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Abstract 8 

Listening to music is an enjoyable behaviour that engages multiple networks of brain regions.  9 

As such, the act of music listening may offer a way to interrogate network activity, and to 10 

examine the reconfigurations of brain networks that have been observed in healthy aging. The 11 

present study is an exploratory examination of brain network dynamics during music listening in 12 

healthy older and younger adults. Network measures were extracted and analyzed together with 13 

behavioural data using a combination of hidden Markov modelling and partial least squares. We 14 

found age- and preference-related differences in fMRI data collected during music listening in 15 

healthy younger and older adults. Both age groups showed higher occupancy (the proportion of 16 

time a network was active) in a temporal-mesolimbic network while listening to self-selected 17 

music. Activity in this network was strongly positively correlated with liking and familiarity 18 

ratings in younger adults, but less so in older adults. Additionally, older adults showed a higher 19 

degree of correlation between liking and familiarity ratings consistent with past behavioural 20 
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work on age-related dedifferentiation. We conclude that, while older adults do show network and 21 

behaviour patterns consistent with dedifferentiation, activity in the temporal-mesolimbic network 22 

is relatively robust to dedifferentiation. These findings may help explain how music listening 23 

remains meaningful and rewarding in old age. 24 

 25 

Keywords: Music, Aging, Computational Neuroscience 26 

Background 27 

Brain function changes with age across multiple spatial scales. The brain can be thought of as a 28 

series of overlapping functional networks where each network is a collection of brain regions 29 

that act in concert over time. With age, regions that were once nodes in densely-connected 30 

functional networks may become disconnected while regions in previously distinct functional 31 

networks may become more connected (Grady et al., 2016), though whether this reconfiguration 32 

of functional network boundaries is adaptive or maladaptive remains unclear. In healthy older 33 

adults, networks that were once well-defined and responded preferentially to a particular 34 

stimulus or set of conditions begin to activate (or to fail to deactivate) less discerningly in a 35 

process known as dedifferentiation (Grady et al., 2012; Rieck et al., 2017). 36 

 37 

In music listening, there is behavioural evidence of age-related perceptual changes that may 38 

serve as a behavioural counterpart to the dedifferentiation seen in network brain dynamics. 39 

Music is reported as more broadly pleasant with age (a positivity effect, Bones & Plack, 2015; 40 

Groarke & Hogan, 2019; Laukka & Juslin, 2007; Lima & Castro, 2011), and perceptual features 41 

also become less distinct with age, with higher correlations observed between perceived arousal 42 
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and valence in older adults (Vieillard et al., 2012). This blurring of the lines between the 43 

perceived pleasantness and dimensions of a musical signal might indicate underlying network 44 

changes, but do not seem to affect the music listening experience negatively. 45 

 46 

Musical sounds are complex stimuli that, using building blocks of timbre, tone, pitch, rhythm, 47 

melody, and harmony, can engender expectancy and surprise to make us laugh, cry, dance, sing, 48 

and reminisce. As musical stimuli are complex and hierarchically organized, brain responses to 49 

music are likewise complex and hierarchical, with many temporally-dependent overlapping 50 

processes. Features extracted from musical signals stimulate activity in multiple brain regions 51 

(Alluri et al., 2012; Burunat et al., 2017; Williams et al., 2022), and networks, including the 52 

default mode network (DMN; Wilkins et al., 2014; Koelsch et al., 2022; Taruffi et al., 2017) and 53 

reward networks (Fasano et al., 2022). 54 

 55 

Multivariate statistical modelling tools provide us with a unique opportunity to observe and 56 

describe whole-brain network activity in a data-driven way. Working in network space, where 57 

the smallest unit of measurement is a network, allows us to examine the shifting patterns of brain 58 

activity that accompany music, which has the potential to add nuance that cannot be seen when 59 

looking at isolated regions of interest. This approach may also be of value in understanding the 60 

neural foundation of age-related perceptual changes, and may shed light on why music is so 61 

salient in clinical populations (Cuddy & Duffin, 2005; Leggieri et al., 2017; Särkämö et al., 62 

2014; Thaut et al., 2020, Matziorinis & Koelsch, 2022).  63 

 64 
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Where older adults show network reconfigurations compared to younger cohorts in rest and 65 

during cognitive tasks, what can music reveal about the aging brain? In the present exploratory 66 

study, we studied age differences in network-level dynamics during familiar and novel music 67 

listening in a cohort of healthy younger and older adults. We aim to demonstrate age-related 68 

changes in network dynamics using a novel analysis paradigm comprising hidden Markov 69 

modelling and partial least squares analyses.   70 

 71 

Methods 72 

Networks were estimated using hidden Markov modelling (HMM) and analyses were completed 73 

using partial least squares (PLS). We chose HMM rather than a seed-based or canonical network 74 

analysis (see Bressler & Menon, 2010) in an effort to base our analyses on data-driven patterns 75 

as much as possible. A substantial advantage of HMM is that it derives networks from patterns in 76 

the original data without the constraints of canonical network boundaries or specified time 77 

windows. 78 

 79 

A brief outline of data collection is included here. For a detailed description of participant 80 

recruitment, study protocol, and data acquisition, please see Quinci et al. (2022) and Belden et al. 81 

(2023).  82 

Participants 83 

Participants were right-handed, cognitively healthy younger (N = 44, 11 males, mean age = 84 

19.24, SD = 1.92) and older (N = 27, 13 males, mean age = 67.34, SD = 8.27) adults with normal 85 

hearing established via audiogram. Inclusion criteria included normal hearing, successful 86 

completion of MRI screening, and a minimum age of 18 for younger adults and 50 for older 87 
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adults. Exclusion criteria comprised medication changes 6 weeks prior to screening, a history of 88 

any medical condition that could impair cognition, a history of chemotherapy in the preceding 10 89 

years, or any medical condition requiring medical treatment within three months of screening. 90 

Data from two younger participants were excluded following data collection due to problems 91 

with the ratings apparatus. Ethics approval was granted by the Northeastern University 92 

Institutional Review Board and all research was conducted consistent with the Declaration of 93 

Helsinki. 94 

Procedure 95 

Prior to data collection, participants completed a screening call with researchers to confirm their 96 

eligibility for the study, and to collect a list of six songs that are familiar and well-liked by the 97 

participant. Following screening, eligible participants completed a battery of neuropsychological 98 

tests, structural and functional MRI scans, and a blood draw. The present study focuses on the 99 

fMRI data; other aspects of the results are in preparation and will be described in separate 100 

reports. 101 

Data acquisition 102 

All scans took place at Northeastern University. Functional scans were acquired with a Siemens 103 

Magnetom 3T scanner with a 64-channel head coil. The total scan time for task data was 11.4 104 

minutes with continuous acquisition at a fast TR of 475 ms over 1440 volumes. A resting state 105 

scan was also performed with these parameters, and findings will be reported in a future 106 

manuscript. T1 images were captured, but will not be discussed in detail in this manuscript. 107 

 108 
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Task fMRI consisted of a block of resting state followed by music presentation (24 excerpts, 109 

each played for 20 seconds). Musical excerpts were either familiar and well-liked self-selected 110 

music (6/24), or experimenter-selected music chosen to be popular or possibly recognizable 111 

(10/24), or novel including excerpts purpose-composed for research purposes (8/24). Stimuli 112 

were presented randomly and following each 20 second musical excerpt, participants were asked 113 

to rate their familiarity and liking of the excerpt for two seconds each, using 4-point Likert 114 

scales.  115 

Data pre-processing 116 

Functional MRI data were pre-processed using the TVB-UKBB pipeline detailed by Frazier-117 

Logue et al. (2022). T1 images were registered to the Montreal Neurological Institute T1 118 

template. Functional data pre-processing was done using a pipeline using the FMRIB Software 119 

Library (FSL; Woolrich et al., 2009), including the fMRI Expert Analysis Tool (FEAT, version 120 

6.0). Within the pipeline, pre-processing of functional data comprised gradient echo fieldmap 121 

distortion correction, motion correction using MCFLIRT, and independent component analysis 122 

(ICA) artifact classification using MELODIC and FIX.  123 

 124 

We assembled an ICA training set for non-cerebral artifact detection. ICA reports from 16 125 

participants per age group were visually inspected for noisy vs. clean components and manually 126 

annotated. Subsequent participants’ ICA reports were cleaned using this training set. The 127 

processed datasets were down-sampled to 220 regions of interest using the Schaefer-Tian 220 128 

parcellation, which provides ample spatial resolution of auditory regions and subcortical 129 

structures (Schaefer et al., 2017, Tian et al., 2020). Regional time series data were normalized to 130 
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control for between-subject amplitude differences and exported to MatLab (MathWorks, 2019) 131 

for Hidden Markov Model estimation and analysis.  132 

Network Estimation 133 

To estimate networks, we used the HMM-MAR Toolbox (Vidaurre et al., 2017, 2018). The 134 

estimation uses ROI time series data and calculates the K networks that best describe the entire 135 

dataset. It then allocates each time window to the single best-fitting network within the original 136 

time series. HMM, as a dimensionality reduction technique, returns states (hereafter referred to 137 

as networks) that can be used to observe how networks interact over time.  138 

 139 

The output from HMM is a time series showing the most prominent network at each timepoint. 140 

From this timeseries, it is possible to calculate fractional occupancy and state-wise transitional 141 

probability (Vidaurre et al., 2017). Fractional occupancy is the proportion of the total number of 142 

timepoints each network was occupied during a time series task, and shows a particular 143 

network’s prominence during target time windows. Transitional probability shows the most 144 

likely patterns of steps from one network to another. Thus, both are related measures, but contain 145 

different information about how the networks interact. 146 

 147 

We estimated HMMs with variable K values between 3 and 20. We found the estimations with 4 148 

and 7 states to provide the most optimal model-derived free energy values (see Vidaurre et al., 149 

2017; Vidaurre et al., 2018). Partial least squares analyses showed statistically significant effects 150 

for both estimations with comparable effect sizes (see Fasano et al., 2022). We further 151 

interrogated the spatial properties of the states in each estimation by computing a dot product of 152 

the normalized state means, finding that the spatial properties of the states in the estimation with 153 
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7 states were well-represented in the estimation with 4 states. We ultimately chose the 4 state 154 

estimation as it provided a single state with activity in temporal and mesolimbic regions together. 155 

Temporal and mesolimbic region activity has been previously related to auditory reward 156 

(Salimpoor et al., 2011, Fasano et al., 2020), including prior analyses of subsets of the present 157 

data (Belden et al., 2023, Quinci et al., 2022).  158 

 159 

The K networks identified by the HMM estimation are shown in Figure 1 (cortical regions only) 160 

and the regions of interest are detailed in Table 1. Where this analysis did not use canonical 161 

network-based seeds, we assigned anatomical labels to the networks based on the taxonomy of 162 

functional brain networks consistent with the wider network literature (Uddin et al, 2019). The 163 

functional properties of these states will be addressed in the discussion.  164 

 165 

Figure 1: Mean activity plots returned from HMM analysis. Colours represent relative activity of 166 

the states and all have been normalized within-state. See Table 1 for subcortical regions not 167 

displayed here.  168 

 169 

State Main Regions Network 

1 Bilateral middle-frontal and left temporal regions. 

Subcortical regions include the bilateral temporal 

pole, left nucleus accumbens, and right hippocampal 

body 

Medial frontoparietal network 

2 Bilateral temporal and frontal regions Temporal network 

3 Bilateral temporal and mesolimbic regions 

Subcortical regions include the left globus pallidus, 

left hippocampal body, right putamen, and right 

hippocampal tail 

Temporal mesolimbic 

network 
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4 Bilateral superior frontal and middle parietal regions Frontoparietal network 

Table 1: Regions of interest and network labels from HMM analysis. Network labels are based 170 

on the work of Uddin et al. (2019).  171 

PLS 172 

We used partial least squares (PLS) to analyze between- and within-group differences on the 173 

HMM-extracted measures. PLS is a multivariate analysis technique that uses singular value 174 

decomposition to quantify the relationship(s) between data matrices and experimental features, in 175 

this case, fractional occupancy and transitional probability measures. In these analyses, we used 176 

mean-centred PLS to analyze group and task differences using the HMM-extracted measures and 177 

the within-subject relation of the measure to participant liking and familiarity ratings. To 178 

emphasize group main effects, we performed mean-centred analyses subtracting the overall 179 

grand mean from the group means. To focus on task main effects and task by group interactions, 180 

secondary mean centred analyses were performed, subtracting the group mean from the task 181 

mean within each group (i.e., rendering the group main effect zero).  182 

 183 

PLS analysis returns mutually-orthogonal latent variables (LVs) that describe group and/or task 184 

effects. Each LV’s statistical significance and reliability are calculated via permutation testing 185 

and bootstrap estimation, respectively with a statistical threshold of p <.05. The reliability and 186 

strength of the group or task effects is depicted through the confidence interval estimation of LV 187 

scores for all participants, where LV scores are the dot-product of subject data and LV weights. 188 

LV weights themselves are evaluated for reliability through bootstrap ratios of the weight 189 

divided by its estimated standard error, which can be interpreted as a z-score for the 190 

corresponding confidence interval (see McIntosh & Lobaugh, 2004). 191 
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 192 

Results 193 

Prior to HMM decomposition, we tested for sex differences using mean-centred PLS on each 194 

participant’s average functional connectivity matrix from the music listening task. No significant 195 

sex-related differences were found. Following these analyses, we ran additional PLS analyses to 196 

test for sex effects in fractional occupancy and transitional probability, returning no significant 197 

effects. Data were subsequently pooled together for the remainder of the analysis.  198 

Fractional Occupancy 199 

We extracted average fractional occupancy for each participant, and fractional occupancy for 200 

each participant for each category of musical excerpt (self-selected, experimenter-selected 201 

popular, and experimenter-selected novel) and used PLS to observe differences in fractional 202 

occupancy across age groups and stimuli categories. Mean-centred PLS analysis returned one 203 

significant LV (p = .024) showing an age effect, with younger adults showing higher fractional 204 

occupancy in the temporal network (network/state 2), and older adults showing higher fractional 205 

occupancy in the frontoparietal network (network/state 4).    206 

 207 

Figure 2: Age-related differences in fractional occupancy (FO). (A) PLS contrasts between age 208 

groups in music listening. Error bars were calculated using bootstrap resampling and reflect the 209 

95% confidence interval. The contrasts show an age effect on FO (B), with the higher FO in 210 

network 2 in younger adults, and higher FO in network 4 in older adults. The colour scale 211 

represents the bootstrap ratio for each network. 212 

 213 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00333/2155202/netn_a_00333.pdf by guest on 07 Septem
ber 2023



11 

When divided into stimulus categories and analyzed for task main effects and task-by-group 214 

interactions, mean-centred PLS analysis returned one significant LV (p < .01, Figure 2) showing 215 

an effect of self-selected music vs experimenter-selected music on fractional occupancy in the 216 

temporal-mesolimbic network (network 3). Fractional occupancy is higher for this network while 217 

listening to self-selected music (music that is highly familiar and well-liked) in both younger and 218 

older adults. Fractional occupancy for the temporal network (network 2) is higher when listening 219 

to experimenter-selected music. Both effects are qualitatively more reliable in younger adults 220 

based on confidence intervals (Figure 3A). 221 

 222 

Figure 3: (A) PLS contrasts between age groups in stimuli category and fractional occupancy 223 

(FO). Error bars were calculated using bootstrap resampling and reflect the 95% confidence 224 

interval. The contrasts show a stimulus-type effect on FO in both age groups (B), with the higher 225 

FO in network 3 in both groups during self-selected music listening (SS Y and SS O), and higher 226 

FO in network 2 during experimenter-selected music listening (Pop and Nov delineating popular 227 

and novel excerpts respectively). 228 

Transitional Probability 229 

We next examined the transitional probability matrices for differences in network interaction on 230 

average and between the different stimulus categories. Important to note: the data being analyzed 231 

is the directional likelihood of transitioning from each network to each other network. Rather 232 

than looking at networks by themselves, these results show the link or edge that connects each 233 

network to each other network.  234 

 235 
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The averaged transitional probability mean-centred PLS returned one significant LV (p < .001), 236 

showing a contrast between younger and older adults, with younger adults more likely than older 237 

adults to transition into the temporal network (network 2) from other networks, and less likely 238 

than older adults to transition to the frontoparietal network (network 4) from the temporal 239 

network (network 2) In examining network persistence (the likelihood of staying in a network), 240 

younger adults were more likely to stay in the temporal network when listening to experimenter-241 

selected music (Figure 4). 242 

 243 

Figure 4: (A) PLS contrasts between age groups and transitional probability (TP). Error bars 244 

were calculated using bootstrap resampling and reflect the 95% confidence interval. The 245 

contrasts show an age effect on TP in both age groups (B), with younger adults more likely to 246 

transition into network 2 from networks 1, 2, and 3 than older adults; and less likely to transition 247 

to network 4 from network 2 than older adults (C). The colour scale represents the bootstrap 248 

ratio for each network. 249 

 250 

When divided into stimulus categories and analyzed for task main effects and task-by-group 251 

interactions, both groups were more likely to transition from the temporal network to the 252 

temporal-mesolimbic and frontoparietal networks during self-selected music listening. In 253 

experimenter-selected music, both groups were most likely to transition from the temporal-254 

mesolimbic network to the temporal network, but this effect was more pronounced in younger 255 

adults. In examining network persistence (the likelihood of staying in a network), all participants 256 

were more likely to stay in the temporal-mesolimbic network when listening to self-selected 257 

music and more likely to stay in the temporal network when listening to experimenter-selected 258 
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music. When analyzed within age, older participants did not show a significant network 259 

persistence pattern in the temporal network during experimenter-selected music (Figure 5). 260 

 261 

Figure 5: (A) PLS contrasts between age groups in stimulus category and transitional 262 

probabilities. SS refers to self-selected music, Pop and Nov refers to popular and novel 263 

experimenter-selected music. Error bars were calculated using bootstrap resampling and reflect 264 

the 95% confidence interval. The contrasts (B) show a stimulus-type effect on transitional 265 

probability (TP), illustrated with the TP magnitude in panel C. Panel C shows the between-266 

network TP with solid lines representing self-selected music and dashed lines representing 267 

experimenter-selected music. 268 

Effects of liking and familiarity on brain measures 269 

We next analyzed the network fractional occupancy and transitional probability matrices with 270 

participants’ liking and familiarity ratings. We correlated liking and familiarity ratings for each 271 

excerpt with fractional occupancy for each participant. Initial mean-centred PLS analysis 272 

returned no significant LVs. Following this analysis, we ran the PLS centred to the overall grand 273 

mean to allow for a full factorial analysis: group main effect, task main effect and group-by-task 274 

interactions.  275 

 276 

The results from the full factorial PLS returned one significant LV (p < .001) showing the 277 

contrast between age groups. In younger adults, the temporal-mesolimbic network featured 278 

prominently, showing a greater positive correlation than other networks with both liking and 279 

familiarity. Older adults showed a more ambiguous correlation between liking and familiarity 280 

and fractional occupancy in the temporal network (Figure 7). 281 
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 282 

Figure 6:(A) PLS contrasts between age groups in stimulus category and fractional occupancy. 283 

Error bars were calculated using bootstrap resampling and reflect the 95% confidence interval. 284 

The contrasts show an age effect on correlations between liking and familiarity (Fam) and 285 

network fractional occupancy (B), illustrated with the relevant magnitude in panel C. 286 

 287 

We next vectorized the excerpt-wise transitional probability matrices for each participant, and 288 

correlated them with each participant’s piece-wise liking and familiarity ratings, returning two 289 

transitional probability -correlation matrices per participant: liking*transitional probability and 290 

familiarity*transitional probability.  291 

 292 

A full factorial PLS consistent with the above analysis returned one significant LV (p < 0.001) 293 

showing an age effect. Younger adults’ liking and familiarity ratings were more strongly 294 

positively correlated with the likelihood of transitioning to the temporal-mesolimbic network 295 

from the temporal and frontoparietal networks. Younger adults’ ratings were more strongly 296 

negatively correlated with persistence in the temporal-mesolimbic network, and the likelihood of 297 

transitioning from the temporal-mesolimbic network to the medial frontoparietal network. 298 

Transitioning from the frontoparietal network to the temporal network was more positively 299 

correlated with ratings in older adults, and more negatively correlated with ratings in younger 300 

adults (Figure 7). 301 

 302 

Figure 7:(A) PLS contrasts between age groups in stimulus category and transitional 303 

probabilities. Error bars were calculated using bootstrap resampling and reflect the 95% 304 
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confidence interval. The contrasts (B) show an age effect on correlations between liking and 305 

familiarity (Fam) and network transitional probability, illustrated with the relevant magnitude in 306 

panel C. The colour scale represents the bootstrap ratio for each network. 307 

Within-age mean-centred PLS analyses did not return any significant LVs. 308 

Liking and familiarity behavioural ratings 309 

Finally, we examined the ratings themselves. Mean-centred PLS showed older adults rated 310 

excerpts as significantly less familiar than younger adults (p < .01). However, they did not 311 

significantly differ in liking ratings. Mean-centred PLS also showed older adults’ liking and 312 

familiarity data were significantly more highly correlated than younger adults (r = 0.57 for older 313 

adults and r = 0.43 for younger adults, PLS p < .01). 314 

Discussion 315 

Music listening engages multiple brain networks that may reorganize in multiple ways as we age. 316 

While there are well-documented effects of music listening on auditory and reward networks and 317 

auditory-motor networks, less is known about how music listening may encourage persistence 318 

within networks, or transitions between networks. Treating data-driven brain networks as units of 319 

analysis, we detailed age-related similarities and differences in network occupancy and between-320 

network transitional probabilities during music listening. The two most commonly-featured 321 

networks in these analyses were the temporal and temporal-mesolimbic networks. Activity in 322 

temporal-mesolimbic regions overlaps with auditory-reward network activity (see Wang et al., 323 

2020), while temporal regions are firmly affiliated with auditory processing (Belfi & Loui, 324 

2019). 325 
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 326 

Both younger and older adults showed the highest fractional occupancy in the temporal-327 

mesolimbic network while listening to self-selected music compared to experimenter-selected 328 

music. These stimuli were selected by participants to be familiar and well-liked, and auditory-329 

reward network activation for preferred music has been well-documented in prior studies 330 

(Salimpoor et al., 2011, Fasano et al., 2020), including on a subset of these data (Quinci et al., 331 

2022). This network was active for experimenter-selected music as well, though to a lesser extent 332 

than self-selected music, particularly in younger adults. 333 

 334 

When looking at the transitional probability matrices, self-selected music was again linked to 335 

persistence in the temporal-mesolimbic network and a greater probability of transition to this 336 

network from the temporal network in both age groups. Experimenter-selected music was linked 337 

to higher persistence in the temporal network and a greater probability of transition to the 338 

temporal network from the temporal-mesolimbic network in both age groups, indicating that 339 

music listening employs a distributed network of frontal and temporal regions; but to engage 340 

mesolimbic structures, a degree of liking and familiarity is needed.  341 

 342 

However, when analyzed separately, group differences were more obvious. Older subjects 343 

showed an increased likelihood of persistence in the temporal network during experimenter-344 

selected music, but this effect was less reliable than in younger adults. Older adults also showed 345 

an increased likelihood of transitioning to the temporal-mesolimbic network from the medial 346 

frontoparietal network in self-selected music. This network shares many regions with the default 347 

mode network (DMN; Uddin et al., 2019). The DMN is implicated in listening to liked (Wilkins 348 
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et al., 2014; Pereira et al., 2011) and timbrally rich music (Alluri et al., 2012), and is less 349 

attenuated during cognitive tasks with age (Rieck et al., 2017). One possible explanation is that 350 

older adults are less likely to transition from the medial frontoparietal network to the temporal 351 

network during music listening than younger adults, instead remaining in the medial 352 

frontoparietal network until transitioning to the temporal-mesolimbic network while a younger 353 

adult may transition from the medial frontotemporal network to the temporal network. 354 

 355 

The older adult transitional probability matrices showed more transitions to the temporal-356 

mesolimbic network during experimenter-selected music, which could indicate an age-related 357 

shift in between-network dynamics. Former pathways (in this case, the likelihood of transitioning 358 

from an auditory reward network to an auditory perception network during unfamiliar music, or 359 

staying in an auditory perception network during unfamiliar music) reconfigure in favour of 360 

consistency across multiple types of music involving the temporal mesolimbic network. This is 361 

consistent with earlier findings that network functional specificity declines in favour of a more 362 

standard set of responses to multiple stimuli types (Rieck et al., 2020).  363 

 364 

In younger adults, liking and familiarity ratings were correlated with fractional occupancy in the 365 

temporal and temporal mesolimbic networks, with the temporal network most occupied when 366 

familiarity and liking are low and the temporal mesolimbic network most occupied when 367 

familiarity and liking are high. In older adults, correlations between fractional occupancy and 368 

liking and familiarity ratings are more ambiguous, indicating a reconfiguration of network 369 

engagement related to aging. Correlations between ratings and transitional probabilities were 370 

consistent with this pattern: younger adults’ likelihood of transitioning into the temporal and 371 
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temporal-mesolimbic networks were more strongly correlated with liking and familiarity than 372 

older adults who showed a more diffuse pattern. 373 

 374 

Older adults showed high fractional occupancy in the temporal-mesolimbic network during all 375 

music types. This difference could be because older adults show less differentiation between 376 

liking and familiarity during novel music listening. If familiarity is lower among older adults, but 377 

liking is consistent with younger adults, it is possible that older adults would engage a different 378 

network response to music that is unfamiliar but liked.  Liking and familiarity are more 379 

positively correlated in older adults than younger adults, consistent with earlier findings on age-380 

related blunting of emotional intensity and liking (where stimuli are consistently rated as less 381 

extremely pleasant and unpleasant. See Baird et al., 2020; Groarke & Hogan, 2019; Laukka & 382 

Juslin, 2007).  383 

 384 

While these results offer a promising look into capturing age-related changes in network-level 385 

dynamics in naturalistic behaviours, there are several areas for further inquiry. To more fully 386 

examine age, future studies could include a more continuous range of participants, particularly 387 

those in middle adulthood to disambiguate age and cohort effects. While this study did not focus 388 

on music and memory, future work could include a measure of music-related memory (see 389 

Jakubowski & Eerola, 2022) to disambiguate group differences due to memory and lived 390 

experience. The methods presented here were in effort to identify networks most relevant to this 391 

dataset in a data-driven way. This approach, while advantageous in presenting nuanced 392 

fluctuations in network membership, may prove challenging to reconcile with the canonical 393 

network literature. Future work could employ both canonical and data-driven methods to directly 394 
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examine network membership and behaviour in an effort to link both methodological 395 

approaches. 396 

 397 

These observations could illustrate the broader pattern of the network dynamics of music 398 

listening, and the age-related reorganization of these networks. For older adults, the temporal 399 

network becomes less finely tuned to liking and familiarity, while the temporal mesolimbic 400 

network remains active. There are several exciting implications of these findings. The first is in 401 

studying naturalistic behaviours in “network space”: investigating the behaviours and 402 

interactions of networks as behaviour unfolds. The need to understand the brain as a complex, 403 

dynamic system, one that is continually adapting to its surroundings, has been the topic of much 404 

discussion (see McIntosh & Jirsa, 2019; Calhoun et al., 2014). The brain is more than a 405 

collection of regions and its emergent properties can be captured in fascinating detail using 406 

music. Though the methods presented here are not unique to music, we also hope to present 407 

music as a viable stimulus to interrogate higher cognition.  408 

 409 

In the same way that the brain is not merely a collection of regions, music is more than a simple 410 

collection of notes. It is ubiquitous in the human experience (Savage, 2019; Cross & Morley, 411 

2010) but has yet to experience its renaissance in cognitive neuroscience. There are good reasons 412 

for this: music data contain many layers of information from the content of the signal itself to the 413 

content of the memories or the quality of movement it generates in the listener. However, the 414 

scientific potential of music is too beguiling to ignore. Here is a stimulus that, unlike rest, has a 415 

rich, externally-measurable temporal structure that, unlike traditional task paradigms, does not 416 

require extensive training or fortitude to endure. It combines the best of both worlds with the 417 
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added benefit of being accessible to clinical populations in ways that other tasks, especially those 418 

reliant on language, are not.  419 

 420 

By examining music’s network properties, we present a data-driven methodological framework 421 

for future hypothesis-driven studies of musical behaviour while offering an alternative to 422 

traditional paradigms that is externally measurable, ecologically valid, and accessible to those 423 

with cognitive decline or who are non-verbal.  424 
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This article explores age-related differences in between-network dynamics during music 

listening using fMRI data collected from a sample of healthy younger and older adults. We 

estimated brain networks using Hidden Markov Modelling (HMM) and tested for age- and 

stimulus-related differences using Partial Least Squares (PLS). HMM returned four functional 

connectivity networks, including a bilateral temporal network and a bilateral temporal-

mesolimbic network. We found differences related to age and stimulus with both age groups 

spending more time in the temporal-mesolimbic network while listening to familiar, well-liked 

music. Younger adults’ activity in this network was positively correlated with liking and 

familiarity ratings, but this was not the case for older adults, consistent with past work on age-

related dedifferentiation. We conclude that activity in the temporal-mesolimbic network is robust 

to dedifferentiation and discuss how these conclusions and analysis tools can be of use in future 

work with clinical populations.  
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