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Abstract (< 200 words) 23 

 24 

Spontaneous activity during the resting state, tracked by BOLD fMRI imaging, or shortly 25 

rsfMRI, gives rise to brain-wide dynamic patterns of inter-regional correlations, whose 26 

structured flexibility relates to cognitive performance. Here we analyze resting state dynamic 27 

Functional Connectivity (dFC) in a cohort of older adults, including amnesic Mild Cognitive 28 

Impairment (aMCI, N = 34) and Alzheimer’s Disease (AD, N = 13) patients, as well as normal 29 

control (NC, N = 16) and cognitively “super-normal” (SN, N = 10) subjects. Using 30 

complementary state-based and state-free approaches, we find that resting state fluctuations of 31 

different functional links are not independent but are constrained by high-order correlations 32 

between triplets or quadruplets of functionally connected regions. When contrasting patients 33 

with healthy subjects, we find that dFC between cingulate and other limbic regions is 34 

increasingly bursty and intermittent when ranking the four groups from SNC to NC, aMCI and 35 

AD. Furthermore, regions affected at early stages of AD pathology are less involved in higher-36 

order interactions in patient than in control groups, while pairwise interactions are not 37 

significantly reduced. Our analyses thus suggest that the spatiotemporal complexity of dFC 38 

organization is precociously degraded in AD and provides a richer window into the underlying 39 

neurobiology than time-averaged FC connections. (199 words) 40 

 41 

 42 

 43 

Author Summary (< 125 words) 44 

 45 

Brain functions emerge from the coordinated dynamics of many brain regions. Dynamic 46 

Functional Connectivity (dFC) analyses are a key tool to describe such dynamic complexity 47 

and have been shown to be good predictors of cognitive performance. This is particularly true 48 

in the case of Alzheimer’s Disease (AD) in which an impoverished dFC could indicate 49 

compromised functional reserve due to the detrimental effects of neurodegeneration. Here we 50 

observe that in healthy ageing dFC is indeed spatiotemporally organized, as reflected by high-51 

order correlations between multiple regions. However, in people with aMCI or AD, dFC 52 

becomes less “entangled”, more random-like, and intermittently bursty. We speculate that this 53 

degraded spatiotemporal coordination may reflect dysfunctional information processing, thus 54 

ultimately leading to worsening of cognitive deficits. (120 words)  55 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00332/2153252/netn_a_00332.pdf by guest on 07 Septem
ber 2023



Introduction 56 

Alzheimer’s Disease (AD) is the most common neurodegenerative illness with an estimated 57 

prevalence of 10-30% in people older than 65 years (Hou et al., 2019; Masters et al., 2015). 58 

Yet, despite substantial research, we are far from fully understanding the mechanisms that link 59 

pathophysiology to cognitive impairments. Neurodegeneration in AD has been traditionally 60 

associated with the extracellular accumulation of insoluble amyloid-β42 (Aβ) neuritic plaques 61 

(Glenner and Wong, 1984; Lemere et al., 1996) along with the intracellular accumulation of 62 

abnormally phosphorylated tau (pTau), that constitute the neurofibrillary tangles (Spires-Jones 63 

and Hyman, 2014). These processes yield to widespread neuronal death, synaptic loss, and 64 

atrophy (Bateman et al., 2012), with a progression of structural damages not occurring 65 

uniformly throughout the brain (Braak and Braak, 1991). However, the progression of 66 

neurodegenerative processes does not correlate linearly with the severity of cognitive 67 

impairment possibly due to a “cognitive reserve” accrued through education, cognitive training 68 

and a healthy lifestyle (Rentz et al., 2010; Snowdon, 2003). Furthermore, the severity of 69 

cognitive impairment symptoms in a patient can fluctuate substantially within the same day, 70 

faster than the time scales of neurodegeneration (Palop et al., 2006). Together, these findings 71 

suggest that AD involve alterations of neural dynamics and that these dynamical changes may 72 

be the mechanistic substrate leading to functional impairment or preservation. 73 

As molecular and structural changes alone do not fully account for cognitive impairment, 74 

alternative studies based on Functional Connectivity (FC) analyses have sought to fill the gap. 75 

In particular, resting state FC (Fox and Raichle, 2007) quantifies brain-wide correlations of 76 

BOLD signals, capturing interactions between regions. In this context it has been suggested 77 

that  structural alterations in AD lead to FC changes (Dennis and Thompson, 2014), and that 78 

the early manifestation of Aβ toxicity preceding overt atrophy can be detected using resting 79 

state functional Magnetic Resonance Imaging (rsfMRI) (Hedden et al., 2009; Sheline et al., 80 

2010a; Sheline et al., 2010b; Mormino et al., 2011). Changes in FC in AD include reduced 81 

connectivity within the default mode network (DMN, Greicius et al., 2004; Rombouts et al., 82 

2005; Wang et al., 2006, 2007; Sorg et al., 2007; Fleisher et al., 2009; Zhang et al., 2009, 2010; 83 

Jones et al., 2011; Petrella et al., 2011), in a spatially non-uniform fashion (Damoiseaux et al., 84 

2012). Besides Aβ, the deposition of pTau affects FC as well (Franzmeier et al., 2022). 85 

Furthermore, additional FC alterations have been reported, leading to functional disconnection 86 

between hemispheres (Shi et al., 2020; Wang et al., 2015) and a reduction of small-world 87 
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topology (Brier et al., 2014; Sanz-Arigita et al., 2010; Stam et al., 2009, 2007; Supekar et al., 88 

2008).  89 

More recently, investigations of FC in AD have been extended to encompass time-varying, 90 

rather than time-averaged FC. Indeed, rsfMRI networks undergo a continuous reconfiguration 91 

of their weighed topology, and the statistical structure of spontaneous network reconfiguration 92 

carries information potentially useful to discriminate cohorts (Calhoun et al., 2014; Hutchison 93 

et al., 2013; Preti et al., 2017). The flexibility of dynamic Functional Connectivity (dFC) has 94 

been shown to correlate with cognitive performance (Bassett et al., 2011; Battaglia et al., 2020; 95 

Braun et al., 2015; Jia et al., 2014; Lombardo et al., 2020; Shine et al., 2016). In this view, 96 

ongoing variability of FC networks is not noise but rather, an actual resource subserving 97 

computation. The capacity to actively maintain a spatiotemporally organized yet variable dFC 98 

would confer the system resilience to cope with variable cognitive and environmental 99 

conditions (Lombardo et al., 2020). Hence, the preservation of a “healthy” structured dFC 100 

variability may provide a form of functional compensation and a likely neural substrate for 101 

“cognitive reserve” (cf. also other studies linking mental training with enhanced dFC 102 

variability, e.g. Premi et al., 2020). Conversely, dynamic FC-based metrics thus promise to 103 

better characterize the impact of AD pathology. 104 

A number of studies have quantified dFC changes in healthy aging (Battaglia et al., 2020; 105 

Davison et al., 2016; Hutchison and Morton, 2015; Lavanga et al., 2022; Petkoski et al., 2023; 106 

Qin et al., 2015; Viviano et al., 2017) and in conditions such as schizophrenia (Damaraju et al., 107 

2014; Sakoğlu et al., 2010), epilepsy (Liao et al., 2014; Liu et al., 2017) and Parkinson’s disease 108 

(Fiorenzato et al., 2019; Kim et al., 2017). In AD, probabilities of temporal transitions between 109 

alternative FC states have been shown to be altered (Jones et al., 2011; Fu et al., 2019; Gu et 110 

al., 2020; Schumacher et al., 2019). Moreover, machine learning applications have achieved 111 

greater accuracy in differentiating between healthy control and aMCI or AD subjects when 112 

trained with dFC-based rather than static FC metrics (Chen et al., 2017, 2016; de Vos et al., 113 

2018; Wee et al., 2016). Although the contributions of these studies are promising, they are 114 

largely descriptive and do not propose an explicit theory of why dFC changes lead to functional 115 

consequences. Furthermore, the plethora of methods for dFC quantification (Hutchison et al., 116 

2013; Preti et al., 2017) – from extracting discrete FC states (Allen et al., 2014; Thompson and 117 

Fransson, 2016) to continuously time-resolved approaches (Battaglia et al., 2020; Lindquist et 118 

al., 2014)– hinder the convergence of results.  119 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00332/2153252/netn_a_00332.pdf by guest on 07 Septem
ber 2023



Here, we start from a theoretical tenet: efficient cognition requires spatiotemporally 120 

organized FC variability, which is neither trivial, nor random, but complex. This assumption is 121 

based on empirical evidence. Fluctuations in dFC are not a mere unstructured “Drunkard’s 122 

walk”: More highly structured dFC trajectories are observed in individuals with higher 123 

performance on general cognition domains (Battaglia et al., 2020; Lavanga et al., 2022). 124 

Further, individual FC links do not fluctuate independently but with network reconfigurations 125 

governed by higher order coordination patterns, manifest by: non-trivial inter-link covariance 126 

patterns (Davison et al., 2015; Faskowitz et al., 2020; Petkoski et al., 2023); “back-bones” 127 

partially scaffolding dFC (Braun et al., 2015); and dFC flowing under the influence of 128 

competing “meta-hubs (Lombardo et al., 2020). Reiterating, our hypothesis suggests that 129 

spatiotemporal structure of dFC between order and randomness allows for rich computation to 130 

emerge from the systems’ collective activity (cf. Crutchfield, 2012). Correspondingly, we 131 

predict that individuals with higher cognitive performance should display an enhanced 132 

organization of dFC compared to those with impaired cognition (aMCI or AD) in which, 133 

conversely, a loss of dFC spatiotemporal organization should be evident.  134 

Here we analyze resting-state fMRI data acquired from individuals with better-than-normal 135 

or normal cognitive performance –“supernormal” (SNC) and “normal controls (NC)– and those 136 

clinically diagnosed with amnestic Mild Cognitive Impairment (aMCI) or Alzheimer’s Disease 137 

(AD). We first characterized dFC across groups using two complementary methods. First, we 138 

use a state-based dFC analysis paradigm, in which we assume the existence of a small set of 139 

possible discrete FC configurations and quantify dwell times in different states and the temporal 140 

stability of different FC network links along state switching transitions (Thompson and 141 

Fransson (2016)). Second, we use a state-free dFC analysis paradigm, where FC networks are 142 

described as continually morphing in time. Through these complementary but convergent 143 

approaches, as described in the following, we find that the fluctuations of different links show 144 

different degrees of mutual inter-dependence across the considered groups, shifting from a 145 

“liquid-like” dFC (flexible but constrained) for SNC and NC toward a “gas-like” dFC 146 

(uncorrelated and disordered) for patient groups. We also show that these changes in dFC 147 

coordination cannot be fully accounted by changes occurring at the level of ordinary pairwise 148 

FC, but stem from the weakening of genuine higher-order interactions observed especially for 149 

regions which are among the first to be physio-pathologically affected by AD.   150 

 151 

 152 
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Results 153 

FC and dFC across a spectrum of cognitive performance 154 

We considered an fMRI dataset including resting state sessions from subjects with varying 155 

degrees of cognitive skills. As our interest focusses not only on disease but also in healthy 156 

cognition, healthy controls were subclassified in two groups (SNC and NC) based primarily on 157 

composite memory Z scores to define the SNC and NC groups. That is, SNC had a higher 158 

performance in the composite memory scores (Z > 1.5) and at least a Z > 0.7 in all other 159 

cognitive domains (attention, language, visuo-spatial and executive; see Materials and Methods 160 

for more details). Healthy control subjects between NC and SNC or below NC were not 161 

considered in the study. As shown in Fig. 1A, from 73 subjects, 10 were classified as 162 

supernormal controls (SNC), 16 as normal controls (NC), 34 as amnesic mild cognitive 163 

impairment (aMCI), and 13 as Alzheimer’s disease (AD). Across the four clinical groups, there 164 

were no significant differences in age and sex. 165 

Based on rsfMRI time-series from these cohorts, we then computed (and compared across 166 

groups) a variety of static and dynamic Functional Connectivity (FC and dFC) metrics, 167 

extracted with complementary approaches, assuming or not the existence of discrete FC states 168 

in time (Fig. 1B). Importantly, as detailed below, we did not uniquely consider pairwise 169 

interactions between two brain regions at a time, but also considered more complex 170 

coordination patterns between larger groups of regions. Classic FC links express the existence 171 

of a correlation between the BOLD fluctuations of two brain regions and are represented as a 172 

link between two regional nodes: we refer hence to them as dimers, since they are computed 173 

out of two parts. In classical FC analyses, dimers are static, as their strength is averaged over 174 

the duration of complete resting state sessions. In dFC analyses, however dimer strengths 175 

fluctuate in time. We can thus also compute correlations between different dimers. Estimating 176 

these “correlations between correlations” requires jointly monitoring the BOLD fluctuations of 177 

three (Fig. 1C, top) or four (Fig. 1C, bottom) regions, hence the names of trimers and tetramers 178 

–collections of three or four parts, respectively– used in the following.  179 

We chose to focus in this study on dFC within a network of limbic brain regions of particular 180 

interest (Fig. 1D). The rationale was twofold: first, the regions included in the chosen limbic 181 

subnetwork are highly interconnected brain regions that degenerate early in the disease process 182 

(Arnold et al., 1991; Braak and Braak, 1991); second, previous modelling work confirmed their 183 

central role in shaping the evolution of FC alterations comparing healthy controls to aMCI or 184 

AD stages (J. Zimmermann et al., 2018).  185 
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 186 

 187 

Fig. 1. Overview of approaches. (A) Subjects were stratified in 4 different clinical groups: Supernormal 188 

controls (SNC), Normal controls (NC), amnesic MCI (aMCI) and Alzheimer’s disease (AD) (B) We 189 

used two dynamic functional connectivity (dFC) methods to study the spatiotemporal properties of 190 

resting-state fMRI signals: A state-based dFC called point-based method (PBM) and a state-free dFC 191 

method called meta-connectivity (MC) approach. Both approaches address the dynamics of pairwise 192 

links of interactions, which we call here “dimers”. (C) The study of coordinated fluctuations of dimers 193 

is at the core of the MC approach. Coordination can occur between dimers converging on a common 194 

root (“trimers”) or between non-incident dimers (“tetramers”). (D) We focused on a limbic subnetwork 195 

based on the AAL parcellation that was divided into two zones: a ventrally located “Zone I” that 196 

included the temporal pole (superior and medial), parahippocampal gyrus, hippocampus proper and 197 

amygdala; and a dorsally located Zone II included the anterior, medial and posterior cingulate cortices.  198 

 199 

State-based dFC: two zones and four dFC states 200 

In order to assess FC changes along time, we started with a state-based dFC approach, called 201 

the point-based method (PBM) and first introduced by Thompson and Fransson (2016). In this 202 

framework, different instantaneous images of brain-wide BOLD activation are first clustered 203 

via an unsupervised procedure into K states, and state-specific FC matrices FC(λ) are constructed 204 
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by evaluating BOLD correlations limited to timeframes assigned to a given state cluster 205 

(λ = 1…K, see Materials and Methods for details). Fig. 2A show the weighed adjacency 206 

matrices FC(λ) (obtained as centroids of their respective cluster) for each of four different states 207 

of dFC, called S-graphlets by Thompson and Fransson (2016). An alternative graph 208 

representation of these templates is shown in Fig. S1A. The optimal number of K = 4 was 209 

determined based on a statistical elbow criterion (Fig. S1B) and confirmed post-hoc by the 210 

consistency of our results. 211 

Based on these four dFC states, we obtained the spatial profile of neural activation across 212 

regions (Fig. 2A). The spatial organization of the observed neural activation profiles naturally 213 

suggests, in this study, to group the regions in two subsets, characterized by having an activity 214 

level transiently higher or lower than their average level. We defined “zone I” as the subset of 215 

ventral limbic regions including amygdala, temporal pole (superior and medial), hippocampus, 216 

and parahippocampal gyrus. “Zone II”, included the cingulate gyrus (anterior, medial, and 217 

posterior). In states 1 and 2, zone II (dorsal regions) and zone I (ventral regions) were 218 

respectively active above average level (high activation states). In contrast, in states 3 and 4, 219 

zone II and zone I regions were respectively active below average levels (low activation states).  220 

Furthermore, these four states were noted based on the topology of their FC(λ) networks and 221 

the level of internal synchronization within zone I. Quantitatively, connection weights between 222 

regions within zone I tended to be stronger for states 2 and 4 than for states 1 and 3 (average 223 

within zone I FC weights = 0.23 ± 0.16 for states 1 and 3 vs = 0.29 ± 0.18 for states 2 and 4). 224 

Hence, states 2 and 4 displayed higher internal synchrony, in contrast to states 1 and 3. Then 225 

we computed local and global efficiency metrics (Achard and Bullmore, 2007; Latora and 226 

Marchiori, 2001) for the four FC(λ) networks. Global efficiency quantifies how well 227 

communication pathways can be established between any two nodes in a weighed network. 228 

Local efficiency quantifies the robustness of communication and the possibility to find 229 

alternative routes if local connectivity is disrupted. We found that the high sync states 2 and 4 230 

have a lower global efficiency (Fig. 2B; Mann-Whitney U test, p < 0.001) but a greater local 231 

efficiency (Fig. 2B, Mann-Whitney U test, p ~ 0.023), reflecting a denser within-zone but a 232 

weakened between-zone connectivity (average between zone I and zone II FC weights = 0.026 233 

± 0.069 for states 1 and 3 vs = -0.013 ± 0.071 for states 2 and 4). 234 

Thus, in short, the overall four states that we find are obtained as combinations of two 235 

qualitatively different network topologies an two possible levels of activation, so that each 236 

topology can exist in a low and high activity versions. 237 
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 238 

 239 

Fig. 2. State-based dynamic Functional Connectivity (dFC) analyses: four dFC states. (A) BOLD 240 

time-series of all subjects were concatenated temporally and then z-scored and clustered based on BOLD 241 

activation to extract four states. The associated FC-state matrices (FC(λ), λ = 1…4) were constructed by 242 

evaluation BOLD fluctuation correlations limited to time-points within a given state (cf. also Fig. S1A). 243 

The centroids of activation of four states (middle) distinguished two subsets of regions (Zone I and Zone 244 

II) where their activity was transiently higher or lower than average. States 1 and 2 (or 3 and 4) showed 245 

above (or below) average level activation for zones II and I, respectively, therefore were labelled as 246 

high (or low) activation states. We referred to states 2 and 4 as high synchronization states because the 247 

FC connection weights within zone I tended to be stronger than states 1 and 3 (low synchronization; 248 

average within zone I FC weights = 0.23 ± 0.16 for states 1 and 3 vs = 0.29 ± 0.18 for states 2 and 4). 249 

(B) Global and Local efficiency as measure of robustness in the communication pathways can be 250 

established between regions and was applied on the FC-states. States 1 and 3 with low synchronization 251 

showed higher global and lower local efficiency compared to high synchronization states 2 and 4. (C) 252 

States with low synchronization showed decrease in mean dwell-time across clinical groups 253 

(~3.6 TR = 7.4 s, for SNC; ~2.8 TR = 5.7 s, for AD), where the decrease of state 1 was significant (blue; 254 

p-value ~ 0.032; Mann-Whitney U test). States 2 and 4 showed a slight increase from the control groups 255 

to the patient groups. A decrease in average dwell-time of states with relatively higher global efficiency 256 

indicates that they are less stable. (D) Analogously, the relative fraction of time spent in states with low 257 

synchronization was decreased in aMCI and AD compared to NC. Note the increase from SNC to AD 258 

groups for states with high synchronization.  259 
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260 

Stability of globally efficient dFC states decreases along the clinical spectrum 261 

We quantified the stability of dFC both by the longer or shorter duration of transient epochs 262 

within a given state (average dwell time, Fig. 2C) and by the overall time fraction spent within 263 

a state (average state census, Fig. 2D). As shown in Fig. 2C, group differences were identified 264 

in the mean dwell-time of low sync states, with longer dwell-time for the two control groups 265 

(~3.6 TR = 7.4 s, for SNC at one extreme) and shorter for the MCI and AD groups 266 

(~2.8 TR = 5.7 s, for AD at the other extreme). However, the mean dwell-time of high sync 267 

states were not different. 268 

 Analogously, Fig. 2D shows that the relative fraction of time spent in low sync states 269 

decreased in aMCI and AD compared to healthy controls (ranging from 62% for AD to 72% 270 

for SNC). 271 

In summary, low-sync and globally efficient dFC states were less frequent and more 272 

transient in aMCI and AD, suggesting a reduction of their overall stability.  273 

274 

Inter-zone dFC dimers are more intermittent in patient than in control groups 275 

The next step, also following Thompson and Fransson (2016), was to map a state-based dFC 276 

temporal network to each subject’s resting-state acquisition. To do so, we constructed a 277 

sequence of network time-frames FC(t) set to be equal to the FC(λ) graph specific for the state 278 

λ visited at time t (Fig. 3A; see Materials and Methods for details). Thompson and Fransson 279 

(2016) called such a temporal network a T-graphlet. 280 

In this approach, each link can assume up to four possible strength values, corresponding to its 281 

strengths in the FC(λ) associated to each of the four states. Hence, any variability of dFC dimers 282 

reflects exclusively state-switching dynamics. Figure 3B shows the time-course for a 283 

representative fluctuating dFC dimer. The temporal organization of link fluctuations (periodic 284 

or bursty) can be highlighted by a binarization procedure, where a link is set to 1 if its 285 

instantaneous strength is above the threshold θ, or to 0 otherwise (see Materials and Methods). 286 

The result of this procedure is shown in Fig. 3C, for a few representative links and a specific 287 

choice of threshold. A link whose strength remains steadily above (below) threshold will result 288 

as constantly –or tonically– “active” (“inactive”). In contrast, a link whose fluctuating strength 289 

crosses the threshold through the different dFC-state frames will undergo several activation and 290 

inactivation events at specific threshold crossing times. Yet, there can be various types of 291 
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intermittency, with different temporal statistical properties. The durations of different link 292 

activation and inactivation epochs could all be roughly similar, resulting in a more periodic 293 

type of intermittency (blue color link activation rasters in Fig. 3C). Alternatively, they could be 294 

more variable, stochastically alternating between shorter and longer activation epochs (red 295 

color rasters in Fig. 3C). The degree of temporal regularity in link activation and deactivation 296 

dynamics can be evaluated, link-by-link, by the quantification of a burstiness coefficient (β). 297 

We also define the mean duration of a link’s transient activation events as mean activation (μ) 298 

and the total fraction of time in which a link is active relative to imaging session duration, total 299 

active time fraction (τ). The burstiness coefficient is bounded in the range -1 ≤ β ≤ 1, with: 300 

β < 0, corresponding to near-tonic or periodic link activation dynamics; β = 0, corresponding 301 

to Poisson (random-like) link activation dynamics; and β > 0, corresponding to time-clustered 302 

(bursty) events of link activation. Mean activation times μ are bounded to the length of time-303 

series. Total active time fraction is also bounded, 0 ≤ τ ≤ 1.   304 

305 

In this approach, three numbers β (burstiness coefficient), μ (mean activation) and τ (total 306 

active fraction) fully characterize the binarized dynamics of a link (for a given choice of the 307 

strength threshold θ). These metrics were evaluated for the two categories of dFC dimers: intra-308 

zone (between two regions within either zone I or II) and inter-zone (between one region in 309 

zone I and one region in zone II). Our results show that these two categories have distinct 310 

distributions of β, μ and τ, first exemplified in NC subjects (Fig. 3D). Whereas Inter-zone dFC 311 

dimers are closer to a Poisson-like intermittency (β = -0.229 ± 0.020, median ± m.a.d), intra-312 

zone dimers, present a tonic activation time-course (β = -0.890 ± 0.027, median ± m.a.d). In 313 

addition, inter-zone dimers are also less active (τ = 0.312 ± 0.099 for inter-zone vs. 314 

τ = 0.855 ± 0.027 for intra-zone dimers) and activate for shorter transient times 315 

(μ = 34.926 ± 4.439 for inter-zone vs. μ = 178.995 ± 7.378 for intra-zone dimers). These results 316 

suggest a smaller average strength of inter-zone time-averaged FC than for intra-zone FC. 317 

Using NC subjects as reference group, we measure indeed an average FC(t) strength = 0.083 ± 318 

0.135 for inter-zone and of 0.564 ± 0.155 for intra-zone dimers (average ± s.d.). Similar 319 

differences were found for all groups (Table S1). The relative differences in β, μ and τ between 320 

intra- and inter-zone dimers are maintained over the entire range of possible thresholds θ (Fig. 321 

S1C for bustiness coefficient). Inter-zone dimers also displayed more burstiness, were more 322 

transient and less active than intra-zone dimers in all groups.  323 

324 
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 325 

 326 

Fig. 3. State-based dFC analyses: increase of intermittency in inter-zone links. (A) To construct the 327 

state-based dFC temporal network, a specific FC(λ) graph was assigned to each BOLD signal intensity 328 

time-point (we show here 416 time-points = 20 minutes of rsfMRI acquisition, for two concatenated 329 

subjects). Consequently, there is a time-course for every FC links where they can assume up to four 330 

possible different strength values (link dynamics due to state switching). (B) The temporal organization 331 

of link fluctuations can be assessed by determining intervals of link activation and inactivation (via a 332 

thresholding of dynamic strengths with a global threshold θ on all the links). The threshold θ ranges 333 

from 1 to 10 % of the maximum strength over the dataset. The figure shows binarization for a 334 

representative dFC dimer. (C) The degree of temporal regularity in link activation/deactivation was 335 

assessed by quantifying the burstiness coefficient β, the mean activation time μ and the total activation 336 

time τ for every link and subject. The burstiness coefficient is bounded in the range -1 ≤ β ≤ 1 where it 337 

approaches to -1 if the link is tonic/periodic (blue lines), or it can approach to 0 if it has Poissonian 338 

(random-like) patterns of activation (red lines); β = +1 corresponds to links with bursty-like events of 339 

activation. (D) Distributions of β, μ and τ for the NC group, later used as reference. Upper and lower 340 

rows represent distributions over, respectively, intra zone and inter zone links (for an intermediate 341 

threshold, 0.0087 < θ < 0.0870). Left: Distribution of burstiness coefficients across different thresholds 342 

averaged over two subsets of intra- and inter-zone links. The β of intra-zone dimers approach to -1 and 343 

have more tonic/periodic patterns of activation (β = -0.890 ± 0.027, median ± m.a.d), while the β inter-344 
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zone are closer to 0 and show more Poisson-like intermittency (β = -0.229 ± 0.020, median ± m.a.d). 345 

Middle: The mean duration μ which is bounded to the length of time-series for one subject (208 time-346 

points), for the intra-zone links was longer than inter-zone links. Right: Analogously, the normalized 347 

total activation time (τ) of intra-zone links were longer than inter-zone links. (E) Mean values for the 348 

NC group were used as reference and percent relative variations were computed for the other SNC, 349 

aMCI and AD groups, combining relative values for different thresholds (see Materials and Methods). 350 

Upper and lower rows refer to intra- and inter-zone links. Left: Notice the large burstiness increase 351 

across groups for the inter-zone links (~1.8% for aMCI and ~9% for AD; green stars, p-value < 0.001; 352 

Mann-Whitney U-test) compared to a slight increase in the burstiness values of intra-zone links (~0.5%). 353 

In contrast, SNCs showed a significant decrease of ~ -6.5% relative to NC group in the inter-zone links. 354 

Comparisons between SNC, aMCI and AD for both intra- and inter-zone links were all significant (black 355 

stars). Middle: The mean activation durations of inter-zone links showed a relative negative decrease of 356 

roughly -1% for aMCI and AD subjects. Right: Total activation time τ was reduced to roughly -2% in 357 

aMCI and AD compared to NCs. Thus, temporal dynamics of dFC dimers are more tonic/periodic in 358 

SNCs than NCs and more intermittent in aMCI and AD subjects, particularly for inter-zone dimers. 359 

 360 

To achieve a robust and more precise comparison of β, μ and τ distributions between the 361 

cohorts (Fig. 3E), we computed percent changes of the three indicators in SNC, aMCI and AD 362 

groups relatively to normal controls. The advantage of relative comparisons is that they can be 363 

collated for different threshold values θ, resulting in a threshold-independent analysis. We 364 

found that, moving from NC to aMCI and AD subjects, many dFC dimer links tended to have 365 

larger burstiness values. In contrast, moving from NC to SNC subjects, dFC dimers tended to 366 

be more tonic. These trends of β were smaller yet significant for intra-zone FC dimers (Fig. 367 

3E), compared to inter-zone dimers, reaching +1.869 ± 1.663 % for aMCI patients, +9.071 ± 368 

3.001 % for AD patients and -6.404 ± 1.938 % for SNC subjects (Fig. 3E) that had larger values. 369 

These results reinforce the notion of a significant reduction of inter-zone time-averaged FC 370 

along the clinical spectrum (cf. Table. S1). More importantly and beyond this reduction of 371 

average strength, our results point to a degradation of the temporal regularity of FC fluctuations. 372 

While the total active time fraction τ of inter-zone dFC dimers decreased by less than -2% from 373 

NC subjects to aMCI and AD patients (Fig. 3E; and even increased for intra-zone dimers), the 374 

burstiness of inter-zone links increased over 10%, showing a real alteration in the temporal 375 

statistics of link activation, well beyond the trivial decrease necessarily induced by the observed 376 

reduction of average strength. 377 
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We also observed a significant decrease of the mean activation time μ (Fig. 3E), for both 378 

intra-zone and inter-zone dFC dimers (-1.275 ± 0.227 % for aMCI and AD subjects compared 379 

to NCs). For SNC relative to NC, however inter-zone link burstiness decreased and their 380 

activation time increased (+0.613 ± 0.161 % for SNCs). 381 

Goh and Barabasi (2008) also defined another metric related to burstiness, the memory 382 

coefficient. This coefficient λ (see Methods for exact definition) becomes significantly positive 383 

when autocorrelation exists in the duration of consecutive link activation events, i.e. when long- 384 

(short-) lasting activation events tend to be followed by activation events which also are long 385 

(short). Computing λ, we found a weak median autocorrelation in all four groups, for both intra- 386 

and inter-zone links. Values (see Supplementary Table S2) were small but still significant given 387 

the large number of activation events. Furthermore, memory was decreasing across the four 388 

groups from SNC to AD, providing yet another indication of increased disorder. 389 

In summary, the temporal dynamics of dFC dimers between regions in different zones is 390 

altered along the SNC-AD spectrum from tonic and periodic in SNC to more intermittent in 391 

aMCI and AD subjects. Together with the finding of altered dwell times and transition 392 

dynamics between dFC states (Figs. 2C, D), our state-based dFC analyses based on the PBM 393 

approach suggest that changes towards AD involve a degradation of global integration and an 394 

increased disorderliness of dynamic functional interactions between zones. 395 

 396 

State-free dFC: entangled dFC flows in continuous time  397 

The PBM approach to dFC analyses reduces the description of FC network reconfiguration 398 

to the tracking of discrete state switching events. Alternatively, sliding-window approaches 399 

evaluate the evolution of FC links as a continuous reconfiguration along time. As shown in Fig. 400 

4A, all dFC dimers FC(t1) can be evaluated in a time-resolved manner restricting their 401 

estimation to BOLD signal time-series within a window centered at time t1. The window is then 402 

shifted at a slightly increased time t1 + δt, providing an updated set of values FC(t1 + δt). The 403 

result is a collection of smoothly varying continuous time-series FC(t) for each possible dFC 404 

dimer (Allen et al., 2014; Battaglia et al., 2020).  405 

As in the case of node activity time-series, it is possible to study covariance between the 406 

temporal evolutions of different dimers. The case in which their fluctuations are not 407 

independent –or, in other words, that the dimers are “entangled”– will be signaled by 408 

significantly positive or negative correlations between dimers. These correlations can be 409 
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represented graphically by trimer and tetramer diagrams in which the two entangled dimers are 410 

linked by a spring (Fig. 4A, top left; we will omit in the following to draw this spring, for the 411 

sake of a clearer visualization). The stronger the correlation between the fluctuations of 412 

different dFC dimers in a trimer or tetramer, the stronger will be their “entanglement” (i.e., 413 

metaphorically, the stiffness of the spring).  414 

 415 

 416 

Fig. 4. State-free dFC: Meta-Connectivity. (A) We slid a window of length 𝜔 = 5 TRs (10 s) with no 417 

overlap on the BOLD signals from the n considered regions. We then computed n x n FC matrices for 418 

each window using Pearson’s correlation between pair of regions. In this way each of the l possible 419 

pairwise links of FC becomes associated to a continuous time-series of varying FC strength. Correlations 420 

between these link time-series can be compiled in a l x l Meta-Connectivity (MC) matrix. We represent 421 

here trimer and tetramers with a spring between the involved dimers, as, in presence of meta-422 

connectivity, pairwise links are not free to fluctuate independently. (B) Group average MC matrices for 423 

the four clinical groups. Louvain algorithm was applied on the MC matrices resulting in five modules. 424 

(C) A graph representation of the MC for the NC group, together with a chord-diagram of FC for the 425 
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same group. Each node in the MC graph corresponds to a link in the FC graph. The different MC graph 426 

modules correspond thus to different types of links: MC modules #1, #2 and #3 include inter-zone links 427 

incident, respectively, to medial, anterior and posterior cingulate cortices (edges within these modules 428 

are thus inter-zone trimers rooted in Zone II); MC module #4 and #5 include links, respectively, within 429 

zones II and I. (D) Modules are also connected between them. The relative amount of inter-module 430 

meta-links is captured by the global participation coefficient (averaged over the five modules) which 431 

showed a significant decrease across the clinical groups (Mann-Whitney U-test, p < 0.001). 432 

These strengths of entanglement between FC dimers can be compiled into a meta-433 

connectivity matrix (MC; Fig. 4A). The notion of MC (Lombardo et al., 2020) is strongly related 434 

to the edge-centric FC discussed by Faskowitz et al. (2020). The key difference is that MC is 435 

obtained by using a short smoothing window in the estimation of the stream of FC(t) matrices, 436 

while edge-centric connectivity captures coincidences between instantaneous fluctuations. The 437 

denoising brought by the smoothing window allows an easier extraction of the modular 438 

structure of MC, with respect to edge-centric FC (cf. Lombardo et al., 2020), but the two 439 

concepts are otherwise equivalent. The choice of window size (here 5 TRs, Materials and 440 

Methods) was motivated by the fact that the state-based PBM method suggested that ~90% of 441 

epochs within a coherent state lasted less than 5 TRs (Fig. S2A), indicating a fast intrinsic 442 

timescale of link fluctuation. Furthermore, we can observe post-hoc that the use of larger (or 443 

smaller) windows would not improve the capability to separate our groups based on MC values 444 

(Fig. S2B). 445 

Group-averaged MC matrices are shown in Fig. 4B for the four groups. Their modular 446 

structure is evident at simple visual inspection. A module in the MC matrix –also called dFC 447 

module or meta-module (Lombardo et al. (2020))– corresponds to a set of co-fluctuating 448 

dynamic FC links, i.e. to FC subnetworks whose overall strength waxes and wanes transiently 449 

along the resting state in an internally synchronous manner. The existence of non-uniform MC 450 

matrices indicates that the flow of dFC reconfiguration is not mere noise but rather, it is 451 

organized by specific arrangements of “springs between the links”. In other words, fluctuations 452 

of FC dimers are entangled in complex patterns reflecting higher-order correlations (non- 453 

vanishing trimers and tetramers) between the coordinated activation of multiple regions. 454 

 455 

dFC flow in patients is less globally entangled 456 

MC matrices can also be represented as graphs, in which MC-nodes correspond to different 457 

FC-links and MC-links appear due to the entanglement between the FC-links. An example 458 
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graph embedding is shown in Fig. 4C for the MC matrix of the NC group. Graph vertices are 459 

color-coded depending on the type of associated FC link (i.e. start and end zones of the links, 460 

cf. FC diagram with matching colors at the top right of Fig. 4C). Notably, the different dFC 461 

modules, visible as blocks in the MC matrices of Fig. 4B and as uniform-color node 462 

communities in the graph of Fig. 4C, are composed of FC dimers with internally homogeneous 463 

start and ending zones. 464 

A standard graph-theoretical notion useful when commenting about dimer arrangements into 465 

trimers and tetramers is the one of incidence: a link is incident to a node (or a node incident to 466 

a link), if the link is attached to the node (the notion of incidence complements the more familiar 467 

one of adjacency, where two nodes are said to be adjacent if connected by a link). Equipped 468 

with this terminology, we call root the common region incident to both the dimers within a 469 

trimer, while the other two regions form the leaves of the trimer. We can then describe the first 470 

three dFC modules (#1, #2 and #3) of the MC matrix as including mutually entangled FC dimers 471 

originating in either one of the Zone II cingulate regions and terminating in Zone I. The 472 

entanglement of  FC dimers gives thus rise to strong inter-zone trimers with “roots” in Zone II 473 

and “leaves” reaching out to Zone I regions. The two other dFC modules #4 and #5 include 474 

dimers within Zone I and Zone II, respectively, forming strong within-zone trimers or tetramers. 475 

Entanglement is thus particularly strong between dimers within a same zone and between inter-476 

zone dimers incident on a common root region (in Zone II). 477 

 Although the MC graph is highly modular, it is not split into disconnected components and 478 

some entanglement exists also between dimers located in different dFC modules. Inter-module 479 

connections in the MC graph can arise e.g. due to the existence of trimers with a root in zone I 480 

(entangling dimers across dFC modules #1, #2 and #3) or inter-zone tetramers (entangling 481 

dimers across dFC modules #4 and #5). In other words, MC reveals some degree of global, 482 

widespread entanglement between FC dimers, beyond modular entanglement. The strength of 483 

such global entanglement is quantified by the so-called average participation coefficient of the 484 

MC matrix, a graph-theoretical quantity measuring inter-module coupling (Guimerà & Amaral, 485 

2005; see Materials and Methods). 486 

The distribution of MC participation coefficients for each group are shown in Fig. 4D. We 487 

found that the participation coefficients decreased significantly (Fig. 4D, left; Mann-Whitney 488 

U-test, p <0.001) from SNC to AD, while overall modularity did not vary significantly (Fig.489 

4D, right). These results suggest that, in patients, coordination structure between fluctuations 490 
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of FC dimers is impoverished: global entanglement is disrupted, making dimer fluctuations in 491 

different modules more random and mutually independent. 492 

493 

Interlude: trimers and tetramers are genuine or “dimers are not enough”! 494 

Before entering a more detailed and regional specific account of changes to dFC organization 495 

observed at the regional level along the SNC-to-AD spectrum, it is important to stress that 496 

trimer and tetramer analyses are not redundant with the dimer-based analyses. Indeed, some 497 

studies have suggested that correlation between edges (captured by higher-order trimer and 498 

tetramer in a MC matrix) could just be an automatic byproduct of existing lower-order dimer 499 

interactions (Novelli and Razi, 2022). This can be easily understood through some examples. 500 

Let consider for instance two strong dimers FCri and FCrj sharing a common root region r. If a 501 

third strong dimer FCij also exists –closing the triangle of edges (ri), (rj), (ij), then it is not 502 

surprising that a strong trimer MCri, rj is also detected: indeed, the fluctuations of the two leaf 503 

regions i and j are coordinated through a transverse dimer interaction, i.e. the strength of the 504 

trimer would be the byproduct of a triangular motif of dimers and would thus be a redundant 505 

consequence of them. Analogously, we may consider the case of a square motif of dimers FCij, 506 

FCjk , FCkl and FCli which could also give rise to strong tetramers because of the presence of 507 

one or more pairs of strong dimers. In other words, the detection of strong trimer and tetramer 508 

entries within the MC (or other forms of edge-centric FC) is not a sufficient condition for the 509 

existence of genuine high-order interactions (Battiston et al., 2020) that cannot be explained as 510 

stemming from motif arrangements of lower-order pairwise interactions. On the contrary, the 511 

existence of genuinely high-order interactions could be established by detecting trimer or 512 

tetramer couplings between the dimers in a motif, stronger than the dimers themselves involved 513 

in the motif. The question that then arises is, what is the structure of MC that we observe in our 514 

data? 515 

To investigate the genuine or spurious nature of trimer and tetramer interactions, we 516 

systematically studied the inter-relations between MC and FC entries. First, we define the dimer 517 

strength FCr  = Σi FCri of a region r as the sum of the strengths of all the dimers incident to it. 518 

Analogously, we introduced the (root-pinned) trimer strength MCr  = Σij MCri, rj of a region r as 519 

the sum of the strengths of all the trimers of which r is the root. Conceptually, whereas FCr520 

measures the average coordinating influence that the region r exerts on its adjacent nodes, MCr 521 

can be understood as quantifying the coordinating influence that r exerts on its incident links. 522 

As shown by Fig. 5A, the correlations between dimer and trimer strengths of a region are weak 523 
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and not significant, both at the global (black lines) and within each group (bundles of colored 524 

lines) levels, and for both within-zone and inter-zone trimers and dimers strengths. Of note, the 525 

average strength of between-zone trimers and dimers strengths had a larger variance across 526 

groups, hence the positively slanted shape of the global point cloud when confounding all 527 

groups, despite negative trends within each group. Although weak, within-subject correlations 528 

between FCr and MCr were negative, suggesting that some regions can be “meta-hubs” 529 

(Lombardo et al., 2020) but not “hubs”, i.e. they can be the center of an entangled star subgraph 530 

of incident dimers, even if these dimers are individually weak and unable to systematically 531 

synchronize the fluctuations of adjacent nodes. Such meta-hubs could not have been identified 532 

through ordinary pairwise FC analyses only and manifest thus the existence of a real high-order 533 

multi-regional coordination. 534 

535 

536 

Fig. 5. State-free dFC: Inter-relations between dFC trimers and FC dimers. We studied whether 537 

regions with a large FC strength (“FC hubs”, i.e. they are the center of a star of links strong on average) 538 

also have a large trimer strength (MC “meta-hubs”, i.e. they are the center of a star of links whose 539 

fluctuations are temporally correlated). (A) To do so we computed the correlation between dimer and 540 

FC strengths, for both within and between zones trimers and dimers. As shown by the scatter plots, these 541 

correlations were low, both at the global (light green cloud) and at the single clinical group (colored 542 

solid lines; green: SNC, yellow: NC, orange: aMCI, red: AD) levels. Within each group, they were 543 

furthermore moderately negative. Therefore, FC hubness and MC meta-hubness tend to be slightly anti-544 

correlated. (B) Trimers were divided into three groups dependent on the location of their roots and 545 
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leaves. We considered genuine a trimer such that the MC between the two dimers composing the trimer 546 

is stronger than the FC between the trimer leaves. The violin plots at the right show fractions of genuine 547 

trimers (for all trimers and subjects) as a function of the trimer type. For all types, there were substantial 548 

fractions of genuine trimers (i.e. higher-order interactions not fully explained by the underlying dimer 549 

interactions arrangement). See Figure S3 for analogous analyses on tetramers. 550 

 551 

We then moved to consider how many trimers cannot be considered as a manifestation of 552 

underlying triangular motifs of dimers. We defined a trimer rooted in a region r to be genuine 553 

if MCri,rj > FCij , i.e. if the observed trimer strength cannot be fully explained by a strong 554 

synchronization between the leaves. We then measured the observed fractions of genuine 555 

trimers. As shown by Fig. 5B, substantial fractions of genuine trimers could be found for all 556 

trimer types: genuine fractions amounted to 32 ± 7 % for within zone trimers (root and both 557 

leaves in a same zone) and increased to 43 ± 13 % for inter-zone trimers with leaves in two 558 

different zones, or 58 ± 9 % for inter-zone trimers with the root in a different zone than the 559 

leaves. Especially for inter-zone trimers, many trimers could not be trivially explained by the 560 

existence of triangles of dimers. 561 

Considering tetramers, we found larger redundancy with dimers. We defined the tetramer 562 

strength MCij  = Σkl MCij, kl  of a link (ij) as its total entanglement with other links. Figure S3A 563 

shows that a significant positive correlation existed between the dimer strength FCij of a link 564 

(ij) and its tetramer strength. That is, the stronger links were also the most entangled. 565 

Interestingly, several tetramers could still be considered genuine. We defined a tetramer 566 

genuine when MCij,kl > FCij , i.e. when the two composing dimers were strongly correlated, 567 

despite (at least one of) the dimers being individually weak. Under this definition, Figure S3B 568 

shows that up to 55 ± 10 % of tetramers composed of interzone dimers were genuine. 569 

We conclude that in general, the information conveyed by trimer and tetramer analyses is 570 

not completely redundant with the one conveyed by dimers, as many trimer and tetramer 571 

metrics cannot be explained solely in terms of dimers and thus express actual higher-order 572 

correlations. 573 

dFC trimers and tetramers are more impacted in aMCI and AD than FC dimers 574 

After defining various metrics to quantify the involvement of specific regions and links into 575 

pairwise and higher-order interactions, as previously described, we then studied how dimer, 576 

trimer and tetramer strengths varied across the four cohorts in our study. 577 
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First, we found that for both dimer and trimer interactions, the stronger effects were found 578 

considering inter-zone interactions. Figure 6A reports group differences for inter-zone dimers 579 

and Figure 6B for inter-zone trimers (mixed-zone or same-zone leaves are not treated 580 

separately). Results for within-zone dimers and trimers are shown in Figures S4A and S4B, 581 

respectively. In contrast to within-zone interactions, group-level comparisons for within-zone 582 

dimer and trimer interactions were not significant.  583 

 584 

In general, when averaging over all brain regions (Figs. 6A and 6B, left), general averages 585 

of dimer and trimer strengths progressively decreased from SNC, to NC, aMCI and AD groups. 586 

This decrease, notably, was significant when comparing the two extreme SNC and AD groups. 587 

The effect was particularly strong for inter-zone trimer strengths (p = 0.005, Mann-Whitney U-588 

test, Bonferroni correction, for trimers), whose average value for the AD group not only 589 

decreased but changed its sign as it became negative. In contrast, within-zone trimer strengths 590 

remained strongly positive (Fig. S4B). This means that, in the AD group, several regions are 591 

involved in a mixture of negative and positive trimer interactions. Positive interactions tend to 592 

synchronize the fluctuations of FC links, unlike negative interactions that tend to push them in 593 

an anti-phase interaction. Furthermore, the mixture of positive and negative couplings results 594 

in a dynamic conflict scenario, known in the statistical mechanics as “frustration” 595 

(Vannimenus and Toulouse, 1977) and has been associated to disordered organization and a 596 

slowed-down relaxation to equilibrium (Mezard et al., 1988). The emergence of frustrated inter-597 

zone trimer interactions is a strong qualitative discriminative marker of the AD group (see 598 

Discussion for possible interpretations of this finding). 599 

The decrease of inter-zone trimer-strengths and their switch to negativity in the AD group is 600 

confirmed also when focusing on individual brain regions, rather than the average (Figure 6B, 601 

right). Remarkably, strong decrease in trimer strengths were observed in regional subdivisions 602 

of the Temporal Pole and of the Parahippocampal gyrus, along the Hippocampus proper and 603 

Amygdala. Some of these regions (Entorhinal cortex in the Parahimpocampal gyrus and the 604 

Hippocampus), are among the first to be affected by neurofibrillary accumulation in AD 605 

pathology (Braak stages 1 and 2). In these same regions, we found a similar trend at the level 606 

of dimer strengths even when differences were not significant (Figure 6A, right). Of interest, 607 

the stronger effects at the level of dimer strengths were found in the Cingulate gyrus which are 608 

affected by early beta amyloid depositions and later on with neurofibrillary accumulation.  609 

Interestingly, the regions exhibiting the strongest effects at the level of trimers were not the 610 
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ones with the strongest effects at the level of dimers (and vice versa; Fig. 6A right vs Fig. 6B 611 

right). The two analyses reveal thus complementary aspects of how pathology affects the 612 

spatiotemporal organization of functional interactions. 613 

 614 

 615 

Fig. 6. State-free dFC: strengths of inter-zone FC dimers, trimers and tetramers across clinical 616 

groups. (A) Average strength of inter-zone FC dimers decreased from SNC-to-AD both globally (left) 617 

and locally at the level of individual regions (right). At the global level, significant differences were 618 

found between the SNC and AD groups (p-value = 0.005, Mann-Whitney U-test, Bonferroni correction). 619 

Locally the decrease was significant in anterior and posterior cingulate gyrus, bilaterally (Mann-620 

Whitney U-test, Bonferroni correction). (B) Inter-zone trimer strengths, similarly to FC dimers, showed 621 

a reduction trend across the groups, both globally (left) and locally (right). At the regional-level the 622 

reductions in dFC trimers were widespread among regions, including early-affected regions without 623 

noticeable FC strength variations across clinical groups, with an interesting tendency toward negative 624 

trimer strengths in the AD group, associated to developing “frustration” of higher-order interactions in 625 
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a statistical mechanics sense (and, correspondingly, increased dynamical disorder and conflict; see 626 

Discussion). Finally, (C-D) tetramers strength showed a significant drop from SNC to AD groups in 627 

both brain-wide averaged intra-zone (C) and inter-zone (D) subsets. See Figure S4 for intra-zone dimer 628 

and trimer strengths, not showing significant variations across groups. 629 

Lastly, we assessed differences on tetramer strengths across groups. In Figure 6 we show the 630 

average tetramer strengths for intra-zone (Fig. 6C) and inter-zone (Fig. 6D) tetramers. In both 631 

cases, we observed a significant reduction of tetramer interactions from the SNC, to the NC, 632 

MCI and AD groups. In the case of inter-zone tetramers, the drop in strength was large in the 633 

MCI group, with levels close to those in the AD group. 634 

In summary, AD was associated with extensive reductions of not only dimer strengths, but 635 

more importantly, trimer and tetramer strengths. Furthermore, inter-group differences were 636 

salient when considering higher-order trimer and tetramer compared to dimer interactions.  637 

 638 

 639 

Discussion 640 

We have shown a large variety of changes associated with dFC across the cognitive spectrum 641 

from cognitively over-performing SNC subjects to AD. The rich set of complementary analysis 642 

approaches we deployed consistently converge toward a common message: AD is associated 643 

with a disordering of the rich spatiotemporal fluctuations that characterize healthy dFC. 644 

It is worth noting that while BOLD activity misses many fast neuronal processes due to its 645 

slow sampling rate, what Functional Connectivity dynamics track are not neural level processes 646 

but variations of global brain state that can occur on much slower time-scales. So dFC with a 647 

long TR accounts for variations of the way in which the repertoire of internal states is sampled, 648 

more than for variations of neural signals themselves. As a side note, these slow fluctuations 649 

are also what mean-field connectome-based whole-brain models are fit to reproduce via the 650 

stochastic sampling of their emergent repertoire of dynamic modes (Hansen et al., 2015, Fousek 651 

et al., 2022). 652 

Our results showed that a pertinent description of dFC organization and its changes across 653 

groups can be formulated in terms of two anatomical zones segregating ventral from dorsal 654 

areas (Fig. 6D). We found that the system spends less time in states with fluid Zone I dynamics 655 

and high global integration, visiting them more transiently, while it gets stuck on the contrary 656 

in less integrated states exhibiting Zone I hypersynchronisation (Fig. 2). At the dimer level, 657 
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pairwise interactions between regions in different zones get more irregularly bursty (Fig. 3). At 658 

the level of higher order trimers and tetramers, meta-connectivity analysis revealed a loss of 659 

coordination between the fluctuations of different sets of links, as quantified by dropping 660 

participation coefficients (Fig. 4D). Trimer interactions between Zone I and Zone II, as well as 661 

tetramers, were weakened more distinctively than the inter-zone dimer interactions. 662 

Remarkably, regions in our limbic subnetwork for which conventional dimer analyses were not 663 

different between groups, showed a remarkably reduced involvement in trimer interactions 664 

between zones (Fig. 6). Overall, these findings point together toward a “loss of structure” in 665 

dFC in parallel to the cognitive gradient across groups. This is in agreement with previous 666 

studies that showed a reduction of the complexity of spontaneous fluctuations of coordinated 667 

activity (Tait et al., 2020).  668 

Nevertheless, even though being quite encouraging, a conclusive validation of our findings 669 

would require using larger cohorts, which preferably contains information on cortical thinning 670 

and PET scans of tau and Aβ depositions, to test whether their distributions correlate with the 671 

local network dynamics alterations we observe (thus establishing them as potential 672 

physiopathological causes of these changes) or not (advocating for alternative explanations, see 673 

later discussion). Similarly, our choice of regions and parcellations was arbitrary, generally 674 

based on the successful use of the same parcellation in previous modelling-based analyses of 675 

the same cohort (Zimmermann et al., 2018b). A better resolution fMRI from further cohorts 676 

would allow validating our results with finer and more extended parcelations, especially for the 677 

subcortical regions (Tian et al., 2020) that constitute the core of the limbic network on which 678 

we have focused.  679 

Interestingly, our qualitative description emerges from radically different approaches to dFC 680 

parameterization: a state-based approach (the PBM method by Thompson and Fransson, 681 

(2016)); and a state-less approach (the random walk descriptions of dFC by Battaglia et al. 682 

(2020) and Lombardo et al. (2020)). The PBM method is firmly rooted in the developing field 683 

of temporal network theory (Holme and Saramäki, 2012). Temporal networks allow describing 684 

inter-regional communication as it unfolds in time, similarly to a call-center, where operators 685 

can handle a multitude of brief first-contact calls at certain moments and dedicate extensive 686 

time to select customers at other times (Kovanen et al., 2013). Or to a primary school, where 687 

students interact in small groups during lectures and play in mixed larger groups in the 688 

playground during school-breaks (Gemmetto et al., 2014). Eventually, even fluctuations 689 

between segregated or integrated states in brain systems at different scales (Shine et al., 2016;  690 

Pedreschi et al., 2020) give rise to network dynamics not dissimilar to these social systems. 691 
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Note that our use of terms such as “burstiness” or “activation” (cf. Fig. 3D and E) is also 692 

mediated from the jargon of temporal networks theory and should not be mistaken with the 693 

usual meaning of these terms in neuroscience, as they refer to FC link dynamics rather than to 694 

neuronal firing rates (exactly as we use the adjective “temporal” in the sense of “time-695 

dependent” and not in association with “temporal lobe”). 696 

The dFC random walk approach (Arbabyazd et al., 2020; Battaglia et al., 2020; Lombardo 697 

et al., 2020; Petkoski et al., 2023) models rs dFC as a temporal network as well, but focuses on 698 

the variation from one network frame to the next, more than on the geometry of individual 699 

network frames. dFC is seen as a flow in network space and the non-randomness of network 700 

reconfiguration was investigated via a time-to-time correlation approach known as Meta-701 

Connectivity (Lombardo et al., 2020). In a dFC context in which the mode of coordination 702 

between regions is not frozen in time but changes smoothly, meta-connectivity reveals how the 703 

fluctuations of one or more regions modulate the degree of coordination between the 704 

fluctuations of other regions. In other words, meta-connectivity is an indicator of “many-body 705 

coordination”. Indeed, the terminology of dFC “dimers, trimers, tetramers” is reminiscent of 706 

perturbative diagrammatic expansions in Statistical Physics, such as the virial expansion 707 

(Landau and Lifshitz, 1980), in which clusters of increasingly large size account for 708 

progressively more elaborate and nonlinear patterns of many-body interactions. MC can thus 709 

be considered yet another form of high-order functional connectivity, adding up to a list of other 710 

approaches to track higher-order coupling (Torres et al., 2021; Santoro et al., 2023) as 711 

hypergraph or homological methods (Battiston et al., 2020; Petri and Barrat, 2018; Sizemore et 712 

al., 2018), which have already identified synergistic aspects of human brain functioning (Luppi 713 

et al., 2022; Varley et al., 2023). 714 

Unfortunately, both of the dFC methods implemented in this study provide results depending 715 

on specific parameter choices. For instance, concerning the state-less random walk approach, 716 

the selection of a window-size remains ultimately arbitrary. The window-size selected was short 717 

in contrast to other studies. However, our statistical analyses suggest that this window size 718 

results in similar discriminatory power as longer windows (Fig. S2A). Furthermore, it is 719 

necessary to use short windows because the PBM method suggests that dwell-times in 720 

consistent FC state epochs are often short and thus dFC is intrinsically fast (Fig. S2B). The need 721 

to track the covariance of fast FC fluctuations has inspired additional approaches analogous to 722 

MC, as edge-centric Functional Connectivity (eFC; Faskowitz et al., 2020). In this approach, 723 

covariance is estimated between individual events of instantaneous co-fluctuation, without 724 

arbitrary windowing. However, we showed in Lombardo et al. (2020) that, despite the 725 
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significant relation between MC and eFC, the use of a sliding-window in the MC approach 726 

produces a smoothing effect that partially denoises the graph structure of inter-link meta-727 

connections, allowing a cleaner determination of modules and “meta-hub” nodes with large 728 

trimer strengths. 729 

An additional aspect of the state-based PBM approach, is that it involves partially arbitrary 730 

steps as the choice of a number of states. The retrieved FC states depend on the extracting 731 

algorithm that depends on the brain parcellation and choice of regions of interest utilized. We 732 

found four states and increased dwell-times in states with hyper-connectivity within Zone I. 733 

This finding of increased probability in AD of visiting hyper-connected states is in agreement 734 

with some state-based dFC studies (Gu et al., 2020), but in contrast with others (Fu et al., 2019; 735 

Schumacher et al., 2019), which instead find higher dwell-times in disconnected states. Such 736 

discrepancies may arise because in the PBM method clustering of states is performed on 737 

activation patterns rather than on time-resolved functional networks. Our procedure has the 738 

advantage of showing that network dynamics is partially dissociated from node dynamics, with 739 

the possibility of hyper-connected FC modules arising both in presence of higher or lower 740 

activity of the nodes composing this module (Fig. 2A). It may reduce the chance, however, of 741 

detecting extreme events along dFC or transient atypical network configurations that would be 742 

naturally assigned to separate clusters when directly clustering networks. Finally, the mentioned 743 

studies used reference parcellations with a larger number of regions or focusing on more 744 

distributed network components, while here we particularly emphasize selected regions of 745 

interest, such as temporal and paralimbic cortices, known to develop epileptiform activity 746 

(Bakker et al., 2012; Cretin et al., 2016; Vossel et al., 2013). Thus, within the probed sub-747 

system of interest, hypersynchrony may become particularly prominent and over-expressed 748 

(hence, the enhanced dwell-time in hyper-connected FC states), a fact that has direct 749 

pathophysiological relevance. 750 

Despite the arbitrary steps involved, both approaches independently provide sets of results 751 

with a high mutual consistency, making unlikely that our analyses reflect exclusively methods 752 

artefacts. Both methods confirm indeed that a dFC description in terms of two zones is 753 

pertinent, as the distinction between Zones I and II organizes the modular structure of both FC 754 

states in the state-based PBM approach (Fig. 2A) and of the MC matrices in the state-free dFC 755 

random walk approach (Fig. 5B and C). Furthermore, both methods confirm that the increased 756 

severity of cognitive decline across the four groups correlates with a reduced inter-zone 757 

coordination: more time spent in states with weaker integration (Figs. 2B-C) and reduced inter-758 

zone trimer strengths (Fig. 6B). Such semantic agreement is remarkable especially given the 759 
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limitations of our approaches. Meta-connectivity analyses could be improved by seeking, 760 

beyond plain module detection, for a hierarchical community structure, that is often present in 761 

large networks (Jeub et al., 2018; Peixoto, 2014). State-based analyses could profit of better 762 

clustering approaches, as used by Rasero et al. (2018). However, while acknowledging these 763 

limitations, we found our four states and MC communities to be already highly interpretable, 764 

in term of the anatomical nature of the entangled links.  765 

Particularly interesting is the fact that the weakening of inter-zone trimer interactions across 766 

the four groups decreases to such extent that some of these trimer switch from a positive to a 767 

negative value. As previously mentioned, the coexistence of negative and positive couplings in 768 

a graph or a hypergraph of interacting units is referred to in statistical physics as “frustration” 769 

(Toulouse, 1986), since it is associated with the emergence of conflicts preventing smooth 770 

relaxation to an equilibrium. To put these results in context, let us imagine that a dynamic FC 771 

link (a dimer FCij) is positively coupled to a second dimer FCkl and negatively coupled to a 772 

third dimer FCmn, and that the second and the third dimer simultaneously increase in strength 773 

(i.e. FCkl and FCmn get larger). Then the dynamics of FCij will “freeze” under the contrasting 774 

influence of the positive bias applied by FCkl (pushing it to assumer stronger values), and the 775 

negative bias applied by FCmn (pushing it to assume smaller values). Thus, the change of 776 

positive to a negative inter-zone influence –as the one signaled by the negative inter-zone trimer 777 

strengths of many limbic region within Zone I–  gives rise to conflicts between the flows of 778 

Zone I and Zone II regions in AD patients, in contrast to control subjects where the fluctuations 779 

of the same regions are naturally synchronized.  780 

In particular in the context of cognition, Zone II regions such as the posterior Cingulate 781 

Cortex (pCC) have been postulated to play a regulatory role on the level of brain meta-stability, 782 

balancing “free-wheeling” internal cognition and  focused outward attention (Leech et al., 2012; 783 

Leech and Sharp, 2014). In control groups, pCC has strong positive dimer coupling and 784 

moderately negative trimer coupling with regions in Zone I (Fig. 6). This could allow the pCC 785 

to quickly coordinate with individual Zone I regions (and share information with them via direct 786 

positive FC dimers), while simultaneously “lowering the volume” of intra-zone I 787 

communication (via pCC-rooted negative trimers with Zone I leaves). In AD subjects, this 788 

subtle equilibrium is lost, resulting potentially in perturbed integration of information within 789 

and between Zone I regions. Remarkably, pCC is also a key hub of the Default Mode Network 790 

(Raichle et al., 2001), a system whose dFC had already been suggested as a biomarker in the 791 

conversion to AD (Jones et al., 2012; Puttaert et al., 2020).  792 
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Interestingly, our analyses on trimer strengths could detect inter-group differences within 793 

Zone I regions, for which the dimer analyses did not found significant differences. A possible 794 

explanation for the better sensitivity of trimer-based analyses could trivially be due to a larger 795 

sample-size, as there were more possible trimers than dimers, resulting in similar average 796 

strengths but with a lower variance. However, another possibility could be that higher-order 797 

interactions are readily affected by the pathology process earlier or at a higher degree than 798 

pairwise interactions. This fact is difficult to assess from our dataset, which is not longitudinal. 799 

Yet, this possibility is supported by our results showing that higher-order trimers and tetramers 800 

terms convey in many cases genuinely new information, not redundant with dimer analyses. 801 

Indeed, even if we agree with other reports (Novelli and Razi, 2022) that dimer terms can 802 

sometimes explain trimer and tetramer term, we found in addition important trimer 803 

entanglement among otherwise individually weak dimers (Fig. 5A) that lacked strong pairwise 804 

interactions between their dangling leaves (Fig. 5B).  Such genuine trimers cannot be explained 805 

by dimer motifs and describe thus a qualitatively different phenomenology, invisible to 806 

conventional FC analyses. Similar considerations apply to tetramers (Fig. S3), which although 807 

generally weaker in strength than dimers and trimers, form an additional and pervasive 808 

background “medium” which also actively steer coordinated FC dimer fluctuations, with an 809 

overall influence degraded by the pathological process (Fig. 5C and D). In the future, for an 810 

even better appreciation of pathology effects on higher-order interactions, one may use methods 811 

that facilitates the generalization to arbitrarily high orders, even higher than the third or the 812 

fourth one, such as maximum entropy fitting (Ezaki et al., 2018; Savin and Tkačik, 2017) or 813 

other information-theory approaches (Rosas et al., 2019). 814 

Another question is what the mechanistic origin could be of the observed spatio-temporal 815 

complexity of dFC (and of its alterations). Previous studies have shown that structured dFC 816 

may emerge as an effect of global brain network dynamics to be tuned at a slightly subcritical 817 

working point (Arbabyazd et al., 2020; Glomb et al., 2017; Hansen et al., 2015), or as a 818 

consequence of cascades of neuronal activations (Rabuffo et al., 2021) that occur due to the 819 

flow on the manifold created by the symmetry breaking of the connectome (Fousek et al., 2022). 820 

However, these studies did not use very precise criteria when referring to their capacity to 821 

render dFC. In the future, the statistical descriptors of dFC alterations that we introduce here, 822 

such as regional spectra of trimer and tetramer strengths, may be used as more detailed fitting 823 

targets for the tuning of mean-field models aiming at explaining the circuit mechanisms for the 824 

emergence of higher-order interactions. Such models, once fitted, may also allow reverse-825 
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engineering the physiological changes that are responsible for the degradation of spatiotemporal 826 

dFC complexity along the SNC-to-AD spectrum.   827 

It is likely that the dFC alterations we observe between groups are caused at least in part by 828 

underlying biological causes of AD, as the aggregation of misfolded proteins that cause cell 829 

death and atrophy (Soto & Pritzkow, 2018). However, not all the symptoms can be explained 830 

by these mechanisms. Among them, the existence of symptom severity fluctuating across hours 831 

in a way not accountable for sudden variations of amyloid load (Palop et al., 2006) or, yet, the 832 

phenomenon of cognitive reserve where subjects with virtually identical or even higher amount 833 

of amyloid load than others can maintain a very efficient cognition, (cf. Snowdon (2005) for 834 

the famous “Nun Study” or Rentz et al., (2010) for a review of other studies with similar 835 

conclusions). These findings suggest that neurodegeneration may coexist with compensations 836 

of unspecified nature that allow “cognitive software” to operate properly despite “hardware 837 

damage” (see e.g. Petkoski et al. (2023) for examples of dynamic compensation in healthy 838 

aging, or Courtiol et al. (2020) for a similar phenomenon in epilepsy). Here, we propose the 839 

hypothesis that preserved dFC complexity may act as a possible form of cognitive reserve. We 840 

stress once again that, to check the soundness of this hypothesis, future analysis should rely on 841 

richer datasets that contain PET scans of tau and Aβ depositions, and possibly even a 842 

mechanistic model (Stefanovski et al., 2019; 2021) for their impact to the neuronal activity. 843 

Ultimately, the degradation of dFC organizational complexity that we here described may 844 

not only correlate with cognitive decline but also, eventually, contribute to cause it. Indeed, a 845 

dFC with a complex organization could be the hallmark of brain dynamics implementing 846 

“healthy” cognitive processing. Computation can emerge from collective dynamics as long as 847 

this dynamics is sufficiently complex, i.e. neither too ordered nor too random (Crutchfield, 848 

2012; Crutchfield and Mitchell, 1995). More fundamentally, the existence of alternative 849 

information processing states –transient FC networks?– and of non-random transitions between 850 

these states –structured and complex dFC switching?– are two necessary conditions for 851 

whatever information processing system to perform computation (Turing, 1937). A speculative 852 

hypothesis is thus that the complexity of neural dynamics –and, more specifically the 853 

complexity of ongoing dFC which is a measurable shadow of hidden neural processes– is an 854 

instrumental resource for cognitive information processing. Cognitive deficits in pathology 855 

could arise just in virtue of this resource becoming scarcer, because of less structured and more 856 

random dynamics. This phenomenon has been speculatively observed in hippocampal neuronal 857 

assembly dynamics in epilepsy (Clawson et al, 2021). In this line of thinking, preserved dFC 858 

complexity would act as a “dynamic reserve” allowing the implementation of elaborate neural 859 
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computations (or “software patches”) to compensate for progressing neurodegeneration. 860 

Analogously, enhanced dynamic complexity could be the substrate for the superior cognitive 861 

performance achieved by subjects in the SNC group with respect to NC subjects. A more direct 862 

exploration of the link between dFC complexity and cognitive processing in the healthy and 863 

pathological brain will be needed to inquire into this suggestive hypothesis. 864 

865 

866 

Materials and methods 867 

Participants 868 

The study included 73 subjects between 70 and 90 years of age from the fourth wave of the 869 

Sydney Memory and Ageing study (Sachdev et al., 2010; Tsang et al., 2013). The use of the 870 

database was approved by the Human Research Ethics Committee of the University Texas at 871 

Dallas. For detailed descriptive summaries on neuropsychological assessments for AD and 872 

amnesic aMCI, we refer the reader to Zimmermann et al. (2018). 873 

A specificity of our approach is the stratification of healthy controls with an additional 874 

“super normal” category putting our focus not only on mechanisms of disease but also on 875 

mechanisms of “health” based on cognitive performance. Results from twelve 876 

neuropsychological tests were combined in the following cognitive domains: 877 

attention/processing speed, memory, language, visuospatial ability, and executive function. In 878 

brief (Mapstone et al., 2017) we classified cognitive membership for each subject based on the 879 

composite Z-scores as supernormal controls (SNC) or normal controls (NC). For this, the 880 

supernormal (SNC) group was defined as Zmem > 1.35 SD (~90th percentile) and Zcog > 0.7 SD. 881 

The normal control participants are conservatively defined with Zmem ± 0.7 SD (~15th %ile–882 

85th %ile) of the cohort median. The classification of subjects as AD and aMCI described in 883 

Zimmermann et al was done by consensus included the following:  The amnesic MCI group 884 

was described by a cognitive decline at least in the memory domain (Zmem and/or Zcog < 1.5 SD 885 

below normative values), paired to subjective complaint of cognitive deficit and without deficits 886 

in activities of daily living (ADL). The AD group in presence of a diagnosis of Alzheimer's 887 

Disease according to DSM-IV criteria (American Psychiatric Association, 2000) assessed by a 888 

clinical expert panel that included significant cognitive decline in several cognitive domains in 889 

addition to significant decrease in ADLs (American Psychiatric Association, 2000; J. 890 

Zimmermann et al., 2018).  891 

892 
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fMRI acquisition and preprocessing 893 

Details about resting state functional MRI acquisition and preprocessing can be found in 894 

Zimmermann et al. (2018). We briefly mention, as relevant here that during the fMRI 895 

acquisition, participants were instructed to lie quietly in the scanner with their eyes closed. The 896 

TR used for the T2* weighted EPI sequence of time-resolved BOLD imaging was 2000 ms. 897 

The acquisition time was of ~7 minutes. Data from all MRI modalities was preprocessed using 898 

FSL and QA followed Smith et al. (Smith et al., 2004). Subjects were removed if any of their 899 

scan acquisitions contained excessive artifacts including slice dropouts on the diffusion-images 900 

(defined by zebra-like blurring or complete dropout; Pannek et al., 2012), the presence of 901 

orbitofrontal EPI signal dropout (Weiskopf et al., 2007), excessive motion on T1-images (i.e., 902 

ringing), or severe geometric warping. For details of additional fMRI preprocessing details 903 

(slice-timing correction, realignment and co-registration, linear detrending, head motion 904 

regression, probabilistic segmentation, spatial smoothing, etc.) please refer to Perry et al. 905 

(2017). 906 

907 

Network parcellation 908 

For structural and functional parcellation the AAL atlas was used focused on 16 limbic 909 

regions (see Fig. 6D) associated with early degeneration in AD according to Braak and Braak 910 

staging as we did before (Joelle Zimmermann et al., 2018). The regions of interest included: 911 

Cingulate cortices (anterior, medial and posterior), Parahippocampal gyrus (including 912 

Entorhinal cortex), Hippocampus proper, amygdala, and temporal pole (superior and middle). 913 

In this study, as pertinent given the spatial organization retrieved in many of the analysis results, 914 

we categorize regions as belonging: either to “Zone I”, including ventral regions (superior and 915 

medial portion of the temporal pole, parahippocampal gyrus, hippocampus proper and 916 

amygdala in both hemispheres); or to “Zone II”, which included the six cingulate cortical 917 

regions (posterior, medial, and anterior) in both hemispheres; Fig. 6D). This subdivision in two 918 

separate zones allowed us the categorization of network links from dimers to higher-order 919 

arrangements (trimers, tetramers) determining “within zone” or “between zone” interactions 920 

based on the relative zone membership of the different nodes involved. We remark that the 921 

delimitations of Zone I and Zone II are inspired from data-driven considerations (the spatial 922 

organization of FC state centroids in Figs 2 and MC modules in Fig. 4) rather than from a-priori 923 

subdivisions.   924 

925 
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State-based dynamic Functional Connectivity  926 

In this study, we applied two complementary dynamic functional connectivity (dFC) 927 

approaches to investigate non-stationarity of BOLD signals and capture the recurring, time-928 

varying, functional patterns. The first one was the so called point-based method (PBM) 929 

introduced by Thompson and Fransson (2016), referred here as state-based dFC. This method 930 

assumes the existence of a small set of possible discrete FC configurations.  931 

In this approach, BOLD signals of each subject were concatenated along the temporal 932 

dimension and transformed to z-scores using Fisher’s z-transformation to stabilize variance 933 

prior to further analysis. Following Thompson and Fransson (2016), we applied a k-means 934 

clustering algorithm on the concatenated time-series (Lloyd, 1982), to determine states based 935 

on global activity patterns (best partition out of 100 repetitions, max iterations 100). The 936 

optimal number of 4 clusters (k = 4) was validated based on detecting an elbow in the variation 937 

of the distortion score as a function of changing number of clusters k (Fig. S1B). Based on the 938 

collections of activity patterns at times assigned to each of the states, we computed Pearson 939 

correlation matrices, yielding k state-specific FC matrix FC(λ) (λ =1…4). A state was hence 940 

characterized by the centroid activation pattern of time-frames within the state cluster and by 941 

its state-specific FC matrix (see Fig. 2A and Fig. S1A). To characterize the spatial properties 942 

of state-specific FC,  we then used a graph-theoretical approach and measured global and local 943 

efficiencies (Achard and Bullmore, 2007; Latora and Marchiori, 2001) of the four FC(λ) 944 

networks (Fig. 2B) using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). 945 

To study the properties of the sequence of the dynamical states and the resulting temporal 946 

network dynamics, we followed Thompson and Fransson (2016) to construct a temporal 947 

network by using as network frame at a time t the graph FC(λ) of the state λ observed at time t. 948 

This procedure transformed each fMRI session with T timestamps into a temporal network with 949 

T frames, each including 𝑙 = 𝑛(𝑛 − 1)/2 links between each undirected pair of nodes. These 950 

temporal networks were binarized thresholding links as a function of an arbitrary common 951 

threshold θ. We then computed various temporal metrics describing network dynamics. First, 952 

we calculated the mean dwell-time for each subject by averaging the number of consecutive 953 

time-points belonging to a given state before changing to a different state (Fig. 2C). Second, 954 

we computed the proportion of time spent in each state as measured by percentage relative time 955 

(state census) (Fig. 2D). Third (for this step, binarization was necessary), we measured inter-956 

contact times (ICT) of different links. ICTs for each link was defined as the temporal distance 957 

between events of link activation (i.e. link strength going above threshold) and offset (link 958 
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strength going below threshold). For each link and each value of threshold θ, we computed the 959 

mean activation μ as a measure of mean duration of a link’s active intervals; the total active 960 

time fraction τ which is the total fraction of time in which a link was active relative to the 961 

duration of the imaging acquisition; and  the burstiness coefficient (Goh and Barabási, 2008) 962 

assessed by: 963 

𝛽𝑙
θ =  

𝜎𝜏 − 𝜇𝜏

𝜎𝜏 + 𝜇𝜏
 964 

where 𝜎𝜏  and 𝜇𝜏  are, respectively, standard deviation and the mean of the ICTs along the 965 

considered temporal network instance. The burstiness coefficient is bounded in the range 966 

−1 ≤  𝛽 ≤ 1, such that 𝛽 = −1 indicates a periodic/tonic link activation time-course, 𝛽 = 0 a 967 

sequence with Poisson-like activation, and 𝛽 = 1 corresponds to bursty (time-clustered) events 968 

of link activation (Fig. 3C). We finally evaluated also the memory coefficient (see always Goh 969 

and Barabási, 2008), which is the autocorrelation of the sequence of link activation times; i.e., 970 

if E(l)
s is the duration of the s-th individual activation of link l, then memory coefficient for link 971 

l is λ(l) = CC(E(l)
s , E(l)

s+1), where CC denotes normalized Pearson correlation. Analogously, the 972 

burstiness and memory coefficients were averaged across links (or link classes, such as 973 

between-zone or within-zone links). 974 

Unlike the mean dwell-time or state census, mean ICTs and the quantifications computed 975 

from them, depend on the specific choice of threshold θ. In absence of clear criteria to choose 976 

an optimum threshold value, we varied systematically θ in the range  1% 𝑀𝐴𝑋 < 𝜃 <977 

10% 𝑀𝐴𝑋 and MAX is the global maximum FC entry across the retained FC(λ) state. The 978 

maximum value was equal to MAX = 0.87, therefore the range was 0.0087 < 𝜃 < 0.087. 979 

Absolute values of μ, τ and 𝛽 varied with θ, however we pooled them together across different 980 

threshold values by computing relative variations (at each fixed θ) with respect to reference 981 

values (threshold-dependent), based on the NC group. For instance, for burstiness, we 982 

computed the relative excess burstiness for SNC, aMCI, and AD groups with respect to NCs 983 

(Fig. 2E) as: 984 

%𝛽𝜑,𝑧
θ =  

𝛽𝜑,𝑧
θ − 𝛽𝑁𝐶,𝑧

θ

abs(𝛽𝜑,𝑧
θ + 𝛽𝑁𝐶,𝑧

θ )
 985 

where 𝜑 = SNC, aMCI, AD and 𝑧  refer to intra-zone, and subsets of inter-zone links. 986 

Analogously, we evaluated excess deviations for the SNC, aMCI, and AD relative to the NCs, 987 

across all possible thresholds, for μ and τ. 988 

 989 

 990 
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State-free dynamic Functional Connectivity 991 

In a second approach, we assumed that FC networks are continually morphing in time, 992 

without priors on the existence of discrete state switching events, following Battaglia et al. 993 

(2020), that conceptualized the evolution of FC as a stochastic walk in the high-dimensional 994 

space of possible network configurations. This stochastic walk however is not trivial, as 995 

different inter-regional links covary according to a specific higher-order correlation structure 996 

called meta-connectivity (Lombardo et al., 2020). State-free and smoothly varying dFC 997 

temporal networks were extracted using a sliding window approach, adopting the random-998 

walks and meta-connectivity approaches (Battaglia et al., 2020; Lombardo et al., 2020; Petkoski 999 

et al., 2023) released within the dFCwalk toolbox (Arbabyazd et al., 2020). 1000 

A short window of size 𝜔 = 5 TRs (10 s) was stepped without overlap over the BOLD time-1001 

series acquired in each fMRI session and then functional connectivity matrices (FC) were 1002 

computed as window-restricted Pearson’s correlation matrices between BOLD time-series 1003 

segments. Each temporal frame provides hence 𝑙 = 𝑛(𝑛 − 1)/2 undirected time-resolved link 1004 

estimates, which can be collected into a 𝑙 × 𝑇 dFC stream, where T is the total number of 1005 

windows. Each row of this stream provides the time-series of smoothed “instantaneous” 1006 

variation of each FC link and the covariance between these variations can be described by a 1007 

l x l matrix called the meta-connectivity (MC, Fig. 3B,  (Lombardo et al., 2020)). The general 1008 

entry of MC is given by:  1009 

MC𝑙𝑖𝑗𝑙𝑚𝑛
= 𝑐𝑜𝑟𝑟 [dFC𝑙𝑖𝑗

, dFC𝑙𝑚𝑛
]      1010 

for every pair of links (𝑙𝑖𝑗 and 𝑙𝑚𝑛) formed respectively between the regions (ij) and (mn). Our 1011 

choice of window length 𝜔 = 5 TRs was guided by: first, the observation from state-based dFC 1012 

analyses that ~90% of epochs within a state lasted less than 5 TRs (Fig. S2A), so that fast dFC 1013 

dynamics may be lost using much longer windows; second,   one-way ANOVA analysis on MC 1014 

for a range of windows (from 3 to 20 TRs) showed that the best discrimination between SNC, 1015 

NC, MCI and AD groups was achieved for 𝜔 = 5 TRs, with high between-group standard 1016 

deviation and low within-group standard deviation (Fig. S2B). These analyses together suggest 1017 

a small window of size 𝜔 = 5 TRs is both needed and sufficient to describe ongoing fast dFC 1018 

fluctuations. 1019 

Following and based on the correlation matrix between “dimers” (dynamic FC links between 1020 

two regions i and j), the entries MCij, kl of the MC matrix are either computed based on the 1021 

dynamics of four regions involved in the links (ij) and (kl), or at least three regions, when the 1022 
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two considered dimers share a common vertex (e.g. i = k). MC can thus be seen as a collation 1023 

of higher-order interactions within the system, involving more than “two parts” (tetramers or 1024 

trimers). In the case of a trimer, the region on which the two dimers converge to a “root” region, 1025 

and the other two regions are the “leaves” of the trimer. In the case of a tetramer, each of the 1026 

two non-incident dimers are called a “base”. 1027 

MC modularity 1028 

We used a graph-theory approach to quantify the communities of MC matrices. MC for all 1029 

subjects were constructed and then averaged for each of the four subject’s groups (Fig. 3B). To 1030 

detect the modular structures of MC, we used the community Louvain algorithm (Rubinov and 1031 

Sporns, 2011).  We used a parameter Γ = 1.4, determined heuristically to yield a modular 1032 

partition naturally interpretable in anatomical terms. To quantify the modularity changes across 1033 

the groups, we computed the index of modularity (Q*) as measure of degree of intra-module 1034 

connectivity. Since MC is a signed matrix, we applied disproportionate scaling to the positive 1035 

and negative values of modularity indices to consider a lower contribution of negative meta-1036 

link weights to the index of modularity (Rubinov and Sporns, 2011). To quantify the degree of 1037 

inter-modular connectivity of group averaged MCs, we computed the Participation coefficient 1038 

of each dFC dimer node following (Guimera, Roger; Amaral et al., 2005). This metric can be 1039 

computed exactly as for an ordinary graph keeping in mind that FC links and meta-links among 1040 

them are, respectively nodes and links in the MC graph. The Participation coefficient is close 1041 

to one when meta-links of a link are distributed uniformly, therefore, integrated across MC 1042 

modules and it is zero when all the meta-links of a link are segregated within its own MC 1043 

module.  1044 

Meta-strengths 1045 

MC describes largely delocalized interactions but, for enhanced interpretability, it is 1046 

important to describe the overall contribution of individual regions to the different higher-order 1047 

interactions. Hence, we defined various indices of meta-strength. 1048 

Concerning trimer interaction, a natural definition of the trimer strength of a region j is given 1049 

by: 1050 

MC𝑗
3 = ∑ ∑ MC𝑖𝑗,𝑗𝑛

𝑛𝑖

 ;   𝑖, 𝑛 ≠ 𝑗 1051 
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Here j is the root of the summed trimers, hence the name of “root-pinned” trimer strength (to 1052 

contrast it with alternative definitions, not used in this study, where the pinned region may lie 1053 

at a leaf). Analogously, we can define tetramer strengths of a link (ij):  1054 

  MC𝑖𝑗
4 = ∑ ∑ MC𝑖𝑗,𝑚𝑛

𝑛𝑚

 ;   𝑖𝑗 ≠ 𝑚𝑛 1055 

denoted as “base-pinned” as the frozen link is a dimer base of the tetramer. 1056 

A trimer is defined between zones or within zones depending on the zones to which its leaves 1057 

belong. If all leaves are in the same zone (independently from where the root is) then the trimer 1058 

is considered within zone, otherwise it is considered between zones. For tetramers we 1059 

distinguished tetramers with base within a zone (if both bases are within zone dimers) or base 1060 

between zones (if both bases are between zones). There are more combinatorial cases for 1061 

tetramers that were ignored in this study for simplicity. 1062 

 1063 

Comparing MC and FC 1064 

We also computed more conventional FC strengths (dimer strengths) for each node as: 1065 

   FC𝑟
𝜆 = ∑ FC𝑖𝑟𝑖       1066 

where 𝜆 is an index referring to intra-zone if 𝑖 and 𝑟 are in the same zones (Fig. S4A), or inter-1067 

zone if they belong to different zones (Fig. 5A). To evaluate MC-FC redundancy on the single 1068 

subject-level, we computed the Pearson’s correlation between roots-pinned trimers and FC 1069 

node-degrees for all nodes and subject (Fig. 4A)., by the following formula: 1070 

∆𝑛𝑜𝑑𝑒−𝑙𝑒𝑣𝑒𝑙  = 𝑐𝑜𝑟𝑟[FC𝑟
𝜆,  MC𝑟

3𝜆  ]    1071 

For the tetramers case, the same MC-FC comparison was done for edges computing: 1072 

∆𝑒𝑑𝑔𝑒−𝑙𝑒𝑣𝑒𝑙  = 𝑐𝑜𝑟𝑟[FC𝑖𝑗
𝜆 ,  MC𝑖𝑗

4𝜆 ]    1073 

on the subject-level and for two intra- and inter-zone subsets (Fig. S3A).  1074 

We also introduced notions of genuine trimer and tetramers, to identify higher-order 1075 

interactions that were not completely explained by existing motifs of dimer interactions. We 1076 

separated trimers into three groups: 1) within zone, 2) leaves in same zone, and 3) leaves in two 1077 

zones. For a given trimer with 𝑟 as root and 𝑖, 𝑗 as leave regions, we defined the following 1078 

condition: 1079 

𝑀𝐶𝑖𝑟,𝑗𝑟 > 𝐹𝐶𝑖𝑗     1080 
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for a trimer to be considered “genuine”, meaning that the trimer interaction coupling 𝑖 and 𝑗 via 1081 

𝑟 is not a mere byproduct of the dimer between 𝑖  and 𝑗 but it is actually stronger (another 1082 

interpretation is that the interaction path between i and j is “shorter” when the interaction is 1083 

mediated by r than when it is direct).  Analogously, we separated tetramers into two groups: 1) 1084 

base in two zones, and 2) base in same zone. For a give tetramer with (𝑖, 𝑗) and (𝑚, 𝑛) dimers, 1085 

we the defined the following genuinity condition: 1086 

𝑀𝐶𝑖𝑗,𝑚𝑛 > 𝐹𝐶𝑖𝑗1087 

1088 
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Supplementary tables  1475 

 1476 

Table S1. Differential impact of pathology on FC dimers and MC trimers and tetramers. 1477 

 1478 

 Intra-zone 

 SNC NC aMCI AD 

FC 0.543±0.170 0.564±0.155 0.549±0.186 0.490±0.180 

Trimers 0.359±0.139 0.348±0.126 0.333±0.146 0.318±0.144 

Tetramers*** 0.222±0.096 0.196±0.087 0.186±0.077 0.156±0.088 

 Inter-zone 

FC** 0.101±0.114 0.083±0.135 0.054±0.126 0.021±0.088 

Trimers** 0.039±0.078 0.019±0.083 0.013±0.072 -0.012±0.052 

Tetramers*** 0.183±0.134 0.187±0.117 0.138±0.137 0.139±0.120 

 1479 

Average strengths of dimer, trimer and tetramer interactions, by clinical group and relation to anatomical zones. 1480 

Values are means ± SD; * significantly inter-group variations with P < 0.05; ** with P < 0.01; *** with P < 1481 

0.001 (one-way ANOVA test).  1482 

 1483 

 1484 

Table S2. Memory coefficients for dynamic links in the four groups 1485 
 1486 
 1487 

 Intra-zone 

 SNC NC aMCI AD 

5% 0.1561 0.1310 0.1168 0.1037 

50% 0.1653 0.1383 0.1238 0.1098 

95% 0.1746 0.1457 0.1307 0.1158 

 Inter-zone 

5% 0.1407 0.1391 0.1404 0.0901 

50% 0.1452 0.1428 0.1443 0.0928 

95% 0.1498 0.1465 0.1481 0.0954 

The memory coefficient, by clinical group and relation to anatomical zones. Values are means and the confidence 1488 

intervals; Intra-zone: SNC >>> NC, aMCI >>> NC, AD >>> NC ; Inter-zone : aMCI >>> NC, AD >>> NC ; 1489 

where, >>> means  p-value smaller than 0.001. 1490 

  1491 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00332/2153252/netn_a_00332.pdf by guest on 07 Septem
ber 2023



Supplementary figures1492 

1493 

1494 

1495 

Fig. S1. Addition information on state-based dFC analyses. (A) Chord diagrams of FC(λ) states as an 1496 

alternative illustration of Fig. 1A. Dark pink regions correspond to Zone I and light pink regions to Zone 1497 

II. States 1 and 3 with low synchronization have stronger inter-zone connections than states 2 and 4 with1498 

high synchronization. (B) We used an elbow criterion based on the Silhouette score to guess the optimal 1499 

number of clusters. The distortion (linked to the distance between cluster centroids) slows down its 1500 

decrease with k while the time of clustering keeps growing, leadings to estimate a number of retained 1501 

clusters around four (C). We show here the dependence of the average burstiness coefficient β for all 1502 

groups on different choices of binarization thresholds θ. which were averaged over dFC dimers into two 1503 

intra- and inter-zone categories of links is shown (colored solid lines; green: SNC, yellow: NC, orange: 1504 

aMCI, red: AD). The fact that the gap and the relative ranking between curves for the different groups 1505 

remain consistent over different thresholds justifies the use of relative excess values for the analyses of 1506 

Figure 3E. 1507 

1508 
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1509 

1510 

Fig. S2. Length of window in MC approach. (A) Distribution of the duration of mean dwell-times in 1511 

a consistent state (from the state-based PBM method), pooled over subjects and states (see Fig 2C). We 1512 

see that ~90% of epochs last less than 5 TRs. (B) We applied one-way ANOVA on average MC strengths 1513 

to determine the existence of inter-group differences. Shown here is the value of the F-statistic for 1514 

existence of inter-group differences, as a function of changing window size, from 3TRs to 20TRs. We 1515 

performed the analysis separately for intra-zone (green line) and inter-zone (violet line) subsets of 1516 

trimers. Using larger windows would not improve the statistical detection of inter-group differences. A 1517 

short window of length ω = 5TRs is thus already sufficient to capture between-group differences, 1518 

maintaining at the same time the capability to track the very fast dFC fluctuations revealed by Fig. S2A. 1519 
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1520 

Fig. S3. State-free dFC: Inter-relations between dFC tetramers and FC dimers. (A) Similarly to 1521 

the MC-FC comparison at the trimer level (see Fig. 5A), we compared dimer and tetramer strengths now 1522 

for edges. The scatter plots show values of FC dimers paired with the corresponding base-pinned 1523 

tetramer strength of that dimer (i.e. the overall meta-coupling of that dimer to other remote and non-1524 

incident dimers). Again, values are separated for intra- and inter-zone dimers and tetramers. Unlike for 1525 

trimers, strong dimers are also the ones with the strongest tetramer strengths, as revealed by significant 1526 

positive correlations. (B) Generalizing Fig. 5B for trimers, we also computed the fraction of genuine 1527 

tetramers. The base in same zone subset of tetramers contained a low fraction of genuine tetramers, 1528 

while this fraction raised for tetramers with an inter-zone base.  1529 

1530 

1531 
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1533 

1534 

Fig. S4. State-free dFC: intra-zone FC dimers and dFC trimers strengths. (A) and (B) The FC 1535 

dimers and dFC trimers for the intra-zone subset did not show any significant reduction of strength from 1536 

SNC-to-AD group, despite moderately decreasing average values, both globally (left) and locally at the 1537 

single region level (right). 1538 

1539 
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