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ABSTRACT 21 

A central goal in neuroscience is the development of a comprehensive mapping between 22 

structural and functional brain features which facilitates mechanistic interpretation of brain 23 

function. However, the interpretability of structure-function brain models remains limited by a 24 
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 2 

lack of biological detail. Here, we characterize human structural brain networks weighted by 25 

multiple white matter microstructural features including total intra-axonal cross-sectional area 26 

and myelin content. We report edge-weight-dependent spatial distributions, variance, small-27 

worldness, rich club, hubs, as well as relationships with function, edge length and myelin. 28 

Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content 29 

of white matter tracts, we find opposite relationships with functional connectivity, an edge-30 

length-independent inverse relationship with each other, and the lack of a canonical rich club in 31 

myelin-weighted networks. When controlling for edge length, networks weighted by either 32 

fractional anisotropy, radial diffusivity or neurite density show no relationship with whole-brain 33 

functional connectivity. We conclude that the co-utilization of structural networks weighted by 34 

total intra-axonal cross-sectional area and myelin content could improve our understanding of the 35 

mechanisms mediating the structure-function brain relationship. 36 

 37 

AUTHOR SUMMARY 38 

For computational network models to provide mechanistic links between brain structure and 39 

function, they must be informed by networks in which edge weights quantify structural features 40 

relevant to brain function. Here, we characterized several weighted structural networks capturing 41 

multiscale features of white matter connectivity including total intra-axonal cross-sectional area 42 

and myelin density. We describe these networks in terms of edge weight distribution, variance 43 

and network topology, as well as their relationships with each other, edge length and function. 44 

Overall, these findings support the joint use of structural networks weighted by the total intra-45 

axonal cross-sectional area and myelin content of white matter tracts in structure-function 46 
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models. This thorough characterization serves as a benchmark for future investigations of 47 

weighted structural brain networks. 48 

 49 

 50 

INTRODUCTION 51 

The quest to relate human structural and functional brain networks spans the spectrum of spatial 52 

scale and repertoire of data modalities absolutely. At the macroscale, the human brain can be 53 

modeled as an anatomical network of discrete neuronal populations (nodes) interconnected by 54 

white matter fibers (edges) (Sporns, 2011). Coordinated spatiotemporal patterns of neuronal 55 

activity unfolding upon this structural backbone are fine-tuned by white matter microstructure 56 

(Hodgkin & Huxley, 1952; Huxley & Stämpfli, 1949; Moore et al., 2020; Pumphrey & Young, 57 

1938) and form the basis of cognition and behavior (Biswal et al., 1995; Greicius et al., 2003; 58 

Hampson et al., 2006; Liégeois et al., 2019; S. M. Smith et al., 2009; Martijn P. Van Den Heuvel 59 

et al., 2009). Increasingly, MRI facilitates in vivo measurement of multi-scale properties of both 60 

brain structure (e.g., (Alexander et al., 2019; Drakesmith et al., 2019; Jeurissen et al., 2017; 61 

Mancini et al., 2020)) and function (e.g., (Finn et al., 2019; Friston, 2011; Gordon et al., 2017; 62 

Liu et al., 2022)). Diffusion MRI streamline tractography and resting-state functional MRI are 63 

often respectively used to estimate structural and functional connectivity (SC & FC) networks. 64 

Network science provides a framework to bring these fundamentally different substrates into a 65 

common space where their features can be quantified (Fornito et al., 2016; Sporns, 2010; Suárez 66 

et al., 2020) and used to probe the mechanisms mediating human brain function (e.g., (Cabral et 67 

al., 2017; Fornito et al., 2015)).  68 
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 69 

SC network edges can be weighted by a range of MRI-derived metrics quantifying white matter 70 

microstructural features relevant to brain function including: voxel-level estimates of tissue 71 

diffusivity (e.g., (Caeyenberghs et al., 2016)), neurite density (H. Zhang et al., 2012), axon 72 

diameter distributions (Alexander et al., 2010; Assaf et al., 2008), myelin content (Heath et al., 73 

2018; Mancini et al., 2020), and the g-ratio (ratio of inner/outer diameters of myelinated axons) 74 

(Stikov et al., 2011, 2015); as well as tract/bundle-level measures of axonal cross-sectional area 75 

(Daducci, Dal Palù, et al., 2015; R. E. Smith et al., 2015). Subsets of these metrics have been 76 

investigated using a microstructure-weighted connectomics approach (Boshkovski et al., 2021; 77 

Caeyenberghs et al., 2016; Deligianni et al., 2016; Frigo et al., 2020; Mancini et al., 2018; 78 

Messaritaki et al., 2021; Schiavi et al., 2020; M. P. van den Heuvel et al., 2010; Martijn P. van 79 

den Heuvel & Sporns, 2011; F. C. Yeh et al., 2016). We aim to extend this work by providing a 80 

comprehensive assessment of the fundamental characteristics of a range of standard and state-of-81 

the-art weighted structural brain networks including a network weighted by myelin. 82 

 83 

The networks considered here can be grouped into two classes: those computed with tractometry 84 

(S Bells et al., 2011) and those computed directly from the streamline weights in a tractogram 85 

i.e., streamline-specific. We consider three examples of the latter: (1) the number of streamlines 86 

(NoS); and two methods which optimize the streamline weights in a tractogram to increase 87 

specificity for white matter structural features (2) spherical-deconvolution informed filtering of 88 

tractograms (SIFT2) (R. E. Smith et al., 2015) and (3) convex optimization modeling for 89 

microstructure informed tractography (COMMIT) (Daducci et al., 2013; Daducci, Dal Palù, et 90 

al., 2015). SIFT2 and COMMIT were designed to overcome known limitations of streamline 91 
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counts (Girard et al., 2014; Jones, 2010; Jones et al., 2013). While the edge weights in all three 92 

networks generally capture white matter features relevant to connection strength, SIFT2 and 93 

COMMIT more specifically quantify the total intra-axonal cross-sectional area of white matter 94 

tracts (henceforth referred to as “edge caliber”). To date, COMMIT and SIFT2 have not been 95 

compared to NoS with uniform connection density (Frigo et al., 2020; Schiavi et al., 2020; C. H. 96 

Yeh et al., 2016). Thus, it remains unclear how the edge weights themselves affect network 97 

topology. 98 

 99 

In contrast, tractometry allows network edge weights to be derived from any volumetric brain 100 

image that is co-registered to the tractogram. This increase in methodological flexibility comes at 101 

the expense of anatomical specificity. Tractometry is unable to resolve the separate contributions 102 

of individual fiber populations to the aggregate value of a voxel. Given that an estimated ~90% 103 

of white matter voxels at typical diffusion MRI resolutions (~2mm) contain multiple fiber 104 

populations (Jeurissen et al., 2012), the quantitative link between white matter microstructure 105 

and essentially all tractometry-derived edge weights is biased by partial volume effects. 106 

 107 

In this work, tractometry is combined with a diffusion tensor model (Basser, 1995; Basser et al., 108 

1994) to derive networks weighted by FA (fractional anisotropy) and RD (radial diffusivity), 109 

which respectively quantify the degree of diffusion anisotropy (i.e., directional dependence) and 110 

diffusion magnitude perpendicular to the major axis. The crossing fiber problem described above 111 

is also known to limit the ability of diffusion tensor models to quantify white matter features (De 112 

Santis et al., 2014; Jacques Donald Tournier et al., 2011). Additional tractometry networks 113 

examined here include a network weighted by ICVF (intracellular volume fraction) computed 114 
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with NODDI (Neurite Orientation Dispersion and Density Imaging) (H. Zhang et al., 2012), as 115 

well as a network weighted by the longitudinal relaxation rate R1 (1/T1) derived from a 116 

quantitative T1 map. The edge weights in this network are myelin-weighted as R1 has been 117 

shown to correlate with histology-derived myelin content (Mancini et al., 2020; Mottershead et 118 

al., 2003). 119 

 120 

This characterization of weighted structural brain networks is carried out as follows: (1) within-121 

network features of edge weight distribution and variance; (2) edgewise relationships with FC, 122 

edge length and myelin (R1); and (3) topological features of small-worldness, rich club and 123 

network hubs. Importantly, uniform binary connectivity is enforced across all weighted network 124 

variants i.e., the underlying binary connectivity map is identical. This allows the edge weights 125 

themselves to drive the characterization. 126 

 127 

 128 

RESULTS 129 

In 50 healthy adults (27 men; 29.54±5.62 years; 47 right-handed), structural brain networks were 130 

estimated from multi-shell diffusion MRI data with probabilistic tractography. Each subject’s 131 

structural network was used to compute 8 SC networks (Table 1) in which edges were weighted 132 

by: NoS, SIFT2, COMMIT, FA, RD, ICVF, R1 and LoS (edge length computed as the mean 133 

length of streamlines). NoS, SIFT2, COMMIT and LoS correspond to streamline-specific 134 

metrics, whereas networks weighted by FA, RD, ICVF and R1 were computed using tractometry. 135 

The edge weights in NoS, SIFT2 and COMMIT networks were normalized by node volume. 136 

Additionally, a static FC network was derived for each subject by zero-lag Pearson cross-137 
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correlation of nodewise resting-state time series. Unless otherwise stated, all results shown 138 

correspond to networks parcellated with the Schaefer-400 cortical atlas (Schaefer et al., 2018) 139 

and include 14 subcortical nodes. 140 

 141 

Short name Long name Method Data source Interpretation 

LoS Length of Streamlines streamline-

specific 

diffusion 

MRI 

Mean length of the streamlines 

connecting two nodes 

NoS Number of Streamlines streamline-

specific 

diffusion 

MRI 

Number of streamlines 

connecting two nodes; connection 

strength 

SIFT2 Spherical-deconvolution 

Informed Filtering of 

Tractograms 

streamline-

specific 

diffusion 

MRI 

Fiber density from spherical 

deconvolution summed across 

streamlines; connection strength 

COMMIT Convex Optimization 

Modeling for 

Microstructure Informed 

Tractography 

streamline-

specific 

diffusion 

MRI 

Total intra-axonal cross-sectional 

area summed across streamlines; 

connection strength 

R1 longitudinal relaxation rate tractometry multi-modal 
(diffusion + 

relaxometry) 

R1=1/T1; index of tissue myelin 

content 

FA Fractional Anisotropy tractometry diffusion 

MRI 

Diffusion directional dependence 

RD Radial Diffusivity tractometry diffusion 

MRI 

Diffusion perpendicular to the 

principal axis 

ICVF Intra-Cellular 

Volume Fraction 

tractometry diffusion 

MRI 

Neurite density 

Table 1. Summary of structural network weights. 142 

 143 

 144 

Structural Brain Networks Vary in the Distribution of Their Edge Weights 145 

Group-level networks weighted by NoS, SIFT2 and COMMIT show spatially distributed patterns 146 

of high magnitude edge weights and noticeably accentuate within-module connectivity (Figure 147 

1). Modules correspond to the 7-canonical resting-state networks (Thomas Yeo et al., 2011) plus 148 

the subcortex. These patterns are hallmarks of FC networks and are observed in the FC network 149 

shown here. The contrast between high and low magnitude edge weights is most evident in 150 

COMMIT. By comparison, the spatial variation of edge weight distribution in the tractometry 151 
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networks is smoother with more pronounced regional concentrations. R1 is highest in the edges 152 

connecting the visual module to itself and to the rest of the brain; and lowest within the 153 

subcortex and between the subcortical and limbic modules. The surface plot shows the highest 154 

concentration of R1 in the white matter projections of posterior cortical regions. 155 

156 

157 

Figure 1. Edge Weight Spatial Distribution. Connectivity matrices of group-level edge weights for FC 158 

(functional connectivity), NoS (number of streamlines), SIFT2 (spherical-deconvolution informed filtering 159 

of tractograms), COMMIT (convex optimization modeling for microstructure informed tractography), R1 160 
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(longitudinal relaxation rate), ICVF (intra-cellular volume fraction), FA (fractional anisotropy), RD 161 

(radial diffusivity) and LoS (mean length of streamlines). Each network is composed of 414 nodes as 162 

defined by the Schaefer-400 cortical parcellation and 14 subcortical ROIs. Nodes are grouped into the 163 

canonical resting state modules (Thomas Yeo et al., 2011) plus the subcortex: SUB (subcortex), VIS 164 

(visual), SMN (somatomotor), DAN (dorsal attention), SVAN (salience ventral attention), LIMB (limbic), 165 

CONT (control), and DMN (default mode). 3D cortical surfaces (shown below) of group-level edge 166 

weights in the Schaefer-100 parcellation generated with BrainNet Viewer (Xia et al., 2013). Edge 167 

diameter and color indicate weight magnitude. The edge weights in NoS, SIFT2 and COMMIT networks 168 

were log10 transformed for visualization. 169 

170 

Group-level edge weight distributions are summarized with respect to two important 171 

organizational patterns of brain function (Figure 2A): within and between resting state modules 172 

(Thomas Yeo et al., 2011); and along the principal functional gradient (Margulies et al., 2016). 173 

NoS, SIFT2 and COMMIT mirror FC in both plots with greater edge weight magnitude within 174 

module, especially within unimodal modules. R1, ICVF, FA and RD generally mirror LoS with 175 

the reverse trend: higher between module and lowest in unimodal modules. This suggests that 176 

tractometry-derived networks may be influenced by edge length to a greater extent. 177 

178 
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 179 

Figure 2. Edge Weight Distribution. (A) Distribution of group-level edge weights binned by: (top) within 180 
and between module; (bottom) unimodal, transmodal and between. Unimodal is defined as the VIS and 181 
SMN modules. Transmodal is defined as the DMN, CONT, DAN and SVAN modules. (B) Probability 182 
density of pooled subject-level edge weight distributions. R1, ICVF, FA, RD, LoS and FC are shown on a 183 
linear x-axis (top), and NoS, SIFT2 and COMMIT are shown on a logarithmic x-axis (bottom). All 184 
networks were normalized to the range [0 1] by dividing by the subject-level max for visualization. 185 

 186 

Subject-level edge weight distributions in R1, ICVF, FA and RD are near-normal and network-187 

specific (Figure 2B). They differ in both the magnitude (R1 > ICVF > FA > RD) and dynamic 188 

range (FA & ICVF > R1 & RD) of their edge weights. In contrast, NoS, SIFT2 and COMMIT 189 

distributions are highly skewed and tend to be much lower in magnitude (dashed line). This 190 
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effect is greatest in COMMIT suggesting that the optimization performed by COMMIT exerts a 191 

stronger scaling effect than SIFT2. These results support the conclusion that the structural 192 

networks considered here quantify subsets of white matter features which are at least partially 193 

non-overlapping. 194 

 195 

 196 

Edge Weights in Streamline-Specific Networks Are More Variable  197 

Edge weight variance was quantified using the Quartile Coefficient of Dispersion (CQD) due to 198 

its robustness to outliers and skewed data. The CQD is computed from the 1st and 3rd quartiles as: 199 

𝐶𝑄𝐷 =  (𝑄3 − 𝑄1)  (𝑄3 + 𝑄1)⁄ . 200 

 201 

Intra-subject variance is roughly 2-fold greater in NoS, SIFT2 and COMMIT relative to LoS and 202 

FC; and an order of magnitude greater than R1, ICVF, FA and RD in all subjects (Figure 3A). 203 

COMMIT is the highest overall. Subjects are more tightly clustered in all weighted SC networks, 204 

relative to FC: intra-subject CQD values span roughly a 4-fold greater range in FC. This 205 

suggests that individual diversity of functional connectivity is not necessarily reflected in the 206 

variability of their structural networks. These patterns are repeated for inter-subject variance. 207 

However, FC shows a small subset of highly variable edges with roughly 4-fold greater CQD 208 

than the maximum values observed in COMMIT i.e., the most subject-specific connections are 209 

functional. The very low edge weight variability in R1, ICVF, FA and RD is in part due to the 210 

widespread blurring effect (partial voluming) resulting from the tractometry computation. 211 

 212 
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 213 

Figure 3. Edge Weight Variability. Variability is quantified using the coefficient of quartile dispersion 214 

(CQD). (A) Violin distributions of intra-subject (left) and inter-subject (right) edge weight variance. 215 

Colored data points respectively correspond to individual subjects (N=50) and edges (N=8549). (B) 216 

Surface projections of edgewise mean inter-subject variance for cortical nodes in the Schaefer-400 217 
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parcellation (left) and 14 subcortical nodes (right). Cortical and subcortical surfaces were respectively 218 

generated with BrainSpace (Vos de Wael et al., 2020) and ENIGMA toolboxes (Larivière et al., 2021). 219 

(C) The proportion of within-network max CQD is shown across edge length bins for FC, NoS, SIFT2, 220 

COMMIT and R1 (left), as well as ICVF, FA and RD (middle). Edge weights are grouped into 6 bins 221 

according to edge length, as illustrated by the histogram (right). The edges of bins 1-5 were linearly 222 

spaced of width, w. The edges of the final bin were of width 3w. 223 

  224 

In general, inter-subject edge weight variance is more spatially distributed in SC networks 225 

relative to FC (Figure 3B). COMMIT shows the highest mean CQD over the entire cortex and 226 

subcortex. NoS, SIFT2 and COMMIT all show lateral-medial and posterior-anterior cortical 227 

gradients. Mean CQD in FC shows the highest concentration in medial inferior frontal cortex and 228 

to a lesser extent, the expected pattern of high variance in association cortex. The most variable 229 

subcortical regions include the hippocampus, amygdala and accumbens. 230 

 231 

Many features of brain networks (e.g., connection probability, weight magnitude) are known to 232 

vary with edge length. Here, we examined the relationship between edge weight variability and 233 

edge length by computing the CQD within subsets of group-level edge weights binned according 234 

to their edge length (Figure 3C). Edge weight variance in NoS, SIFT2, COMMIT and R1 is 235 

highest in the shortest edges and decreases with edge length. ICVF roughly follows the same 236 

pattern. FA and RD instead show the highest variability in the longest edges. Overall, the edge 237 

weights in streamline-specific SC networks (NoS, SIFT2 and COMMIT) show greater contrast 238 

both within and across subjects. SC networks show network-dependent relationships between 239 

edge weight variance and edge length. Shorter edges are more variable in myelin- and 240 
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connection strength-weighted networks, and longer edges are more variable in networks with 241 

edge weights derived from a diffusion tensor model. 242 

 243 

To complement the above results, a supplemental analysis was performed using intraclass 244 

correlation to quantify edge weight variance within each edge weight (Figure S9). 245 

 246 

 247 

Opposing Correlations with Function in Connection-Strength- & Myelin-Weighted Networks  248 

Shifting to inter-network edge weight relationships shows that SC networks are differentially 249 

related to FC (Figure 4A). Importantly, we also see that all brain networks (SC and FC) are 250 

strongly and differentially related to edge length at the subject and group levels. Correlations 251 

with edge length are negative for NoS, SIFT2, COMMIT, RD and FC; and positive for R1, 252 

ICVF, and FA. Correlation magnitude is strongest in group-level COMMIT (  -0.8). To 253 

account for this strong obscuring effect, we recomputed correlations using residual edge weights 254 

following linear regression of edge length (Figure 4B). NoS, SIFT2 and COMMIT remain 255 

positively associated (group-level   0.35) and R1 remains negatively associated with FC 256 

(group-level   -0.22). Correlation magnitude was reduced following linear regression of edge 257 

length in all cases. ICVF, FA and RD are reduced to 0 suggesting that they may not be useful in 258 

modeling whole-brain FC. These results support the idea that R1-weighted SC networks provide 259 

complementary information to NoS, SIFT2 and COMMIT about the brain structure-function 260 

relationship. 261 

 262 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00330/2152277/netn_a_00330.pdf by guest on 07 Septem
ber 2023



 15 

 263 

Figure 4. Edge Weight Correlations with FC and Edge Length. (A) Violin distributions of edgewise 264 

Spearman’s rank correlations of all networks with FC (left) and edge length (right). (B) Violin 265 

distributions of edgewise Spearman’s rank correlations of residual edge weights in all networks with 266 

residual edge weights in FC. Residual edge weights were computed by linear regression of edge length. 267 

Colored data points and bars respectively indicate subject-level and group-level correlations. Pperm gives 268 

the one-sided p-value obtained from permutation testing (Figure S7). 269 

 270 

 271 

Edge Caliber and Myelin Content are Inversely Related 272 
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Here, we ask how R1, which we refer to as the myelin-weighted network, is related to the 273 

connection-strength-weighted network COMMIT. Edge-length regressed residual edge weights 274 

in NoS, SIFT2 and COMMIT show a negative association with R1 residuals for all subjects and 275 

at the group level, which is strongest in COMMIT (group-level   -0.29) (Figure 5A). This 276 

suggests an edge-length independent inverse relationship between white matter structural 277 

features related to connection strength and myelin content. 278 

 279 

 280 

Figure 5. The Myelin-Dependence of Structural Brain Networks. (A) Violin distributions (left) of 281 

edgewise Spearman’s rank correlations with the myelin-weighted network R1. Residual edge weights are 282 
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compared following linear regression of edge length. Colored data points and bars respectively indicate 283 

subject-level and group-level correlations. Heat scatter plots (right) of group-level residual edge weights 284 

in R1 as a function of NoS (left), SIFT2 (left middle), COMMIT (right middle) and ICVF (right). The best 285 

fit linear curve is shown in black, and R2 (coefficient of determination) is reported. Data color indicates 286 

density. Permutation testing provided a one-sided p-value of Pperm = 0.000 for all edgewise correlations 287 

(Figure S8). (B) Line plot (left) of edgewise Spearman’s rank correlation of edge weights in R1 vs 288 

COMMIT across edge length bins. Group-level and subject-level are respectively shown in green and 289 

blue. The square and diamond markers connected by dotted lines show binned correlation values, and the 290 

horizontal dashed green and blue lines mark the correlation values for all edges pooled together. Scatter 291 

plot (middle) of group-level edge weights in R1 as a function of COMMIT with data points colored by bin 292 

identity. Histograms (right) illustrating subject- and group-level edge length bins. 293 

 294 

Computing correlations of edge weights (not residuals) within edge-length bins allows the 295 

inverse relationship between R1 and COMMIT to be traced to the shortest edges of the network 296 

(group   -0.40, subject   -0.50). As edge length increases, this relationship is reduced to 0, 297 

then becomes strongly positive in the longest subject-level edges (  0.39). The scatter plot of 298 

group-level R1 vs COMMIT (middle) shows decreasing COMMIT and increasing R1 with 299 

increasing edge length. All together, these results support an inverse relationship between the 300 

edge caliber and myelin content of a given white matter tract. This can be partly explained by the 301 

differential dependence of these structural features on edge length: longer tracts tend to be more 302 

myelinated with lower total intra-axonal cross-sectional area. However, this relationship is robust 303 

to controlling for edge length supporting an intrinsic dependence between these white matter 304 

features. 305 

 306 
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In addition, we show that our R1-weighted network corresponds well with a previously reported 307 

(Boshkovski et al., 2021) R1-weighted structural connectome (Figure S13). 308 

 309 

 310 

Divergent Small-Worldness, Hubness and Rich Club in Weighted Structural Networks 311 

In this final section, we apply network analysis tools (Rubinov & Sporns, 2010) based on graph 312 

theory (Fornito et al., 2013; Sporns, 2018) to group-level weighted SC networks. This facilitates 313 

high-level interpretation of general features of network communication such as integrative vs 314 

segregative processing and the economy of network organization. Although the high material 315 

and metabolic cost of brain tissue naturally tends to favor local connectivity (high clustering), 316 

short overall network path length is achieved through a small number of relatively expensive 317 

long-range connections (Bullmore & Sporns, 2012). These edges and the nodes they interlink 318 

form a densely connected network core known as the rich club (Martijn P. van den Heuvel & 319 

Sporns, 2011). While the general proclivity for high local clustering gives rise to segregated 320 

functional modules, the rich-club nodes act as network communication hubs supporting inter-321 

modular integration (Collin et al., 2014; de Reus & van den Heuvel, 2014; Griffa & Van den 322 

Heuvel, 2018; Kim & Min, 2020; Martijn P. van den Heuvel & Sporns, 2013). Thus, small-world 323 

network topology (high clustering and low path length) (Bassett & Bullmore, 2006, 2017) 324 

supports both integrative and segregative processing at a minimum of wiring cost, and the 325 

underlying scaffold of hub brain regions tend to show high centrality, low path length (high 326 

closeness) and low clustering (M. P. van den Heuvel et al., 2010). 327 

  328 
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Here, we report normalized small-worldness, normalized rich-club curves and nodal hubness 329 

(Figure 6). Normalized small-worldness (S) is computed as the quotient of normalized measures 330 

of clustering coefficient (C/Cnull) and path length (L/Lnull). 331 

332 
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 333 

Figure 6. Group-Level Network Topology. (A) Small-worldness was estimated in all structural networks: 334 

clustering coefficient was normalized within each node, averaged across nodes (C/Cnull), then plot as a 335 

function of normalized characteristic path length (L/Lnull). Topology measures averaged across 50 degree 336 

and strength preserving null networks were used for normalization. Networks above the identity line 337 

(dotted black) are characterized by the small world attribute. Tractometry networks are indicated by the 338 

arrow. (B) Normalized rich-club curves are shown for COMMIT, NoS and SIFT2 (top), as well as ICVF, 339 

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00330/2152277/netn_a_00330.pdf by guest on 07 Septem
ber 2023



 21 

RD, FA and R1 (bottom). A single binary network (dotted gray line) is also shown (bottom) as binary 340 

connectivity was uniform across weighted networks. The normalized rich-club coefficient (norm) was 341 

computed across the range of degree (k) and normalized against 1000 null networks (degree preserving 342 

for binary and degree and strength preserving for weighted networks). A norm value > 1 (horizontal 343 

dashed black lines) over a range of k indicates the presence of a rich club. (C) Nodewise hubness scores 344 

are projected onto Schaefer-400 cortical and 14-ROI subcortical surfaces. Scores (0-5) were computed 345 

for each node as +1 point for all nodes in top 20% strength, betweenness, closeness and eigenvector 346 

centrality, as well as bottom 20% clustering coefficient. The matrix (right) shows the Euclidean distance 347 

between all pairs of nodal hubness vectors. 348 

 349 

All group-level weighted SC networks show the normalized small-world property (S > 1) of 350 

higher clustering and lower path length than would be expected by chance (Figure 6A). Small-351 

worldness is highest in COMMIT (S  2.5) and lowest in R1, ICVF, FA and RD (S  1.6). In 352 

contrast, all weighted SC networks did not show a canonical rich club (Figure 6B). Relative to 353 

the tractometry and binary SC networks, the normalized rich-club coefficient (norm) was much 354 

higher in magnitude in NoS, SIFT2 and COMMIT. A rich club was detected in these networks 355 

across a large range of degree (k) levels (150 < k < 300). norm was maximal at k  265 in 356 

COMMIT. A rich club was also detected across a similar range of k levels in ICVF and across k 357 

in the range [250 300] for RD, albeit with much lower magnitude norm. However, no clear rich 358 

club was observed in R1 or FA. In fact, the rich-club curves for these networks are roughly 359 

symmetric about the norm = 1 line relative to COMMIT. A densely connected core was of course 360 

recovered in all weighted SC networks (uniform binary connectivity), but these results suggest 361 

that its interconnecting edges were consistently weaker than would be expected by chance in R1 362 
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and FA. By comparison, a rich club was observed in the binary SC network across the very large 363 

range of k [50 300]. This supports two important concepts: (1) SC network edge weights can 364 

provide an additional layer of information useful for refining the topology of binary SC; and (2) 365 

different methods for computing SC network edge weights yield diverse network topology. 366 

 367 

Weighted SC networks show network-dependent spatial topology of hubness scores (Figure 368 

6C). The COMMIT and R1 averaged surface shows prominent hubs distributed throughout the 369 

brain including the fronto-parietal network. Nearly all of the subcortex showed a hubness score 370 

of 4 or greater in all networks. The Euclidean distance between hubness score vectors (right) was 371 

lower for COMMIT and SIFT2 than for either network with NoS. Of the streamline-specific 372 

networks, NoS was more similar to both R1 and IVCF. Overall, these results illustrate the 373 

considerable impact that edge weighting can have on network topology. 374 

 375 

 376 

DISCUSSION 377 

Structure-function brain models provide a flexible framework for investigating the mechanistic 378 

relationship between human brain structure and function in vivo, yet the interpretability of these 379 

models is currently limited by a lack of biological detail. Here, we assemble a thorough 380 

characterization of structural brain networks weighted by a range of quantitative MRI metrics 381 

capturing the macro- and microscopic features of white matter tracts. Notable trends included: 382 

(1) greater edge weight contrast and skewed (heavy-tailed) distributions in the streamline-383 

specific networks NoS, SIFT2 and COMMIT; (2) whole-brain correlations with FC in networks 384 

weighted by connection strength (positive) and myelin (negative) which were robust to 385 
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controlling for edge length; (3) whole-brain inverse relationships with myelin for networks 386 

weighted by connection strength and neurite density independent of edge length; and (4) the 387 

absence of a rich club in R1 and FA networks. All weighted SC networks showed a strong spatial 388 

dependence and small-world architecture. Collectively, these results support the overall 389 

conclusion that SC networks weighted by edge caliber (e.g., SIFT2 and COMMIT) and myelin 390 

(e.g., R1) can be used to quantify non-overlapping subsets of white matter structural features 391 

related to FC supporting their joint utilization in modeling function. 392 

 393 

 394 

Interpretable Measures of Connection Strength Provided by COMMIT and SIFT2 395 

A principal goal of this work is to identify what, if any, advantage over NoS is provided by the 396 

global optimization methods SIFT2 and COMMIT. NoS has previously been used to inform the 397 

strength of interregional coupling in computational models of function (e.g., (Honey et al., 398 

2009)). However, important limitations restrict model interpretation. Besides suffering from a 399 

range of biases related to the position, size, shape and length of white matter tracts (Girard et al., 400 

2014), NoS varies as a function of tracking parameters limiting its specificity for white matter 401 

structural features (Jones, 2010; Jones et al., 2013).  402 

 403 

SIFT2 and COMMIT reportedly restore the quantitative link between connectome edge weights 404 

and white matter structural features related to connection strength. COMMIT and SIFT2 solve 405 

for the effective cross-sectional area (i.e., signal fraction) of each streamline using different 406 

approaches. COMMIT uses the global diffusion signal to optimize these values, whereas SIFT2 407 

seeks to fit the streamline density throughout the white matter to the fiber densities estimated 408 
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using spherical deconvolution. Thus, while both methods rely on the simplifying assumption that 409 

streamline features are invariant along their length, SIFT2 additionally requires that the estimates 410 

of fiber density derived from the fiber orientation distribution (FOD) are biologically accurate.  411 

 412 

These networks also differ in the computation of their edge weights: SIFT2 is computed as the 413 

simple sum of streamline weights, whereas COMMIT is computed as the length-weighted-sum 414 

of streamline weights. Indeed, our analysis methods do not permit us to make strong claims as to 415 

the relationship between these methodological differences and our observed results, however we 416 

do show that both SIFT2 and COMMIT display comparable but not identical fundamental 417 

characteristics to NoS. This supports the use of SIFT2 or COMMIT in place of NoS as a measure 418 

of connection strength, which brings with it improved biological interpretability.  419 

 420 

 421 

Myelin Complements Connection Strength in Predicting FC 422 

Despite the differences between COMMIT, SIFT2 and NoS; our results indicate that their edge 423 

weights show roughly equivalent positive correlations with FC over the whole brain. R1 was 424 

negatively correlated with FC. Significant evidence indicates a link between cerebral myelin and 425 

FC including: a relationship between intracortical myelin and FC (Huntenburg et al., 2017; 426 

Wang et al., 2019); the prediction of cognition (Sonya Bells et al., 2017; Caeyenberghs et al., 427 

2016) and FC-derived components (Messaritaki et al., 2021) using myelin-sensitive metrics; and 428 

a relationship between damaged myelin sheaths and greater conduction delays in multiple 429 

sclerosis (Sorrentino et al., 2022). At the cellular-level, myelin contributes to conduction velocity 430 

(Huxley & Stämpfli, 1949), metabolic support (Nave & Werner, 2014) and plasticity (Gibson et 431 
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al., 2018), all of which could be argued to support brain function. Myelin plasticity in particular 432 

can be described in terms of “activity-dependence”, whereby an increase in the functional 433 

activity of a given circuit stimulates cellular signaling cascades promoting greater myelination 434 

(Douglas Fields, 2015; Mount & Monje, 2017). Coupled with our results, this complex mix of 435 

functional roles supports the idea that structure-function models will be improved by integrating 436 

measures of myelin and connection strength. 437 

 438 

 439 

An Opposing Relationship with Edge Length for Edge Caliber and Myelin Content  440 

When controlling for edge length, we found an inverse relationship between R1 and COMMIT 441 

over the whole brain in all subjects and at the group level. This suggests that the aggregate g-442 

ratio (ratio of inner/outer diameters of myelinated axons) of a white matter tract may increase 443 

with edge caliber. At the cellular-level, the diameter of an axon and the thickness of its myelin 444 

sheath show nearly a linear relationship over a broad range of smaller diameter axons which 445 

becomes increasingly nonlinear as axon diameter increases (Berthold et al., 1983; Hildebrand & 446 

Hahn, 1978). In general, increasing axon diameter tends to outpace increasing myelin thickness 447 

i.e., g-ratio tends to increase with increasing axon caliber (Hildebrand & Hahn, 1978). Our 448 

findings suggest that this cellular-level principle may extend to the systems level: increases in 449 

edge caliber tend to outpace changes in the myelin content resulting in a concomitant increase in 450 

the g-ratio of white matter tracts.  451 

 452 

We localized the inverse relationship between R1 and COMMIT to the shortest edges suggesting 453 

that the g-ratio was the highest in the shortest connections. This result is supported by a previous 454 
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imaging study showing the highest g-ratio in “local” connections (Mancini et al., 2018). In 455 

general, we found that R1 increased and COMMIT decreased with increasing edge length, which 456 

aligns with previously reported results of higher R1 and fewer streamlines for the white matter 457 

connections between transmodal regions (Boshkovski et al., 2021). Both of these trends fit well 458 

with theories of brain wiring economy in which the energetic cost of maintaining biological 459 

material increases with connection length (Bullmore & Sporns, 2012). This natural pressure acts 460 

to reduce the total axonal volume of longer white matter bundles. Increasing the myelin content 461 

of longer tracts comes at a cost as well, but this may be at least partially offset as increasing 462 

myelin content reduces the total membrane surface area along which expensive electrochemical 463 

gradients must be maintained (Bullmore & Sporns, 2012). Although, a cost-benefit analysis of 464 

the energetics of myelination concluded that the energetic cost of myelin maintenance outweighs 465 

any savings on action potentials (Harris & Attwell, 2012). This suggests that higher myelination 466 

of longer edges may be better explained as a mechanism to provide trophic support (Nave & 467 

Werner, 2014) to vital inter-regional connections (Martijn P. Van Den Heuvel et al., 2012) or to 468 

reduce conduction delays.  469 

 470 

 471 

Edge Weight Variance Decreases with Edge Length in Most Weighted Structural Networks? 472 

White matter features related to myelin content, connection strength and neurite density tend to 473 

become more consistent across tracts as tract length increases. Greater variability in the weights 474 

of the shortest connections could result from a higher proportion of false positive streamlines 475 

influencing these edge weights. For SIFT2 and COMMIT, streamline weight computation 476 

becomes increasingly unstable with decreasing length as fewer voxels contribute to the fit. 477 
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However, this result could also be explained more generally by contrasting the roles of shorter 478 

and longer connections in the brain. Shorter white matter tracts connect brain regions near each 479 

other in space e.g., within the same module. Just as we might expect the characteristics of 480 

smaller roads and streets (e.g., width, building materials, markings, signs, sidewalks, etc.) to vary 481 

by neighborhood and city, we might also expect the morphology of shorter white matter 482 

connections to change as the functional specialization of any given region or module changes. 483 

On the other hand, longer tracts (i.e., the freeways of the brain) may overlap more in both their 484 

functional role and morphological features relative to shorter connections, hence lower edge 485 

weight variability. Breaking with the above pattern, FA and RD showed the highest edge weight 486 

variance in the longest connections. Given that structural measures derived using a voxel-wise 487 

diffusion tensor model are particularly sensitive to the white matter “architectural paradigm” 488 

(Jones et al., 2013), these results suggest that white matter features related to fiber orientation 489 

and geometry actually diverge with increasing tract length. Note that we are unable to say 490 

decisively whether the edge weight variance measured in these structural and functional brain 491 

networks corresponds to true signal or noise. The inclusion of scan-rescan data (e.g., as in 492 

(Amico & Goñi, 2018)) could support stronger conclusions as to the source of this variability. 493 

 494 

 495 

The Absence of a Rich Club in Structural Networks Weighted by R1 and FA 496 

Group-level R1 and FA did not show a normalized weighted rich club for any degree k. Higher 497 

myelination in the white matter tracts connecting rich club nodes has previously been reported 498 

(Collin et al., 2014); however, methodological differences limit comparability. A rich club has 499 

previously been reported in FA-weighted networks using similar methods to ours (Martijn P. van 500 
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den Heuvel & Sporns, 2011). The source of this disagreement could potentially be attributed to 501 

differences in our tractography algorithm, parcellation or null network computation.  502 

 503 

In weighted rich-club detection, the identification of a densely connected core is independent of 504 

edge weight (depends only on node degree), but the designation of this subnetwork as a rich club 505 

requires that it contains a higher-than-chance proportion of the strongest edges from the full 506 

network. Indeed, this is the case over a broad range of degree k for COMMIT. Over the same 507 

range of k, the normalized rich-club curves for R1 and FA are inverted about the threshold value 508 

of 1 with respect to COMMIT. This implies that the subnetwork found at a given k in this range 509 

contains edges which tend to show higher COMMIT and lower R1 edge weights than expected 510 

by chance. We previously showed edgewise inverse correlations between R1 and COMMIT 511 

which were robust to controlling for edge length. We also showed that R1 and FA are positively 512 

correlated under these same conditions. In this light, it is not surprising that the edges connecting 513 

rich-club nodes tend to show opposite trends in R1- and FA-weighting with respect to COMMIT. 514 

Nonetheless, it is possible that the lack of a rich club in our myelin-weighted network is an 515 

artifact of tractometry. Future work will attempt to replicate this result using myelin-weighted 516 

networks computed with a different methodology (Schiavi et al., 2022). 517 

 518 

 519 

Replication Across Parcellation Resolution and in a Second Dataset 520 

In this report, we have chosen to feature data in the Schaefer-400 cortical parcellation plus 14 521 

subcortical nodes. However, there is little consensus on the best brain atlas, and the optimal 522 

choice likely depends on the specifics of your data and the question being investigated. In a 523 
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supplementary analysis, we replicated our results across 100-900 node Schaefer cortical atlases. 524 

We found that residual edgewise correlations with FC (Figure S1) and R1 (Figure S2), as well 525 

as normalized rich club and normalized small worldness (Figure S3) were robust to parcellation 526 

resolution. In contrast, the spatial topography of high-hubness brain regions appears qualitatively 527 

dependent on parcellation granularity, although further analyses would be necessary to draw 528 

stronger conclusions (Figure S4).  529 

 530 

An independent multimodal dataset was also used to replicate the main SC results including the 531 

residual edgewise correlations with R1 and the relationship between R1 and COMMIT across 532 

edge length bins (Figure S5), as well as all network topology results (Figure S6).  533 

 534 

 535 

Limitations 536 

Streamline tractography is known to suffer from several important biases including both false 537 

positive and negative streamlines, which can influence downstream analyses (Maier-Hein et al., 538 

2017; Schilling et al., 2019; Sotiropoulos & Zalesky, 2019; Zalesky et al., 2016). Through 539 

probabilistic tractography, we opted to minimize false negatives while maximizing false 540 

positives. This allowed us to implement careful streamline- and edge-filtering strategies in post-541 

processing to address this known bias. Still, without a ground truth, we cannot quantify the 542 

extent to which we were successful in mitigating this issue, nor can we guarantee that we did not 543 

erroneously filter true positive streamlines or edges. All processing and filtering methods were 544 

consistent and network density was uniform across weighted structural networks. Thus, any 545 

major tractography bias should be as homogeneous as possible across networks. 546 
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 547 

Tractometry-derived brain networks suffer from widespread partial volume effects due to 548 

crossing and kissing fibers in a majority of white matter voxels. The net effect of this bias is well 549 

understood and is apparent in our results and previous work (De Santis et al., 2014; Schiavi et 550 

al., 2022). Nonetheless, this method was included here as our goal was to characterize widely 551 

used structural connectivity methods. New techniques for reducing this bias are currently being 552 

developed which allow for the estimation of tract-specific microstructural features (e.g., 553 

(Barakovic, Girard, et al., 2021; Barakovic, Tax, et al., 2021; De Santis et al., 2016; Leppert et 554 

al., 2021, 2023; Schiavi et al., 2022)).   555 

 556 

We were unable to assess repeatability in this work as we did not have scan-rescan data. 557 

However, reproducibility has already been assessed for NODDI (Chung et al., 2016; Lehmann et 558 

al., 2021), MP2RAGE-derived T1 maps (Marques et al., 2010), diffusion-tractography-based 559 

structural connectivity (Bonilha et al., 2015), as well as COMMIT and SIFT2 tractogram 560 

filtering (Koch et al., 2022). The reproducibility of the tractometry features (R1, FA, RD, ICVF) 561 

will mainly depend on these previous steps and the accuracy of the spatial alignment of the 562 

multi-modal data. 563 

 564 

In this work, we have attempted to thoroughly examine the fundamental properties of a wide 565 

range of standard and state-of-the-art metrics for quantifying white matter brain structure. 566 

However, the scope of possible methods and their respective variants is too broad to treat 567 

thoroughly in a single body of work. In particular, track-weighted imaging (Calamante, 2017; 568 

Calamante et al., 2010, 2012) and fixel-based analysis (Dhollander et al., 2021; Raffelt et al., 569 
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2015, 2017) provide state-of-the-art solutions to the challenge of quantifying white matter 570 

structural features in the presence of crossing fibers.  571 

 572 

 573 

Conclusion 574 

We presented a thorough characterization of weighted SC networks. Overall, our findings 575 

support the joint use of SC networks weighted by connection strength and myelin in predicting 576 

FC. In particular, using the COMMIT or SIFT2 algorithms to quantify connection strength 577 

shows promise to improve model interpretability relative to NoS. Beyond R1, there is a wide 578 

array of myelin sensitive metrics that could be used to compute useful myelin-weighted 579 

networks. The integration of this microstructure-weighted connectivity approach into structure-580 

function models will advance the mechanistic interpretation of both the function and dysfunction 581 

of the living human brain. 582 

 583 

 584 

MATERIALS and METHODS 585 

These data are available for download (https://portal.conp.ca/dataset?id=projects/mica-mics). See 586 

Royer et al. (Royer et al., 2022), Cruces et al. (Cruces et al., 2022) for full details of data 587 

acquisition and processing. All data processing and analysis code is openly available at 588 

https://github.com/TardifLab/Weighted-SC-Networks. 589 

 590 

 591 

Data Acquisition & Preprocessing 592 
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Multimodal MRI data was collected in 50 healthy volunteers at 3 Tesla on a Siemens Magnetom 593 

Prisma-Fit scanner equipped with a 64-channel head coil as follows: 594 

 T1-weighted (T1w) anatomical: 3D magnetization-prepared rapid gradient-echo sequence595 

(MP-RAGE; 0.8mm isotropic; TR = 2300ms; TE = 3.14ms; TI = 900ms; iPAT =596 

2; partial Fourier = 6/8)597 

 Multi-shell diffusion-weighted imaging (DWI): 2D pulsed gradient spin-echo echo-planar598 

imaging sequence consisting of three shells with b-values 300, 700, and 2000s/mm2 and599 

diffusion directions 10, 40, and 90, respectively (1.6mm isotropic; TR = 3500ms, TE =600 

64.40ms; multi-band factor = 3). b0 images were also acquired with reverse phase601 

encoding direction to facilitate distortion correction of DWI data.602 

 7 minutes of resting-state functional MRI: multi-band accelerated 2D-BOLD gradient603 

echo echo-planar sequence (3mm isotropic; TR = 600ms, TE = 30ms; mb factor = 6; flip604 

angle = 52°). Two spin-echo images with AP and PA phase encoding were additionally605 

acquired (3mm isotropic; TR = 4029ms; TE = 48ms; flip angle=90°).606 

 Quantitative T1 relaxometry data was acquired with a 3D-MP2RAGE sequence (Marques607 

et al., 2010) (0.8mm isotropic; TR = 5000ms, TE = 2.9ms, TI1 = 940ms, T12 = 2830ms;608 

iPAT = 3; partial Fourier = 6/8). This was used to compute a T1 map which was sampled609 

to estimate the edge weights in R1 (1/T1) networks (myelin-weighted).610 

611 

The multi-modal processing pipeline micapipe (Cruces et al., 2022) 612 

(https://micapipe.readthedocs.io/) was used to preprocess diffusion, anatomical, and functional 613 

images. T1w images were deobliqued, reoriented to standard neuroscience orientation (LPI), 614 

corrected for intensity non-uniformity (Tustison et al., 2010), intensity normalized and skull 615 
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stripped. Subcortical segmentations were performed with FSL FIRST (Jenkinson et al., 2012; 616 

Patenaude et al., 2011) and tissue types were classified using FSL FAST (Y. Zhang et al., 2001). 617 

A five-tissue-type image segmentation was generated for anatomically constrained tractography 618 

(R. E. Smith et al., 2012). Cortical surface segmentations were generated with FreeSurfer 6.0 619 

(Dale et al., 1999; Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, et al., 1999). 620 

 621 

Diffusion preprocessing was performed in native DWI space using tools from MRtrix3 (J. 622 

Donald Tournier et al., 2012, 2019) and proceeded in the following sequence: (1) image 623 

denoising (Cordero-Grande et al., 2019; Veraart, Fieremans, et al., 2016; Veraart, Novikov, et 624 

al., 2016); (2) two b=0s/mm2 volumes with reverse phase encoding were used to correct for 625 

susceptibility distortion, head motion, and eddy currents via FSL’s eddy and TOPUP tools 626 

(Andersson et al., 2003; Andersson & Sotiropoulos, 2016; S. M. Smith et al., 2004); and (3) B1+ 627 

bias-field correction (Tustison et al., 2010). This pre-processed data was used to estimate multi-628 

shell and multi-tissue response functions for constrained spherical-deconvolution (Christiaens et 629 

al., 2015; Dhollander et al., 2016, 2019; Jeurissen et al., 2014) followed by intensity 630 

normalization. Non-linear registration was performed with ANTs (Avants et al., 2008) to co-631 

register anatomical images to DWI space. 632 

 633 

Resting-state fMRI pre-processing entailed discarding the first five TRs, reorientation (LPI), 634 

motion correction by registering all volumes to the mean, and distortion correction using main 635 

phase and reverse phase field maps. Nuisance signal was removed using an ICA-FIX (Salimi-636 

Khorshidi et al., 2014) classifier and by spike regression using motion outlier outputs from FSL 637 

(Jenkinson et al., 2012). Volumetric timeseries were averaged for boundary-based registration 638 
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(Greve & Fischl, 2009) to native Freesurfer space and mapped to individual surfaces using 639 

trilinear interpolation. Spatial smoothing (Gaussian, FWHM = 10mm) was applied to native-640 

surface and template-mapped cortical timeseries. 641 

 642 

 643 

Tractography and Microstructural Metrics 644 

To estimate structural connectomes, anatomically constrained tractography (R. E. Smith et al., 645 

2012) was performed on the normalized white matter FOD image using the probabilistic 646 

algorithm iFOD2 (J.-D. Tournier et al., 2010). Tractograms of 5 million streamlines were 647 

generated by seeding the gray-white matter interface using the following parameters: 648 

maxlength=400, minlength=10, angle=22.5, step=0.5, cutoff=0.06, backtrack, crop_at_gmwmi 649 

(gray-matter-white-matter interface). These tractograms were filtered in a two-stage process. (1) 650 

a temporary whole-brain connectome weighted by NoS was computed then decomposed into its 651 

composite streamlines to derive a new tractogram in which any streamline which failed to 652 

connect two gray matter ROIs in the temporary connectome was excluded. This “streamline-653 

filtering” step typically resulted in approximately a 5% decrease in the size of the tractogram 654 

(~250k streamlines removed) and was undertaken to ensure that these erroneous streamlines did 655 

not affect the COMMIT model. Streamline-filtered tractograms were used to compute NoS and 656 

were used as inputs to both the SIFT2 and COMMIT models. COMMIT was run using a Stick-657 

Zeppelin-Ball forward model and default settings (see https://github.com/daducci/COMMIT). (2) 658 

Any streamline with a COMMIT weight < 1e-12 (machine precision 0) was interpreted as a false 659 

positive and filtered from the tractogram. This streamline-level COMMIT-filtering step typically 660 

resulted in greater than a 90% decrease in the size of the tractogram with most containing 661 
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between ~300-600k streamlines. COMMIT-filtered tractograms were used not only in the 662 

computation of COMMIT, but all tractometry networks as well. This additional filtering step was 663 

performed on COMMIT streamline weights only (not SIFT2) to reduce the impact of false 664 

positive streamlines in tractometry networks as much as possible.  665 

 666 

In a supplemental analysis, the COMMIT streamline weights were additionally used in the 667 

computation of edge weights in tractometry-derived networks by performing a COMMIT-668 

weighted average of a given tractometry metric (e.g., FA) over streamlines for each node pair 669 

(Figure S10-S12).    670 

 671 

 672 

Construction of Weighted Structural Networks 673 

The streamline-specific SC networks were computed in the following manner: (1) NoS as the 674 

summed streamline count; (2) LoS as the mean streamline length; (3) SIFT2 as the sum of SIFT2 675 

streamline weights; and (4) COMMIT as the length-weighted sum of COMMIT streamline 676 

weights as in (Schiavi et al., 2020). Explicitly, edgewise entries in COMMIT-weighted networks 677 

were computed as:  678 

𝛼𝑖𝑗 =  
∑ (𝑥𝑖𝑗

𝑘  ∗  𝑙𝑘)
𝑁𝑖𝑗

𝑘=1

𝐿̅𝑖𝑗

, 679 

where 𝛼𝑖𝑗 is the edge weight between nodes i and j; 𝐿̅𝑖𝑗 is the mean streamline length; 𝑁𝑖𝑗 is the 680 

number of streamlines; 𝑥𝑖𝑗
𝑘  is the COMMIT weight of streamline k; and 𝑙𝑘 is its length. Edge 681 

weights in NoS, SIFT2 and COMMIT were normalized by node volume. 682 

 683 
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SC networks weighted by FA, RD, ICVF (H. Zhang et al., 2012) and R1 were derived using 684 

multi-modal tractometry (S Bells et al., 2011). Streamline weights were computed by: (1) co-685 

registering the tractogram and desired image; and (2) sampling the voxel-level aggregate value 686 

along the length of each streamline. Edge weights were computed as the median along each 687 

streamline and the mean across streamlines by node pair. Voxel-wise measures of FA and RD 688 

were computed with a diffusion tensor model (Basser et al., 1994) and ICVF by applying the 689 

NODDI multi-compartment model (H. Zhang et al., 2012) to preprocessed DWI data (Daducci, 690 

Canales-Rodríguez, et al., 2015). 691 

 692 

The 400-node Schaefer (Schaefer et al., 2018) cortical parcellation is used in all results. 693 

Subcortical ROIs corresponded to 7 bilateral regions (14 nodes) including the amygdala, 694 

thalamus, caudate, accumbens, putamen, hippocampus, and pallidum. A single static, zero-lag 695 

FC network was derived by product-moment pairwise Pearson cross-correlation of node-696 

averaged time series. FC network edge weights were Fisher Z-transformed. 697 

 698 

 699 

Connectome post-processing 700 

COMMIT-weighted networks were used to filter all other weighted structural networks at the 701 

edge level. This was chosen as COMMIT-weighted networks had the lowest connection density 702 

to start, and all non-zero COMMIT edges were also non-zero in all other SC networks. All SC 703 

networks were thresholded at the edge level within subject by: (1) setting edges = 0 in all 704 

weighted SC networks if that edge had a COMMIT weight < 1e-12; and (2) applying a 50% 705 

uniform threshold mask to facilitate group-consensus averaging. This minimized differences in 706 
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binary structural network density across subjects and enforced a uniform binary connectivity 707 

map across weighted SC networks at the group level and within subject. Group-level networks 708 

were computed as the subject-wise mean at each edge excluding zero-valued edges. 709 

 710 

 711 

Network Analysis 712 

Network analysis was performed using tools (Rubinov & Sporns, 2010) based on graph theory 713 

(Fornito et al., 2013; Sporns, 2018). Measures of clustering coefficient and path length were 714 

normalized against 50 degree and strength preserving null networks. Clustering coefficient was 715 

normalized within node then averaged across nodes to obtain a scalar value per network. The 716 

following weight (Wij) to length (Lij) transform was used in path length computation: Lij = -717 

log(Wij). Weighted rich-club curves were normalized against 1000 degree and strength 718 

preserving null networks. The edges in all degree and strength preserving null networks were 719 

rewired 1e6 times total, and the strength sequence was approximated using simulated annealing. 720 

Rich-club curves were normalized in binary networks against 1000 degree preserving null 721 

networks in which each edge was rewired 100 times. All edge rewiring followed the Maslov & 722 

Sneppen rewiring model (Maslov & Sneppen, 2002). Similar to (M. P. van den Heuvel et al., 723 

2010), hubness scores (0-5) were computed as 1 point for all nodes showing top 20% strength, 724 

betweenness, closeness or eigenvector centrality; and lowest 20% clustering coefficient. 725 

 726 

 727 

Permutation Testing 728 
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Statistical significance for the edgewise correlation of residual edge weights in NoS, SIFT2, 729 

COMMIT and R1 with FC (Figure S7); as well as all connection-strength-weighted networks 730 

with R1 (Figure S8) was quantified using permutation testing as described in supplementary 731 

material. One-sided p-values are reported in the main text figures as pperm. 732 
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AUTHOR SUMMARY 

For computational network models to provide mechanistic links between brain structure and 

function, they must be informed by networks in which edge weights quantify structural features 

relevant to brain function. Here, we characterized several weighted structural networks capturing 

multiscale features of white matter connectivity including total intra-axonal cross-sectional area 

and myelin density. We describe these networks in terms of edge weight distribution, variance 

and network topology, as well as their relationships with each other, edge length and function. 

Overall, these findings support the joint use of structural networks weighted by the total intra-

axonal cross-sectional area and myelin content of white matter tracts in structure-function 

models. This thorough characterization serves as a benchmark for future investigations of 

weighted structural brain networks. 
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