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ABSTRACT

Recently, neuroscience has seen a shift from localist approaches to network-wide
investigations of brain function. Neurophysiological signals across different spatial and
temporal scales provide insight into neural communication. However, additional
methodological considerations arise when investigating network-wide brain dynamics
rather than local effects. Specifically, larger amounts of data, investigated across a higher
dimensional space, are necessary. Here, we present FiNN (Find Neurophysiological
Networks), a novel toolbox for the analysis of neurophysiological data with a focus on
functional and effective connectivity. FiNN provides a wide range of data processing methods
and statistical and visualization tools to facilitate inspection of connectivity estimates and the
resulting metrics of brain dynamics. The Python toolbox and its documentation are freely
available as Supporting Information. We evaluated FiNN against a number of established
frameworks on both a conceptual and an implementation level. We found FiNN to require
much less processing time and memory than other toolboxes. In addition, FiNN adheres to a
design philosophy of easy access and modifiability, while providing efficient data processing
implementations. Since the investigation of network-level neural dynamics is experiencing
increasing interest, we place FiNN at the disposal of the neuroscientific community as open-
source software.

INTRODUCTION

Analyzing dependence between neurophysiological signals, and the definition of large-scale
networks, has become an important field of research that greatly enhances our comprehension
of communication between distinct neural structures (Bressler & Menon, 2010; Siegel et al.,
2012). Neural connectivity in particular is commonly quantified by estimating the degree to
which neural oscillations within the same frequency band or across different frequency bands
relate to each other (Fries, 2005). These two types of communication modes are known as
same-frequency coupling (sfc) and cross-frequency coupling (cfc), respectively (Friston,
2011; Hyafil et al., 2015).

Neural communication on a network level can be quantified on the basis of neurophysio-
logical data from a wide variety of data sources including electroencephalography (EEG), mag-
netoencephalography (MEG), and local field potentials (LFPs) (Engel et al., 2013; Ganzetti &
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Mantini, 2013). An estimation of connectivity across regions and/or frequencies is generally
more computationally intensive than the local synchronization of neural activity within a
smaller spatial region (He et al., 2019). While the number of power estimates are linearly
related to the number of sensors, the number of potential connectivity candidates increases
in a quadratic order of magnitude. Furthermore, in many applications, the amount of neuro-
physiological data is rising rapidly, partly due to increasingly dense sensor setups and high
sampling rates (Brinkmann et al., 2009; Sahasrabuddhe et al., 2020; Song et al., 2015), as well
as to more demanding analysis techniques, such as machine learning. A greater number of
samples is therefore required (Glaser et al., 2019; Kus et al., 2004).

In recent years, a number of toolboxes include functions for estimating neural connectivity.
However, the majority are either heavyweight frameworks that deeply encapsulate data, mak-
ing modifications or the integration into an existing pipeline difficult and increasing the time
required for memory processing; or frameworks with broad usability, but limited functionality
for neuroscientific data analysis and interpretation (see Results). Here, we introduce FiNN
(Find Neurophysiological Networks), a novel framework written in Python that provides tools
to analyze neurophysiological data in a bid to quantify network-wide neural communication
within a lightweight and computationally efficient framework. FiNN includes several functions
for cleaning and processing neurophysiological data in the context of connectivity. It also
includes visualization routines and statistical methods, both of which are useful tools for the
analysis of connectivity in large, high-dimensional neurophysiological datasets.

The goal of FiNN is to provide an open-source software toolbox offering easy to use and
computationally efficient methods for both users and developers. From a user perspective, it is
important that the toolbox is accessible and manageable. We therefore designed the functions
in FiNN such that they can be readily used without a deep knowledge of the underlying func-
tionality. In addition to an elaborate documentation on the individual functions, we included
detailed information on the internal processing functions to promote modifiability. Further-
more, to facilitate the analysis of large datasets across high-dimensional spaces, memory
and CPU consumption were strictly monitored and reduced, thereby achieving a high level
of scalability.

Materials and Methods describes the functionality of the toolbox, while Results discusses
FiNN in relation to the established toolboxes generally used to analyze neurophysiological
data. This is followed by an illustration of its performance in comparison to a selection of
established toolboxes in the Discussion and Outlook sections.

MATERIALS AND METHODS

Toolbox Documentation and Installation

FiNN (v1.0) is freely available to the research community as open-source code on GitHub at
https://github.com/neurophysiological-analysis/FiNN (Scherer, 2022a). It can be downloaded
as a zip file containing the last release, or by cloning the git repository. Documentation is avail-
able at https://neurophysiological-analysis.github.io/FiNN (Scherer, 2022b) and includes a
detailed description of the functions implemented. Furthermore, FiNN contains a demo folder
with several trial scripts. The scripts are intended to provide an introductory demonstration of
the functions implemented, but can also be used to gain a deeper methodological understand-
ing of the functions. An exemplary workflow utilizing FiNN for the analysis of EEG data is
provided in Table 1. A real-world application of FiNN can be observed in Scherer et al.
(2022a) where FiNN was used to quantify phase-amplitude coupling between neuronal

FiNN:
Find Neurophysiological Networks is
the framework presented in this
paper. It offers a wide range of
functions for the analysis of
electrophysiological data.

GitHub:
An online repository for
programming code.

sfc:
Coupling between signals with the
same frequency.

cfc:
Coupling between signals with
different frequencies.

EEG:
Head-attached sensors used to
record information about cortical
activation patterns.

MEG:
Electromagnetism based sensors used
to record information about cortical
activation patterns.

LFP:
Low-frequency (<300 Hz)
electrophysiological activity
recorded from within the brain.
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spiking and LFP activity. In the scope of this work, FiNN was used for data processing and
statistical analysis.

The FiNN toolbox was developed with Python version 3.8 (Van Rossum & Drake, Jr., 1995)
and requires the following Python packages: numpy (Harris et al., 2020), scipy (Virtanen et al.,
2020), PyQt5, functools, lmfit (Newville et al., 2016), and matplotlib (Hunter, 2007), rpy2. The
MNE package (Gramfort et al., 2013) is required if the user wishes to load BrainProducts data
(BrainProducts GmbH, Gilching, Germany). The following R (R Core Team, 2021) libraries are
required if the user wishes to perform statistical evaluation: Matrix (Bates & Maechler, 2021),
lme4 (Bates et al., 2015, p. 4), carData (Fox et al., 2020), and car (Fox & Weisberg, 2019).

Organization of the FiNN Toolbox

FiNN (v1.0) consists of nine modules: basic processing, artifact rejection, filters, cross-
frequency coupling, same-frequency coupling, statistics, visualization, file IO, and miscella-
neous. A brief description of each module is provided below. Further details can be found in
the online documentation (https://neurophysiological-analysis.github.io/FiNN; Scherer,
2022b). Recommendations are also provided as to how to apply these for analysis, where
applicable.

Basic processing package. For initial processing, the basic processing package offers the com-
mon average re-referencing (CAR) and downsampling functions. This function subtracts from
the data the part that is shared by all channels, since it is presumably the result of activity at the
reference electrode, and hence equal in all channels. This procedure is recommended only
when a large number of EEG channels (≥64) is available and these are equally distributed
across the head (Nunez, 2010). The downsampling function downsamples a signal from its
original sampling frequency to a lower, configurable target sampling frequency. Prior to the
application of the downsampling function, it is important for the signal to be low-pass filtered
below half the target frequency, as aliasing artifacts may otherwise be introduced into the

Table 1. Illustrative example of a pipeline for processing raw neurophysiological data

Processing step Module Function

1. Preparation file_io load_brain_vision_data.py or data_manager.py

- Load Data

2. Preprocessing

- Artifact rejection filters frequency.py

- Bad channel rejection cleansing bad_channel_identification.py or channel_restoration

3. Feature extraction

- Calculate connectivity sfc directional_absolute_coherency.py

- Identify faulty samples cleansing outlier_removal.py

4. Feature evaluation

- Statistical analysis statistics generalized_linear_model.py

5. Visualization

- Visualize results visualization topoplot.py
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downsampled signal (Shannon, 1948, 1949). Furthermore, we recommend that the target
sampling frequency be set as low as possible while maintaining a sufficient level of temporal
accuracy to accelerate data evaluation further down the line.

Artifact rejection package. The artifact rejection package contains two functions to detect
artifacts and one function to clean the data. Bad channel identification identifies individual
channels in which the power in a predefined frequency range deviates by more than three
standard deviations (default value, configurable) from the mean power of all given channels
as faulty channels, since spectral power is a useful feature for separating artifacts from EEG
(Islam et al., 2016). In an optional second step, the function provides a custom-built dialog
window that shows the mean power of each channel (Figure 1A). Channels marked as faulty
are automatically highlighted, and the user can visually confirm the selection and make
changes accordingly. The outputs of the bad channel identification function are a list of
nonfaulty channels and a list of faulty channels. Furthermore, it is highly recommended that
frequency bands that are part of the subsequent analysis for artifact detection be avoided. This
advice should be followed to ensure that the results are not biased, as side effects may arise if
the power in the frequency band of interest is used in the artifact rejection.

Once the faulty channels have been identified, an optional follow-up step is to restore them
using the channel restoration function. This restores faulty channels by averaging the signals
from their respective neighbors (Figure 1B and 1C). A default adjacency matrix is provided to
the channel restoration function. In the event of one or more neighboring channels of a faulty
channel being faulty themselves, the channels are iteratively restored, commencing at the
channel with the most nonfaulty neighbors. Once a channel has been restored during an
iteration, it is considered a nonfaulty channel during the next iteration of the reconstruction
process.

Figure 1. Practical application of the bad channel detection and channel restoration functions. (A) Bad channel detection. This panel shows
the average power in a predefined frequency band for all included channels. A channel is flagged as bad if the individual power-based z-score
is more than 3 standard deviations from the mean. Channels can be manually classified as normal or faulty either by clicking the correspond-
ing dot in the plot, or by pressing the corresponding button. (B) Time series traces at a subselection of the EEG electrodes shown in panel A
before channel restoration. (C) Time series traces at the same subselection of EEG electrodes shown in panel B after channel restoration.
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The outlier removal function removes any sample within a data set with a z-score higher
than two (default value, configurable). This process is repeated iteratively until only those sam-
ples with a z-score of less than two remain or until a minimum sample threshold is reached.
This function should be applied only to data from a unique, single state (e.g., within the same
subject and same condition). It assumes that provided data is from a single process with a
Gaussian distribution. Any data segments which fail this assertion are iteratively removed from
the provided data. In the event that this assumption cannot be met, the approach presented
here may not apply. The assumption of Gaussianity may be evaluated by either visual inspec-
tion or tests for normality.

Filters package. The main function in this module is the implemented finite impulse response
(FIR) filter. The filter is implemented via an overlap add approach (Rabiner & Gold, 1975) to
speed up the processing procedure, especially for longer signals. Furthermore, the filter imple-
mentation provides a rapid and precise operation mode, which initially converts the input data
into either 32 bits floats (fast) or 64 bits floats (precise), and subsequently performs all opera-
tions with the required precision. The FIR filter can be configured as either a low-pass, high-
pass, band-pass, or band-stop filter. Furthermore, custom filters can be easily designed and
accessed using the functions listed in the main FIR function. Additionally, a wraparound sci-
py’s Butterworth filter is also available.

Cross-frequency coupling package. The cfc package currently implements the following phase-
amplitude coupling (PAC) metrics: direct modulation index (Scherer et al., 2022b), modulation
index (Tort et al., 2008), phase-locking value (Mormann et al., 2005), and mean vector length
(Canolty et al., 2006). A description of the metrics can be found in Table 2. The input signals
should already be filtered into the frequency bands of interest, for example, with the FIR filter
implemented in the filters package (see Filters package section above).

Same-frequency coupling package. The sfc package currently implements the following metrics:
directionalized absolute coherency (Scherer et al., 2022c), magnitude squared coherence
(Carter et al., 1973), imaginary coherence (Nolte et al., 2004), weighted phase lag index (Vinck
et al., 2011), and phase slope index (Nolte et al., 2008). A description of the metrics can be
found in Table 2. It also includes a function for calculating the complex coherency, which can
be interpreted as a measure of consistency between two signals with a constant phase shift at a
specific frequency (Shaw, 1984). Complex coherency is implemented as an additional func-
tion since it is a common precursor of the magnitude squared coherence, imaginary coher-
ence, and others. The metrics implemented in the sfc module accept input data from the time
domain, the frequency domain, and the complex coherency domain. Apart from the most
commonly used time domain signals, the additional input data formats (frequency domain
and complex coherence domain) were added to support modifiability of the implemented
functionality, and to allow more efficient processing of multiple connectivity metrics in parallel
when the data is already available in the required format.

Statistics package. The statistics package contains the generalized linear mixed models func-
tion, which allows to employ generalized linear mixed models in the statistical evaluation of
an investigation. The rpy2 package is used to wrap around the lme4 package (Bates et al.,
2015) in R (R Core Team, 2021). The implementation presented in FiNN provides a complete
and easily interpretable output which comprises both the significance values, indicating how
reliable an effect is, and the coefficients, allowing for an estimation of how impactful an
observed effect is.

PAC:
Coupling between the phase of a low
frequency signal and the amplitude
of a high frequency signal.
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Visualization package. FiNN offers the topoplot function, with the additional functionality of
visualizing various levels of significance. Depending on their statistical significance, individual
channels may be marked both before and/or after multiple comparison correction (Figure 2).
The topoplot function is built on top of Matplotlib (Hunter, 2007), which is a data visualization
library in Python. Since this function is solely responsible for visualization, any feature calcu-
lation and/or statistical evaluation has to be performed independently.

Table 2. Overview of the cross-frequency and same-frequency coupling metrics implemented in the FiNN Toolbox

Name Description

Cross-frequency coupling

Direct modulation index
(Scherer et al., 2022b)

The direct modulation index metric is a variant of the modulation index from Tort et al. (2008) and
evaluates PAC between two signals. Instead of quantifying PAC using entropy, a sinusoidal slope
is fitted to the phase-amplitude histogram. This metric is statically bounded to the interval [0, 1]
which allows for the interpretation of absolute PAC changes.

Modulation index
(Tort et al., 2008)

The modulation index quantifies PAC as the Shannon entropy (Shannon, 1948) of the phase-
amplitude histogram between two signals. This metric is not bound to a static interval, and
therefore allows only for interpretation of the resulting values in relative changes.

Phase-locking value
(Mormann et al., 2005)

The phase-locking value evaluates the average phase lag between the phase of the instantaneous
amplitude of a first signal and the phase of a second signal. This metric is not bound to a static
interval, and therefore allows only for interpretation of the resulting values in relative changes.

Mean vector length
(Canolty et al., 2006)

The mean vector length metric evaluates whether the amplitude of one signal peaks at a specific
phase in a second signal.

Same-frequency coupling

Directional absolute
coherency
(Scherer et al., 2022c)

The directional absolute coherency utilizes the complex coherency function to calculate the
magnitude squared coherence (Carter et al., 1973), phase slope index (Nolte et al., 2008), and the
imaginary coherence (Nolte et al., 2004). These three metrics are combined to create a single
reliable measure of coherence drawing from their individual strengths without incorporating the
individual weaknesses. This connectivity metric is directional, can detect volume conduction,
and is statically bound to [−1, 1].

Magnitude squared
coherence
(Carter et al., 1973)

Using the complex coherency function, magnitude squared coherence is calculated (Carter et al.,
1973) between a source signal and a target signal. To derive a rational number from the complex
output of the complex coherence, the squared absolute of the complex valued complex
coherence is calculated. This connectivity metric is directionless, cannot detect volume
conduction, and is statically bounded to [0, 1].

Imaginary coherence
(Nolte et al., 2004)

The imaginary coherence is calculated using the complex coherency function by taking the
imaginary component of the complex coherence. This connectivity metric is directionless, may
detect volume conduction, and its output is not statically bound. The latter renders this metric
susceptible to bias if the sensors have been moved (e.g., on different measurement days).

Weighted phase lag index
(Vinck et al., 2011)

The weighted phase lag index is an extension of the phase lag index (Stam et al., 2007). This
function is directionless, can detect volume conduction (approaches zero in vicinity of 0°/180°
phase shift), and is statically bound to [−1, 1].

Phase slope index
(Nolte et al., 2008)

The phase slope index is calculated using the complex coherency function and is normalized by its
standard deviation. Due to the additional need for normalization, more data is required than for
the other connectivity estimation methods. This metric is directional, can detect volume
conduction (approaches zero in vicinity), and is bound to [−1, 1].
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File IO package. When investigating network-wide brain dynamics, larger amounts of data
have to be accommodated. FiNN offers the data manager module to handle large file sizes.
In Python, pickle (.pkl) is a well-known tool for saving arbitrary variables to disk. However,
when loading or writing a file, it has the well-known shortcoming of consuming multiple times
more memory than the size of the file itself. This causes memory spikes which may in turn lead
to unstable behavior and crashes if not handled carefully. The data manager function circum-
vents this issue by processing a large file into several smaller ones. This increases the stability
of the overall processing pipeline and reduces the likelihood of requiring user intervention,
particularly if the pipeline is partially or fully automated.

Miscellaneous package. Due to the large size of neuroscientific datasets, it is beneficial to sep-
arate the processing into subprocesses and perform operations in parallel. When using the
Python native subprocess pool, however, all subprocesses may receive or send their data at
the same time. This behavior is similar to issues of pickle-based file reading and writing (see
previous section). The FiNN Toolbox therefore offers the timed pool function, a custom-built
subprocess pool that limits the sending or receiving of data to one subprocess at a time. This
implementation substantially decreases the risk of memory spikes for a negligible increase in
run time. Additionally, the timed pool function has two advantages over the Python native
subprocess pool. First, there is an option to delete the original input data immediately after
its function is executed, thus releasing additional memory. Second, there is an option to
add a configurable lifetime duration to each subprocess. When a subprocess does not return
a result within the allotted lifetime duration, it will be restarted. This behavior is particularly
suitable in the event that one or more of the subprocesses do not terminate within a reasonable
time, for example, when running a randomly initialized optimization loop.

Code Testing and Validation

System tests have been successfully applied to all the functions implemented in FiNN. Func-
tional tests were performed for mathematically more complex components such as the

Figure 2. Topography plot of artificial demo data. This figure shows an example of a significantly
increased activity above the left motor cortex and significantly decreased activity above the right
motor cortex. At the center, the effects were modeled to be significant after multiple comparison
correction. This is marked at the electrodes position by using full white dots. The outlying areas of
these effects were simulated to be also significant, but only prior to multiple comparison correction,
this is indicated by half-filled dots at the electrodes location. Finally, nonsignificant areas are indi-
cated by black dots.
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FIR filter and the complex coherence calculation using scipy as a reference implementation.
Automated unit tests were implemented in the framework to verify that its behavior is as
designated.

Performance Evaluation

We evaluated the performance of the FIR filter against the implementation from MNE (a
Python-based framework for the analysis of electrophysiological data, fully defined in the
Comparison to Other Frameworks section below) in terms of speed, and the performance of
the subprocess pool against both the implementation from joblib used in MNE and the default
subprocess pool implemented in the multiprocessing package in Python, in terms of RAM con-
sumption. These two functions were selected as they necessitate efficient implementations
(both RAM and CPU time-wise) if evaluation is to be rapid. Biological data recorded from
the human subthalamic nucleus was used for the evaluation process (Milosevic et al.,
2020). During the three subprocesses, signals of different lengths, varying between 30 seconds
and 24 hours (artificially expanded), were filtered using both FIR implementations. The data
was appended via repetition as required. All parameters were configured equally to achieve
a maximum degree of comparability between the two implementations. The scripts of the
above evaluations and comparisons are provided in the toolbox (https://github.com
/neurophysiological-analysis/FiNN; Scherer, 2022a).

RESULTS

Comparison to Other Frameworks

A large number of open-source toolboxes have been developed to support the processing and
analysis of (neurophysiological) signals. Here, we compare FiNN to a selection of existing
toolboxes in terms of scope and computational performance (i.e., processing time and memory
consumption). These other toolboxes were selected either on account of their reputation in
scientific data analysis (e.g., scipy) or as a result of keyword-based searches (e.g., “Python tool-
box EEG”). We selected the search engine startpage.com, as it delivers Google results while
anonymizing search requests, and is therefore not subject to a user-specific filter bubble
(Salehi et al., 2018). In the following paragraphs, the selection of frameworks with which
the FiNN framework is compared is described in more detail.

Two Python-based frameworks that are widely used in general data processing and analysis
are scipy (scientific python) (Virtanen et al., 2020) and scikit-learn (Pedregosa et al., 2011).
Scipy and scikit-learn are focused on fundamental algorithms (e.g., optimization techniques,
basics in digital signal processing, and linear algebra) and machine learning/data analysis,
respectively. Currently, scikit-learn provides functionality such as the principal component
analysis (Hotelling, 1933; Pearson, 1901) and the independent component analysis (Makeig
et al., 1995), which are commonly used for the purpose of artifact identification and removal
(Xue et al., 2006).

A major advantage of frameworks such as scipy and scikit-learn is that they are usually
heavily modified toward a small memory footprint and limited CPU consumption. Scikit-learn
in particular has been optimized for speed, which becomes increasingly important as the com-
plexity of the applied machine learning algorithm increases. Relative to the other frameworks
discussed in this paper, scipy may be categorized as a low-level framework. Generally, scipy
and scikit-learn offer a great range of functions which can be—and often have to be—highly
customized to a problem at hand. This in turn requires in-depth knowledge of the provided
methodology in the respective areas. Furthermore, while scipy and scikit-learn excel with
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regards to the provided functionality (fundamental algorithms and machine learning/data anal-
ysis), on their own, these frameworks do not fully cover all needs of electrophysiological data
analysis. For example, scipy/scikit-learn lacks some data analysis functions elementary in
many experimental, electrophysiology-based neuroscientific analyses, such as connectivity
metrics, and proper visualization functions, such as topoplots. Having a different focus, FiNN
uses the comparatively low-level functionality provided by scipy (and other toolkits) to provide
this functionality for EEG/MEG data analysis.

Another broad Python-based framework specifically developed for the analysis and visual-
ization of neurophysiological data, is MNE (Gramfort et al., 2013). MNE has its roots in the
estimation of source-space signals from signal-space signals via EEG or MEG recordings.
Unlike scipy and scikit-learn, MNE is a very high level framework that offers a wide range
of functions to analyze neurophysiological data. These methods are often configured in pre-
defined ways, making any deviations from the intended application case rather difficult. MNE
focuses strongly on mathematical precision. This, in turn, mandates a high memory consump-
tion and slow data processing speed. MNE follows a fundamentally different design philoso-
phy to FiNN. While FiNN aims to provide methods which can be easily integrated into any
workflow, MNE is almost exclusively used if the proposed MNE-specific pipelines are imple-
mented for data processing. This results in a lower degree of customizability when using MNE
rather than FiNN. Another difference is the focus of optimization. MNE focuses on optimal
mathematical accuracy, whereas FiNN allows the user to define the trade-off between high
mathematical accuracy, high processing speed, and efficient resource usage, for example,
in applications where online analysis is necessary.

NeuroKit2 (Makowski, 2016) is another Python-based framework for the analysis of neuro-
scientific and neurophysiological data. The framework was designed to work with electrocar-
diography (ECG), electromyography (EMG), and EEG data. It provides an adequate range of
functionality with a different focus to FiNN. While NeuroKit2 aims to be a generalist for any
kind of neurophysiological signals, FiNN focuses on EEG/EMG/MEG and LFP signals. This dif-
ference in focus can be readily observed in the functionality provided. For instance, NeuroKit2
offers methods to analyze heart rate variability via ECG, or the autocorrelation of EEG signals,
while FiNN offers metrics for connectivity between EEG channels, or functionality to visualize
a topoplot. Neither connectivity nor topoplot functionality are offered in NeuroKit2.

Finally, there is a wide range of Python-based frameworks with limited functionality or
rather rigid data processing pipelines. These frameworks include NeuroPycon (Meunier
et al., 2020), Plotly (Plotly Technologies Inc., 2015), matplotlib (Hunter, 2007), HEAR (Kobler
et al., 2019), Pygpc (Weise et al., 2020), Human Neocortical Neurosolver (Neymotin et al.,
2020), Neo (Marcus et al., 2019), nipype (Gorgolewski et al., 2011), ScoT (Billinger et al.,
2014), PyEEG (Bao et al., 2011), and Gumpy (Tayeb et al., 2018). Due to a too limited overlap
with the focus of FiNN, these frameworks were not compared to FiNN.

Performance Comparison Between FiNN and MNE

The FIR filter and the multiprocessing pool of FiNN were compared to the same functions
when implemented in MNE. The processing times of the FIR filter as implemented in FiNN
and MNE are shown in Figure 3. Both configurations in FiNN were substantially faster than
their counterparts in MNE, provided that continuous datasets were of 1-hour length or less.
When the fast implementation was chosen in FiNN, this implementation of the FIR filter
was always executed more quickly than its MNE counterpart. While the difference was up
to 670% more rapid for small datasets, the implementation of FiNN remained approximately

ECG:
Chest attached sensors used to
record information on heart activity
patterns.

EMG:
Muscle attached sensors used to
record information on local
activation patterns.
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10% faster for very long continuous datasets (24 hours) (Figure 3). Performance evaluations
were executed using Python v3.9 on a desktop PC (CPU: AMD Ryzen 9 5,950×, RAM: 64 GB
(2 × 32 GB DDR4), Mainboard: B550 AORUS ELITE AX V2.

As shown in Figure 4, the multiprocessing pool implemented in FiNN requires less RAM
compared to the default multiprocessing package included in the native Python multipro-
cessing package and MNE with the multiprocessing package backend.

Figure 3. Processing time of the FIR filter implemented in FiNN and MNE. The rows show the processing time (mean and standard deviation)
on signals with varying durations in the fast mode (A) and precise mode (B). The left column shows the runtime in microseconds. The right
column shows the percentage increase in speed of the FIR filter implemented in FiNN relative to the implementation in MNE (mean and
standard deviation).

Figure 4. Random access memory of the subprocess pool as implemented in FiNN, MNE, and the
native multiprocessing package in Python. For comparison, the relative memory consumption of
each pool is shown as a percentage of the memory consumption of the multiprocessing pool imple-
mented in FiNN.
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DISCUSSION

Neuronal information processing takes place on a local level and on a network level (Reimers,
2011; Thorpe, 1989; Zhang et al., 2016). Therefore, to understand how information is
processed, it is also crucial to investigate the nonlocal components of information processing.
To this end, we present FiNN, a Python-based framework used to find neurophysiological net-
works in neurophysiological data and subsequently analyze them. FiNN implements both
established and novel metrics for the evaluation of the same frequency coupling (Fries,
2005) and cross-frequency coupling (Canolty & Knight, 2010) analyses used to investigate
network-level information flows. In particular, FiNN offers implementations for the newly pro-
posed connectivity metrics directional absolute coherence (Scherer et al., 2022c) and direct
modulation index (Scherer et al., 2022b).

The amount of data collection in experimental neuroscientific applications is steadily rising
with increasingly powerful frequency amplifiers and an ever-growing number of simulta-
neously recorded channels (Song et al., 2015). Concurrently, the number of features extracted
from this raw data also increases (Vaid et al., 2015). For these reasons, efficient data processing
is essential. One major benefit of FiNN is its strong optimization toward processing speed and
minimal memory consumption. This is reflected not only in the individual functions, which
have been optimized to perform as little recalculation as possible, but also in the modules
provided. Exemplary modules for this design philosophy are the custom subprocess pool for
parallel processing or the data manager for I/O operations, both of which are included in this
framework.

Despite the fact that FiNN includes many elements to assist potential users in the anal-
ysis of neurophysiological data, modifiability was still a major concern during development.
Although the functionality available offers many parameters to calibrate it to a specific
application case, edge cases are difficult to identify. The high level of modifiability provided
by FiNN should be most helpful in these cases. Since all functionality is implemented in
open-source languages, the programming code can be easily amended to cover specific
cases encountered in a user’s data analysis. Furthermore, not only the uppermost, but
any layer of functionality was fully documented to increase support for potential customi-
zation efforts.

Although the main focus of FiNN is on the analysis of network-level communication (both
same-frequency and cross-frequency) from neurophysiological data, it also provides a full
evaluation pipeline for the investigation of local and network-level information processing
from EEG, MEG, EMG, and/or LFP-based data. The pipeline offered by FiNN includes modules
for data preprocessing such as semi-/fully-automated outlier detection, postprocessing and
visualization, and structural functionality to ease parallel processing. Although FiNN was orig-
inally developed with EEG and EMG data in mind, the implemented methods are well suited
to analyze any kind of neurophysiological signals (e.g., LFP and MEG).

OUTLOOK

Initially, FiNN was developed for in-house evaluation of experimental paradigms generating
neurophysiological data. As the number of paradigms and their subsequent analyses
increased, so too did the functionality of FiNN. Meanwhile, FiNN has been developed to
the extent where it not only supports in-house evaluation of neuroscientific investigation,
but also external ones. We are therefore pleased to share FiNN as an open-source software
with the neuroscientific community.
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