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ABSTRACT

Language development in children with autism spectrum disorder (ASD) varies greatly among
affected individuals and is a strong predictor of later outcomes. Younger siblings of children
with ASD have increased risk of ASD, but also language delay. Identifying neural markers
of language outcomes in infant siblings could facilitate earlier intervention and improved
outcomes. This study aimed to determine whether electroencephalography (EEG) measures
from the first 2 years of life can explain heterogeneity in language development in children at
low and high risk for ASD, and whether associations between EEG measures and language
development are different depending on ASD risk status or later ASD diagnosis. In this
prospective longitudinal study, EEG measures collected between 3 and 24 months were used
in a multivariate linear regression model to estimate participants’ 24-month language
development. Individual baseline longitudinal EEG measures included (1) the slope of EEG
power across 3 to 12 months or 3 to 24 months of life for six canonical frequency bands, (2)
the estimated EEG power at 6 months of age for the same frequency bands, and (3) terms
representing the interaction between ASD risk status and EEG power measures. Modeled
24-month language scores using EEG data from either the first 2 years (Pearson p = 0.70, 95%
Cl [0.595, 0.783], p =1 x 107'8) or the first year of life (Pearson p = 0.66, 95% CI [0.540,
0.761], p = 2.5 x 107'*) were highly correlated with observed scores. All models included
significant interaction effects of risk on EEG measures, suggesting that EEG-language
associations are different depending on risk status, and that different brain mechanisms affect
language development in low- versus high-risk infants.

INTRODUCTION

Children with autism spectrum disorder (ASD) have striking heterogeneity in their early lan-
guage development (Anderson et al., 2007; Kjelgaard & Tager-Flusberg, 2001; Pickles,
Anderson, & Lord, 2014). Although many children present initially with language delays,
roughly one-fourth will develop age-appropriate skills by school age, and 30% will remain
minimally verbal throughout life (Anderson et al., 2007; Tager-Flusberg & Kasari, 2013).
Furthermore, language acquisition is one of the best predictors of later outcomes in children
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with ASD ( ; ;
; , ). Although children with ASD are clearly at risk
for language delay, so are their younger siblings; for example, longitudinal studies follow-
ing infant siblings of children with ASD (high-risk infants) have reported delays in language
skills as early as 12 months of age in infant siblings, both with and without later diagnoses
of ASD ( ; ; ;

). As such, earlier identification of future language delays in toddlers at risk
for ASD would facilitate earlier intervention and increase the likelihood of improving
outcomes.

Longitudinal large population-based studies have identified various risk factors on the
individual (gender, prematurity), familial (maternal education), and environmental (income)
levels that influence language development ( ;

). However, across studies these factors consistently account
for 4%-7% of variance in language outcomes in 2-year-olds, suggesting that additional factors
play an important role in a child’s early language trajectory. Indeed, high-risk infants who do
not have ASD still have a fourfold increased risk of language delay compared to infants with-
out a family history of ASD, suggesting that early language delay is an endophenotype of ASD
with shared genetic liability and possibly shared underlying biology ( ).
Therefore studying the neural mechanisms underlying language development in high-risk chil-
dren may shed light on early language delay as a whole, and allow for earlier detection before
delays in language can be measured behaviorally.

To meet this goal, researchers have applied neuroimaging techniques to measure brain-
based changes that support language development in low- and high-risk infants over the first
3 years after birth. A number of studies suggest that the relationship between brain measures
and language outcomes are different depending on ASD diagnosis or ASD risk status
( ; ; ). For
example, in infants who show a language delay at a later age, the relationship between lan-
guage ability and reactivity to speech (as measured on fMRI) is reversed depending on ASD
diagnosis ( ). Similarly, using EEG in low- and high-risk infants, signifi-
cant relationships between frontal brain activity and language ability have been observed in
high-risk but not low-risk infants at both 9 and 24 months ( ;

). These differential brain-behavior associa-
tions suggest that the neural mechanisms affecting language development in high-risk children
may be different than in low-risk children. One reason for this could relate to global brain
differences such as reduced power across frequency bands observed as early as 3 to 6 months
in high-risk infants regardless of ASD outcome (

), or accelerated surface area brain growth observed between 6 and 12 months
of age in high-risk infants with later ASD diagnosis ( ). These early brain
differences could alter typical development of language circuitry. Given this, predictive
models of language must account for these possible differences between low- and high-risk
populations.

EEG, which measures network level brain activity at the scalp surface, has particular
promise in its use as a clinical biomarker of language development in infants and toddlers as
it is noninvasive, relatively low cost, and already regularly used in the outpatient setting for sei-
zure monitoring ( ; ; ).
Various measures collected during task-related or resting-state EEG have been associated with
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language processing and language development in young children. Evoked brain responses to
auditory stimuli presented as early as 6 months of age reflect both current language processing
and future language ability ( ; ;

). In addition, phase-locking, or entrainment, to both the temporal syllabic
structure of speech (in the delta/theta range 1-8 Hz) and the phonetic structure of speech (in the
beta/gamma range 20-50 Hz) has been observed in animals and humans during speech process-
ing, and is correlated with measures of phonological processing ( ).
Although it is still unknown whether aberrant entrainment in these frequency bands affects lan-
guage acquisition in children, studies in children and adults with ASD have reported differences
in resting and task-evoked theta and gamma power ( ; ;

), and it is hypothesized that such differences impair speech processing and
delay language acquisition ( ). Clinically, resting EEG (non-task-related) is the
simplest to collect, especially in young children or in populations for which longer task-related
paradigms are not well tolerated. In addition, associations between resting frontal gamma power
and language have been observed. Specifically, resting (i.e., not task-related) frontal gamma
power has been associated positively with receptive and expressive language ability in typically
developing 3- to 4-year-olds ( ;

; ), but negatively associated with expressive language in
high-risk 2-year-olds ( ). Reduced spectral power in delta/theta and gamma
bands during visual processing has also been observed in minimally verbal children with ASD
compared to a typically developing control group (

). The spectral power of resting EEG has also been evaluated in children with dyslexia, with
reduced frontal delta power observed in 3-year-olds who are later diagnosed with dyslexia com-
pared with controls ( ), but increased delta and theta power in school-aged
children with dyslexia ( ; ;

; ), suggesting
that developmental changes in EEG spectral power are also likely relevant predictors of
language-related outcomes.

Although the preceding investigations have found associations between specific frequency
bands and language development in both typically developing and neurodevelopmental dis-
order populations, they have not accounted for the majority of variance in language scores
between individuals. This is likely because by focusing on a single frequency band during a
limited developmental age range, we fail to capture the impact of developmental changes
across the spectrum of frequency bands as it relates to language development.

This study had three main objectives. First, we aimed to evaluate whether a combination of
early and longitudinal EEG measures (spectral power at 6 months of age and the developmen-
tal trajectory of spectral power) can explain the variance in language ability at 2 years of age in
both low- and high-risk children. In other words, in a nonclinical longitudinal data sample,
can resting EEG measures sufficiently estimate language ability in toddlers, to support its future
use as a clinical biomarker of language development? Second, to begin to develop a theoret-
ical framework of how neural oscillations (such as theta and gamma) may influence language
development, we used a data-driven approach to model building, and then investigated
whether associations between frequency band power and language ability were different be-
tween low- and high-risk infants. Specifically, in this second aim, we explored whether differ-
ent EEG measures predict language ability in these risk groups, and whether the direction of
these relationships was similar or different between groups. Because differences in EEG power
have been observed as early as 3 to 6 months of age in high-risk infants, we hypothesized that
spectral power at 6 months of age would differentially contribute to model language estimates
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in low- versus high-risk groups (LR and HR, respectively). In addition, we hypothesized that
frequency bands important for speech processing (delta/theta and beta/gamma) would most
robustly contribute to language estimates across low- and high-risk groups. Finally, we
asked whether these brain-language associations were also different between high-risk in-
fants with and without ASD (HR-ASD and HR-NoASD, respectively).

METHODS
Study Design and Population

Participants were part of a prospective longitudinal study of early neurocognitive development of infant
siblings of children with ASD, conducted at Boston University and Boston Children’s Hospital. The
study was approved by the institutional review board (#X06-08-0374) and written informed
consent was obtained from a parent or guardian prior to each child’s participation in the study.

High-risk infants were defined as having at least one full sibling with a community diagno-
sis of ASD, which was confirmed using the Social Communication Questionnaire (
) and/or the Autism Diagnostic Observation Schedule (ADOS;

). Low-risk infants were defined by having a typically developing older sibling
and no first- or second-degree family members with ASD. All infants had a minimum gesta-
tional age of 36 weeks, no history of prenatal or postnatal medical or neurological problems,
and no known genetic disorders. For this analysis, all infants were also from households speak-
ing primarily English (English spoken more than 75% of the time).

A total of 220 participants were enrolled who met the above inclusion and exclusion
criteria (97LR, 123 HR). Only a portion of enrolled participants had sufficient quality EEG re-
corded (see EEG Rejection Criteria), developmental testing completed at the 24-month visit,
and ADOS completed at 24 and/or 36 months. In addition, three low-risk male participants
went on to meet Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)
criteria for ASD and were not included in this analysis. This study includes data from a total of

58 LR and 72 HR infants ( ). Of the 72 HR infants, 21 (29%) met criteria for ASD based
on assessments described in Language and Behavioral Assessments ( ).
Measures

Language and behavioral assessments

At multiple time points, participants were assessed using the Mullen Scales of Early Learning
(MSEL). For this analysis, the MSEL Verbal Developmental Quotient (VDQ) at 24 months was
calculated from the receptive and expressive language subscales. This time point, instead of the
later 36-month time point, was used as it included the most participants enrolled in the study.
Final ASD outcomes were determined for all infants using the ADOS administered at 24 and 36
months of age. For those children meeting criteria on the ADOS, or coming within 3 points of
cutoffs, a licensed clinical psychologist reviewed scores and video recordings of concurrent and
previous behavioral assessments, and using DSM-5 criteria provided a best estimate clinical
judgment.

EEG data collection

Baseline, non-task-related EEG data were collected at 6 visits (3, 6,9, 12, 18, and 24 months of
age). The infant was held by their seated caregiver in a dimly lit, sound-attenuated, electrically
shielded room while a research assistant ensured that the infant remained calm and still by
blowing bubbles and/or showing toys. Continuous EEG was recorded for 2 to 5 minutes.
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Table 1. Sample characteristics

LR HR-NoASD HR-ASD p Value by outcome (LR vs p Value by risk
N =58 N =51 N =21 HR-NoASD vs HR-ASD) (LR vs HRY)
Sex” 30M, 28F 25M, 26F 14M, 7F 0.4 0.86
Parental education®, n (%) 0.060 0.04
Not answered 6 (10) 2 (4) 5 (24)
<4-year college degree 3(5) 10 (20) 3(14)
4-year college degree 10 (17) 10 (20) 6 (29)
>4-year college degree 39 (67) 29 (57) 7 (33)
Household incomeb, n (%) 0.82 0.44
Not answered 8 (14) 3(6) 6 (29)
<$75,000 9 (15) 6 (12) 2(9)
>$75,000 41 (71) 42 (82) 13 (62)
Race®, n (%) 0.28 0.57
Non-white 7 (12) 3 (6) 4 (19)
Ethnicity®, n (%) 0.08 0.13
Hispanic or Latino 1) 3 (6) 3 (14)
Number of EEG time points® 4.03 £ 1.1 3.64+12 39+13 0.23 0.13
Mean + SD
24m MSEL VDQd Mean + SD 118.0 £ 15.3 112.0 + 14.3 96 + 22.6 0.0007 0.03
24m MSEL NVDQd Mean + SD 110.1 £ 15.0 107.0 £+ 11.9 97 £ 22.6 0.02 0.14
24m ADOS severity score® 1.61 + 0.86 191 +1.13 5.25 + 2.47 0.0001 0.003
Mean + SD

Participant EEG data included in analysis, n (%)

3 months 9 (15) 15 (29) 7 (33)
6 months 44 (76) 30 (59) 13 (62)
9 months 48 (83) 37 (73) 15 (71)
12 months 52 (90) 33 (65) 19 (91)
18 months 37 (64) 32 (62) 14 (67)
24 months 44 (76) 39 (77) 14 (67)

Note. ASD = autism spectrum disorder; LR = low-risk without ASD; HR-NoASD = high-risk without ASD; HR-ASD = high-risk with ASD; ADOS = Autism
Diagnostic Observation Schedule.

aHR = HR-NoASD + HR-ASD; n = 72. PFisher exact. “One-way ANOVA. “One-way ANOVA with parental education as covariate. ®Kruskal-Wallis.
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EEG data were collected using either a 64-channel Geodesic Sensor Net System or a 128-
channel Hydrocel Geodesic Sensor Nets (Electrical Geodesics, Inc., Eugene, OR) connected
to a DC-coupled amplifier (Net Amps 200 or Net Amps 300, Electrical Geodesics, Inc.). There
was no difference in distribution of net type at each time point between outcome groups. Data
were sampled at 250 Hz or 500 Hz, and collected using a 0.1-Hz high-pass analog (i.e., hard-
ware) filter and referenced online to a single vertex electrode (Cz), with impedances kept be-
low 100kQ. Electrooculographic electrodes were removed to improve the child’s comfort.

EEG preprocessing

Raw EEG data collected in NetStation (Electrical Geodesics, Inc.) were exported to MATLAB
(version R2017a) for preprocessing and subsequent power analysis.

All files were batch processed using the Batch EEG Automated Processing Platform (
), to ensure uniform analysis regardless of
when the EEG was acquired or which risk group they were in.

A 1-Hz high-pass filter and 100-Hz low-pass filter were applied and then data sampled at
500 Hz were resampled using interpolation to 250 Hz. Both experimental and participant-
induced artifacts were then identified and removed using the Harvard Automated Pre-
processing Pipeline for EEG (HAPPE;

). HAPPE is a MATLAB-based preprocessing pipeline optimized for developmental data
with short recordings and/or high levels of artifact, to automate preprocessing and artifact re-
moval, and to evaluate data quality in the processed EEG recordings (

). HAPPE artifact identification and removal includes removing 60-Hz line noise, bad
channel rejection, and participant-produced artifact (eye blinks, movement, and muscle activ-
ity) through wavelet-enhanced independent component analysis (ICA) and multiple artifact re-
jection algorithm (MARA; ;

). MARA has excellent detection and removal of muscle artifact compo-
nents, which can affect higher frequency band signal ( ;
). The following channels, in addition to the 10-20 electrodes, were used for
MARA: 64-channel net—2, 3, 8,9, 12, 16, 21, 25, 50, 53, 57, 58; and 128-channel net — 3,
4,13, 19, 20, 23, 27, 28, 40, 41, 46, 47, 75, 98, 102, 103, 109, 112, 117, 118, 123. After
artifact removal using HAPPE, data were re-referenced to an average reference (calculated
using the same channels used for MARA), detrended using the signal mean, and then regions
of high-amplitude signal (> 40 uV was used to account for the reduce signal amplitude which
occurs during the wavelet-enhanced ICA step of HAPPE preprocessing) were removed prior
to segmenting the remaining data into 2 s windows to allow for power calculations using
multitaper spectral analysis ( ). Noncontinuous data were not
concatenated.

EEG rejection criteria

HAPPE data output quality measures were used to systematically reject poor quality data that
were unfit for further analyses. EEG recordings were rejected if they had fewer than 20 segments
(40 s of total EEG), or were more than 3 standard deviations (SD) from the mean on the following
HAPPE data quality output parameters: percent good channels (3 SD: < 82%), mean retained
artifact probability (3 SD: > 0.3), median retained artifact probability (3 SD: > 0.35), percent of
independent components rejected as artifact (3 SD: > 84%), and percent of EEG signal vari-
ance retained after artifact removal (3 SD: < 32%). Based on the preceding criteria, 69 of 674
(10.2%) of EEG recordings collected between 3 and 24 months were rejected. In addition, any
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EEG with a frequency band power greater than 2 SD above or below the mean of their asso-
ciated outcome group (LR, HR-NoASD, or HR-ASD) mean were reviewed, resulting in the re-
jection of an additional 23 EEG studies (3.4%). HAPPE quality metrics and visual inspection
rejection rates did not differ significantly between groups (all p’s > 0.1). A full description of
HAPPE quality metrics and visualization based on this longitudinal dataset were published
previously ( ). also provide examples
of EEG recordings from this dataset pre- and post-HAPPE processing, power spectra after each
step of processing, and comparison of HAPPE versus other approaches to artifact rejection
using this dataset.

EEG power analysis

A multitaper fast Fourier transform, using three orthogonal tapers ( ) was used to
decompose EEG signal into power for each 2 s segment of data for selected frontal electrodes:
64-channel net-2, 3, 8,9, 12, 13, 58, 62; and 128-channel net-3, 4, 11, 19, 20, 23, 24, 27,
118, 123, 124 (Supplemental Figure 1). Frontal electrodes chosen a priori based on findings
from our previous work ( ; ; ) and
that of others ( ; ; ) showed that
frontal power in both low- and high-frequency bands is associated with language development
in typically developing and ASD populations. The summed power was calculated across all
frequencies within commonly used frequency bands in infant EEG studies: delta (2-3.99 Hz),
theta (4-5.99 Hz), low-alpha (6-8.99 Hz), high-alpha (9-12.99 Hz), beta (13-29.99 Hz), and
gamma (30-50 Hz). As a minor point, we opted not to examine power < 2 Hz to allow use of
a 1-Hz high-pass filter required by HAPPE. Power was then averaged across all 2 s seg-
ments and then across the frontal electrodes for each participant to obtain their average
frontal power at each time point. We report absolute power values, normalized by a log
10 transform. Power spectra at each time point for low- and high-risk groups are shown in
Supplemental Figure 2.

EEG data reduction

Longitudinal baseline EEG data from participants were reduced to two parameters for each
frequency band per participant: (a) estimated power at 6 months (intercept at 6 months) and
(b) estimated linear slope of power over logarithmic age, calculated either over 3 to 24 months
(Models 1 and 2) or 3 to 12 months (Model 3). Given the nonlinear, logarithmic trajectories of
EEG power over early brain development observed in this dataset ( ) and by other
labs ( ; )
we employed the ordinary least squares to model a linear relationship between the log-
transformed EEG power as a function of log-age for each individual. Ordinary least squares
regression equations utilized all the EEG data available from each individual from 3 to 24
months. This linear transform allowed us to include longitudinal EEG data from any individual
with EEG recordings from at least two time points across the 3- to 24-month period (Models 1
and 3) or 3- to 12-month period (Model 2), allowing us to maximize the sample size included in
the model. The average number of EEG studies from each participant was 3.86 + 1.2 and did
not differ significantly between groups ( ; p > 0.1). The estimated 6-month intercept was
used instead of a 3-month intercept because not all infants were enrolled at 3 months of age (the
time of enrollment changed from 6 to 3 months during the study), and we aimed to use a time
point that was inclusive of the full group’s study visit parameters.
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Figure 1. Developmental trajectories of frontal electroencephalography (EEG) power across multiple frequency bands from 3 to 24 months.
Longitudinal trajectories of log 10 transformed absolute frontal EEG power across six frequency bands for individuals from low-risk (LR; green,
n = 58), high-risk without ASD (HR-NoASD; orange, n = 51), and high-risk with ASD (HR-ASD; blue, n = 21) are shown. Both individual and
mean trajectories by group are shown. Shaded regions represent the 95% confidence interval.

Statistical Analysis
Group comparisons of descriptive characteristics

A chi-square test (or Fisher exact test in case the cell value was < 5) was used to characterize
differences in the categorical demographic data between groups. One-way analysis of vari-
ance (ANOVA) was used to assess group differences in average number of EEG studies per
participant and MSEL scores. Kruskal-Wallis followed by post hoc Dunn’s test was performed
on non-normally distributed ADOS severity scores.

Model Development

Multivariate linear regression was used to characterize the relationship between the EEG pa-
rameters and 24-month language outcomes across groups. Three models were examined, all
using 24-month VDQ as the dependent variable. Potential EEG predictors for each model in-
cluded the 6-month intercepts, the slopes, and the interaction terms between intercept and
slope for each of the six frequency bands (18 possible variables). For all adjusted models, pa-
rental education (averaged maternal and paternal education when both available), which is
known to affect language development, was included as a covariate. Given the marginally
significant increased number of male participants in the HR-ASD group, sex was also included
as a covariate in adjusted models. Unadjusted models (Supplemental Materials) included only
EEG parameters and interactions with either risk or ASD outcome.
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Table 2. Predictive models of Mullen Verbal Developmental Quotient

Model 1 (adjusted R* = 0.32

9)

Low risk High risk Difference (high - low risk)
B Coefficient (SE)  p Value B Coefficient (SE)  p Value B Coefficient (SE) p Value
6-month intercept
Delta 3.55 (6.03) 0.56 20.07 (6.59) 0.003* 16.53 (8.15) 0.05
Theta —-7.04 (6.22) 0.26 —24.47 (6.69) <.001* -17.43 (8.26) 0.04
Low alpha - - - - - -
High alpha 7.92 (5.55) 0.15 4.51 (4.40) 0.31 -3.41 (6.44) 0.60
Beta 0.08 (4.66) 0.98 -0.1 (2.86) 0.97 —-0.18 (4.68) 0.97
Gamma -0.76 (2.37) 0.75 -0.76 (2.37) 0.75 - -
Slope
Delta -2.91 (5.56) 0.60 -2.91 (5.56) 0.60 - -
Theta -13.50 (4.33) 0.002* -13.50 (4.33) 0.002* - -
Low alpha -0.21 (3.57) 0.95 5.41 (2.66) 0.05 5.61 (4.13) 0.18
High alpha 42.55 (16.68) 0.01* 8.97 (8.54) 0.3 -33.58 (18.02) 0.07
Beta —-77.88 (19.78) <0.001* -17.19 (9.35) 0.07 60.70 (20.29) 0.004*
Gamma 16.77 (6.18) 0.008* 16.77 (6.18) 0.008* - -
Intercept x Slope
Delta 0.65 (0.32) 0.04 0.65 (0.32) 0.04 - -
Theta - - - - - -
Low alpha - - - - - -
High alpha -3.28 (1.48) 0.03 —-0.04 (0.87) 0.97 3.24 (1.69) 0.06
Beta 5.33 (1.24) <0.001* 0.81 (0.72) 0.26 -4.53 (1.42) 0.002*
Gamma -1.33 (0.51) 0.01* -1.33 (0.51) 0.01 - -
Covariates
Sex, reference = female —6.96 (2.93) 0.02 —6.96 (2.93) 0.02 - -
Parental education
College degree 13.05 (4.91) <0.01* 13.05 (4.91) <0.01* — —
>College degree 16.94 (4.37) <0.001* 16.94 (4.37) <0.001* - -
Neurobiology of Language 441
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Table 2. (continued)

Model 2 (adjusted R* = 0.249)

Low risk High risk Difference (high - low risk)
B Coefficient (SE) p Value B Coefficient (SE) p Value B Coefficient (SE) p Value
6-month intercept
Delta -1.16 (5.48) 0.83 11.17 (6.19) 0.08 12.33 (8.04) 0.13
Theta 7.25(7.33) 0.33 -16.07 (6.14) 0.01 —23.32 (9.44) 0.02
Low alpha -2.41 (3.86) 0.54 1.76 (3.44) 0.61 4.16 (5.24) 0.43
High alpha - - - - - -
Beta -4.28 (4.08) 0.30 2.52 (2.86) 0.38 6.80 (4.28) 0.12
Gamma 5.45 (3.46) 0.12 0.61 (2.87) 0.83 —4.84 (3.84) 0.21
Slope
Delta - - - - - -
Theta 1.05 (1.93) 0.59 -2.75(1.78) 0.13 -3.80 (2.57) 0.14
Low alpha 8.21 (5.01) 0.11 -3.06 (2.82) 0.28 -11.27 (5.82) 0.06
High alpha - - - - - -
Beta -19.09 (7.39) 0.01 -1.39 (7.65) 0.86 17.70 (8.79) 0.048
Gamma 6.11 (4.09) 0.14 6.11 (4.09) 0.14 - -
Intercept x Slope
Delta - - - - - -
Theta - - - - - -
Low alpha —-0.70 (0.44) 0.12 0.47 (0.21) 0.03 1.17 (0.50) 0.02
High alpha - - - - - -
Beta 1.41 (0.49) 0.005 0.22 (0.56) 0.69 -1.18 (0.62) 0.06
Gamma -0.51 (0.32) 0.12 -0.51 (0.32) 0.12 - -
Covariates
Sex, reference = female -7.14 (3.11) 0.02 -7.14 (3.11) 0.02 - -
Parental Education
College degree 5.73 (4.93) 0.24 5.73 (4.93) 0.24 - -
>College degree 13.40 (4.55) 0.004 13.40 (4.55) 0.004 - -
Neurobiology of Language 42
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Table 2. (continued)

Model 3 (adjusted R* = 0.53

0)

No autism Autism Difference (autism — no autism)
B Coefficient (SE) p Value B Coefficient (SE) p Value B Coefficient (SE) p Value
6-month intercept
Delta 12.49 (5.78) 0.04 34.59 (14.37) 0.02 22.10 (15.53) 0.16
Theta —-15.95 (6.42) 0.02 -53.11 (18.94) 0.008* -37.16 (20.02) 0.07
Low alpha -3.23 (3.91) 0.41 7.12 (7.34) 0.34 10.35 (7.97) 0.20
High alpha 9.08 (4.58) 0.06 9.08 (4.58) 0.06 - -
Beta -7.13 (3.48) 0.047 20.73 (7.81) 0.01 27.86 (8.63) 0.003*
Gamma 7.66 (3.74) 0.048 -15.56 (6.19) 0.02 -23.22 (7.35) 0.003*
Slope
Delta - - - - - -
Theta -2.89 (4.34) 0.51 -23.17 (11.93) 0.06 -20.29 (12.29) 0.11
Low alpha -13.04 (5.42) 0.02 4.97 (11.10) 0.66 18.01 (10.92) 0.11
High alpha 9.19 (4.89) 0.07 9.19 (4.89) 0.07 - -
Beta 12.39 (10.88) 0.26 28.84 (12.81) 0.03 16.46 (9.02) 0.08
Gamma 5.26 (3.39) 0.13 -4.63 (6.19) 0.46 -9.89 (7.07) 0.17
Intercept x Slope
Delta - - - - — _
Theta - - - - - -
Low alpha 1.30 (0.40) 0.002* 1.30 (0.40) 0.002* - -
High alpha - - - - - -
Beta ~1.61(0.77) 0.04 ~1.61(0.77) 0.04 - -
Gamma - - - - - _
Covariates
Sex, reference = female —6.50 (3.62) 0.08 -6.50 (3.62) 0.08 - -
Parental Education
College degree 9.25 (5.44) 0.09 9.25 (5.44) 0.09 - -
>College degree 11.80 (4.64) 0.015 11.80 (4.64) 0.015 - -

Note. B Coefficient are scaled by a factor of 10. For example, B Coefficient for the 6-month intercept represents change in Mullen Scales of Early Learning

Verbal Development Quotient for every 0.1uV increase in spectral power. p Values in bold are significant. SE = Standard error.

*Maintained significance after false discovery rate (FDR) correction, using an FDR at alpha = 0.05.

Neurobiology of Language
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For each of the models, we performed data-driven selection from the potential parameters
using a hybrid stepwise approach and minimization of the Akaike information criterion (AIC)
( ). This model selection uses an iterative process that
compares AIC values across candidate models in order to minimize both information loss
and overfitting. Once model selection was complete, secondary post hoc hypothesis testing
was performed simultaneously on all parameters to determine which parameters were rela-
tively robust predictors of MSEL VDQ and whether interaction effects were significant.
Correction for multiple comparisons within the secondary analysis was performed using
the Benjamini-Hochberg procedure ( ) to limit the false discov-
ery rate to alpha level 0.05 across tests, and p values surviving significance after correction
are marked with an asterisk.

Model 1 included interactions between risk (LR vs. HR) and 15 of 18 EEG parameters cal-
culated from data collected between 3 and 24 months. Model 2 included interactions between
risk (LR vs. HR) and all 18 EEG parameters calculated from data collected from 3 to 12 months
of age. Model 3, using data only from high-risk infants, included interactions between ASD
outcome and 12 of 18 EEG parameters ( ). Due to the limited sample size, we could
not simultaneously include interactions between EEG parameters and both risk and ASD out-
come. In all models, B coefficients were scaled by a factor of 10, so that they represent the
change in MSEL score after a 0.1-unit change in EEG intercept or slope.

RESULTS
Participant Characteristics

Demographic data are shown in for the full sample, with statistical analyses comparing
both outcome groups (LR vs. HR-NoASD vs. HR-ASD) and risk groups (LR vs. HR, with HR
consisting of combined HR-NoASD and HR-ASD infants).

Developmental EEG Trajectories

Developmental trajectories of EEG power across the six frequency bands are shown in
, subdivided by outcome group (LR, HR-NoASD, and HR-ASD).

Longitudinal EEG measures explain language variability in low- versus high-risk infants (Model 1)

To test whether EEG predictors of language were different in low- versus high-risk infants,
Model 1 allowed for potential two-way interactions between risk status and all EEG parameters
included in the model. Pearson correlations between the modeled language scores and ob-
served language scores were all significant, both collapsed across low- and high-risk subjects
(Model Adjusted R* = 0.329; Pearson R = 0.70, 95% C1 [0.595, 0.783]; p = 1 x 10™'®) and when
low-risk (Pearson R = 0.617, 95% CI [0.414, 0.762]; p = 1 x 107°) and high-risk (Pearson R =
0.709, 95% Cl [0.542, 0.812]; p = 4 x 10”"") groups were analyzed separately. Pearson corre-
lation for the unadjusted model (Model Adjusted R* = 0.211), using only EEG parameters, was
also significant (Pearson R = 0.62, 95% Cl [0.497, 0.722]; p = 6.6 x 10~'*). Scatterplots of
model-estimated and observed language scores are shown in

Significant differences between risk groups were observed for the effects of beta slope and
its interaction with its 6-month intercept as well as the effect of 6-month theta intercept on
language outcomes ( , Model 1). Four EEG parameters were significantly associated
with language outcome in both low- and high-risk groups and had the same B coefficient:
theta slope, gamma slope, delta intercept x slope, and gamma intercept x slope. Notably, risk
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itself was not a significant predictor of 24-month language in either the adjusted or unadjusted
models (Adjusted Model 1: B coefficient = 19.31, SE 52.22; p = 0.71; Unadjusted Model 1: B
coefficient = —=33.9, SE 58.64; p = 0.56). Parental education and sex covariates were signifi-
cant predictors in the adjusted model (Table 2, Model 1). The unadjusted Model 1 had similar
patterns of significance (data shown in Supplemental Table 1).

Estimating 2-year language from EEG measures over the first year of life (Model 2)

We next examined how well the longitudinal EEG measures restricted to visits from the first
year of life predicted language ability at 24 months across low- and high-risk infants. Model 2
used EEG data from both low- and high-risk infants, but now restricted to data collected
between 3 and 12 months. Pearson correlations between estimated and actual MSEL scores
were significant (Model Adjusted R* = 0.249; Pearson R = 0.66, 95% Cl [0.540, 0.761]; p =
2.5 x 107" Figure 2), although not as accurate as Model 1. As in Model 1, beta slope and its
interaction with the beta 6-month intercept were significantly associated with future lan-
guage ability only for low-risk infants, and 6-month theta intercept was associated with fu-
ture language ability only for high-risk infants; however, neither remained statistically
significant after controlling for multiple comparisons. Gamma slope and the interaction be-
tween intercept and slope were no longer significant predictors in this model, suggesting that
the trajectory of gamma power beyond 12 months may be more relevant to language devel-
opment than its trajectory over the first 12 months.
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Differences in how EEG measures explain language variability in high-risk infants with and without ASD
(Model 3)

Next we asked whether high-risk infants with ASD (HR-ASD) have different brain-language
associations than high-risk infants without ASD (HR-NoASD). Model 3 therefore used EEG data
only from high-risk infants, allowing for two-way interactions between ASD outcome and EEG
parameters. This model had improved predictive accuracy as measured by the correlation be-
tween model-estimated and measured language outcomes ( ) across high-risk infants
(Adjusted Model: Adjusted R* = 0.530; Pearson R = 0.849, 95% Cl [0.763, 0.905]; i = 4 x 107'7;
Unadjusted Model: Adjusted R? = 0.480; Pearson R = 0.83, 95% CI [0.737,0.894; p=1x 10""7).
As expected, ASD diagnosis negatively contributed to language outcomes, but was only margin-
ally significant as a predictor (B coefficient = —123.0, p = 0.053). In this adjusted model, two
brain-language associations were significantly different between high-risk infants with and with-
out ASD: beta and gamma 6-month intercepts. For each of these, the brain-language association
was significant within each group, but directionally opposite ( , Model 3). Higher estimated
6-month gamma power was associated with increased 24-month language in HR-NoASD infants,
and decreased 24-month language in HR-ASD infants.

In addition, several longitudinal EEG measures contributed similarly across both groups.
Consistent with Model 1, both HR-NoASD and HR-ASD groups had significant and consistent
associations between 6-month intercepts of theta and delta and 24-month language measures.
In addition, the effect of the interaction between intercept and slope for the low alpha and beta
frequency bands were the same across groups.

DISCUSSION

This work represents our effort to utilize longitudinal EEG measurements to predict a function-
ally relevant developmental outcome in ASD—Ianguage ability. In addition, we were able to
further dissect differences in brain-language associations between low- and high-risk infants
crucial to furthering our understanding of the neural underpinnings of language delay in this
population.

Use of EEG as a Predictor of Language Ability

All three models were remarkably accurate in within-model estimates of language ability. Of
interest, unadjusted models (which did not include parental education and sex covariates) also
showed a high correlation between model-estimated and observed language scores, empha-
sizing the importance of the brain measures in the predictive models. In addition, in our ad-
justed Model 1, ASD risk status was not a significant predictor of language ability. This
suggests that when the model accounts for differences in brain-language associations related
to risk status, as well as sex and parental education, the remaining effect of high-risk ASD sta-
tus on language development is no longer significant. In addition, significant interactions be-
tween several EEG variables and risk status were present in the model, supporting our
hypothesis that there are significant brain differences between low- and high-risk infants,
and that these brain differences rather than risk status contribute to language development.

Although EEG parameters in this study sample could estimate language scores with reason-
able accuracy, there are several major caveats that need to be addressed before we are fully
convinced that EEG measures can be used clinically to accurately predict future language risk.
First, relatively few participants in this study sample had below average language skills. To
improve generalizability, a much larger sample with diverse language ability is required.
Second, the ability of EEG to be used as a clinical biomarker is reliant on EEG measures being
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reproducible across different locations and different collection environments. Third, although
we used resting power for this study, other measures such as intertrial phase coherence, phase
amplitude coupling, or newly developed measures such as fitting oscillations & one over f, or
FOOOF ( ), should also be evaluated to determine which measures best
discriminate language outcomes. Finally, external validity of model performance needs to
be tested in the future.

Further insights into neural mechanisms of early language development

A secondary goal of this study was to evaluate differences in brain-language associations be-
tween low- and high-risk infants. To do this we performed post hoc analyses of the predictors
included in the models to determine which EEG measures most robustly contributed to lan-
guage estimates and whether there were significant differences between low- and high-risk
infants in how a measure contributed to language estimates. In our models, possible EEG
measures included both a developmentally early measure of EEG power (estimated 6-month
intercept) and a measure of how EEG power changes over development (slope as a function of
log-age). We specifically included estimated 6-month power, as we have previously reported
reduced EEG power across frequency bands at this young age in the high-risk population
( ; ) and hypothesized that this reduced power may influ-
ence the development of language circuitry. Indeed, in Models 1 and 2, early estimated 6-month
EEG power measures (in delta and theta) contributed significantly to language scores only in the
high-risk group. One possible explanation for this is that these early power measures reflect the
degree of aberrant brain development or differences in cortical maturation in this at-risk popu-
lation. Consistent with this, in our model restricted only to high-risk infants (Model 3), estimated
6-month power of multiple frequency bands (delta, theta, beta, and gamma) played prominent
roles in predicting language.

We also hypothesized that specific frequency bands known to be important during speech
processing (delta/theta and beta/gamma) would be significant predictors of language within
our models; however, we were uncertain whether brain-language associations in these fre-
quency bands would be different between risk groups, as differences in resting state and
task-evoked theta and gamma power have been observed in children and adults with ASD.
However, in evaluating specific frequency bands it is important to recognize that within the
multivariate linear regression models developed, the contribution of an individual variable ex-
ists in the context of the other variables included (EEG measures, risk status, sex, parental ed-
ucation). Therefore, the effect attributed to a particular variable reflects only the unique portion
of that variable that does not overlap with the other variables included in the model. Thus,
interpreting the direction and weight of B coefficients within these models must be done with
caution, as the effects of any frequency band may be different in the multivariate model con-
text than when the same frequency band is examined in isolation. With this caveat in mind,
several observations related to theta and gamma warrant further discussion.

Within Model 1, which included data from 3 to 24 months from low- and high-risk infants,
the slope of theta and gamma were significant predictors of language and did not differ be-
tween risk groups. In addition, estimated 6-month delta and theta power were also significant
predictors of language in this model, but only for the high-risk group. In particular, estimated
6-month theta power was a consistent significant predictor in all three models for high-risk
infants, both adjusted and unadjusted, with increased theta power associated with worse
24-month language ability. Notably, increased theta power has been associated with learning
and attention disorders ( ), and increased theta has been
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observed in institutionalized infants and toddlers with increased risk for developmental delays
( ). There are several biological explanations for theta’s asso-
ciation with language outcomes. Perhaps most intriguing is the observation that during speech
processing, neural oscillations in the delta and theta range phase-lock to the syllabic rhythm of
speech, which typically peaks in the theta range ( ;

). Aberrant phase-locking in the delta and theta range has been pro-
posed as a possible mechanism for abnormal language acquisition ( ). In addi-
tion, theta oscillations are known to influence gamma activity and this coupling between
frequencies is thought to facilitate the alignment of speech components during speech decod-

ing ( ). In adults with ASD, atypical coordination between theta and
gamma responses to speech has been reported, and correlated with clinical measures of ASD
( ). Future investigation of theta oscillations and their coupling with gamma

oscillations, at rest and in response to speech, at this young age in neurodevelopmental pop-
ulations at risk for significant language delays may provide specific insight related to auditory
processing abnormalities affecting language development. Because theta oscillations have
also been implicated in attention, future comparison of models developed to estimate other
developmental nonverbal skills (e.g., visual-spatial, motor, attention) would provide more
information of the specificity of these EEG patterns on language development.

Alterations in theta and gamma power have been observed in children and adults with ASD
who also have language delays; therefore it is possible that the association between these fre-
quency bands and language within Model 1 may be related to their shared variance with ASD.
To further separate out EEG measures that predict language, beyond their association with
ASD, we developed Model 3, which includes ASD diagnosis as a predictor and interaction
term with EEG measures. Here, having an ASD diagnosis was a marginally significant inde-
pendent predictor of language (p = 0.05) with a large negative B coefficient, suggesting that
factors associated with ASD, but not captured by other variables in our model, have a negative
impact on language development. Such factors could include other structural and functional
brain-derived measures besides resting EEG power, or reduced eye contact or aberrant sensory
processing that may not be captured by resting EEG measures. In addition, with the ASD var-
iable in the model, shared variance between ASD status and the EEG measures is no longer
reflected in the individual parameters but does contribute to the model’s overall ability to dif-
ferentiate language scores. It is notable that within Model 3, significant and opposing differ-
ences in brain-language associations of estimated 6-month beta and gamma power were
observed when ASD status was included in the model. Here we observe that when ASD
diagnosis and its effect on language outcomes are accounted for, reduced 6-month gamma
power positively contributes to estimated 24-month language ability. However, when the
effects of ASD on language are not included in the model, reduced 6-month gamma power
negatively contributes to estimated 24-month language ability.

Gamma oscillations are associated with many processes thought to be relevant to language pro-
cessing, including visual and auditory sensory integration (
), attention ( ; ), and
worklng memory ( ; ). In
infants, induced gamma-band power in response to native phonemes matures between 3
and 6 months of age ( ;
). Resting frontal gamma power has also been positively associated

with language ability in toddlers and preschool-aged children ( ;
; ; ). However, increased
gamma power has been observed in older children with ASD and other ASD-related
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neurodevelopmental disorders such as Fragile X syndrome, and this aberrant increase in
gamma power is thought to reflect imbalances in the excitatory and inhibitory systems of the
brain ( ; ; ; ).
Furthermore, in Fragile X syndrome, increased baseline gamma power has been associated with
decreased stimulus-induced phase-locked gamma activity, and therefore has been hypothesized
to represent an hyperexcitable system with reduced ability to synchronize to a stimulus (

). In minimally verbal children with ASD, reduced frontal gamma during visual pro-
cessing has been observed and hypothesized to be modulated by attention, although how this
related to baseline gamma has not been reported ( ). Thus, one hypoth-
esis for the difference between gamma-language associations in HR-NoASD versus HR-ASD in-
fants, is that reduced gamma power in an individual with underlying excitatory/inhibitory
imbalance (HR-ASD) may represent successful compensation of early aberrant neurocircuitry,
whereas reduced gamma power in an individual without such underlying imbalances (HR-
NoASD) may reflect delayed neural maturation as it relates to speech processing. Future investi-
gation of how differences in resting gamma may influence evoked gamma across development
may inform both the timing and development of therapeutics.

Finally, sex and parental education both were significantly associated with language in ad-
justed models, supporting an independent role of each in language development. This is not
surprising as previous studies have observed relationships between both sex (

) and parental education ( ;

; ; ) and language
development. However, unadjusted models that used EEG data alone also estimated language
scores that were highly correlated with actual scores, suggesting that longitudinal EEG mea-
sures may also reflect differences in sex and parental education. Of interest, in Model 3, which
was restricted to high-risk infants and included ASD outcome, sex continued to have a mar-
ginally significant effect on language outcomes. Given the growing evidence of sex differences
in early brain development within ASD ( ; ; ;

; ), it is possible that within the high-risk
infant-sibling population, there are additional brain-language differences between males
and females. A larger sample size is needed to fully tease apart the effects of sex and parental
education on brain development as it relates to language development in this complex
population.

Limitations

Although this is a comparatively large infant-sibling study, we were limited in our analyses by
our sample size. To maximize the number of individuals included in model development, we
included individuals with only two EEG time points (n = 21). Requiring more time points could
provide more stable estimations of trajectories; however, it would also significantly reduce the
sample size. Indeed, limiting Model 1 to individuals with at least three EEG sessions, reduced
model fit (adjusted R* = 0.2574 vs. 0.3295) and accuracy (Pearson correlation coefficient 0.65
vs. 0.70). This study also limited its analysis to frontal power. The decision to use frontal power
was made a priori based on previous resting-state EEG literature in both the ASD and language
fields. However, it is possible that power analysis using a different set of electrodes could be
more informative. To evaluate this possibility, models using whole brain or temporal elec-
trodes were built from the same individuals included in Model 1. Both of these models had
reduced adjusted R? values (whole brain, 0.2065; temporal, 0.2334; frontal, 0.3295) and
lower Pearson correlation coefficients for predicted versus observed Mullen scores (temporal,
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0.59; whole brain — 0.60, frontal — 0.70). Finally, as discussed earlier, in order to improve
generalizability of future predictive models, a larger and more diverse study sample is re-
quired, followed by external validity testing of model performance.

Conclusions

This study supports the possible use of EEG measures as predictive biomarkers for language
development in infants. It also provides further insight into which neurobiological substrates
may specifically relate to language development, potentially informing future work and ther-
apeutic interventions. In addition, our findings support further investigation of brain differences
in high-risk infants at, or prior to, 6 months of age, and how such differences affect future lan-
guage development and response to services. To do this, collaboration across laboratories is
needed in order to collect larger datasets for accurate model development that can then be
leveraged clinically. Ultimately, early prediction of developmental outcomes will require im-
proved knowledge of how underlying genetic and environmental risk factors affect neural
measures and their association with outcomes.
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