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Abstract 11 

Functional magnetic resonance imaging (fMRI) is widely used to investigate functional 12 

coupling (FC) disturbances in a range of clinical disorders. Most analyses performed to date 13 

have used group-based parcellations for defining regions of interest (ROIs), in which a single 14 

parcellation is applied to each brain. This approach neglects individual differences in brain 15 

functional organization and may inaccurately delineate the true borders of functional regions. 16 

These inaccuracies could inflate or under-estimate group differences in case-control analyses. 17 

We investigated how individual differences in brain organization influence group 18 

comparisons of FC using psychosis as a case-study, drawing on fMRI data in 121 early 19 

psychosis patients and 57 controls. We defined FC networks using either a group-based 20 

parcellation or an individually-tailored variant of the same parcellation. Individualized 21 

parcellations yielded more functionally homogeneous ROIs than group-based parcellations. 22 

At individual connections level, case-control FC differences were widespread, but the group-23 
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based parcellation identified approximately 9% connections as dysfunctional than the 24 

individualized parcellation. When considering differences at the level of functional networks, 25 

the results from both parcellations converged. Our results suggest that a substantial fraction 26 

of dysconnectivity previously observed in psychosis may be driven by the parcellation 27 

method, rather than a pathophysiological process related to psychosis. 28 

Author summary 29 

Functional magnetic resonance imaging is widely used to map how brain network 30 

dysfunction is affected by diverse diseases. A fundamental step in this work involved 31 

defining specific brain regions, which act as network nodes in the analysis. Most research to 32 

date has used a one-size-fits all approach, defining such regions on a template brain that is 33 

then applied to individual people, which neglects the potential for variability in regional 34 

borders and brain organization. Here, we show that using an individualized approach to 35 

region definition results in more valid area definitions and more conservative estimates of 36 

brain network dysfunction in people with psychosis, indicating that at least some of the group 37 

differences reported in the extant literature may be due to differences in regional definitions 38 

rather than a consequence of the illness itself.  39 

  40 

 41 

 42 

 43 

 44 

 45 
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Introduction 46 

Psychosis is a neuropsychiatric condition that has long been thought to arise from 47 

aberrant neural connectivity, or dysconnectivity, between neuronal populations (Andreasen et 48 

al., 1998; Baker et al., 2019; Fornito et al., 2012; Nogovitsyn et al., 2022). Such 49 

dysconnectivity is often studied using a network-based approach (Fornito et al., 2016), with 50 

the brains of individuals being modelled as a collection of nodes, representing discrete brain 51 

regions, connected by edges, representing inter-regional structural connectivity or functional 52 

coupling (FC). This approach has revealed extensive FC disruptions in psychosis patients, 53 

which are often characterized by a global decrease in FC upon which is superimposed more 54 

network-specific increases and decreases (Argyelan et al., 2014; Baker et al., 2019; Chopra et 55 

al., 2021; Fornito et al., 2012; Hummer et al., 2020; T. Li et al., 2017; Narr & Leaver, 2015; 56 

Nogovitsyn et al., 2022; Tu et al., 2013). However, the reported findings have been 57 

inconsistent, with reports of increased and decreased FC sometimes found within the same 58 

network in different samples (Lynall et al., 2010; Moran et al., 2013; Whitfield-Gabrieli et 59 

al., 2009; Woodward et al., 2011).  60 

Some of these inconsistencies may be explained by methodological differences in 61 

defining the nodes (brain regions of interest – ROIs) of the constructed brain networks, which 62 

is a fundamental step in network analysis that could affect the validity and interpretation of 63 

subsequent results (Fornito et al., 2010, 2016; Zalesky, Fornito, Harding, et al., 2010). Each 64 

node should ideally represent a functionally specialized area with homogenous activity 65 

(Eickhoff, Constable, et al., 2018; Eickhoff, Yeo, et al., 2018), but there is no consensus on 66 

the optimal way of parcellating the brain, meaning that investigators must rely on various 67 

heuristic methods (Eickhoff, Constable, et al., 2018; Eickhoff, Yeo, et al., 2018). 68 
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The vast majority of studies in patients with psychosis have used a one-size-fits-all, 69 

group-based approach in defining distinct ROIs. A parcellation using this approach is often 70 

defined in a standardized coordinate space based on a sample average and then mapped to 71 

individual participants via a spatial normalization procedure (Eickhoff, Yeo, et al., 2018). 72 

This approach fails to consider interindividual variability in functional and anatomical brain 73 

organization (Amunts et al., 2005; Mueller et al., 2013). Investigation of such variability with 74 

resting-state fMRI (rsfMRI) has shown that, although most cortical areas can indeed be 75 

robustly identified in every individual, their sizes and shapes vary across the population, 76 

especially when using more fine-grained parcellation methods (Gordon et al., 2017). 77 

Furthermore, the topographical locations of specific areas tend to shift between individuals, 78 

sometimes across anatomical landmarks such as sulci and gyri (Gordon et al., 2017), which 79 

are often used as reference points in many standard parcellations (Fornito et al., 2016).  80 

To better accommodate this individual variability, approaches have been developed to 81 

derive individualized parcellations at either the level of canonical functional networks (S. Li 82 

et al., 2016; Yeo et al., 2011) or cortical regions (Gordon et al., 2017; Kong et al., 2021). 83 

These approaches have revealed that individual variability can considerably impact network 84 

analyses. For instance, regions assigned to one network in individual parcellations are often 85 

assigned to a different network in the group average (Bijsterbosch et al., 2018), which could 86 

impact FC analysis. The use of individually-tailored parcellations yields more functionally 87 

homogeneous regions (Chong et al., 2017; Kong et al., 2021), and can improve predictions of 88 

behaviour from FC (Kong et al., 2019). Indeed, in healthy samples, individual differences in 89 

the locations of functional regions, as represented by individualized parcellation, affect 90 

predictions of fluid intelligence (Kong et al., 2019), life satisfaction (Bijsterbosch et al., 91 

2018), participant sex (Salehi et al., 2018), and performance in reading and working memory 92 

tasks (Kong et al., 2021). Moreover, some estimates indicate that up to 62% of variance in 93 
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network edge strength (i.e., FC values) can be explained by the spatial variability of defined 94 

regions (Bijsterbosch et al., 2018). These findings suggest that clinically important 95 

relationships may be masked when using a group-based parcellation. On the other hand, these 96 

approaches present several challenges, such as establishing a correspondence between similar 97 

regions in different people and accounting for differences in region size. 98 

A particularly salient point in clinical studies, such as those of schizophrenia, is that 99 

standard brain atlases have been derived from healthy participants, which may not adequately 100 

capture the characteristic properties in the brain organization of patients (Glasser et al., 2016; 101 

Schaefer et al., 2018). Patient-specific individual variability in functional organization can 102 

influence the results of brain network analyses. Indeed, one study has found that slight 103 

displacements of a seed region in the thalamus can lead to significant differences in disorder-104 

related dysconnectivity (Welsh et al., 2010), emphasizing the importance of a valid and 105 

consistent node definition.   106 

One strategy to develop individualized parcellations is to adjust the borders of a 107 

group-based template for each individual participant according to pre-defined functional 108 

criteria. For instance, Chong et al. (Chong et al., 2017) developed a Bayesian algorithm 109 

(called Group Prior Individualized Parcellation – GPIP) that uses a group-based template as a 110 

prior to find an optimal corresponding parcellation on individual brains using individual FC 111 

data. The group-based prior ensures that the same regions are mapped in each individual, 112 

while updates to the individualized prior account for variability in the shape and size of each 113 

parcellated region. Chong et. al. (Chong et al., 2017) have shown that this method yields 114 

parcellated regions with increased intra-regional functional homogeneity and reduced 115 

variance in connectivity strength between individuals (Chong et al., 2017). Here, we used this 116 

approach to compare FC disruptions observed in people with early psychosis using analyses 117 

that rely on either a group-based or individualized parcellation. The parcellation algorithm 118 
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(Chong et al., 2017) allowed us to match all brain regions across participants while 119 

accounting for individual variability. Our analyses were conducted using the high-quality, 120 

open-access data provided by the Human Connectome Project - Early Psychosis (Glasser et 121 

al., 2013; HCP Early Psychosis 1.1 Data Release: Reference Manual HUMAN Connectome 122 

PROJECT for Early Psychosis, 2021) (HCP-EP) resource. We tested two competing 123 

hypotheses of how individual variability contributes to apparent FC disruptions in psychosis. 124 

Under one hypothesis, a failure to consider individual variability may lead to erroneous 125 

regional parcellations, adding noise to the analyses and reducing statistical power for 126 

detecting valid group differences. In this case, we expect to see fewer differences between 127 

patients and controls when using the group-based parcellation compared to individualized 128 

parcellation. Alternatively, FC differences between groups may be largely driven by 129 

variations in the underlying organization of each individual’s brain, rather than reflecting 130 

specific differences in FC. In this case, we expect to see more differences using the group-131 

based parcellation. 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 
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Results 141 

Here, we present results obtained using group-level cortical parcellations provided by 142 

Schaefer et al. (Schaefer et al., 2018) as the basis for our analysis, focusing on the 100-region 143 

parcellation (s100). To ensure that our results are robust to the number of regions, we 144 

repeated our analysis using the 200-region variant (s200) and after applying Global Signal 145 

Regression (GSR). Results obtained using the s200 atlas, and results for both atlases after 146 

GSR, can be found in the Supplementary Materials and are largely consistent with the 147 

primary results reported in the following sections. 148 

Spatial and functional properties of group-based vs individualized parcellation 149 

Figure 1 shows examples of individualized parcellations generated for three 150 

individuals compared with the original group-based s100 atlas. The individualized 151 

parcellation algorithm preserved the same regions for every individual but shifted their 152 

borders and changed their shapes and sizes to accommodate for individualized variations in 153 

brain organization. Indeed, on average, 42.56% (𝑆𝐷 = 2.37) of vertices were reallocated to a 154 

different region as a result of the individualized parcellation algorithm, highlighting the 155 

considerable variability of cortical functional organization between individuals. Figure 2a 156 

shows the proportion of vertices that were relabelled in controls 𝑀(𝑆𝐷) = 43.28% (2.34) 157 

and in patients 𝑀(𝑆𝐷) = 42.20% (2.31). The difference between the two groups was small 158 

but statistically significant, following permutation testing ( 𝑝 = 0.004, 𝐻𝑒𝑑𝑔𝑒𝑠′𝑠 𝑔 =159 

0.465). However, at a regional level (figure 2b), no parcel showed significant differences in 160 

the number of vertices relabelled between patients and controls (i.e., all 𝑝𝐹𝐷𝑅 >161 

0.05, corrected with the Benjamini and Hochberg method). 162 

163 
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 164 

Figure 1. Differences in parcel boundaries between group-based and individualized 165 

parcellation. The images show different parcellations overlayed on the inflated fsaverage5 166 

template surface of the left hemisphere, with 20,484 vertices. The top image shows the 167 

group-based parcellation, which was used as a starting point for the individualized 168 

parcellation algorithm. Colors correspond to the seven canonical functional networks that are 169 

used to group parcels in the atlas (Yeo et al., 2011). The bottom three images show 170 

individualized parcellations for three different subjects after 20 iterations of the GPIP 171 

algorithm. The region shaded in orange corresponds to region 1 in the lateral prefrontal 172 

cortex of the control network for all parcellations. The region shaded in red corresponds to 173 

region 1 in the parietal lobe of the default mode network. The same regions are present in all 174 

individuals, but their locations, sizes and shapes show considerable variability. DorsAttn – 175 

dorsal attention network; SomMot – somatomotor network; Cont – control network; Default 176 

– default mode network; Limbic – limbic network; SalVentAttn – salience/ventral attention 177 

network; Vis – visual network. 178 
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We next compared the average functional homogeneity of the group-based and individualized 179 

parcellations. Functional homogeneity was measured out of sample, on functional scans from 180 

run 2 with parcellations generated for scans from run 1. In controls, the mean homogeneity 181 

was 0.364 (𝑆𝐷 = 0.09), and 0.372 (𝑆𝐷 = 0.08) for the group-based and individualized 182 

parcellations, respectively. In patients, the mean homogeneity was 0.297 (𝑆𝐷 = 0.06) and 183 

0.304 (𝑆𝐷 = 0.06) for the group-based and individualized parcellations, respectively (figure 184 

2c). A two-way mixed ANOVA revealed that mean homogeneity was higher for the 185 

individualized parcellation (𝐹(149) = 54.81, 𝑝 < 0.0001) and higher in controls compared 186 

to patients (𝐹(149) = 30.91, 𝑝 < 0.0001), with no interaction between parcellation type and 187 

diagnostic group (𝐹(149) = 0, 𝑝 = 0.898). Post-hoc analysis showed that individualized 188 

parcellation resulted in greater homogeneity scores in patients (𝑡(103) = 5.64, 𝑝 < 0.0001) 189 

and controls (𝑡(46) = 2.90, 𝑝 = 0.006). When comparing homogeneity scores for individual 190 

parcels (figure 2d, e), 55 out of 85 regions showed significant differences in homogeneity 191 

between parcellation approaches (i.e., 𝑝𝐹𝐷𝑅 < 0.05, corrected with the Benjamini and 192 

Hochberg method). Moreover, both methods showed high reliability of homogeneity 193 

estimates, as measured with the intraclass correlation coefficient (McGraw & Wong, 1996) 194 

(𝑟𝑔𝑟𝑜𝑢𝑝−𝑏𝑎𝑠𝑒𝑑 = 0.842, 𝑝 < 0.0001 𝑎𝑛𝑑 𝑟𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖𝑧𝑒𝑑 = 0.862, 𝑝 < 0.0001). To quantify 195 

functional distinctions between parcels, we computed the mean Pearson’s correlation of 196 

activity between each pair of vertices that were not allocated to the same region. We found 197 

that the individualized parcellation (𝑀𝑐𝑜𝑟𝑟(𝑆𝐷) =  0.100 (0.066)) delineates parcels that are 198 

slightly more functionally distinct than those in the group-based parcellation (𝑀𝑐𝑜𝑟𝑟(𝑆𝐷) =199 

0.102 (0.066)). Although small, the difference was statically significant (𝑡(165) =200 

 14.0, 𝑝 < 0.001). 201 

Homogeneity scores results were similar for s200 atlas with and without GSR 202 

(Supplementary Materials figures 2 and 3). For the s100 atlas with GSR, differences in 203 
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homogeneity between groups and parcellation approach were similar to the main results. 204 

However, there was a significant interaction effect between parcellation type and diagnosis 205 

(𝐹(148) = 4.68, 𝑝 = 0.032) (See Supplementary Materials figure 1), such that homogeneity 206 

scores in patients were more impacted by individualized parcellation than in controls. This 207 

result suggests that, at this particular resolution, parcellation type may differentially affect FC 208 

estimates in patients and controls only following the application of GSR. The reasons for this 209 

sensitivity to parcellation scale and GSR are unclear. 210 

 211 

Figure 2 – Spatial and functional properties of group-based vs individualized 212 

parcellations. Panel a shows the proportion of vertices relabelled by the individualized 213 

parcellations for controls (𝑀(𝑆𝐷) = 0.433(0.023)) and for patients (𝑀(𝑆𝐷) =214 

0.422(0.023)). Panel b shows the average number of vertices relabelled in every parcel for 215 

patients and controls. Panel c shows the distribution of homogeneity scores per subject. 216 

Controls produced more homogenous parcels in both individualized (𝑀(𝑆𝐷) =217 
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0.372(0.08)) and group-based parcellations (𝑀(𝑆𝐷) = 0.364(0.09)) than patients 218 

(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑀(𝑆𝐷) = 0.304(0.06)), (𝑔𝑟𝑜𝑢𝑝 − 𝑏𝑎𝑠𝑒𝑑 𝑀(𝑆𝐷) =  0.297(0.06)). Panel 219 

d shows homogeneity scores for every parcel for group-based and individualized parcellation. 220 

Light colored parcels in e represent parcels showing significant difference in homogeneity 221 

scores, between parcellation approaches, for 𝑝𝐹𝐷𝑅 < 0.05. Homogeneity is displayed in 222 

inflated surfaces with the group-based parcellation.  223 

 224 

Unthresholded edge-level group differences in FC  225 

            Following exclusion of regions with poor signal (see Methods) the final networks 226 

examined comprised 85 regions. The FC matrices resulting from both parcellation methods 227 

were positively correlated, with correlations ranging between 0.679 and 0.898 (median = 228 

0.794) across participants (Supplementary Materials figure 4a), indicating that the results 229 

obtained with individualized and group parcellations are generally similar, although far from 230 

identical.  231 

Figure 3a shows the distribution of 𝑡-statistics across edges, comparing FC between 232 

patients and controls estimated using either the group-based or individualized parcellation. 233 

Both distributions have predominantly positive values, consistent with evidence of 234 

widespread hypoconnectivity in patients compared to controls. The distribution for the group-235 

based approach is shifted further to the right, indicating that larger group differences are 236 

detected with this method, on average. The difference in the means of the distributions was 237 

statistically significant, as calculated with a Wilcoxon signed-rank test (𝑍 = 24.053 𝑝 <238 

0.0001). Figure 4 of the Supplementary Materials shows that most FC edges were positively 239 

valued; as such, the significant FC reductions observed in patients result from patients having 240 

lower positive FC rather than patients having stronger negative FC. Given the higher 241 
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functional homogeneity of the individualized parcellation, this result suggests that the group-242 

based parcellation overstates FC differences between patients and controls. Similar results 243 

were obtained when looking at the effect size of the differences in edge strength between 244 

patients and controls (Supplementary Materials figure 4), with the group-based parcellation 245 

yielding higher effect size estimates than individualized parcellation, on average (𝑝 <246 

0.0001).  247 

The 𝑡-matrices obtained using the group-based and individualized parcellations were 248 

positively correlated (𝑟 = 0.76, 𝑝 < 0.0001), suggesting that the two approaches show 249 

largely similar between-group FC differences. The effects of parcellation type were 250 

consistent across the full extent of the 𝑡-distributions, as indicated by the shift function, 251 

which compares differences between distributions at each decile. This analysis showed a 252 

significantly higher value in every decile of the group-based parcellation, when compared to 253 

the individualized parcellation, with the 95% CI never crossing zero (figure 3b). There was, 254 

however, a more pronounced effect of parcellation type on edges associated with larger case-255 

control differences in FC relative to those with smaller case-control differences, as can be 256 

seen by the greater shift observed in the right tail of the distribution relative to the left (figure 257 

3b). This result implies that variations in parcellation type are more likely to influence the 258 

edges that are significantly different between patients and controls. Furthermore, results 259 

obtained using the s200 parcellations are in agreement with results obtained from the s100 260 

parcellation (see Supplementary Materials figure 2). Following GSR, at both parcellation 261 

scales, the mean t-values were similar, but the t-distribution for the individualized 262 

parcellation was narrower than for the group-based parcellation. The shift function showed 263 

that significant differences between parcellation approaches were mainly for edges with 264 

positive t-values (see Supplementary Materials figures 1 and 3). 265 
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 266 

Figure 3 – Edge-specific case-control differences in FC depend on parcellation type. a 267 

Distributions of 𝑡-values quantifying FC differences between patients and controls at each 268 

edge and for each parcellation type. A positive t-value indicates a greater FC value in controls 269 

than in patients. For reference, a p-value = 0.05 corresponds to a t-value = 1.65 uncorrected, 270 

and t = 4.31 Bonferroni corrected. b Shift function (Rousselet et al., 2017) for the two t-271 

distributions. Each circle represents the difference between the borders of each decile of both 272 

distributions as a function of the deciles in the group-based distribution. The bars represent 273 

the 95% boot-strap confidence interval associated with the difference.   274 

Thresholded edge-level group differences in FC 275 

We used the Network Based Statistic (NBS) for inference on the edge-specific 𝑡-statistics 276 

(Zalesky, Fornito, & Bullmore, 2010). The NBS identified a single connected component 277 

with significant FC differences between patients and controls using both the group-based 278 
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(𝑝 < 0.0001) and individualized parcellations (𝑝 < 0.0001), for all primary test statistics 279 

thresholds tested. Out of 3,570 possible connections, for a primary threshold equivalent to a 280 

p-value = 0.05, the group-based and individualized parcellations resulted in components 281 

comprising 2,877 edges and 2,672 edges respectively (figure 4a-b). Thus, the group-based 282 

approach implicated approximately 7.7% more dysconnected edges. The binary edge 283 

matrices defining these components were moderately correlated (𝑟𝑝ℎ𝑖 = 0.548, 𝑝 < 0.0001) 284 

and both components had a total of 571 edges that differed from each other. There was also 285 

some variation in the regional affiliation of the edges. For example, figure 4c-d show that the 286 

insula has a high dysconnectivity degree in both group-based and individualized 287 

parcellations, but that the former approach implicates more insula sub-regions. Furthermore, 288 

the right medial prefrontal cortex shows a low degree in the individualized parcellation but 289 

not in the group-based parcellation. The NBS was repeated with a primary test statistics 290 

threshold equivalent to p-values = 0.01 and 0.001. For 𝑝 = 0.01, the component for 291 

individualized parcellation comprised 1,786 edges and for group-based parcellation, 2,120. 292 

For 𝑝 = 0.001, the component for individualized parcellation comprised 775 edges and for 293 

group-based, 1,257 edges. Note that for all edges in these NBS networks, patients showed 294 

reduced FC compared to controls. 295 

 296 

Effects of variations in parcel size  297 

A challenge of using individualized parcellations is that the ROIs can vary in size 298 

across individuals, which may bias estimates of FC differences between groups. We therefore 299 

examined changes in parcel size resulting from the individualization algorithm, as quantified 300 

by the number of vertices in each parcel. On average, parcels changed by 50.7 (SD = 45.2) 301 

vertices across patients and 52.0 (SD = 45.3) across controls, with no significant difference 302 
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between the two groups, according to permutation testing (𝑝 = 0.104) (Supplementary 303 

Materials figure 8a). There was also no significant difference in size difference between 304 

patients and controls for any of the parcels, when corrected for multiple comparisons 305 

following permutation statistics (i.e., all 𝑝𝐹𝐷𝑅 > 0.05). Four parcels had different sizes 306 

between patients and controls, without correction for multiple comparisons (visual network 307 

parcel 9 of the left hemisphere, 𝑝 = 0.023; somatomotor network parcel 1 of the left 308 

hemisphere, 𝑝 = 0.026; limbic network parcel 1 in the orbital frontal cortex of the left 309 

hemisphere, 𝑝 = 0.039, limbic network parcel 1 in the orbital frontal cortex of the right 310 

hemisphere, 𝑝 = 0.048). We next correlated the differences in parcel size in individualized 311 

parcellation between patients and controls with differences in node degree within the NBS 312 

network and mean edge dysconnectivity, given by the mean 𝑡-value of edges attached to each 313 

node for the case-control comparison (Supplementary Materials figure 8b-c). Neither 314 

correlation was significant (𝑟 = 0.148, 𝑝𝑠𝑝𝑖𝑛 = 0.104 and 𝑟 = 0.133, 𝑝𝑠𝑝𝑖𝑛 = 0.127, 315 

respectively), suggesting that parcel size did not impact FC differences between patients and 316 

controls in the individualized parcellation. 317 

Network-level group differences in FC 318 

            Having demonstrated that the choice of a parcellation strategy can influence both 319 

edge- and region-level inferences about FC disruptions in psychosis, we next examined 320 

whether parcellation type affects the specific networks that are considered to be 321 

dysfunctional. We therefore examined the proportion of edges within the NBS network that 322 

fell within and between each of 7 canonical functional networks (Thomas Yeo et al., 2011). 323 

Considering the raw number of affected edges across both parcellation approaches, the 324 

control network was the most impacted in patients with psychosis, with over 1,100 325 

dysconnected edges, particularly those linking the control and somatomotor networks (figure 326 

4e-f). By comparison, normalized counts, which is adjusted for the total number of possible 327 
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edges within or between pairs of networks, suggested a more equal and widespread 328 

distribution of FC disruptions across networks. Both the raw count (𝑟 = 0.983, 𝑝 <329 

0.0001 ) and normalized matrices (𝑟 = 0.802, 𝑝 < 0.0001) were strongly correlated across 330 

the two parcellation methods. These findings indicate that while parcellation method can 331 

influence the specific edges that are identified as dysconnected, these edges generally fall 332 

within or between the same canonical networks.  333 

 334 

Figure 4 – Edge-level regional and network-level case-control FC differences according 335 

to parcellation type. Panels a and b show the specific edges comprising the NBS 336 

components obtained with the group-based and individualized parcellations, respectively, 337 

with nodes colored according to network affiliation and sized by degree. Edges are sized by 338 
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strength of dysconnectivity. Edges associated with a t-value < 3.5 are represented by grey 339 

lines and those associated with a t-value ≥ 3.5 are represented in pink. The images were 340 

created using the software BrainNet Viewer (Xia et al., 2013). Panels a, c, and e result from 341 

the group-based parcellation. Panels c and d show the degree of each region in the NBS 342 

component for the group and individualized parcellations, respectively. The left most triangle 343 

of each matrix in panels e and f shows the total number of NBS component edges (raw 344 

counts) falling within and between seven canonical networks. The right most triangles show 345 

the same data normalized for network size, i.e. the total number of possible connection within 346 

or between networks (normalized counts). DorsAttn – dorsal attention network; SomMot – 347 

somatomotor network; Cont – control network; Default – default mode network; Limbic – 348 

limbic network; SalVentAttn – salience/ventral attention network; Vis – visual network. 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 
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Discussion 361 

Several studies have reported functional brain dysconnectivity in psychosis. A 362 

fundamental step in such analyses involves defining a priori ROIs to serve as nodes in the 363 

network analysis, which are typically derived from standard parcellation atlases generated 364 

from a population or group average template. Here, we asked whether the failure of such an 365 

approach to account for individual differences in brain functional organization can bias 366 

estimates of case-control differences in FC. Standard methods could either result in an under-367 

estimation of the extent of network dysfunction (due to noisy FC estimation caused by 368 

inaccurate ROI delineations) or an inflated estimate of the dysfunction (due to FC differences 369 

being attributable to ROI misalignment), compared to when accounting for individual 370 

differences in functional organization of the brain. Our findings indicate that group-based 371 

parcellations might inflate estimates of FC differences in psychosis, especially at the edge-372 

level. Moreover, the use of individualized parcellations, while yielding a generally consistent 373 

pattern of findings, leads to some different conclusions about the specific edges and regions 374 

most affected by the disorder, although inferences at the network level were robust to 375 

parcellation variations. Together, our findings suggest that the use of individualized 376 

parcellations can impact findings of brain dysconnectivity in psychosis and, by extension, 377 

other disorders.    378 

Individualized parcellations yield more functionally homogeneous regions  379 

            The individualized parcellations resulted in nearly half (over 40%) of vertices being 380 

assigned to regions that differed from the group-based atlas, as per prior work (Chong et al., 381 

2017). This finding reiterates how group-based parcellations can result in a substantial 382 

misspecification of regional borders in individuals and highlights the high degree of variance 383 

present in the topographical organization of functional areas. Despite the high percentage of 384 
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vertices relabelled, FC matrices generated by both parcellations were highly correlated, 385 

indicating the overall FC patterns seen with group-based parcellation are maintained with the 386 

individualized parcellation. Note that with GPIP, correspondence between regions is 387 

determined based on similarity in FC profiles rather than spatial location. As such, 388 

corresponding regions can shift their spatial location from person to person (see Figure 1). 389 

The higher functional homogeneity of the individualized parcellations supports its 390 

improved validity, although the increment was small (2.4%), which is consistent with past 391 

reports (Kong et al., 2021; Y. Li et al., 2022), increased homogeneity was seen in the 392 

majority of parcels. Regional homogeneity was also marginally (2.3%) higher in controls 393 

compared to patients. This differential improvement in homogeneity was expected, as the 394 

starting point for the GPIP algorithm was the Schaefer atlas (Schaefer et al., 2018), which 395 

was derived from a sample of people with no psychiatric disorders. Defining an initial group 396 

atlas in patients would better account for differences in cortical functional organization 397 

caused by psychosis. However, it would complicate comparisons between groups because of 398 

the requirement to have consistently defined nodes in both patients and controls, which is one 399 

of the challenges of using individualized parcellation. The interaction effect between 400 

diagnosis and parcellation approach was not significant in most cases (apart from s100 with 401 

GSR). This result indicates that individualized parcellations led to a similar improvement in 402 

patients and controls. Since most case-control studies use data obtained in healthy individuals 403 

to establish a normative benchmark for measures acquired in patients (Chopra et al., 2021; 404 

Nabulsi et al., 2020; Nogovitsyn et al., 2022), we relied on the Schaefer parcellation in our 405 

analysis. Future work could develop methods to better capture variations in functional 406 

organization associated with psychosis.   407 

Individualized parcellations lead to more conservative estimates of case-control FC 408 

differences  409 
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            Widespread decreases in FC in patients with psychosis were identified using both 410 

parcellation approaches, highlighting that the dominant effect of both parcellations is 411 

generally similar. However, the magnitude of the differences in FC was greater in the group-412 

based parcellation compared to individualized parcellation. Notably, the shift function 413 

analysis indicated that differences between the two parcellation approaches were greater for 414 

edges associated with large case-control differences. These edges are precisely the ones that 415 

are most likely to be declared as statistically significant following the application of some 416 

thresholding procedure. Accordingly, comparison of NBS results revealed a 7.7% reduction 417 

in the size of the dysfunctional component identified using the group-based parcellation. 418 

Given the higher functional homogeneity, and thus validity, of the individualized 419 

parcellation, these results support the hypothesis that at least part of the group differences 420 

identified in past studies in psychosis samples do not reflect actual differences in inter-421 

regional FC but instead result from inaccurate ROI boundaries caused by a failure to account 422 

for individual differences in functional organization. These findings imply that individualized 423 

parcellations can yield different estimates of FC differences in case-control studies, especially 424 

when investigating FC changes at an edge-, or node-level. 425 

Parcellation type affects FC differences in edges and regions, but not networks 426 

While widespread decreases in FC were apparent in patients with psychosis using both 427 

parcellation methods, the specific edges affected varied considerably. The NBS components 428 

of both group-based and individualized parcellations showed differences in 571 edges (i.e., 429 

19.8% of the total identified with the group-based parcellation). Examining the regions most 430 

affected by quantifying the node degrees of the NBS components resulted in broadly similar 431 

patterns, but there were some notable differences in location. For example, the right medial 432 

frontal region accounts for 1.7% of dysconnectivity in the group-based and 2.3% in the 433 

individualized parcellation. The left insula accounts for a slightly smaller percentage (6.5%) 434 
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of dysconnectivity in the group-based than in the individualized parcellation (6.7%). These 435 

findings suggest that conclusions about the specific edges and regions affected by psychosis 436 

can vary depending on the parcellation method used. In contrast, inferences at the network 437 

level were largely consistent across the two parcellation approaches, indicating that coarse-438 

grained localizations of FC differences are robust to this methodological choice. This could 439 

be attributed to network-level inference effectively reducing the dimensionality of the 440 

analysis, minimizing the nuances of more fine-grained individual variations. Therefore, 441 

studies looking at group differences in FC at a coarse, network level might not be impacted 442 

by the use of individualized vs group-based parcellations. 443 

 444 

Limitations  445 

 To minimize the computational cost, we used fsaverage5, a surface mesh with a 446 

relatively low number of vertices. Since GPIP parameters depend on the number of vertices 447 

of the mesh, future work could investigate the impact of different surface mesh resolutions 448 

and whether the differences observed here apply at different mesh resolution. 449 

To facilitate comparison between subjects, the individualized parcellation algorithm 450 

maintains the same number of regions for every subject and uses a parcellation derived in 451 

healthy individuals as a starting point. This approach may mask differences in cortical 452 

organization in patients, where regions may merge or split, resulting in a different number of 453 

ROIs. However, generating separate parcellations in each group complicates comparisons 454 

between groups. Resolving this challenge remains an open problem for the field. Moreover, 455 

we only looked at cortical regions, due to the lack of methods available for individual 456 

parcellation of subcortical structures.  457 
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A proportion of patients in our sample were medicated, and recent evidence has 458 

shown that anti-psychotic medication can impact FC, even after only 3 months of use 459 

(Chopra et al., 2021). However, given that most samples examined in past research are also 460 

medicated, our sample is directly comparable to the broader literature. Similarly, the study 461 

included more patients than controls and future work could benefit from a balanced sample 462 

size. We also emphasize that this study is not focused on identifying the specific nature of FC 463 

disturbances associated with psychosis but instead concentrates on how parcellation type 464 

affects FC differences in the same patients. In this context, medication exposure was constant 465 

across our main contrast of interest (parcellation type), meaning that it cannot explain the 466 

differences that we focus on here.  The same reasoning applies to the clinical heterogeneity of 467 

the patient sample, which comprised people diagnosed with both affective and non-affective 468 

psychoses. Future work could use individualized parcellations to delineate FC differences 469 

more precisely between distinct patient subgroups.  470 

We have focused here on how the use of individualized vs group-based parcellations 471 

affects group differences in FC. A separate question concerns whether parcellation type also 472 

affects correlations with behavioural or clinical variables. Several studies have shown that 473 

individualized parcellations yield FC estimates that are marginally more correlated with 474 

various forms of behaviour, including psychopathological ratings (Bijsterbosch et al., 2018; 475 

Kong et al., 2019, 2021). A useful direction for future work could involve investigating 476 

whether individualized parcellation improves prediction of clinically meaningful outcomes. 477 

 478 

Conclusion  479 

Our findings indicate that traditional reliance on group-based parcellations may inflate case-480 

control differences in FC at a fine-grained level. The use of individualized parcellations can 481 
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yield a more conservative understanding of brain network disruptions in psychotic and 482 

possibly other disorders. However, it does not greatly impact case-control differences in 483 

network level analyses. 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 
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Methods 500 

Study participants  501 

All data for this study were collected as part of the Human Connectome Project – 502 

Early Psychosis (HCP-EP) study, which is an open-access collection aiming to generate high-503 

quality imaging data in early psychosis patients and healthy controls (HCP Early Psychosis 504 

1.1 Data Release: Reference Manual HUMAN Connectome PROJECT for Early Psychosis, 505 

2021). This study includes high-resolution structural and functional Magnetic Resonance 506 

Image (MRI) data from 121 patients with early psychosis (74 males) and 57 healthy 507 

individuals (37 males). Demographic information is provided in Table 1. Data collection by 508 

HCP-EP has been approved by the Partners Healthcare Human Research Committee/IRB, 509 

and comply with the regulations set forth by the Declaration of Helsinki (Lewandowski et al., 510 

2020). 511 

The patient group was comprised of outpatients with psychosis, meeting criteria for 512 

affective or non-affective psychosis, according to the DSM-5, who were within the first five 513 

years of onset of symptoms. Patients were recruited by four clinical programs: Beth Israel 514 

Deaconess Medical Center (BMH) – Massachusetts Mental Health Center (BIDMC-MMHC), 515 

Prevention of and Recovery from Early Psychosis (PREP) Program; Indiana University 516 

Psychotic Disorders Program, Prevention and Recovery for Early Psychosis (PARC); the 517 

McLean Hospital, McLean On Track; and Massachusetts General Hospital, First Episode and 518 

Early Psychosis Program (FEPP) (HCP Early Psychosis 1.1 Data Release: Reference Manual 519 

HUMAN Connectome PROJECT for Early Psychosis, 2021). Imaging took place in three of 520 

these sites.  521 

The control group included volunteers that did not present with anxiety disorders 522 

and/or psychotic disorders, had no first-degree relative with schizophrenia spectrum disorder, 523 
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were not taking psychiatric medication at the time of the study, and had never been 524 

hospitalized for psychiatric reasons. All participants were aged between 16 and 35 years old 525 

(mean = 23, SD = ±3.9) at the time of the study (Table 1). A total of 11 subjects were 526 

excluded due to poor data quality, as detailed below, leaving a final sample of 55 (36 male) 527 

controls and 112 (67 male) patients.  528 

Table 1. Demographic details 529 

 Control AP NAP 

Age 24.7 (4.1) 24.2 (4.3) 22.1 (3.3) 

Sex 36M; 19F 7M; 19F 60M; 26F 

Antipsychotic 

exposure (months) 

-- 1.5 (0 – 54) 11.5 (0 – 56) 

NIH cognition 113.5(8.8) 108.9 (7.8) 98.2 (13.0) 

PANSS total score -- 40.7 (12.6) 48.8 (16.7) 

 

Scan site 

UI 23 7 48 

BMH 26 9 30 

McLean 6 10 8 

AP – affective psychosis; NAP – non-affective psychosis; PANSS – Positive and Negative 530 

Syndrome Scale;  IU – Indiana University; BMH – Beth Israel Deaconess Medical 531 

Center; Cont – healthy controls; F – females; M – males; age is given as mean (SD) in years 532 

at the time of their first interview; antipsychotic exposure is given as median (range) in 533 

months at the time of their first interview; PANSS total score is given as mean (SD); NIH 534 

cognition is given as the mean (SD) of cognitive composite score, unadjusted for age, 535 

assessed by the NIH Toolbox. 536 

Data Acquisition   537 
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The participants recruited from four locations were scanned at three sites: BMH; 538 

Indiana University; and McLean Hospital, using Siemens MAGNETOM Prisma 3T scanners. 539 

The acquisition parameters between the three sites were harmonized and followed the widely 540 

used HCP protocol (Demro et al., 2021; HCP Early Psychosis 1.1 Data Release: Reference 541 

Manual HUMAN Connectome PROJECT for Early Psychosis, 2021). The project collected 542 

whole brain T1-weighted MRI (T1w), T2-weighted MRI (T2w), diffusion MRI, spin echo 543 

field maps with Anterior to Posterior (AP) and Posterior to Anterior (PA) phase encoding 544 

(PE) directions - and four resting-state functional MRI (rsfMRI) sessions. The current study 545 

uses the T1w and T2w images, the spin echo field maps, and the first two runs of the rsfMRI 546 

scans. A 32-channel head coil was used at BMH and Indiana University. A 64-channel head 547 

and neck coil, with neck channels turned off was used at McLean Hospital. Real-time image 548 

reconstruction and processing was performed for quality control and scans with detectable 549 

problems were repeated (HCP Early Psychosis 1.1 Data Release: Reference Manual 550 

HUMAN Connectome PROJECT for Early Psychosis, 2021).  551 

Structural MRI acquisition parameters  552 

Acquisition parameters followed HCP standards. T1w images were obtained using a 553 

magnetization-prepared rapid gradient-echo (MPRAGE), with 0.8 mm isotropic spatial 554 

resolution echo time (TE) = 2.22 ms, repetition time (TR) = 2400 ms, and field of view (FoV) 555 

= 256 mm. T2w images were acquired following a 3D-SPACE sequence, with 0.8 mm 556 

isotropic spatial resolution, TE = 563 ms, TR = 33200 ms, and FoV = 256 mm (HCP Early 557 

Psychosis 1.1 Data Release: Reference Manual HUMAN Connectome PROJECT for Early 558 

Psychosis, 2021).   559 

Functional MRI acquisition parameters  560 
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The present study mainly utilized the first rsfMRI run (with anterior to posterior phase 561 

encoding). The second run (with posterior to anterior phase encoding) was used to validate 562 

the parcellation with out-of-sample analysis of within-parcel homogeneity. Scans were 563 

acquired for a length of 6.5 minutes, resulting in a total of 420 volumes; the first 10 volumes 564 

were removed prior to the dataset release. Images have an isotropic spatial resolution of 2 565 

mm, TE = 37 ms, TR = 800 ms, and FoV = 208 mm. A multi-band acceleration factor of 8 566 

was used to improve spatial and temporal resolution (HCP Early Psychosis 1.1 Data Release: 567 

Reference Manual HUMAN Connectome PROJECT for Early Psychosis, 2021).   568 

Structural and Functional Image Analysis  569 

Raw Image Quality Control  570 

All analyses were done on the MASSIVE high-performance computing facility 571 

(Goscinski et al., 2014). 572 

Raw structural and functional images were first visually inspected for large artefacts 573 

and distortions. Images were then put through an automated quality control pipeline 574 

(MRIQC) (Esteban et al., 2017) which computes 15 image quality metrics for each scan with 575 

the purposes of identifying outliers warranting closer inspection. At this stage, three subjects 576 

were excluded for missing or unusable structural images. 577 

Head motion is a major source of noise in fMRI signals. Its effects remain present 578 

even after volume realignment and can introduce systematic bias in case-control studies when 579 

not strictly controlled (Parkes et al., 2018; Power et al., 2012). Head motion during the fMRI 580 

scan was estimated using frame-wise displacement (FD), which is a summary measure of the 581 

movement of the head from one volume to the next (Parkes et al., 2018). For each scan, FD 582 

was calculated according to the method described by Jenkinson et al. (Jenkinson et al., 2002) 583 

and the resulting trace was band-pass filtered and down sampled to account for the high 584 
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sampling rate of the multiband fMRI acquisition (Power et al., 2019). Subjects were excluded 585 

if they met at least one of the following stringent exclusion criteria: scans had a mean filtered 586 

FD greater than 0.25 mm; more than 20% of frames were displaced by more than 0.2 mm; or 587 

any frame was displaced by more than 5 mm. These criteria have previously been shown to 588 

effectively mitigate motion-related contamination in fMRI connectivity analyses (Parkes et 589 

al., 2018). In total, 11 subjects (2 controls) were excluded for excessive head movement in 590 

the scanner.  591 

Image Preprocessing  592 

T1w images were processed using FreeSurfer version 6.0.1 (Dale et al., 1999) to 593 

generate cortical surface models for each participant. Surfaces were visually examined for 594 

inaccuracies and distortions. The fMRI data were processed according to the Minimal 595 

Preprocessing Pipeline for HCP data (Glasser et al., 2013). The pipeline adapts steps from 596 

FMRIB Software Library (FSL) and FreeSurfer to account for greater spatial and temporal 597 

resolution and HCP-like distortions resulting from acquisition choices such as multiband 598 

acceleration (Glasser et al., 2013). Briefly, images were skull stripped by the brain extraction 599 

tool (BET) (Smith, 2002) of FSL, which removes non-brain matter from the image. Skull 600 

stripped T1w, T2w, and fMRI were aligned using FMRIB’s Linear Image Registration Tool 601 

(FLIRT) (Jenkinson et al., 2002; Jenkinson & Smith, 2001). Spin Echo EPI field maps with 602 

opposite phase encoding directions were used to estimate spatial distortion caused by 603 

magnetic field inhomogeneities, with corrections applied using FSL’s “topup” (Andersson et 604 

al., 2003) and FLIRT. This process was fine-tuned and optimized using FreeSurfer’s 605 

BBRegister (Greve & Fischl, 2009). Furthermore, bias field correction was performed on 606 

structural images to remove gradients of voxel intensity differences, following the HCP 607 

pipeline (Glasser et al., 2013). The fMRI volumes were realigned to the first volume for each 608 

participant using FLIRT. The fMRI data were then co-registered to their structural image, and 609 
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the structural image was non-linearly normalized into standard Montreal Neurological 610 

Institute (MNI) ICBM152 space (Grabner et al., 2006) using FLIRT and FMRIB’s nonlinear 611 

image registration tool (FNIRT) (Andersson et al., 2010). The resulting transform was then 612 

applied to the functional data.   613 

fMRI Denoising  614 

The functional data were denoised using Independent Component Analysis (ICA)-615 

based X-noiseifier (FIX), which decomposes the data into spatially independent components 616 

and uses machine learning to label each resulting component as either signal or noise 617 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). The preprocessed fMRI timeseries were 618 

then regressed against the estimated noise component signals and the residuals were retained 619 

for further analysis. Component decomposition was performed using Multivariate 620 

Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) 621 

(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). HCP’s training set – HCP_hp2000, 622 

which includes pre-trained weights to classify independent components, was used as the 623 

training set for the algorithm. A temporal high-pass filter (2000s Full Width Half Maximum) 624 

was applied to remove low-frequency signal drifts, as recommended by the HCP 625 

preprocessing guideline (Glasser et al., 2013). Following HCP’s guidelines (Glasser et al., 626 

2013), a lenient threshold component labelling in FIX was used (th=10), regressing out the 627 

noise components while controlling for the signal components. The accuracy of the labels 628 

was manually verified. The analyses were repeated after applying Global Signal Regression 629 

(GSR), which removes widespread signal fluctuations associated with respiratory variations 630 

(Aquino et al., 2020; Power et al., 2017) (see Supplemental Material). 631 

Surface Registration  632 
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The processed images in MNI volume space were resampled to each individual’s 633 

cortical surface, as generated by FreeSurfer, and then registered to the fsaverage5 template 634 

using a surface-based registration algorithm (Dale et al., 1999; Fischl, 2012). fsaverage5 is a 635 

standard template generated by FreeSurfer, the resulting surface mesh comprises a total of 636 

20,484 vertices.  637 

Parcellations  638 

We used group parcellations provided by Schaefer et al. (Schaefer et al., 2018) as the 639 

basis for our analysis, as this parcellation is widely used and has shown superior functional 640 

homogeneity compared to other leading approaches (Schaefer et al., 2018). Our study 641 

focused on the 100-region parcellation, organized into 7 networks (s100) but we repeated the 642 

analyses using the 200-region variant to check the robustness of the results (see 643 

Supplementary Materials). Regions were screened for low BOLD signal intensity, with a 644 

method adapted from Brown et. al. (Brown et al., 2019). Specifically, we found the elbow of 645 

the BOLD signal distribution, given by the largest decrease in pair-wise differences of the 646 

mean BOLD signal of each region. This was used as a cut-off for signal dropout and regions 647 

with lower signal than the cut-off were considered to have signal dropout. Regions that were 648 

found to have signal dropout in over 5% of subjects were excluded before analysis. For the 649 

s100 atlas, 15 regions were excluded; for the s200 atlas, 16 regions were excluded from 650 

further analysis. 651 

To derive individually-tailored parcellations, we used the Group Prior Individualized 652 

Parcellation (GPIP) model (Chong et al., 2017), which relies on a Bayesian formulation with 653 

two priors: one based on group FC and one that drives individualized parcel boundaries. The 654 

former uses a group sparsity constraint to represent FC between parcels, which allows the 655 

model to maintain comparability between subjects. The latter uses a Markov Random Field in 656 
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the form of a Potts model to label the set of parcels and maximize the FC homogeneity within 657 

each parcel based on individual data. This model allows for comparability between subjects, 658 

as it maintains the same areas and labels for every individual while capturing the variability 659 

in the shape and size of each parcel to best estimate each subject’s functional regions. 660 

Individualized parcel borders were optimised across 20 iterations, starting with the group-661 

based Schaefer atlas and iteratively alternating between updating individual borders and the 662 

group FC prior. Further details are provided in Chong et al. (Chong et al., 2017). The 663 

algorithm was applied to patients and controls together. 664 

For both group-based and individualized parcellations, mean timeseries were 665 

extracted for each region in the s100 and s200 atlases using each individual’s spatially 666 

normalized and denoised functional data. Product-moment correlations were then estimated 667 

for every pair of regional time series to generate FC matrices. We only consider cortical areas 668 

here as, to our knowledge, methods for developing individualized parcellations for 669 

subcortical and cerebellar regions have not yet been developed.  670 

Parcellation homogeneity and variability  671 

 To investigate the differences in parcels between the two parcellation approaches, we 672 

computed how many vertices were reassigned to a different parcel after applying GPIP. We 673 

then compared the number of vertices relabelled between patients and controls at a ROI and 674 

whole-brain levels. All between-group statistical analyses were evaluated using permutation-675 

based inference, with 5000 permutations, unless otherwise indicated. Statistically significant 676 

effects for ROI-level analysis were identified using an FDR-corrected (Benjamini & 677 

Hochberg, 1995) threshold of 𝑝𝐹𝐷𝑅 < 0.05, two-tailed. 678 

We compared the within-parcel functional homogeneity of the group-based and 679 

individualized parcellations as per prior work (Chong et al., 2017; Schaefer et al., 2018). We 680 
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calculated the average FC between all pairs of vertices in a given parcel 𝑖, denoted 𝐹𝐶𝑖. Then, 681 

parcellation homogeneity 𝐻 was normalised by parcel size as follows: 682 

𝐻 =  
∑ 𝐹𝐶𝑖 × 𝑁𝑉𝑖

𝑛
𝑖=1

∑ 𝑁𝑉𝑖
𝑛
𝑖=1

683 

where 𝑛 is the total number of parcels in the parcellation and 𝑁𝑉 is the number of vertices in 684 

the 𝑖𝑡ℎ parcel. This analysis was done out of sample, on functional scans from the second run685 

(PE=PA) with parcellations generated for scans from the first run (PE=AP).  686 

To measure intra-subject reliability, we also computed homogeneity scores in the first 687 

run and compared these results between parcellation approaches, using the intraclass 688 

correlation coefficient. 689 

Case-control differences in inter-regional functional coupling 690 

We assessed how parcellation type influences FC differences between patients with 691 

psychosis and healthy controls in three ways. First, we examined the distribution of 692 

unthresholded t-statistics obtained at each edge using a general linear model to quantify mean 693 

differences between patients and controls groups. This and all subsequent analyses are 694 

controlled for age, sex, test site, and mean FD. The contrast was specified such that a larger t-695 

statistic indicated lower FC in patients, compared to controls. To compare the similarity of 696 

the symmetric t-matrices, we vectorized their upper triangles and computed their Spearman 697 

correlation. The effect of parcellation type was evaluated using a shift function test on these 698 

distributions (Rousselet et al., 2017) to evaluate whether differences between parcellations 699 

were restricted to specific quantiles of the 𝑡-statistic distributions (rather than just comparing 700 

the means of these distributions). The shift function computes the difference in value of the 9 701 

deciles of the distributions. For inference, it computes the 95% CI associated with each decile 702 

difference, based on a bootstrap estimation of the standard error of each decile, controlling 703 
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for multiple comparisons, via the Hochberg’s method. This analysis thus allowed us to 704 

determine whether parcellation type preferentially affected results for edges that showed 705 

small, moderate, or large case-control differences. 706 

Second, we compared thresholded results obtained with the Network Based Statistic 707 

(NBS) (Zalesky, Fornito, & Bullmore, 2010). NBS is an adaptation of cluster-based statistics 708 

for network data. A primary threshold of 𝑝 = 0.05, uncorrected, was applied to the matrix of 709 

𝑡-statistics obtained using the general linear model described above. Results were repeated 710 

with a threshold p = 0.01 and 0.001. The sizes of the connected components of the resulting 711 

network (in terms of number of edges) were then estimated. In this context, the connected 712 

components represent sets of nodes through which a path can be found via supra-threshold 713 

edges. The group labels (patients and controls) were permuted 5000 times and the previous 714 

steps were repeated. At each step, the size of the largest connected component was retained, 715 

resulting in an empirical distribution of maximal component sizes under the null hypothesis. 716 

The fraction of null values that exceeded the observed component sizes corresponds to a 717 

family-wise corrected 𝑝-value for each component. The test was repeated with different 718 

FWER corrected p-values = 0.05, 0.01, and 0.001, all resulting in the same connected 719 

component. By performing inference at the level of connected components rather than 720 

individual edges, the NBS results in greater statistical power than traditional mass univariate 721 

thresholding methods (Zalesky, Fornito, & Bullmore, 2010). This analysis was repeated for 722 

each parcellation type (i.e., group-based and individualized) and scale (i.e., s100 and s200). 723 

Differences between significant component sizes observed using the two parcellation 724 

methods were then estimated and evaluated with respect to the differences between null 725 

component sizes estimated for the two approaches.  726 

We calculated changes in parcel size between parcellation approaches for patients and 727 

controls. We compared parcel size difference with a two-sample t-test between patients and 728 
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controls. To understand how parcel size impacted FC measures, we calculated the Spearman 729 

rho’s correlation between the t-values for parcel size and mean dysconnectivity per parcel 730 

and degree of dysconnectivity. p-values were calculated with a spin permutation test, with 731 

5000 permutations (Alexander-Bloch et al., 2018). 732 

Finally, we examined how parcellation type affects case-control differences at the 733 

level of 7 canonical networks. We considered the control network; the default mode network; 734 

the dorsal attention network; the limbic network; the salience/ventral attention network; the 735 

somatomotor network; and the visual network using the seven Yeo network assignments 736 

associated with the s100 and s200 atlases (Yeo et al., 2011). Specifically, we quantified the 737 

number of edges in the significant NBS component that fell within and between these seven 738 

networks. We examined both raw edge counts and counts normalized for the size of each 739 

network/network pair and quantified the correlation between the resulting network-level 740 

matrices obtained for each parcellation type. 741 

Code used for analysis and image generation can be found on-line at 742 

https://github.com/NSBLab/individualised_parc_psychosis and code for individualized 743 

parcellation can be acquired on-line at https://neuroimageusc.github.io/GPIP 744 

 745 

 746 

 747 

 748 

 749 

 750 
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