ambiguity
nevertheless persists in neural patterns.

Finally,MEGoffers the opportunity to examine hemispheric lateralizationwith excellent tem-
poral resolution. Unlike the electroencephalography (EEG) signal, magnetic fields are not dis-
torted as they pass through the head. Importantly, the superior-temporal location of auditory
cortex yields magnetic dipoles that are oriented tangential to the scalp with topographies that
straightforwardly distinguish auditory-evoked activity in each hemisphere (Gutschalk, 2019).
Usingmultivariate decoding, we expected to replicate previous findings of categorical phoneme
processing in the left hemisphere and explored whether the right hemisphere perhaps contained
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reliable but low-intensity patterns of information that were not captured by prior univariate
neuroimaging analyses.

The Present Study

In this study, we recorded MEG while adult participants encountered the same 10 continuum
stimuli under passive listening conditions (diverted attention) and active listening conditions
(overt stimulus labeling as ba or da). In the first part of the analysis, we performed a binary clas-
sification of the labels assigned to stimuli in the active task in order to confirm that the MEG data
contain sufficient information to decode the two phoneme percepts. We compared the results
obtained from performing classification on all sensors, left-hemisphere sensors only, and right-
hemisphere sensors only. The time-resolved decoding time series should reveal the emergence
and dissipation of this perceptual information during the trial.

In the second part of the analysis, we measured overall neural pattern dissimilarity in order to
ask whether task demands affect the strength and/or maintenance of neural stimulus represen-
tations. Here we conducted pairwise decoding of all 45 possible stimulus pairings at each time
point in the trial’s processing cascade. If the active task increases the strength of representations,
we should observe significantly higher overall decoding accuracy at a given time; if the active
task increases the maintenance of representations, we should observe significantly higher
overall decoding accuracy over a period of time.

In the final part of the analysis,we exploredwhether task demands affect the structure of neural
stimulus representations—that is, whether subphonemic detail is lost over time and/or differen-
tially in the two tasks. We took three approaches to assaying the structure of continuum repre-
sentation. First, we employed the traditional categorical-perception analysis of comparing the
pairwise neural dissimilarity of equidistant stimuli falling within vs. across the listener-defined
category boundary. Second, we used representational similarity analysis (RSA; Kriegeskorte
et al., 2008), correlating pairwise neural dissimilaritymatriceswithmodels of stimulus perception
and stimulus ambiguity. Third, we performed k-means clustering on the neural dissimilarities. If
the loss of subphonemic detail is an obligatory part of bottom-up speech processing, we should
observe that similar structure emerges in active and passive tasks: namely, low within-category
dissimilarity, high between-category dissimilarity, high correlations with the perceptual model,
low correlations with the ambiguity model, and distinct phonemic clusters.

MATERIALS AND METHODS

Participants

Twenty-four right-handed adults (13 male/11 female; mean age = 26 years, SD = 6 years)
participated. All were native speakers of American English. To confirm self-reports of normal
hearing, pure-tone detection thresholds were measured in the left and right ears at standard
audiometric frequencies (250, 500, 1000, 2000, 4000, and 8000 Hz); all thresholds were
≤30 dB. Each participant provided written, informed consent prior to the experiment, whose
procedures were approved and overseen by the Committee on the Use of Humans as
Experimental Subjects at the Massachusetts Institute of Technology.

MEG Tasks

Stimuli

The auditory stimuli for the twoMEG taskswere 10 syllables constituting an acoustic continuum.
The original 20-step continuum was constructed by Stephens and Holt (2011) via linear
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predictive coding between natural-speech /ba/ and /da/ tokens uttered by an adult male speaker
of American English. For this experiment, we used the 10 odd-numbered steps of the original
continuum and renumbered them from 1 (/ba/) to 10 (/da/). Syllables were 310 ms in duration.
Stimuli were delivered via insert earphones (Etymotic, Oak Grove Village, IL) at a comfortable
listening level, consistent across participants.

Passive task

Participants were passively exposed to 43 tokens each of the 10-step continuum in pseudo-
random order. As a cover task, and to maintain arousal, they were instructed to maintain visual
fixation and to press a button with the left index finger each time a photograph appeared on the
screen. Theywere told that theywould hear sounds in their earphones but that they could ignore
them. Each trial consisted of the presentation of one auditory syllable, with the inter-trial interval
jittered randomly among 1,410, 1,610, and 1,810ms (measured from sound onset). The fixation
point (a white plus sign on a black background) was maintained throughout the experiment,
except on target trials, on which a photograph (a nature scene) appeared synchronously with
the auditory stimulus (Figure 1A). Task duration was approximately 12 min. Button-presses and
response times (with respect to stimulus onset) were recorded for behavioral analysis, but the
30 target trials were discarded from MEG analysis, yielding a total of 400 passive trials, 40 per
stimulus. No motor responses were required on the trials included in the neural analyses.
The Passive task was performed immediately before the Active task.

Active task

Participants were asked to label each of 40 tokens of each of the 10 continuum steps, presented
in pseudorandomorder, as either ba or da. On each trial, an auditory syllablewas presented, and
after a delay of 900 ms measured from sound onset, two response options appeared on the
screen: a cartoon ball (representing ba) and a cartoon dog (representing da) (Figure 1B). (As these
data were collected as part of a larger cross-sectional investigation including participants

Figure 1. Task design. (A) Passive task. Participants were passively exposed to isolated, randomized
tokens from the 10-step /ba/-/da/ speech continuum while their attention was diverted to a visual
detection task. One auditory stimulus was presented on each trial; participants pressed a button when
a photograph appeared. (B) Active task. Participants were exposed to the same stimuli, but were asked
to label each token as either ba or da via button press. Counterbalanced response options appeared
after a delay period (see text for details); ball signified ba and dog signified da.
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without orthographic expertise, we defined the categories not with the letters b and d, but in
terms of the initial sounds in ball and dog.) Participants were instructed to press the button under
their left middle finger to select the option on the left side of the screen and the button under their
left index finger to select the option on the right side of the screen. During the first half of the task,
one response option always appeared on the left and the other always appeared on the right. At
the midpoint of the task, an experimenter spoke to the participant via intercom and reminded
them that each response option would now appear on the other side of the screen. Which re-
sponse option appeared first on the left vs. the right was counterbalanced across participants. An
inter-trial interval of random duration between 250 and 750ms was initiated by button-press. In
order to prevent contamination of the MEG data of interest with preparatory motor activity,
button-presses were not accepted until the response options appeared, and participants were
asked to delay their motor responses until this time. Response times were not analyzed for the
Active task because no instructions regarding speed or accuracy were given, and because par-
ticipants were able to use the button press to advance the experiment at their preferred pace.
Task duration was approximately 15 min, and this task also yielded 400 active trials, 40 per
stimulus.

MEG Acquisition and Preprocessing

MEGwas recorded from each participant during the Passive and Active tasks on an Elekta Triux
306-channel system (102 magnetometers and 204 planar gradiometers) with a sampling rate of
1000 Hz and online filtering between 0.03 and 330 Hz. Continuous head position measure-
ments were recorded from five coils affixed to the scalp. Prior to recording, three anatomical
landmarks (nasion, left and right preauricular points) were registered with respect to the head-
position coils using a Polhemus digitizer. Raw data were preprocessed with Maxfilter software
(Elekta, Stockholm), incorporating head-movement correction and spatiotemporal filtering of
noise sources originating from outside the MEG helmet. Subsequent processing was conducted
in Brainstorm (Tadel et al., 2011). Eye-blink and cardiac artifacts were removed from the con-
tinuous dataset using signal-space projection. Trials were epoched from −200 to 1,000 ms with
respect to the onset of the auditory stimulus, baseline-corrected with respect to the prestimulus
period, and low-pass filtered at 15 Hz. Additionally, data from each sensor were z-normalized
for the subsequentmultivariate analysis using the baselinemean and standard deviation. Feature
normalization prevents distance-based classification by linear support vector machines (see
next section) from being dominated by features with larger scales at the expense of features with
smaller scales, which is a risk when combining data frommagnetometer and planar-gradiometer
sensor types.

Multivariate Pattern Analysis

We used multivariate pattern analysis (MVPA) to derive measures of neural dissimilarity for (a)
stimuli presented during the Passive task; (b) stimuli presented during the Active task; and (c)
stimuli presented during the Active task that were subsequently labeled ba vs. da, regardless
of stimulus identity. For (a) and (b)—hereafter referred to as stimulus decoding—the output was
a 10 x 10 symmetric neural representational dissimilarity matrix (RDM) for each participant and
time point and task, in which each cell contained the decoding accuracy of the row stimulus vs.
the column stimulus. For (c)—hereafter referred to as percept decoding or ba vs. da decoding—
the output was a single decoding-accuracy time course for each participant.

MVPA was performed using linear support vector machines (SVM) as implemented in
LIBSVM 3.21 (C.-C. Chang & Lin, 2011) for MATLAB (MathWorks, Natick, MA). SVM

Multivariate pattern analysis:
A method of identifying patterns
across many independent variables
for the purpose of determining what
information is contained in their
combined fluctuations.
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classification was performed for each participant separately and at each time point (1-ms reso-
lution) independently, with the 306MEG sensor measurements forming the multivariate pattern
at each time point (e.g., Figures 2A and 2B). For stimulus decoding, each trial’s label was the
stimulus identity (i.e., the continuum step number, from 1 to 10), and we conducted pairwise

Figure 2. Decoding ba vs. da perception in the Active task. MEG sensor amplitudes averaged over trials and participants, for all trials per-
ceived as ba (A) and all trials perceived as da (B). Each trace is one of 306 sensors, which together formed the multivariate pattern for training
and testing the “all sensors” classifier at each time point (1-ms resolution). Decoding was also performed using left-hemisphere and
right-hemisphere sensor subsets. Stimulus onset is at 0 ms. (C) Participants’ behavioral responses during the Active task demonstrate categorical
perception of the /ba/-/da/ continuum, with substantial ambiguity at steps 5 and 6. Error bars represent the standard error of the mean. (D) The
time course of ba vs. da decoding, averaged across participants, performed in all sensors (black), left-hemisphere sensors (solid gray), and
right-hemisphere sensors (dotted gray). Horizontal lines below the traces in corresponding colors indicate time windows of significantly
above-chance decoding accuracy. (E, F) Topographical plots of the transformed classifier weights averaged within the first, second, and third
time windows during which all-sensors decoding was significantly above chance. Magnetometers (E) and planar gradiometers (F) are plotted
separately. Left is left and top is anterior. The values in each plot have been divided by the standard deviation to yield arbitrary units (a.u.).
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classification of each of the 45 possible stimulus pairings. For percept decoding, each trial’s label
came from the participant’s response on that trial (i.e., ba or da), and we conducted binary clas-
sification of all trials labeled ba vs. all trials labeled da. Thus, in all cases, the classifier was
trained to distinguish two conditions.

For cross-validation, the data were randomly assigned to one of five folds; four folds were
used for training the classifier and one fold was used for testing it. The data were then equalized
in noise level using the “epoch”method of multivariate noise normalization (Guggenmos et al.,
2018), which computes the noise covariance matrix for all time points in the epoch separately
within each condition and then averages across time points and conditions. The noise covari-
ance was estimated from the training data and then applied to both the training and the test data,
which avoids inflated classification. Further, because the estimate of noise covariance may be
unstable when there are relatively few data points with respect to the number of features, we
used the shrinkage transformation (Ledoit &Wolf, 2004) to regularize the estimate and thus pre-
vent overfitting. To reduce computational load and improve the signal-to-noise ratio, trials cor-
responding to the same condition within each of the five folds were averaged together, yielding
one summary trial for each condition per fold. Thus, for stimulus decoding, each summary trial
reflected eight real trials, and for percept decoding, each summary trial reflected ~40 real trials,
depending on the proportion of ba vs. da labels applied by the participant during the 400 ex-
perimental trials. The final decoding accuracies reflected the average over 100 repetitions of the
entire procedure. In all cases, 50% represents chance performance of the classifier, and higher
decoding accuracies reflect greater neural dissimilarity.

In order to determine whether information about stimulus identity and/or perceptual label is
lateralized, we also performed SVM decoding separately on left-hemisphere sensors (n = 144)
and right-hemisphere sensors (n = 144) as described above. Magnetometers and gradiometers at
the midline (n = 18) were excluded from these two subgroups.

Statistical Testing

We used nonparametric permutation tests to determine significance in decoding-accuracy time
courses. All time points in the trial (−200 to 1,000 ms; 1-ms resolution) were included in each
test. The null hypothesis was equal to the 50% chance level. Under the null hypothesis, the
subject-specific time courses can be randomly flipped around their null values before averaging
across subjects to yield permutation samples. Repeating this procedure 5,000 times enabled us
to estimate the empirical distribution of the decoding-accuracy values and convert the original
time courses into p-value maps. Finally, the familywise error across time points was controlled
using cluster-size inference. Namely, suprathreshold clusters (i.e., contiguous time points) were
identified by applying a cluster-defining threshold of p = 0.05. These clusters were then reported
as significant if their length in time exceeded a p = 0.05 threshold (the 95th percentile) with
respect to the empirical distribution of the suprathreshold clusters of the permutation-sample
statistical maps. These statistical tests were one-sided to reflect hypotheses about the direction
of effects.

Transformed Classifier Weights

To support the lateralization analysis, we identifiedwhich sensors contributed to the decoding of
ba vs. da. Multivariate classifiers, such as the linear SVM that we used, combine information
across sensors and weight them according to their contribution to distinguishing the labeled in-
put. No single weight, however, is directly interpretable because it is only in combination that
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they produce the extraction filter that best amplifies signal and suppresses noise (Haufe et al.,
2014). We used the method described by Haufe and colleagues (Haufe et al., 2014) to transform
the weights into intuitive and neurophysiologically interpretable values for each sensor. Briefly,
to apply this transformation, the weight matrix was left-multiplied by the data covariance and right-
multiplied by the inverse of the latent factors’ covariance. This transformation yields values that can
be interpreted as neural activations that encode the discrimination of ba vs. da. The transformed
classifier weights were then averaged across participants and displayed on a topographical sen-
sor map for a visualization of the spatiotemporal origin, direction, and strength of the ba vs. da
neural signal. The MEG helmet has 102 sensor locations, each containing one magnetometer
and two planar gradiometers. We plotted the magnetometer and gradiometer values separately
because the two sensor types capture different aspects of the magnetic field: Magnetometers
measure the component of the magnetic field that is perpendicular to the surface of the helmet
(with more sensitivity to distant sources) and planar gradiometers estimate the spatial deriva-
tive of that component (with less sensitivity to distant sources).

Representational Similarity Analysis

Weused RSA to reveal how information about stimulus identity is structured in theMEG data. In
the RSA framework, the neural RDM derived from classifier performance is correlated with
RDMs representing hypothesized models of stimulus dissimilarity. Each cell of a 10 x 10 sym-
metric RDM contains the dissimilarity of the row and column stimuli. We tested two models: a
Perceptual model and an Ambiguity model.

The Perceptual RDM was created by averaging across participants’ behavioral responses in
the Active task. Each cell contained the absolute value of the difference between the percent of
trials on which the column stimulus was labeled ba and the percent of trials on which the row
stimulus was labeled ba, yielding a matrix with minimum value 0 and maximum value 100.

The Ambiguity RDMwas created by comparing the consistency of participants’ responses to
each stimulus. The proportion of ba responses was first transformed into a consistency index,
where 100 indicated that the stimulus was given the same label on every trial (i.e., consistent
and therefore unambiguous) and 0 indicated that it was labeled ba on exactly 50% of trials (i.e.,
inconsistent and therefore ambiguous). Each cell of the matrix was then populated with the ab-
solute value of the difference between the consistency of the column stimulus and the consis-
tency of the row stimulus. Thus, this matrix, also averaged across participants, represents the
dissimilarity of stimulus pairs in terms of their perceptual ambiguity: Low values indicate that
both stimuli are either ambiguous or unambiguous; high values indicate that one stimulus is
ambiguous and the other is unambiguous.

We used a bootstrapping procedure for statistical inference in RSA. Bootstrap samples were
created by resampling subjects 5,000 times with replacement. For each bootstrap sample, we
created subject-averaged, time-resolved neural RDMs for the Passive task and the Active task
and compared themwith the resampled Perceptual model and the resampled Ambiguity model,
using partial Spearman correlation in order to partial out the other model. These correlation
values were used to construct statistics representing the main effect of task, the main effect of
model, and the interaction of task and model. The empirical distribution of these statistics over
the bootstrap samples enabled the estimation of p values by assessing the percent of bootstrap
samples crossing the 0 value while accounting for two-sided hypothesis tests. Because we ulti-
mately conducted these bootstrap percentile tests in the three time windows identified during
ba vs. da decoding, we assessed significance with respect to the Bonferroni-corrected � level
of 0.017.
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Multidimensional Scaling and k-Means Clustering

In order to visualize the structure of the neural dissimilarity data, we performed nonmetric mul-
tidimensional scaling (MDS) on the time-resolved neural dissimilarity matrices using an 80-ms
sliding window with a 20-ms step (cf. E. F. Chang et al., 2010) and 10 randomly chosen initial
configurations for each scaling procedure. The goodness-of-fit criterion was Kruskal’s “stress 1”
(Kruskal, 1964). k-means clustering was performed using the squared Euclidean distancemetric.
All analyses were performed in MATLAB (mathworks.com).

RESULTS

Behavioral Responses During the Passive Task

Behavioral responses were collected in the Passive task to ensure arousal and discourage atten-
tion to the auditory stimuli. For the target trials in the visual cover task, which were excluded
from neural analysis, participants (n = 23) achieved a mean hit rate of 0.98 (SD = 0.04; range =
0.87–1) with a mean response time of 505 ms (SD = 95; range = 340–695). One additional
participant was observed via video feed to be making appropriate motor responses during this
task, but no button-presses were recorded; this participant was included in all subsequent
analyses for a total of n = 24.

Behavioral Responses During the Active Task

Labeling responses were collected from participants (n = 24) in the Active task to assess categor-
ical perception of the stimulus continuum. Stimuli 1–5 were primarily labeled ba and stimuli 6–
10 were primarily labeled da (Figure 2C). Substantial ambiguity in identifying steps 5 and 6 is
consistent with the original identification data reported for these stimuli (Stephens &Holt, 2011).

Decoding the ba vs. da Percept in the Active Task

We first decoded the category labels applied during the Active task from participants’ individual
brain responses measured at all 306 MEG sensors. Figure 2D (black line) shows the time course
of decoding accuracy averaged across participants; decoding was significantly above chance
(one-sided sign-permutation test; p < 0.05 cluster-defining threshold; p < 0.05 cluster threshold)
during the three time windows, 165–354 ms ( p = 0.007), 429–529 ms ( p = 0.042), and 569–
680 ms ( p = 0.034). These results indicated that the MEG data contained sufficient information
to decode an individual’s subjective, categorical perception of an acoustic continuum during
the Active task.

We next examined hemispheric contributions to decoding ba vs. da perception.We repeated
the decoding analysis, this time using only left-hemisphere sensors. These decoding-accuracy
results (Figure 2D, solid gray line) essentially recapitulated the time course of decoding using all
sensors (black line). Left-hemisphere decoding was significantly above chance in one time win-
dow, 156–350 ms ( p = 0.005). We also performed decoding using only right-hemisphere sen-
sors: these results (dotted gray line) were similar in latency and shape to the others, but did not
reach significance. Lastly, we performed three one-sided sign-permutation tests (all > left, all >
right, left > right) to determine whether these three traces were significantly different from one
another: No differences were identified.

To confirm lateralized contributions to ba vs. da decoding, we examined the spatial distribu-
tion of transformed classifier weights (Haufe et al., 2014). The values projected on the topo-
graphical maps can be interpreted as neural activations that encode the ba vs. da distinction
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measured at magnetometers (Figure 2E) and planar gradiometers (Figure 2F). For visualization,
we averaged the transformed weights within each of the three time windows during which all-
sensors decoding was above chance (from Figure 2D). In the first time window, the strongest
signal was located in left-temporal sensors, which corroborated the significant left-hemisphere
decoding at this latency. In the second time window, the signal was also left-dominant. In the
third time window, the patterns were bilateral, without a clear hemispheric dominance.
Together, the decoding results and transformed classifier weights indicated that neural responses
in the left hemisphere provided the first wave of reliable perceptual information, and that the
right hemisphere was necessary but not sufficient for subsequent reliable percept decoding.

In the Passive task, stimulus tokens were not given a perceptual label, so the binary ba vs. da
classification could not be performed on these data. Instead, we next conducted a head-to-head
comparison of how Passive vs. Active task demands affected the neural representations of the
10 continuum stimuli.

Strength and Maintenance of Stimulus Information in Passive vs. Active Tasks

To determine when patterns of neural activity at the sensor level distinguish continuum stimuli
from one another, we averaged all pairwise decoding accuracies from the neural RDMs at each
time point separately, yielding a time series of overall stimulus decoding accuracy for each par-
ticipant and each task. If the demands of the Active task increase the overall dissimilarity of stim-
ulus representations, we should observe significantly higher overall decoding accuracy in the
Active vs. the Passive task.

The onset of significant decoding occurred at 321 ms in the Passive task and at 368 ms in the
Active task; overall stimulus decoding remained above chance (one-sided sign-permutation test;
p < 0.05 cluster-defining threshold; p < 0.05 cluster threshold) for 140 ms in the Passive task
(Figure 3A, blue line; p = 0.017) and for 586 ms in the Active task (red line; p < 0.001).
Overall stimulus decoding was reliably higher in the Active vs. the Passive task (one-sided
sign-permutation test; p < 0.05 cluster-defining threshold; p < 0.05 cluster threshold) in two time
windows between 461 and 823 ms (purple lines; p = 0.037 and p = 0.010). These windows
began at the offset of above-chance Passive decoding and coincided with times of above-
chance Active decoding, suggesting that Active vs. Passive stimulus representations were not
necessarily stronger at any given time, but were maintained longer in the Active task.

In order to determine whether these task effects differed by hemisphere, we performed the
same tests on decoding results obtained from left- and right-hemisphere sensors separately. In

Figure 3. Strength and maintenance of stimulus information in Passive vs. Active tasks. The time course of overall stimulus decoding accu-
racy, averaged across all pairwise comparisons and participants, is shown for the Passive (blue) and Active (red) tasks. Blue and red horizontal
lines indicate when the corresponding time series is above chance. Purple lines indicate time windows in which decoding accuracy is sig-
nificantly higher in Active vs. Passive. Decoding was performed in (A) all sensors, (B) left-hemisphere sensors, and (C) right-hemisphere sen-
sors, with similar results in each.
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the left hemisphere (Figure 3B), Active stimulus decodingwas above chance from315 to 1,000ms
( p < 0.001); Passive stimulus decoding was not above chance; and there was a significant
difference between these two time courses (600–839 ms; p = 0.002). In the right hemisphere
(Figure 3C), Active stimulus decoding was above chance (402–878ms; p < 0.001); Passive stim-
ulus decoding was not; and the difference between these two time courses was not significant.
Thus, maintenance of stimulus information over time in Active trials was observed regardless of
whether decoding was performed in all, left-hemisphere, or right-hemisphere sensors.

However, while reliable overall stimulus decoding indicates that stimulus information is pres-
ent in the data, it does not reveal the structure of that information. The higher overall decoding
accuracy in the Active task could be due to a nonselective boost in the stimulus-related signal,
perhaps as a consequence of attention. On the other hand, it could be due to selective increases
in dissimilarity for certain pairs of stimuli. Therefore, we next interrogated the dissimilarity struc-
ture of these neural stimulus representations over the course of Passive and Active trials.

Structure of Stimulus Information in Passive vs. Active Tasks

A second goal of our study was to describe the dissimilarity structure of the neural data over
time and as a function of task demands. The premise of these analyses is that the structure of con-
tinuum representation can be inferred from the classifier’s ability to discriminate stimuli along it.
We expected that, over time, neural dissimilarities would converge on two perceptual categories,
ba and da. One hypothesis was that this patternwould bemore evident in the Active task, where a
delayed categorical responsewas required. Alternatively, if speech-continuum tokens undergo an
obligatory transformation into phonemes, this pattern might be observed in both tasks.

First, we analyzed specific pairs of stimuli that exemplified within-category and between-
category contrasts in order to test the hypothesis that the demands of the Active task warp the
neural representation of the acoustic continuum in favor of phoneme categories. Second, we
used RSA to determine whether and when the neural representation of the continuum was bet-
ter explained by models of perceptual categories vs. stimulus ambiguity. Third, we applied a
clustering algorithm to the neural dissimilarities.

Within-Category and Between-Category Comparisons

We borrowed an approach from traditional categorical-perception studies and compared the
neural dissimilarity of stimulus pairs that were equidistant from each other on the acoustic stim-
ulus continuum, but fell within vs. across the phoneme category boundary. Based on the behav-
ioral results from the Active task (Figure 2C), the boundarywas presumed to lie between stimulus
5 and stimulus 6. We therefore selected stimuli 1 and 4 as the within-ba pair, stimuli 4 and 7 as
the between-category pair, and stimuli 7 and 10 as the within-da pair. If the task demands of
Active categorization decrease the dissimilarity of within-category neural representations, we
should observe significantly higher within-category decoding accuracy in the Passive task than
in the Active task. If the task demands of Active categorization increase the dissimilarity of
between-category neural representations, we should observe significantly higher between-
category decoding accuracy in the Active task than in the Passive task.

Using the pairwise stimulus decoding results from when the classifier was built and tested on
data from all sensors, we isolated the decoding accuracy time series for the within-ba pair and
ran a one-sided sign-permutation test with cluster-size correction for Passive > Active. No sig-
nificant clusters were identified by this procedure. An identical procedure was followed for the
within-da pair; no significant clusters were identified. For the between-category pair, the data
were submitted to the same test for Active > Passive, and no significant clusters were identified.
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Thus, we found no evidence of task demands affecting the dissimilarity of these acoustically
equidistant within-category or between-category neural patterns at any point in the trial.

Representational Similarity Analysis

The dissimilarity structure of the neural data can be visualized in a time-resolvedmatrix in which
each cell contains the pairwise decoding accuracy of the row and column stimuli in the Passive
task (Figure 4A) and the Active task (Figure 4B). In order to determine if andwhen the neural data
is structured by phoneme perception and/or stimulus ambiguity, we constructed two models
based on participants’ labeling responses in the Active task (Figure 2C).

The Perceptual model (Figure 4C) was derived from the proportion of ba vs. da labels. If per-
ception is represented in the neural data, then two stimuli that are usually given the same label
will be poorly classified (low dissimilarity), while two stimuli that are usually given different
labels will be well classified (high dissimilarity).

The Ambiguity model (Figure 4D) reflected the degree to which those labels were consistently
applied across trials, and specifically whether two stimuli differed in this regard. If differences in
ambiguity are represented in the neural data, then two stimuli that are acoustically different but
both unambiguous (e.g., 1 and 10) will be poorly classified (low dissimilarity); two stimuli that are
acoustically similar and both ambiguous (e.g., 5 and 6) will be poorly classified (low dissimilarity);
and two stimuli that differ in ambiguity (e.g., 1 and 5) will be well classified (high dissimilarity).

We then computed the partial Spearman correlation between each task’s neural RDM and the
two candidate model RDMs, partialling out the other model. The outcome was a time course of
neural-model representational similarity, in which a higher correlation indicates greater similarity.
The four RSA correlation time series and their bootstrapped 95%confidence intervals are presented
for qualitative intuition in Figure 4. The Passive-Perceptual correlation reached a brief plateau
around 200 ms and subsequently decayed (Figure 4E). The Passive-Ambiguity correlation peaked
transiently at 74ms (Figure 4F). TheActive-Perceptual correlation had three peaks, at 214, 520, and
642ms (Figure 4G). TheActive-Ambiguity correlationpeaked initially at 173msand then remained
reliably positive between 521 and 859 ms (Figure 4H).

For the statistical analysis of model fit, without strong justification for any a priori time win-
dows of interest, we selected the three time windows within which ba vs. da was robustly de-
coded (from Figure 2D). As can be seen in Figure 4I, where all four traces are displayed together,
peaks in the correlation time series align well with these time windows (horizontal black lines).
Within each window, we extracted the mean bootstrapped correlation coefficient and tested for
a main effect of task, a main effect of model, and a task x model interaction using the bootstrap
percentile method.

In the first time window (165–354 ms), there was a significant effect of model ( p = 0.016). In
the second timewindow (429–529ms), no effects were significant ( p’s > 0.132). In the third time
window (569–680 ms), there was a significant effect of model ( p = 0.006) and a significant
effect of task ( p = 0.002). The extracted mean correlation coefficients (partial Spearman’s �)
in Figure 4J show that the Perceptual model was a better fit in the first time window, and that
the Ambiguity model was a better fit in the third time window. Additionally, neural-model cor-
relations were higher in the Active task than in the Passive task in the third time window.

RSA conducted on the neural decoding results by hemisphere produced similar but weaker
results (data not shown). In the left hemisphere, there was an effect of task in the third time win-
dow (Active > Passive; p = 0.003). In the right hemisphere, there was an effect of model in the
third time window (Ambiguity > Perceptual; p = 0.011).
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Figure 4. Structure of stimulus information revealed by representational similarity analysis.
Example representational dissimilarity matrices at 130 ms (peak amplitude of the auditory evoked
field, per Figures 2A and 2B) for the Passive (A) and Active (B) tasks. (C) Perceptual dissimilarity
model. (D) Ambiguity dissimilarity model. For RSA, the average neural dissimilarity matrix for each
task at each time point was correlated with each model matrix, yielding four neural-model corre-
lation time series (E, F, G, H), each plotted with its 95% confidence interval. For easier comparison,
all four traces are plotted together in (I). Horizontal lines below the traces indicate the time windows
of significant ba vs. da decoding from Figure 2D, within which we tested for differences in corre-
lation coefficients using the bootstrap percentile method. In the first time window, there was a sig-
nificant effect of model, and in the third time window there were significant effects of model and
task. ( J) Extracted correlation coefficients show that the Perceptual model was superior in the first
time window and the Ambiguity model was superior in the third time window. Additionally, in the
third time window, neural-model correlations were higher in the Active task than in the Passive task.
Note that in Figure 4, all neural data come from stimulus decoding performed on all sensors.
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Multidimensional Scaling and k-Means Clustering

RSA revealed that as correlations with the Perceptual model waned over time, robust correla-
tions with the Ambiguity model emerged. We confirmed these results by visualizing the neural
dissimilarities in a common geometric space and then implementing a clustering algorithm. The
closer two stimuli are in this space, the more similar their neural patterns are; If a categorical
representation is present in the data, we should see a spatial clustering of stimuli belonging to
that category.

We applied MDS to the time-resolved dissimilarity matrices averaged over participants. In
selecting the number of dimensions to specify, we confirmed that Kruskal stress decreased as
the number of specified dimensions increased, and that this pattern held for both Passive and
Active data as well as at different time points in the trial interval (data not shown). Because stress
values for the two-dimensional solution consistently fell below 0.2, which indicated an
adequate fit (Kruskal, 1964), we used this embedding in the subsequent clustering analysis.

To formally determine how the neural data cluster, we applied k-means clustering, with dif-
ferent values of k, to theMDS two-dimensional solution. In order to validate cluster membership,
the average silhouette value, a measure of within-cluster tightness and between-cluster separa-
tion (Rousseeuw, 1987), was calculated for each time-resolved clustering solution. Consistent
with the top-down task-demands hypothesis, the two-cluster solution was notably better for the
Active data than for the Passive data near the end of the trial interval (Figure 5A). In contrast,

Figure 5. Structure of stimulus information revealed bymultidimensional scaling and k-means clustering. Neural dissimilarities from the Passive
and Active tasks were scaled to two dimensions usingmultidimensional scaling and the resulting distances were submitted to k-means clustering.
(A) Silhouette values indicate how many clusters optimally describe the data. Little difference is observed between Passive and Active when
three, four, or five clusters are imposed. A two-cluster solution better fits the Active than the Passive data toward the end of the trial interval.
The two-cluster solution (i.e., k = 2) is plotted at five representative time points throughout the trial interval for Passive (B) and Active (C) data. The
stimulus continuum is represented by color: from blue (/ba/) to yellow (/da/). Cluster membership is represented by shape: circles vs. diamonds; in
each plot, circles are used for the cluster to which stimulus 1 (/ba/ endpoint) is assigned. The time stamp indicates the center of an 80-ms analysis
window. In the lowest far-right plot (Active, 820ms), circles have been jittered for visibility. At 220ms, both tasks show a phonemic patterning of
ba’s (blue circles) vs. da’s (yellow diamonds). At subsequent time points, both tasks show a patterning of category goodness (blue and yellow
circles) vs. ambiguity (green diamonds). Note that in Figure 5, all neural data come from stimulus decoding performed on all sensors.
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silhouette values for three, four, and five clusters were very similar for Passive and Active data,
indicating little effect of task on item clustering at these values of k.

We then examined which representations were assigned to the two clusters over time, under
the hypothesis that the two clusters that best fit the data at the end of the trial would correspond to
the ba and da phoneme categories. Figures 5B and 5C plot the cluster assignments (circles vs.
diamonds) for each of the 10 stimuli (blue/ba-yellow/da continuum) at five representative time
points throughout the trial. The analysis window centered on 220 ms encompasses peak ba vs.
da decoding accuracy (235 ms, from Figure 2D) and peak Active-Perceptual correlation (214 ms,
from Figure 4I); at this latency, clusters in both Passive and Active data reflected ba (blue circles)
and da (yellow diamonds) categories. At later time points, cluster composition reflected a segre-
gation of endpoint tokens (blue and yellow circles) from midpoint tokens (green diamonds). Near
the end of the trial, the ambiguous stimulus 5 (from Figure 2C) was placed in its own cluster. Thus,
the neural data from both tasks clustered according to phoneme percept at ~220 ms, but repre-
sented stimulus ambiguity, or a lack thereof, for a subsequent ~600 ms. This late emergence of
an ambiguity representation is consistent with the RSA results described above.

DISCUSSION

Summary of Results

Speech perception relies on the interpretation of acoustically variable phoneme realizations, a
process so efficient that it mostly escapes our notice in the course of everyday listening. We
found that patterns of activity in MEG sensors could be used to decode whether participants
perceived ba or da as they categorized tokens from a 10-step /ba/-/da/ continuum. The left hemi-
sphere was sufficient to decode the percept early in the trial, while the right hemisphere was
necessary but not sufficient for decoding at later time points.

We also decoded the individual stimuli from the neural patterns evoked during active cate-
gorization of and passive exposure to these stimuli. We found that, in general, stimulus informa-
tion was maintained longer when a response was required. To understand how that information
was structured, we examined the neural dissimilarities across the continuum, finding a lack of
evidence for the loss of within-category detail during the categorization task. We also found
evidence for the retention of subphonemic detail by examining how twomodels of stimulus dis-
similarity fit the data within the three time windows during which ba vs. da decoding was above
chance. The Perceptual model, which distinguishes stimuli that are given different labels, was
superior in the earliest time window. The Ambiguity model, which distinguishes stimuli that are
consistently vs. inconsistently labeled, was superior in the latest time window. Thus, even as a
categorical phoneme representation was present in the data, subphonemic information about
stimulus ambiguity had not been discarded.

Lateralized Contributions to Categorical Perception

We examined whether the information supporting ba vs. da decoding was left-lateralized, as
might be expected from previous neuroimaging studies of categorical speech perception
(Alho et al., 2016; Altmann et al., 2014; Joanisse et al., 2007; Y. S. Lee et al., 2012; Myers
et al., 2009). First, we simply repeated the classification of neural activity patterns measured
at all sensors, but this time restricting the classifier to only left-hemisphere sensors or only
right-hemisphere sensors. Reliable decoding of the ba vs. da percept was attained using all
sensors and left-hemisphere sensors. However, all three analyses had similar time courses of
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decoding accuracy and were not significantly different from one another. Our right-hemisphere
results are consistent with the theory that the right hemisphere holds non-categorical acoustic
representations which are suboptimal but sufficient for speech perception (Hickok & Poeppel,
2007). Second, we examined the transformed classifier weights that contributed to decoding
performance when the classifier had access to all sensors, finding that the signal was first present
in the left hemisphere, and subsequently in both hemispheres. This is consistent with a meta-
analysis of functional brain imaging in healthy right-handed participantswhose authors concluded
that the right hemisphere does not itself hold phonological representations, but participates in
inter-hemispheric language processing (Vigneau et al., 2011).

Both the stimulus type (a place-of-articulation continuum) and the task (phonological anal-
ysis) favor the involvement of the left hemisphere. The syllables /ba/ and /da/ are distinguished by
the placement of the tongue during articulation of the initial consonants, whichmanifests acous-
tically as a rapid upward vs. downward transition into the vowel’s second formant. Perceiving this
transition requires fine-grained temporal processing, which has been argued to be a specialty
of the left hemisphere (Arsenault & Buchsbaum, 2015; Poeppel, 2003; Zatorre & Belin, 2001).
Explicit phonological analysis of isolated, sublexical speech sounds is generally performed in
the left hemisphere (Turkeltaub & Coslett, 2010), but the right hemisphere may have this capac-
ity as well (Hickok & Poeppel, 2000; Poeppel et al., 2004). For example, fMRI patterns in right
temporal cortex have been used to decode participants’ trial-by-trial perceptions of ambiguous
speech sounds (Luthra et al., 2020).

Decision-Related Maintenance of Stimulus Information

We next turned to decoding the 10 stimuli instead of the binary percept. Averaging across all
pairwise decoding accuracies provided a coarse measure of the strength and maintenance of
neural stimulus representations in the Passive and Active tasks. As hypothesized, stimulus infor-
mationwasmaintained longer in the Active task. Significant decoding peaked transiently around
400 ms in the Passive task and extended to nearly 1,000 ms in the Active task. This finding was
consistent with the main effect of task identified in the RSA, in which neural-model correlations
were higher in the Active task in the third time window (569–680ms). To begin to explain these
results, we note that, in contrast to the Passive task, the Active task required attention to the
auditory stimuli, a decision, and, unavoidably, a motor response. We aimed to reduce the in-
fluence of preparatory motor activity on the classifiers by counterbalancing the finger-response
pairings within each participant such that each finger was not uniquely associated with ba or
da; the fact that ba vs. da decoding fell to chance at 680 ms instead of continuing until 900 ms
when a response was allowed suggests that this strategy was successful (Heekeren, Marrett, &
Ungerleider, 2008).

In human brain imaging, MVPA of attended vs. unattended stimuli has been shown to yield
better classification performance (Bugatus et al., 2017). Direct neural recordings in primary
auditory cortex demonstrate that, as compared to passive exposure, performing a detection task
boosts the correlated activity of neurons with similar tuning, yielding an enhancement of
population coding (Downer et al., 2015). Although we anticipated that similar enhancements
throughout perisylvian cortex would contribute to overall decoding accuracy in the Active task,
overall Active decoding was not significantly higher than overall Passive decoding in the short
period around 400 ms during which both were above chance. However, it must be noted that
the Active task was not a detection task, nor did it direct attention to subphonemic detail per se
(e.g., by requiring discrimination). Thus, we can only conclude that general attention did not
modulate stimulus representation at this latency.
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Alternatively, it could be the case that, by averaging over all pairwise decoding accuracies,
some increases in dissimilarity cancelled out other decreases in dissimilarity, obscuring effects of
attention on subsets of the representational matrix. We addressed this issue by examining spe-
cific pairs of stimuli that exemplified between- and within-category dissimilarities, although this
too yielded no apparent effect of task. This result is not consistent with a study conducted inmice
in which auditory cortex showed significant shifts in frequency tuning at both the neural and
population level during the performance of active sound categorization vs. passive exposure
(Xin et al., 2019). In that study, the active task was characterized by enhanced representation
of stimuli near the boundary, and pairwise classification at the population level showed
increased dissimilarity for between-category stimuli and decreased dissimilarity for within-
category stimuli in the active vs. passive condition. Human behavior, too, reveals acquired sim-
ilarity (i.e., reduced behavioral discrimination) for tokens within an arbitrary auditory frequency
category once subjects are trained to categorize them (Guenther et al., 1999). Despite finding no
evidence to support such prior reports and our own hypothesis of more categorical patterns un-
der active conditions, our results do affirm the representation of speech information in the brain
during diverted attention. Both tasks showed strong correlationswith the Perceptualmodel in the
first time window (165–354 ms), suggesting that speech processing occurs with high fidelity
even when it is passively encountered.

The third variable that differentiates the Passive and Active tasks is the decision, and so the
maintenance of stimulus representations in the Active task might be attributed to decision-
related processes. Neural correlates of decision processes (unique to the Active condition)
can be distinguished from those of sensory processes (shared by Passive and Active conditions),
as the former vary with the difficulty of the perceptual decision due to the need to accumulate
evidence until a decision criterion is met (Binder et al., 2004). Maintenance in the Active task
might then reflect working memory in the service of evidence accumulation (Curtis & Lee,
2010). Previous studies confirm that auditory working memory is both measurable in MEG
(Huang et al., 2016) and able to maintain precise subphonemic detail for a single speech sound
without conversion to an abstract phoneme (Joseph et al., 2015). Due to the 900-ms enforced
delay between stimulus onset and permitted button-press, it is likely that our neural data also
captured post-decision processing (i.e., while participants waited to respond), including meta-
cognitive monitoring and/or continued evaluation of the sensory evidence (Yeung &
Summerfield, 2012). Although the Active task itself was simple, the middle tokens were, empir-
ically, ambiguous, and participants may have had low confidence in their decisions on those
trials. This is a particularly compelling interpretation given the evidence from RSA and clustering
that stimulus information about ambiguity dominated the latter half of Active trials. Therefore,
we attribute the prolonged stimulus decoding in the Active task (368–954 ms), as well as the
Active > Passive effect revealed by RSA in the third time window (569–680 ms), to decision-
related, potentially metacognitive, processes.

Subphonemic Representations of Ambiguity

In the brain’s quest for meaning, speech sounds are subject to interpretation. With multivariate
pattern analysis of fMRI data it is possible to recover the subjective interpretation of such stimuli
(Bonte et al., 2017; Kilian-Hutten et al., 2011; Luthra et al., 2020). Here we find that MEG
patterns can also be used to decode the categorical labels that participants apply to stimuli from
a /ba/-/da/ continuum. The onset of significant category decoding in our study (165 ms) is con-
sistent with other reports of phoneme-category effects between 110 and 175ms (Bidelman et al.,
2013; E. F. Chang et al., 2010; Toscano et al., 2018).
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By comparing the dissimilarity structure of stimulus representations over time and across
tasks, we attempted to determine whether the emergence of a categorical phoneme representa-
tion is an obligatory part of bottom-up speech processing, or whether it is task-dependent. We
reasoned that the outcome of the Active task’s decision processwas certain to be a phoneme, but
that, under passive listening conditions, neural representationsmight also converge on a “report-
independent” abstraction of the sensory evidence (Freedman & Assad, 2011, p. 145). Instead,
using RSA, we found that the data from both tasks were well described first by the Perceptual
model and later by the Ambiguity model. The clustering analysis confirmed that both tasks’
scaled neural dissimilarities reflected phonemes in the first half of the trial interval and ambig-
uous vs. unambiguous tokens in the second half. This suggests an obligatory representation of
ambiguity during speech processing, regardless of task. Such a result is perhaps inconsistent with
the subjective experience of categorical perception in which, when a sequence of gradually
morphed sounds (e.g., from /ba/ to /da/ in 10 steps) is played aloud, the listener reports an abrupt
change from the ba percept to the da percept, rather than segues from ba to ambiguous and
from ambiguous to da. This raises the question of whether the neural “tag” of ambiguity exists
independently of the phonemic interpretation of the stimulus that rises to the level of conscious
awareness (see Davis & Johnsrude, 2007, for a discussion).

The literature on a higher level of speech processing—spoken word recognition—lends
support to this possibility. While the present study was concerned with speech perception in
isolation, spoken word recognition involves segmenting a stream of input and interfacing with
the mental lexicon; presumably, the purpose of speech perception is to allow spoken word
recognition (Samuel, 2011). Spoken word recognition is mediated by top-down influences
such as lexical knowledge (Brodbeck et al., 2018), semantic context (Broderick et al., 2019),
and talker information (Nygaard & Pisoni, 1998), which establish expectations about the form
and content of upcoming speech. Ambiguous input, such as a noise-masked phoneme, tends
to be interpreted in line with those expectations (Leonard et al., 2016; Warren, 1970). Such
contextual influences were beyond the scope of this paper, but recent work indicates that in
the absence of a constraining preceding context, a marker of ambiguity can also be carried
forward in time, where it facilitates reanalysis once disambiguating information becomes avail-
able (Gwilliams et al., 2018). Maintaining subphonemic detail for a second or more (Connine
et al., 1991; Szostak & Pitt, 2013) may be an adaptive strategy, aiding recovery from an initial
interpretation of the speech signal that is subsequently revealed to be incorrect (McMurray
et al., 2009).

Of course, this phenomenon does not preclude a parallel process in which an initial commit-
ment to one phoneme is made (Gwilliams et al., 2018). This position is consistent with models of
perceptual decision-making not specific to speech that posit a functional module for detecting
uncertainty or difficulty that operates alongside the perceptual cascade (Heekeren et al., 2008)
or allow for storage of both the categorical decision and the information on which it was based
(Lemus et al., 2007). In speech perception, some ascending neural representations may be trans-
formed into those indicative of category membership, giving rise to the neural correlates of cat-
egorical perception (e.g., Joanisse et al., 2007; Liebenthal et al., 2005; Myers et al., 2009), while
another processing stream may retain subphonemic detail (e.g., Toscano et al., 2010, 2018),
which is very often systematically informative to the listener (Hawkins, 2003). Word segmenta-
tion (Smith & Hawkins, 2012), compensation for coarticulation (Mann, 1980), and talker iden-
tification (Remez et al., 1997) are just some of the fundamental perceptual abilities that rely on
phonetic detail. Furthermore, it is believed that speech perception cannot involve complete
abstraction, because subphonemic information is retained in listeners’ word-specific and even
episodic phonetic memories of speech (Goldinger, 1996; Pierrehumbert, 2016).
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Our findings, in which neural representations of stimulus ambiguity and categorical percept
were identified within the same time window, are consistent with the notion of parallel streams.
Thus it may be the case that subphonemic details and abstract phonemes may be represented,
and therefore decoded, simultaneously (Diesch et al., 1996), and that complementary represen-
tations may balance efficiency in recognizing spoken words with flexibility in responding to
shifting task demands and goals. To speculate further, an accompanying tag of ambiguity may
be related to feedback or prediction-error signals that guide perceptual retuning (Sohoglu &
Davis, 2016).

Limitations and Future Directions

This work has made an incremental but novel contribution to the study of categorical speech
perception by using time-resolved neural dissimilarities to index the representation of an acous-
tic continuum across tasks. There are some limitations to this approach, however. For one, the
absence of significant effects in the comparison of within-category and between-category neural
dissimilarities cannot be interpreted as evidence that the brain represents the continuum stimuli
in the same way across tasks. It is difficult to rule out the possibility that true-positive signals
could not be detected with MEG because there is no straightforward way to link multivariate
decoding accuracies with standard effect size measures (Hebart & Baker, 2018).

A second caveat is that we tested only a single stimulus continuum, and our results may not
generalize to the decoding of other consonant or vowel continua due to differences in how their
spectral and temporal properties are represented in the brain. The generalizability of these find-
ings is itself a worthy question because the sounds of one’s native language are so highly over-
learned. For example, we found a robust neural representation of the perceptual structure of the
continuum even when participants’ attention was diverted—would this occur for non-linguistic
stimuli (Bidelman & Walker, 2017) or in a language being learned? A longitudinal study could
perhaps use multivariate decoding to document any corresponding neural changes in represen-
tational structure as participants acquire new phoneme categories or expertise in a new percep-
tual domain.

Another question inspired by our findings is whether the ambiguity effect is due to a lower-
order or a higher-order property of the stimuli. That endpoint tokens cluster together suggests a
higher-order representation of prototypicality independent of acoustics; however, very early am-
biguity effects have also been interpreted as lower-order sensory information related to distance
from the phoneme boundary (Gwilliams et al., 2018). We observed early spikes in both tasks’
Ambiguity correlations prior to the sustained late Active-Ambiguity correlation. It may be the
case that early effects are acoustic and late effects are decision-related, but this hypothesis would
need to be tested by, perhaps, orthogonally manipulating acoustic-phonetic properties and
decision difficulty.

Conclusions

In this study, exposure to isolated tokens of an acoustic continuum resulted in patterns of brain
activity that reflected the subjective experience of categorical perception. Stimulus information
persisted longer in active categorization trials than in passive listening trials, but, contrary to pre-
dictions, did not converge on discrete phoneme categories. Instead, in both tasks, a prolonged
representation of the ambiguity vs. unambiguity of continuum stimuli emerged. Importantly, such
a representation requires that subphonemic detail is not lost during the categorization process.
Taken together, these neural decoding findings are consistent with parallel processes operating
on speech input, yielding concurrent phonemic and subphonemic representations.
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