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Abstract 8 

Decoding human brain activity on various task-based functional brain imaging data is of great 9 

significance for uncovering the functioning mechanism of the human mind. Currently, most 10 

feature extraction model-based methods for brain state decoding are shallow machine learning 11 

models, which may struggle to capture complex and precise spatio-temporal patterns of brain 12 

activity from the highly noisy fMRI raw data. Moreover, although decoding models based on 13 

deep learning methods benefit from their multi-layer structure that could extract spatio-14 

temporal features at multi-scale, the relatively large populations of fMRI datasets are 15 

indispensable and the explainability of their results is elusive. To address the above problems, 16 

we proposed a computational framework based on hybrid spatio-temporal deep belief network 17 

and sparse representations to differentiate multi-task fMRI (tfMRI) signals. Using a relatively 18 

small cohort of tfMRI data as a testbed, our framework can achieve an average classification 19 

accuracy of 97.86% and define the multi-level temporal and spatial patterns of multiple 20 

cognitive tasks. Intriguingly, our model can characterize the key components for differentiating 21 
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the multi-task fMRI signals. Overall, the proposed framework can identify the interpretable 22 

and discriminative fMRI composition patterns at multiple scales, offering an effective 23 

methodology for basic neuroscience and clinical research with relatively small cohorts.  24 

Keywords: Multi-task classification, Task-based fMRI, Deep belief network, Sparse 25 

representation, Functional brain network. 26 

Introduction 27 

For years, researchers have been attempting to decode the human brain states based on 28 

functional magnetic resonance imaging (fMRI) data (Haynes & Rees, 2006; Jang, Plis, Calhoun, 29 

& Lee, 2017; Rubin et al., 2017; Stanislas Dehaene, 1998), where distinguishing different 30 

cognitive tasks from fMRI data and extracting discriminative fMRI composition patterns are 31 

effective means to improve our understanding of the relationship among current cognitive tasks, 32 

brain responses, and individual behavior (Friston, 2009; Logothetis, 2008). To decode 33 

meaningful neurological patterns embedded in diverse task-based fMRI data, various 34 

computational and statistical methods have been proposed in the last decades. The most widely 35 

used brain state decoding strategy is multi-voxel pattern analysis (MVPA) (Davatzikos et al., 36 

2005; Jang et al., 2017; Kriegeskorte & Bandettini, 2007). Despite its popularity, its commonly-37 

used classification strategy support vector machine (SVM) usually struggles to perform well 38 

on high-dimensional fMRI data and thus requires effective techniques for feature 39 

selection/extraction (LeCun, Bengio, & Hinton, 2015; Vieira, Pinaya, & Mechelli, 2017). 40 

Hence, the feasibility of feature selection/extraction has been investigated using various 41 

machine learning methods (LeCun et al., 2015; Vieira et al., 2017; S. Zhang et al., 2016). 42 
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However, most of these machine learning methods rely on shallow models, and their shallow 43 

nature may hinder them from effectively capturing non-linear relationships in the highly noisy 44 

fMRI raw data, resulting in difficulties in extracting complex and specific spatio-temporal 45 

features (Qiang et al., 2020; Rashid, Singh, & Goyal, 2020; Varoquaux & Thirion, 2014).  46 

Recently, studies applying deep learning models such as deep neural network (DNN) and 47 

convolutional neural networks (CNN) to decode brain states based on task-based fMRI signals 48 

have been reported (J. Hu et al., 2019; Liu, He, Chen, & Gao, 2019; Sotetsu Koyamadaa, 2015; 49 

Y. Zhang, Tetrel, Thirion, & Bellec, 2021). Such deep learning models take the advantage of 50 

being a multi-layer architecture by stacking multiple building blocks with similar structure, 51 

which has demonstrated the ability to significantly reduce noises in raw fMRI data and model 52 

the non-linear relationships among neural activities of brain regions, allowing for the extraction 53 

of multi-level spatio-temporal features (Bengio, Courville, & Vincent, 2012; Najafabadi et al., 54 

2015; Ren, Xu, Tao, Song, & He, 2021). Nevertheless, there are still some limitations in current 55 

brain state decoding strategies based on deep learning models. First, as large-size samples are 56 

indispensable for the deep learning model, current decoding models are not suitable for small 57 

datasets (Bo Liu, 2017; Litjens et al., 2017; Wang et al., 2020; Wen et al., 2018). For example, 58 

Wang et al. (2020) proposed a DNN-based model for tfMRI signal classification, which 59 

requires 1034 subjects, making it less practical for clinical populations. Second, most of the 60 

decoding models based on deep learning are end-to-end learning and the explainability of such 61 

models is elusive (J. Hu et al., 2019; LeCun et al., 2015; Wang et al., 2020). Recently, some 62 

researchers have attempted to define the key components for decoding brain states using the 63 

machine learning method. For example, our previous study based on sparse dictionary learning 64 
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has determined that the key components for multi-task classification tend to be functional brain 65 

networks (FBNs) (Song, Ren, Hou, He, & Liu, 2022). Another research has shown that artifact 66 

components such as movement-related artifacts are significantly more informative with respect 67 

to the classification accuracy of the multi-task electroencephalogram (EEG) signals 68 

(McDermott et al., 2021). However, uncovering the interpretable key features in decoding 69 

tfMRI signals has received much less attention. 70 

Due to the pitfalls in existing research, it is desirable to develop an appropriate framework 71 

capable of identifying the interpretable and discriminative fMRI composition patterns 72 

embedded in multi-task fMRI data. Thus, in this study, we aim to extract both multi-level 73 

group-wise temporal features and spatial features from tfMRI signals, and define interpretable 74 

classification features for multi-task fMRI data simultaneously. Recent studies have revealed 75 

that the deep belief network (DBN) can effectively identify multi-layer spatial and temporal 76 

features from fMRI signals (Dong, 2020; Ren et al., 2021), which is typically stacked by 77 

multiple Boltzmann machine (RBM) (Geoffrey E Hinton & Sejnowski, 1986) and thus can 78 

naturally act as a multi-level feature extractor. Furthermore, these prior studies have integrated 79 

the least absolute shrinkage and selection operator (LASSO) regression with the DBN model, 80 

indicating the efficacy of LASSO regression in extracting relevant spatial patterns. Thus, we 81 

here proposed a novel two-stage feature extraction framework based on hybrid DBN and sparse 82 

representations framework (DBN-SR) to decode multi-task fMRI signals with the capability of 83 

extracting multi-scale deep features. Specifically, the DBN model was utilized to capture multi-84 

level group-wise temporal features, based on which the individual spatial features were 85 

estimated by LASSO regression. Subsequently, a sparse representation method that combines 86 
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dictionary learning and LASSO regression was utilized to further characterize the group-wise 87 

spatial features and individual spatio-temporal features for the purpose of classification. Based 88 

on the correspondence between the individual classification features and the group-wise spatial 89 

features, a relationship between the decoding capability of classification features and their 90 

spatial patterns can be effectively established, which can facilitate the interpretation of neural 91 

implications associated with the classification features. Finally, due to its strong generalization 92 

capabilities in small sample sizes, SVM was employed for the multi-class classification task. 93 

Our results demonstrated that the proposed framework could successfully classify seven 94 

task fMRI signals on a relatively small dataset. Moreover, by taking advantage of DBN in 95 

extracting mid-level and high-level features and sparse coding in brain functional network 96 

representation (Lv, Jiang, Li, Zhu, Chen, et al., 2015; Ren et al., 2021; Song et al., 2022), our 97 

framework could effectively characterize the multi-level spatiotemporal features embedded in 98 

multi-task fMRI signals, which provides the bases to identify the interpretable key components 99 

for well characterizing and differentiating multi-task signals. Overall, the proposed model can 100 

disclose the underlying neural implications of key components with greater classification 101 

capacity, offering an effective and interpretable methodology for decoding fMRI data. 102 

Materials and methods 103 

Overview 104 

The framework of our proposed method is illustrated in Figure 1. The pipeline of the proposed 105 

framework can divide into four stages: 1) individual data preparation; 2) data preparation for 106 
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five-fold cross-validation; 3) training and testing process; 4) SVM-based classification and 107 

Ratio of activation (ROA) analysis (Fig. 1A). In the data preparation stage, each individual’s 108 

tfMRI data of seven different tasks were extracted and then spatially concatenated to one signal 109 

matrix (the first panel in Fig. 1A). In this work, five-fold cross-validation was performed for 110 

model validation, thus the whole dataset was randomly divided into five folds (the second panel 111 

in Fig. 1A). In training process, four folds were served as training set, and the tfMRI signal 112 

matrices of all the subjects in training set were spatially concatenated to a multi-subject signal 113 

matrix. Then, the DBN model was applied to training set to derive the weight matrix W, which 114 

served as group-wise temporal features 𝑫1. Then, the LASSO regression aims to extract the 115 

corresponding loading coefficient 𝜶1  based on the defined temporal dictionary 𝑫1 . In the 116 

second stage of our model, the loading coefficient 𝜶1  was employed as input to sparse 117 

representations (SR) model, where they were decomposed into group-wise dictionaries 𝑫2 and 118 

loading coefficient 𝜶2. In testing process, the individual signal matrix in testing set and the 119 

group-wise dictionary 𝑫1 obtained during the training phase was utilized as the inputs to the 120 

LASSO regression. This yielded the loading coefficients 𝜶𝑡𝑒𝑠𝑡
1 . Subsequently, employing 𝜶𝑡𝑒𝑠𝑡

1  121 

and the 𝑫2 obtained during the training phase, we performed a second LASSO regression to 122 

obtain 𝜶𝑡𝑒𝑠𝑡
2 , which were then used as the classification features for the testing subjects (the 123 

third panel in Fig. 1A). Note that during the training phase, we utilized the independent training 124 

data to learn and train regularization parameters employed for LASSO regression, as well as 125 

the group-wise dictionaries 𝑫1  and 𝑫2 , without using any information from the test data. 126 

Afterward, to further assess the multi-task fMRI data classification performance of proposed 127 

model, the loading coefficient 𝜶2 derived from training set was used to train support vector 128 
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machine (SVM) for classification, where the loading coefficient 𝜶𝑡𝑒𝑠𝑡
2  derived from testing set 129 

was then fed into this trained SVM model to identify the testing set labels (the last panel in Fig. 130 

1A).  131 

Our DBN-SR based framework can also identify the multi-level temporal features, spatial 132 

features, and features for multi-task classification (Fig. 1B). Specifically, the DBN model took 133 

fMRI time series from training data as input and produced a weight matrix W for each layer 134 

respectively, which represent the multi-layer temporal features of group-wise tfMRI signals 135 

(the first two panels in Fig. 1B). These multi-layer temporal features W were served as the 136 

temporal dictionary 𝑫1 and used as input to the LASSO algorithm to regress corresponding 137 

loading coefficient 𝜶1, which represents individual-level spatial patterns (the third panel in Fig. 138 

1B). Next, the loading coefficient 𝜶1 was used as the input of SR stage to derive the common 139 

dictionary 𝑫2 and the loading coefficient 𝜶2, which represent group-wise spatial patterns and 140 

features for multi-task classification for each layer, respectively (the last three panels in Fig. 141 

1B). 142 
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Figure 1. The overview of hybrid deep belief network and sparse representation framework 143 

(DBN-SR). (A) The pipeline of multi-task fMRI data classification analysis via the proposed 144 

model. The seven capital letters refer to seven different tasks respectively (E: emotion, G: 145 

gambling, R: relational, M: motor, L: language, S: social, and W: work memory). (B) The 146 

detailed illustration of using DBN and SR model to extract multi-level temporal features, 147 

spatial features, and features for classification from multi-task fMRI signals. In the second 148 

block, the blue line represents temporal features derived from the weights of DBN, while the 149 

red line represents task design paradigms. 150 
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Data acquisition and preprocessing 151 

We employed the seven task fMRI data from Q1 release of Human Connectome Project (HCP) 152 

in this study (Barch et al., 2013). The details of tfMRI data acquisition and preprocessing 153 

pipeline could be referred to our previous study (Song et al., 2022).  154 

Specifically, the seven tasks are emotion, gambling, relational, motor, language, social, 155 

and working memory (WM). The number of time points for each task is shown in Table 1. As 156 

the tfMRI data consist of different time points, we truncated all tfMRI signals to the same time 157 

length (176 frames). In this work, 60 subjects were used from the released dataset  158 

Table1. Details of the condition and frames for seven tasks 159 

TASK EMOTION GAMBLING  RELATIONAL MOTOR LANGUAGE SOCIAL WM 

Condition 2 2 2 6 2 2 8 

Frames 176 253 232 284 316 274 405 

The truncation preprocessing, unavoidably, influences the integrity of task design. For 160 

instance, four conditions are excluded from the WM task due to data truncation. Nonetheless, 161 

in terms of other tasks, the truncated tfMRI data include not less than one block for all events 162 

(sFig. 1).  163 

Data preparation 164 

First, we extracted the whole-brain fMRI signal for each subject using the standard MNI152 165 

template as the mask, resulting in each 2-dimensional matrix. Then the signal matrices of the 166 

seven tasks for each subject were spatially concatenated into a large matrix 𝑺𝑖
1 (𝑺𝑖

1= [𝑺𝑖,𝐸
1 , 𝑺𝑖,𝐺

1 , 167 

𝑺𝑖,𝑅
1 , 𝑺𝑖,𝑀

1 , 𝑺𝑖,𝐿
1 , 𝑺𝑖,𝑆

1 , 𝑺𝑖,𝑊
1 ] ∈𝑅t×(n×7), where 𝑺𝑖,𝐸

1 ∈𝑅t×n had 𝑡  time points and 𝑛  voxels. The 168 

seven capital letter subscripts refer to seven different tasks respectively (E: emotion, G: 169 
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gambling, R: relational, M: motor, L: language, S: social, and W: work memory). TfMRI time 170 

series for each voxel were normalized to derive zero mean and unit norm. In this work, five-171 

fold cross-validation scheme was chosen. Thus, 60 subjects were randomly divided into five 172 

equal folds. In each iteration, one fold (12 subjects) was taken for testing and the rest four (48 173 

subjects) for training. It is noteworthy that the training and testing sets for each iteration were 174 

completely independent. Then, the multi-task fMRI signal matrices of all the subjects in the 175 

training set were spatially concatenated to compose a multi-subject fMRI matrix 𝑺1 = [𝑺1
1 , 176 

𝑺2
1,…, 𝑺𝑝

1] ∈𝑅t×(n×7×𝑝), where 𝑝 is the number of training subjects (𝑝 = 48 ) (Fig. 1A).  177 

As whole-brain fMRI data generally contain enormous voxels, the group-wise tfMRI 178 

signals consisting of multiple tasks and subjects exhibit relatively high dimensionality, 179 

inevitably resulting in an overloaded computational burden and memory consumption. To 180 

tackle these problems, we randomly selected only 10% of voxels’ whole-brain signals for each 181 

subject in training stage (Huan Liu 2017; Song et al., 2022). To ensure the uniform distribution 182 

of sampled voxels across different brain regions, we employed the Fisher-Yates shuffle 183 

algorithm implemented by the "randperm" function in MATLAB, known for generating 184 

random permutations with a uniform distribution (Fisher & Yates, 1938). The distribution of 185 

the randomly selected 10% voxels across all subjects can be found in the Supplementary 186 

Materials (sFig. 6-7). 187 

Deep belief network model-based analysis 188 

In this work, we chose DBN to extract group-wise temporal features based on previous research 189 

demonstrating its ability to identify meaningful FBNs (Qiang et al., 2020; Ren et al., 2021). In 190 
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general, DBN can be regarded as stacked blocks of Restricted Boltzmann Machines (RBM) (G. 191 

E. Hinton, Osindero, & Teh, 2006), an energy-based probability generation model that 192 

simulates the potential distribution of input data via interactions between visible and hidden 193 

variables. While units between visible layer 𝑣 and hidden layer ℎ are connected by weights, 194 

there is no connection within the layer. As a multiple stacked RBM model, the DBN model is 195 

designed to learn and train weights for each layer. As described in Asja Fischer (2012) and X. 196 

Hu et al. (2018), the energy function of the DBN model adopted to update the weights layer by 197 

layer is defined as follows:   198 

 𝐸(𝑣, ℎ) = ∑ 𝑏𝑖𝑣𝑖 − ∑ 𝑏𝑗ℎ𝑗 − ∑ 𝑣𝑗ℎ𝑗𝑤𝑗     (1) 199 

Where 𝑣𝑖 and ℎ𝑗  refer to the activation state of two layers; 𝑏𝑖 and 𝑏𝑗 represent their bias; 𝑤𝑗 200 

indicate the weight between layer 𝑖 and layer 𝑗.  201 

As introduced in the previous section, the tfMRI signals of randomly selected 10% voxels 202 

in each individual’s whole brain of multi-task in training set were spatially concatenated to 203 

generate a multi-subject fMRI matrix for model training, and thus the group-wise tfMRI time 204 

series (176 time points) were taken as training samples for the DBN model. In our work, the 205 

neural architecture of DBN model was set as 4 layers and 128 neurons experimentally and 206 

empirically (see Parameter Selection part). Specifically, the number of visible variables 𝑡 is the 207 

same as the number of time points of fMRI signal (i.e., 176 in our study), and the number of 208 

hidden variables 𝑘1 in each hidden layer represents the number of latent components expressed 209 

in fMRI data (𝑘1=128). The DBN model was adopted to model group-wise tfMRI matrix 𝑺1 210 

to obtain a weight matrix 𝑤𝑗 from each layer. The weight matrix of visible layer is represented 211 

by 𝑤1𝜖𝑅𝑡×𝑘1, and the weight matrix of each hidden layer refers to 𝑤𝑗𝜖𝑅𝑘1×𝑘1 (𝑗 =2,3,4). The 212 
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multi-layer temporal features 𝑊𝑗 in each layer of DBN model can be derived by successive 213 

multiplication of the weight matrices on the adjacent layers ( 𝑊𝑗𝜖𝑅𝑡×𝑘1  ), that is, 214 

𝑊4 = 𝑤4 ∗ 𝑤3 ∗ 𝑤2 ∗ 𝑤1 , 𝑊3 = 𝑤3 ∗ 𝑤2 ∗ 𝑤1 , 𝑊2 = 𝑤2 ∗ 𝑤1  , 𝑊1 = 𝑤1.  Since each sample 215 

input to the DBN model consists of all time points for each voxel, the weights 𝑤𝑗 (𝑗 =1,2,3,4) 216 

across 4 layers represent the temporal features of the input fMRI data at different levels of 217 

abstraction. Thus, the successive multiplication of weight matrix 𝑊𝑗 (𝑗 =1,2,3,4) obtained from 218 

each layer of the DBN model represents multi-level temporal features embedded in fMRI 219 

signals. 220 

Drawing inspiration from the successful application of LASSO regression for deriving 221 

spatial features in previous studies (Haufe et al., 2014; Lee, Jeong, & Ye, 2013), we performed 222 

the LASSO regression to derive individual spatial features. Specifically, the multi-layer 223 

temporal features 𝑊𝑗  derived by the DBN model were normalized and then served as the 224 

temporal dictionary 𝑫1𝜖𝑅𝑡×𝑘1 (Calhoun et al., 2001; Tibshirani, 2011). Here, as the successive 225 

multiplication of weight matrices leads to the larger scale of deeper dictionaries, a 226 

normalization procedure ensures reasonable performance of LASSO regression at the same 227 

scale. Subsequently, we employed the original individual signal matrix 𝑺𝑖 (𝑖 ∈1, 2, …, p), 228 

along with the temporal dictionary 𝑫1 as input to the LASSO algorithm, which produce the 229 

corresponding individual loading coefficient 𝜶𝑖
1 (𝜶𝑖

1 ∈ 𝑅𝑘1×n,  n=228453). Since 𝑫1 230 

incorporates the group-wise temporal features, the resulting individual loading coefficients 𝜶𝑖
1 231 

obtained through regression can be considered as spatial sparse representations of each 232 

individual's fMRI signals 𝑺𝑖  on the common temporal dictionary 𝑫1 . Consequently, the 233 

individual loading coefficients 𝜶𝑖
1 represent the individual spatial features. Here, all the loading 234 
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coefficient matrix derived from LASSO regression refers to 𝜶1 (𝜶1=[𝜶1
1, 𝜶2

1, …, 𝜶𝑖
1, …, 𝜶𝑝

1 ]235 

∈𝑅 k1×(n×7×𝑝), 𝜶𝑖
1= [𝜶𝑖,𝐸

1 , 𝜶𝑖,𝐺
1 , 𝜶𝑖,𝑅

1 , 𝜶𝑖,𝑀
1 , 𝜶𝑖,𝐿

1 , 𝜶𝑖,𝑆
1 , 𝜶𝑖,𝑊

1 ]∈𝑅k1×(n×7).  236 

Similarly, in order to derive the loading coefficient matrix 𝜶𝑡𝑒𝑠𝑡
1  for testing set of each 237 

layer, the group-wise time-series dictionary matrix 𝑫1  derived from the training stage was 238 

applied to model 𝑺𝑡𝑒𝑠𝑡
1  to obtain 𝜶𝑡𝑒𝑠𝑡

1  by resolving a typical l-1 regularized LASSO problem. 239 

In this work, the regularization parameter 𝜆 1 of LASSO regression was set as 0.1 240 

experimentally and empirically. 241 

Sparse Representation model 242 

Although we successfully obtained individual loading coefficient matrices 𝜶1  and 𝜶𝑡𝑒𝑠𝑡
1  243 

through LASSO regression for the training and testing sets, respectively, these features were 244 

unsuitable for classification due to their high dimensionality (𝜶1 ∈ 𝑅𝑘1×n, 𝑘1=128, n=228453). 245 

Therefore, our next goal was to extract the multi-level group-wise spatial patterns based on the 246 

individual spatial patterns, and finally excavate multi-level features for multi-task classification 247 

that could distinguish multi-task fMRI signals and reveal the distinctive organization patterns 248 

of different task stimulations. Here, we adopted a sparse representation based model, which 249 

has already been proven as an effective algorithm in previous research to identify the intrinsic 250 

spatial functional patterns and features for multi-task classification from fMRI data (Song et 251 

al., 2022; S. Zhang et al., 2016). Specifically, we first aggregated all the loading coefficient 252 

matrices 𝜶𝑖
1 of all the subjects into one matrix 𝑺2 for each layer of the DBN model (𝑺2= [𝑺1

2, 253 

𝑺2
2,…,𝑺𝑖

2,…, 𝑺𝑝
2] ∈𝑅k1×(n×7×p), where 𝑺𝑖

2= [(𝜶𝑖,𝐸
1 )T , (𝜶𝑖,𝐺

1 )T, (𝜶𝑖,𝑅
1 )T, (𝜶𝑖,𝑀

1 )T, (𝜶𝑖,𝐿
1 )T, (𝜶𝑖,𝑆

1 )T, 254 

(𝜶𝑖,𝑊
1 )T] ∈𝑅n×(7×k1). Then, 𝑺2 would be served as the input for dictionary learning and sparse 255 
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representation to derive a group-wise spatial dictionary 𝑫2∈𝑅n×k2  and the corresponding 256 

loading coefficients 𝜶2  for each layer, respectively. Note that 𝑘2  represents the number of 257 

dictionary atoms, which was set as the same value as 𝑘1  (𝑘2 =128). Here, 𝜶𝟐 =[𝜶1
2 , 𝜶2

2 , …, 258 

𝜶𝑖
2 , …, 𝜶𝑝

2  ]∈𝑅k2 ×(k1 ×7×p) , where 𝜶𝑖
2 =[𝜶𝑖,𝐸

2  , 𝜶𝑖,𝐺
2  , 𝜶𝑖,𝑅

2  , 𝜶𝑖,𝑀
2  , 𝜶𝑖,𝐿

2  , 𝜶𝑖,𝑆
2  , 𝜶𝑖,𝑊

2  ]∈𝑅k2 ×k1 ×7 . 259 

The loss function of sparse representation model yields a sparse resolution constraint on the 260 

loading coefficient 𝜶 2 with an l1 regularization (Eq. (2)), where 𝜆 2 is a regularization 261 

parameter that can balance the regression residual and sparsity level. 𝜆 2 was set as 0.05. 262 

𝑀𝑖𝑛
1

2
‖𝑺2 − 𝑫2𝜶2‖𝐹

2 +  λ2‖𝜶2‖1,1       (2) 263 

To prevent 𝑫2  from arbitrarily large values that cause the trivial solution of the 264 

optimization, the columns 𝑑 1, 𝑑 2, …, 𝑑 k are restricted by Equation (3). 265 

𝐶  ≜ {𝑫2∈𝑅t×k2,𝑠 .𝑡 .∀𝑗  = 1,⋯,𝑘 2 ,   𝑑𝑗
𝑇𝑑𝑗  ≤ 1}       (3) 266 

As the dictionary 𝑫2 was obtained by a sparse representation of 𝜶𝟏, which comprise all 267 

individual spatial features, the learned dictionary 𝑫2consequently represents the group-wise 268 

spatial features. Correspondingly, 𝜶𝑖
2  was a sparse representation on the common spatial 269 

dictionary 𝑫2 . Given the ability of a sparse representation model to effectively reduce the 270 

dimensionality of raw fMRI data while retaining its essential information, the resulting intrinsic 271 

features (𝜶𝑖
2) derived from the extraction of common temporal and spatial dictionaries can 272 

effectively capture the variations in spatio-temporal patterns of functional brain activity across 273 

different tasks. As a result, these intrinsic features were suitable for multi-task classification. 274 

To derive the 𝜶𝑡𝑒𝑠𝑡
2  of testing set for post-hoc classification analysis, we also leveraged 275 

the LASSO regression algorithm for each layer. Specifically, the loading coefficient matrix 276 

𝜶𝑡𝑒𝑠𝑡
1  was regarded as the input matrix 𝑺𝑡𝑒𝑠𝑡

2 , and the dictionary matrix 𝑫2 derived from the 277 
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training stage was employed to model 𝑺𝑡𝑒𝑠𝑡
2   to learn the loading coefficient 𝜶𝑡𝑒𝑠𝑡

2  . All the 278 

parameters in testing stage were set the same as in the training stage. 279 

Parameter Selection 280 

The determination of hyperparameters, such as the number of cross-validation folds, the 281 

number of layers and neurons of the DBN model, and the regularization parameters of the 282 

sparse representation model, was accomplished through a combination of referring to previous 283 

studies and learning from the training set, the testing set was not involved in any parameter 284 

selection process. 285 

The choice of cross-validation folds is crucial as it offers a trade-off between precision 286 

and computational cost for performance estimation (Hansen et al., 2013). Commonly used 287 

cross-validation folds in current machine learning experiments often include 2-fold, 5-fold, 10-288 

fold, or the leave-one-out method. In theory, while some studies suggest the 10-fold or leave-289 

one-out method may provide a higher estimated accuracy (Kohavi, 1995), some reveals that 5-290 

fold or 10-fold is the optimal choice for balancing computational cost and accuracy (Hansen et 291 

al., 2013). However, due to the need for our framework to combine all individuals within the 292 

training set to extract group-wise temporal features during training phase, the computational 293 

resource demands of the 10-fold or leave-one-out method are greater. Therefore, we opted for 294 

the 5-fold approach. To further validate our selection, we conducted a comparative analysis 295 

between the 2-fold and 5-fold to assess the decoding accuracy. The findings revealed that the 296 

average decoding rate was slightly lower for the 2-fold compared to the 5-fold, providing 297 

additional confirmation of our initial selection. (sTab. 1). 298 
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Our selection of a 4-layer, 128-neuron DBN structure was set based on our previous study 299 

utilizing the neural architecture search technique (NAS) for recognizing spatio-temporal 300 

features from fMRI data (Xu, Ren, Tao, Song, & He, 2022),which effectively determined the 301 

optimal structure for DBN model with 3 layers and 120-150 neurons. Therefore, in our study, 302 

we defined the number of neurons as 128 and experimented with both 3-layer and 4-layer 303 

configurations to extract meaningful task-related temporal features. Specifically, we compared 304 

the group-wise temporal features derived from DBN model with 3-layer and 4-layer structures, 305 

in terms of their Pearson correlation coefficient (PCC) with task paradigm curve, based on 306 

training set (fold 5). The results revealed that the 4-layer DBN outperformed in capturing 307 

temporal features, as indicated by the higher PCC values observed in 4-layer structure (Tab. 2). 308 

In terms of selecting the number of neurons, we took into consideration computational 309 

efficiency. We determined that selecting 128 neurons, a power of two within the desired range 310 

of 120-150, would optimize computational speed. Hence, we concluded that the optimal 311 

configuration for the DBN model with 128 neurons and 4 layers. 312 

The regularization parameter (λ) plays a crucial role in sparse representation and LASSO 313 

regression. Although no golden standard exists for determining the value of λ, previous studies 314 

on FBN recognition have experimentally set λ within the range of 0.05 to 0.5 (Fangfei Ge, 315 

2018; Lv, Jiang, Li, Zhu, Chen, et al., 2015; Shu Zhang 2017). In our previous work on task 316 

fMRI data classification using a two-stage sparse representation approach, we conducted 317 

parameter selection experiments within the range of λ from 0.05 to 0.5 and found that the 318 

highest accuracy was achieved when λ1=0.1 and λ2=0.05 or 0.1 (Song et al., 2022). Here, λ1 319 

and λ2 represent the regularization parameters for the LASSO regression and sparse 320 
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representation, respectively. Therefore, in this study, we determined the λ1 as 0.1, and 321 

systematically changed the setting of the regularization parameter in the sparse representation 322 

λ2 (λ2=0.05, 0.1) while evaluating their impact on the obtained group-wise spatial features 323 

derived from training set (fold 5). The results showed that when λ2 was set to 0.05, a greater 324 

number of FBNs could be identified in the group-wise spatial features 𝑫2 by comparison with 325 

the general linear model (GLM) -derived activation patterns (Tab. 3). Consequently, we set 326 

λ1=0.1 and λ2=0.05 as regularization parameters for LASSO regression and sparse 327 

representation stage, respectively. To further validate this, we assessed the classification 328 

accuracy on testing dataset using these two different λ2 values (0.05, 0.1) while keeping λ1=0.1 329 

for all 5 folds. The results demonstrated that λ2=0.05 achieved higher accuracy, reconfirming 330 

our choice (sTab. 2). 331 

Table 2. Comparison of Pearson correlation coefficient (PCC) for 3-layer structure and 332 

4-layer structure. 333 

Structure Layer1 Layer2 Layer3 Layer4 Mean±SD 

3-layer  0.48±0.12 0.52±0.06 0.50±0.06  0.50±0.08 

4-layer  0.55±0.00 0.63±0.01 0.66±0.03 0.71±0.02 0.64±0.02 

Table 3. Comparison of the number of identified FBNs cross each layer for different λ2 334 

values. 335 

λ2 Layer1 Layer2 Layer3 Layer4 

0.05 15 17 22 45 

0.1 12 13 18 27 

Identification of multi-level temporal patterns  336 

As mentioned in the “Deep belief network model based analysis” section, 𝑊𝑗 of the 𝑗-th hidden 337 

layer (𝑗 = 1,2,3,4) represents the temporal features of group-wise tfMRI for respective layer 338 
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(Fig. 1B). Here we used PCC as a metric to identify the task-related temporal features (Benesty, 339 

Chen, Huang, & Cohen, 2009; Lv, Jiang, Li, Zhu, Chen, et al., 2015). Specifically, we first 340 

calculated the task paradigm curves convolved with hemodynamic response function (HRF). 341 

Next, we computed the PCC values between the convolved task paradigm curves and the atoms 342 

in the group-wise temporal features 𝑫1  derived from the DBN model, following standard 343 

procedures employed in previous studies (Kay, Rokem, Winawer, Dougherty, & Wandell, 2013; 344 

O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012). The PCC of the identified 345 

temporal features and the task-based stimulus can be defined as Equation (4). 346 

 Pcorr, c =corr (𝑫𝑐
1

 , TASK)         (4) 347 

Here, 𝑫𝑐
1 refers to the c-th component in temporal features 𝑫1 derived from DBN stage (c = 1,348 

⋯,𝑘 1). TASK represents the task paradigm curves convolved with HRF. Essentially, Pcorr, c, 349 

measures the temporal similarity between the temporal patterns of 𝑫𝑐
1 and the task stimulus. 350 

The atoms with the highest PCC value in group-wise temporal features 𝑫1  were chosen to 351 

represent the multi-layer temporal features. 352 

Identification of multi-level spatial patterns  353 

The multi-level spatial patterns can also be identified in the second stage of sparse 354 

representation model. Specifically, the 𝑺𝑖,𝑡
1   can be factorized into 𝑫1   and the loading 355 

coefficient 𝜶𝑖,𝑡
1 , which represent the group-wise temporal features and the individual spatial 356 

features, respectively. Here, 𝑖  refers to 𝑖 -th subjects (i∈1, 2, …, p, and p=48 in this work), 𝑡 357 

means 𝑡 kind of task, 𝑡∈ 𝚽  = {E, G, R, 𝑀 , L, 𝑆 , W}. To further derive the group-wise spatial 358 

features, the transposition of 𝜶1  could be then decomposed into 𝑫2  and 𝜶2  as shown in 359 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00334/2156813/netn_a_00334.pdf by guest on 08 Septem
ber 2023



19 

 

Equation (5). Since the transpose of 𝜶𝑖,𝑡
1   can be expressed as dictionary 𝑫2  multiplied by 360 

loading coefficient 𝜶𝑖,𝑡
2   (Equation (5)), the relationship between 𝑺𝑖,𝑡

1   and 𝑫1 , 𝑫2 , 𝜶2  can be 361 

deduced as Equation (6) shown, which also consistent with previous studies (Huan Liu 2017; 362 

Song et al., 2022).  363 

𝑺𝑖,𝑡
2 = (𝜶𝑖,𝑦

1 )𝑇= 𝑫2 × 𝜶𝑖,𝑡
2          (5) 364 

𝑺𝑖,𝑡
1  = 𝑫1×𝜶𝑖,𝑡

1  = 𝑫1 × (𝑫2 ×𝜶𝑖,𝑡
2 )𝑇        (6) 365 

Since all subjects share the same group-wise temporal dictionary 𝑫1 , the common 366 

dictionary 𝑫2 contained group-wise spatial patterns, of which atoms could be used to define 367 

the FBNs. Thus, the corresponding multi-layer spatial features were derived from the common 368 

dictionary 𝑫2 for each layer of the proposed framework (the fourth and fifth panels in Fig. 1B). 369 

We then identified the spatial correlation coefficient (SCC) to quantify the similarity 370 

between spatial patterns obtained from the proposed framework and the GLM -derived 371 

activation patterns. Specifically, the GLM-based analysis was performed individually, followed 372 

by group-wisely analysis using FSL FEAT (http://www.fmrib.ox.ac.uk/fsl/feat5/index.html). 373 

The group-level GLM-based results were employed for comparison. More details of GLM 374 

analysis are available in previous literature (Lv, Jiang, Li, Zhu, Zhang, et al., 2015). The SCC 375 

is defined in Equation (7) (Ben J. Harrison, 2008; Zuo et al., 2010): 376 

𝐑  (𝑿 , 𝑻 ) =
𝛴𝑝=1

𝑛 (𝑋𝑝−�̅�)(𝑇𝑝−�̅�)

√𝛴𝑝=1
𝑛 (𝑋𝑝−�̅�)

2
⋅𝛴𝑝=1

𝑛 (𝑇𝑝−�̅�)
2
          (7) 377 

where 𝑿  is the spatial functional network derived by the proposed framework, 𝑻  represents 378 

the GLM-derived activation template, and 𝑛 refers to the number of voxels of whole brain. 379 
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SVM-based classification method 380 

To further classify multi-task fMRI signals, we performed five-fold cross-validation to evaluate 381 

the classification performance of the proposed framework. As the linear SVM has optimization 382 

and generalization capability in limited sample sizes, as well as its proven effectiveness in 383 

multi-class classification (Chang & Lin, 2011b; Jang et al., 2017), we conducted multi-task 384 

classification analysis based on linear SVM classifier, which was established by the LIBSVM 385 

toolbox (Chang & Lin, 2011a). For each layer, as the loading coefficient 𝜶2  contains both 386 

temporal and spatial features embedded in fMRI signals, we first trained the SVM classifier 387 

using 𝜶2  derived from training set, and then evaluated the classification performance by 388 

feeding the 𝜶𝑡𝑒𝑠𝑡
2  of testing set into the trained SVM model. Based on the true label of seven 389 

tasks for each loading coefficient 𝜶𝑡𝑒𝑠𝑡
2 , the classification accuracy of each layer in each fold 390 

was defined as the percentage of correctly predicted samples. The final classification accuracy 391 

for each layer is the average of five folds for seven tasks. We then calculated the specificity of 392 

each fold for each layer, and the final specificity for each layer is the average of the five folds.  393 

ROA-based analysis 394 

The further goal aimed at uncovering discriminative functional components for multi-task 395 

classification. Inspired by the successful use of the Ratio of activation (ROA) in identifying 396 

discriminative components for decoding resting state fMRI (rsfMRI) and tfMRI (S. Zhang et 397 

al., 2016), we raised a novel ROA metric to identify the key components for seven-task 398 

classification. The ROA of the 𝑗-th row in loading coefficients 𝜶2 could be defined as follows:  399 

𝑁𝑡 = |𝜶2(𝑗, 𝑘)|0, 𝑘𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡𝑎𝑠𝑘(𝑡) 400 
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ROA𝑗 = √
1

𝑇
∑ (𝑁𝑡 − 𝑁𝑡

̅̅ ̅)2𝑇
𝑡=1         (8) 401 

In Equation (8), 𝜶2 represent all the individual spatio-temporal features, 𝜶2= [𝜶1
2, 𝜶2

2, …, 402 

𝜶𝑖
2, …, 𝜶𝑝

2]∈𝑅k2 ×(k1 ×7×p) (𝑘1= 𝑘2=128, p=48). 𝑖  refers to 𝑖 -th subject (𝑖 ∈1, 2, …, p). 𝑡 403 

represents task index (t∈1, 2, …, 7), and 𝑇 represents the number of task paradigms (i.e., 7 in 404 

our work). Task (𝑡) represents each of the seven different tasks. 𝑁𝑡 represents the activation 405 

level for each task, and 𝑁𝑡
̅̅ ̅ represents the average of 𝑁𝑡 (𝑡 = 1, ⋯,7). Here, the activation level 406 

𝑁𝑡  was defined by counting the number of non-zero entries marked as each task in the 407 

corresponding each row vector of  𝜶2 (t∈1, 2, …, 7). As 𝜶2 is a sparse matrix, the task with a 408 

higher count of nonzero elements in the row vectors of 𝜶2  is deemed to be more "active". 409 

Therefore, 𝑁𝑡 represents each task’s activation level in the row vectors of 𝜶2. The ROA was 410 

calculated by counting the standard deviation of 𝑁𝑡 across the seven tasks. A larger ROA value 411 

(i.e., larger standard deviation) indicates greater differences in activity levels across the seven 412 

tfMRI signals, which were more discriminative for multi-task classification. 413 

To validate that the components of higher ROA values capture greater capacity in 414 

classifying the multi-task fMRI signals, an experiment was designed as illustrated below. After 415 

sorting the ROA values for all components (i.e., rows in loading coefficients 𝜶2) from highest 416 

to lowest, we iteratively adopted more rows sorted by their ROA values in 𝜶2 as feature inputs 417 

for training the SVM classifier, that is, the components with higher ROA values were used 418 

preferentially for training. Afterwards, the corresponding components of 𝜶𝑡𝑒𝑠𝑡
2  from testing set 419 

were entered into the trained SVM model to evaluate the classification accuracy. Specifically, 420 

to define the key components with greater capacity for multi-task classification in each layer, 421 

we have repeated this ROA analysis using 𝜶2 derived from each layer of proposed model. Here 422 
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we applied the same classification scheme described in the previous section “SVM-based 423 

classification method”.  424 

After establishing the ROA metric for the classification features 𝜶2 , our subsequent 425 

objective is to elucidate the neural implications of these classification features. Given that each 426 

row of 𝜶2 corresponds to each column of 𝑫2 (i.e., each atom in 𝑫2), and these atoms can be 427 

mapped back to brain space, we thus established a relationship between the brain activations 428 

derived from the atoms in 𝑫2 and the ROA values of the row vectors of 𝜶2. This connection 429 

allows us to interpret neural implications of classification features. 430 

Result  431 

Classification performance of multi-task fMRI signals 432 

By applying the proposed DBN-SR framework to multi-task fMRI data using five-fold cross-433 

validation strategy, our results reveal that the fMRI data of seven tasks can be accurately 434 

classified. In detail, the classification accuracy for five-fold ranges from 92.86% to 100%, with 435 

an average accuracy of 97.86%±3.42% (Mean ± SD) in the layer 4 (Fig. 2A), which 436 

demonstrated the proposed framework can effectively uncover the inherent differences in 437 

composition patterns of multi-task fMRI signals. 438 

We also explored the classification performance based on features derived from each layer 439 

of the proposed framework (Fig. 2). The trend of the classification accuracy curves for five 440 

folds is relatively steady, with an average accuracy of 98.15%±0.90% (Mean±SD) (Fig. 2A). 441 

Moreover, the average accuracies across five-fold from layer1 to layer4 are 99.29%, 98.33%, 442 
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97.14%, and 97.86%, respectively. We depicted confusion matrices for each layer to represent 443 

the average classification accuracy of the seven tasks, as shown in Figure 2b. The results 444 

indicate that all the average classification accuracies for seven tasks across five-fold are greater 445 

than 95% in each layer, except for three major confusions, that is, gambling task in layer 3 and 446 

layer 4, relational task in layer 2 and layer 3, and language task in layer 3 (Fig. 2B). In addition, 447 

the specificity of classification results of the first two layers is slightly higher than that of the 448 

deeper two layers (Fig. 2C). Overall, the classification performance of the shallower layers is 449 

relatively better than that of the deeper layers.  450 

 451 

Figure 2. Classification performance. (A) The classification accuracy of five-fold in each layer. 452 

(B) The average confusion matrices of five-fold cross-validation on the seven tasks. (C) The 453 
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average specificity of five-fold cross-validation classification on the seven tasks. 454 

Identified multi-level temporal and spatial patterns of multi-task fMRI signals 455 

Multi-level temporal patterns 456 

Our DBN-SR based framework can effectively identify the temporal patterns of multi-task 457 

fMRI signals at multi-scale (Fig. 3). In each layer, we quantitatively compared the PCC of the 458 

identified temporal features and each task-based stimulus. Those atoms with the highest PCC 459 

value in temporal dictionary 𝑫1 were chosen to represent the task-related temporal patterns. 460 

We randomly select one training fold as an example to show the representative temporal 461 

patterns for each layer (fold 5) (Fig. 3). The average PCC values of seven tasks for all 5-fold 462 

can be found in Supplemental Table 6. 463 

The overall multi-level temporal patterns are relatively consistent with the task design 464 

paradigms. Specifically, the average PCC of seven tasks from layer1 to layer4 is 0.55±0.12, 465 

0.61±0.03, 0.65±0.07, and 0.71±0.08 (Mean ± SD), respectively, where the highest correlation 466 

is observed in layer4 (Fig. 3). Intriguingly, there exist gradient in the resolution of temporal 467 

patterns derived from different layers. In the shallow layer, all the identified temporal patterns 468 

are mixed with many random noises, resulting in a relatively poor correlation with task 469 

paradigms. In comparison, in the deeper layer, the temporal patterns are smoother and more 470 

consistent with the original task design curves, indicating that DBN-SR model can filter noises 471 

in each layer while keeping useful information of brain activities, which agrees with the former 472 

research (H. Huang et al., 2018; Wei Zhang, 2020).  473 
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 474 

Figure 3. Comparison of group-wise temporal patterns for seven tasks across different layers, 475 

including the identified temporal features (blue lines) and the task paradigms (red lines). The 476 

quantitative similarities (PCC) of identified temporal features with task paradigms are also 477 

provided. The y-axis represents the stimulus response amplitude, while the x-axis represents 478 

time point. The background colors represent different layers of our DBN-SR model. The lighter 479 

colors represent shallower layers, while the darker colors represent deeper layers.  480 

Multi-level spatial patterns 481 

Our framework can also effectively identify the spatial patterns from different layers. The most 482 

predominant spatial patterns identified by the proposed framework are the task-evoked FBNs, 483 

including emotion, gambling, relational, motor, social, language, and working memory. In each 484 

layer, we quantitatively compared the SCC of the identified spatial patterns and the GLM-485 

derived activation patterns. Those atoms with the highest SCC value in spatial dictionaries 𝑫2 486 

were chosen to represent the spatial pattern. We randomly selected one training fold to illustrate 487 
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the representative FBNs for each layer (Fig. 4). 488 

Overall, the spatial patterns are generally consistent with the GLM-derived activation 489 

patterns, with increasingly precise resolution from shallow to deep layers. Quantitatively, the 490 

average SCC of seven tasks from layer1 to layer4 is 0.36±0.20, 0.26±0.11, 0.40±0.12, and 491 

0.48±0.12 (Mean ± SD), respectively, where the highest SCC is observed in layer 4 (Fig. 4). 492 

Intriguingly, there exist distinct differences among spatial patterns derived from different layers. 493 

The spatial patterns across layers show a trend of increasing consistency with the GLM-derived 494 

activation patterns, and are more compact in deeper layers for most tasks. Meanwhile, more 495 

FBNs can be found in the deeper layers compared with shallow layer. For example, some FBNs 496 

cannot be identified in the first three layers, such as FBNs related to gambling and relational 497 

tasks (Fig. 4).  498 

Figure 499 

4. 500 

Comparison of group-wise spatial patterns for seven tasks across different layers. The spatial 501 

correlation coefficient (SCC) between each identified spatial pattern and GLM-derived 502 

activation pattern is labeled on top of each brain map. 503 

Apart from FBNs, the proposed framework can also effectively detect various artifact-504 

related components. Specifically, the atoms in spatial dictionary 𝑫2 can represent the group-505 
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wise spatial features and can be mapped back to the 3D brain volume. Subsequently, we 506 

manually inspected whether spatial map matched the known types of artifacts based on 507 

previous study (Salimi-Khorshidi et al., 2014). Through this process, we found several artifact-508 

related components, including movement-related, cardiac-related, sagittal sinus, susceptibility-509 

motion, white-matter, and MRI acquisition/reconstruction related (Fig. 5). 510 

 511 

Figure 5. Identified artifact components, including movement-related, cardiac-related, sagittal 512 

sinus, susceptibility-motion, white-matter, and MRI acquisition/reconstruction related. 513 

Overall, our effective DBN-SR model is capable of characterizing the multi-level 514 

spatiotemporal features of brain function. The quantitative analysis further demonstrates that, 515 

in deeper layer, the representative temporal features correspond well with task design curves, 516 

and the spatial features are relatively more consistent with the GLM-derived activation. In 517 

addition to task-evoked functional components, our framework could also effectively identify 518 

artifact components from group-wise multi-task fMRI data, laying the groundwork for further 519 

research into the functional role of these components in multi-task classification. 520 

Identification of discriminative features by ROA analysis 521 

As depicted in the “ROA-based analysis” section, we first computed the ROA index by sorting 522 

the ROA values of all the components in loading coefficients 𝜶2 of the training set, then, in 523 

order to evaluate the classification performance, the corresponding components in the loading 524 
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coefficient 𝜶𝑡𝑒𝑠𝑡
2  of testing set were fed sequentially into the trained SVM classifier according 525 

to the ROA index. Here, the classification results of each layer on one randomly selected testing 526 

fold dataset (fold 5) using different number of components, sorted by their ROA values, are 527 

illustrated in Fig. 6A. While the number of components increases from 1 to 20, the accuracy 528 

curves of four layers grow monotonically, and the average accuracy of all curves rises to 529 

91.96%. When more than twenty components are included for classification, the accuracy 530 

curves of four layers exhibit a plateau with accuracies reaching close to 100%, indicating that 531 

the additional components with lower ROA values contribute less to the successful 532 

classification of multi-task signals. Thus, the top twenty components with higher ROA values 533 

can be regarded as key components for the classification task to some extent. Generally, our 534 

method can effectively disclose the key components with great classification capacity. In 535 

addition, the findings are consistent across different testing folds, hence the additional results 536 

of the other four folds are included in the Supplementary Materials (sFig2-5). 537 

To further investigate the neural implications of key components with greater 538 

classification capacity, we inspected the spatial patterns of the top twenty key components 539 

identified by ROA analysis in each layer. By further analyzing the composition of the twenty 540 

key components in each layer, we found that these key atoms are either FBNs or artifact-related 541 

components, which were identified by visually examining their spatial patterns with established 542 

templates and further calculating their SCC with GLM-derived activation maps. 543 

Intriguingly, our results show that the top twenty key components in the four layers are 544 

largely composed of artifacts, while the proportion of FBNs in key components is small as a 545 

whole. On the other hand, the proportion of FBNs is relatively higher in deeper layers compared 546 
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to shallower layers (Fig. 6B). This conclusion aligns with the findings when using the top 40 547 

components as key components (sFig. 8). 548 

 549 

Figure 6. ROA classification results in each layer (fold 5). (A) Classification accuracy for 550 

SVM-based classification of four layers using the different number of components sorted by 551 

their ROA values. (B) The composition of twenty key components sorted by ROA value across 552 

each layer. 553 

Discussion  554 

In this study, we proposed a hybrid spatio-temporal deep belief network and sparse 555 

representation framework to decode multi-task fMRI signals on a relatively small cohort 556 
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dataset. Our framework could classify fMRI signals of seven tasks with high accuracy and 557 

detect multi-level temporal patterns and FBNs, suggesting the effectiveness of the proposed 558 

method. In addition, our framework can reveal key components including artifact components 559 

and functional brain networks in multi-task classification and uncover their underlying 560 

neurological implication. 561 

Our proposed framework is composed of several elements, including DBN model, 562 

LASSO regression, sparse representation, and SVM classifier, resulting in a relatively complex 563 

structure. Nevertheless, our framework achieved a relatively higher classification accuracy in 564 

comparison to prior research that also conducted classification of 7 task states on the HCP 565 

dataset (X. Huang, Xiao, & Wu, 2021; Wang et al., 2020), while also yielding interpretable 566 

classification components. Specifically, Wang et al. (2020) reported two standard machine 567 

learning algorithms, namely MVPA-SVM and DNN, and X. Huang et al. (2021) proposed a 568 

novel framework (CRNN) incorporating multiple modules such as CNN, recurrent neural 569 

network (RNN), and attention mechanism. The average accuracy of our framework (98.15%) 570 

is much higher than that of MVPA-SVM (69.2%) and comparable to the accuracies of DNN-571 

based model (93.7%) and CRNN-based model (94.31%) (X. Huang et al., 2021; Wang et al., 572 

2020). Additionally, the neuroscientific implications of their results remain elusive. In 573 

conclusion, our proposed model achieved higher decoding accuracy than these models, while 574 

also providing a more comprehensive and interpretable methodology for decoding fMRI data.  575 

Furthermore, our model unveils multi-level temporal and spatial patterns, demonstrating 576 

a resolution gradient spanning from shallow to deep layers. Specifically, in the deeper layers, 577 

the identified temporal features are better correlated to the original task paradigm curves. 578 
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Meanwhile, more diverse FBNs can be detected and the spatial features show more consistency 579 

with the GLM-derived activation patterns, in deeper layers.  580 

Intriguingly, although more higher-order FBNs can be detected in deeper layers, the 581 

classification accuracy using features for multi-task classification derived from deeper layers 582 

is lower than that of shallower layers, indicating that these higher-order FBNs are not much 583 

helpful for multi-task classification. To validate this observation, we specifically selected only 584 

FBNs components from all available components across all five folds for multi-task 585 

classification, resulting in an average accuracy of 97.08%±2.14% (Mean±SD), slightly lower 586 

than the classification rate obtained using all components (98.15%±0.90%) (sTab. 3). The 587 

possible reason is that the FBNs evoked by different cognitive tasks may have co-activated 588 

brain regions, thus the FBNs components alone may not fully reveal the potential fundamental 589 

differences in functional composition patterns of multi-task fMRI data. On the other hand, 590 

ROA-based analyses indicate that artifact components occupy higher proportion of key 591 

components for multi-task classification in shallower layers than that in deeper layers, along 592 

with higher classification accuracy and specificity in the shallower layers. These findings 593 

suggest that the artifact components play an important role in multi-task fMRI signal 594 

classification, which is also consistent with previous research, where the artifact components 595 

of the EEG signal are significantly more informative than brain activity concerning 596 

classification accuracy (McDermott et al., 2021). 597 

While our study provides novel insight into the core functional components in decoding 598 

multi-task fMRI signals, it is important to note that there are three limitations. The first 599 

limitation is the manual setting of parameters for DBN and sparse representation framework, 600 
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mainly including the number of neuron nodes and layers in DBN and the sparsity penalty 601 

parameter of SR. Thus, automatic optimization of model parameters is one of the future 602 

research directions. The second limitation stems from our inability to detect FBNs related to 603 

gambling and relational tasks within the first two to three layers of the DBN-SR framework. 604 

This could be attributed to more noise present in the group-wise temporal features 𝑫1 extracted 605 

at lower levels (Fig. 1). Additionally, LASSO regression may not be well-suited for handling 606 

noisy shallow features, thus making it challenging for LASSO regression to accurately capture 607 

the underlying spatial patterns. To address this limitation, future studies could explore 608 

alternative regression approaches that are better suited for handling noisy shallow features, 609 

thereby improving the accurate acquisition of the underlying spatial patterns. The third 610 

limitation is that our study employed a relatively small dataset, consisting of 60 individuals out 611 

of 68 from HCP Q1 dataset. To assess the robustness of our model, we included the remaining 612 

8 individuals from the same dataset as a hold-out dataset, 6 of which do not have complete data 613 

for all 7 tasks (sTab. 4). However, this does not affect their suitability as an independent lock 614 

box dataset to test the performance of our trained model. The results revealed that the average 615 

decoding accuracy for these 8 individuals (96.43%) was comparable to the 5-fold cross-616 

validation accuracy of the 60 individuals (sTab. 5), suggesting the robustness of our model. 617 

Nonetheless, we acknowledge that a larger dataset would lend further support to our findings. 618 

In future work, we aim to apply our model to more extensive or multicenter datasets to evaluate 619 

its generalizability and robustness. 620 

Overall, with the superiority of interpretability and effectiveness of DBN-SR model on 621 

small datasets, our framework could potentially be useful to differentiate abnormal brain 622 
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function in clinical research. 623 
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Decoding different cognitive processes using task-based functional magnetic resonance 

imaging (tfMRI) is crucial for understanding the relationship between brain activities and 

cognitive states. However, existing machine learning-based feature extraction methods for 

decoding brain states may struggle to capture the complex and precise spatiotemporal patterns 

of brain activity from the highly noisy raw fMRI data. Additionally, current deep learning-

based end-to-end decoding models struggle to unveil interpretable components in tfMRI signal 

decoding. 

To address these limitations, we proposed a novel framework, the hybrid spatio-temporal 

deep belief network and sparse representations (DBN-SR) framework, which effectively 

distinguished multi-task fMRI signals with an average accuracy of 97.86%. Furthermore, it 

simultaneously identified multi-level temporal and spatial patterns of multiple cognitive tasks. 

By utilizing a novel Ratio-of-Activation metric, our framework unveiled interpretable 

components with greater classification capacity, offering an effective methodology for basic 

neuroscience and clinical research. 
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