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ABSTRACT

At the inception of human brain mapping, two principles of functional anatomy underwrote

most conceptions—and analyses—of distributed brain responses: namely, functional

segregation and integration. There are currently two main approaches to characterizing

functional integration. The first is a mechanistic modeling of connectomics in terms of

directed effective connectivity that mediates neuronal message passing and dynamics on

neuronal circuits. The second phenomenological approach usually characterizes undirected

functional connectivity (i.e., measurable correlations), in terms of intrinsic brain networks,

self-organized criticality, dynamical instability, and so on. This paper describes a treatment

of effective connectivity that speaks to the emergence of intrinsic brain networks and critical

dynamics. It is predicated on the notion of Markov blankets that play a fundamental role in

the self-organization of far from equilibrium systems. Using the apparatus of the

renormalization group, we show that much of the phenomenology found in network

neuroscience is an emergent property of a particular partition of neuronal states, over

progressively coarser scales. As such, it offers a way of linking dynamics on directed graphs

to the phenomenology of intrinsic brain networks.

AUTHOR SUMMARY

This paper describes a treatment of effective connectivity that speaks to the emergence of

intrinsic brain networks and critical dynamics. It is predicated on the notion of Markov

blankets that play a fundamental role in the self-organization of far from equilibrium systems.

Using the apparatus of the renormalization group, we show that much of the phenomenology

found in network neuroscience is an emergent property of a particular partition of neuronal

states, over progressively coarser scales. As such, it offers a way of linking dynamics on

directed graphs to the phenomenology of intrinsic brain networks.

INTRODUCTION

A persistent theme in systems neuroscience, especially neuroimaging, is the search for princi-

ples that underlie the functional anatomy of distributed neuronal processes. These principles

are usually articulated in terms of functional segregation (or differentiation) and integration,

which inherit from centuries of neuroanatomical, neurophysiological, and neuropsychological
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Markov blankets in the brain

study (Zeki & Shipp, 1988). In recent thinking about functional integration, people have turned

to formal accounts of (predictive) processing in the brain (e.g., Bastos et al., 2012; Keller

&Mrsic-Flogel, 2018; Parr & Friston, 2018; Rao & Ballard, 1999; Spratling, 2008) to understand

the nature of (neuronal) message passing on graphs, where edges correspond to connectivity

and nodes correspond to neuronal populations. Crucially, this characterization rests upon the

asymmetric and directed connectivity that defines cortical and subcortical hierarchies (e.g.,

Bastos et al., 2012; Crick & Koch, 1998; Felleman & Van Essen, 1991; K. J. Friston, Parr, &

de Vries, 2017; Keller & Mrsic-Flogel, 2018; N. Markov et al., 2013; N. T. Markov et al.,

2014; Mesulam, 1998; Stachenfeld, Botvinick, & Gershman, 2017; Zeki & Shipp, 1988). Usu-

ally, these asymmetries are expressed in terms of things like laminar specificity that distin-

guish between forward and backward connections (Buffalo, Fries, Landman, Buschman, &

Desimone, 2011; Grossberg, 2007; Haeusler & Maass, 2007; Hilgetag, O’Neill, & Young,

2000; Thomson & Bannister, 2003; Trojanowski & Jacobson, 1977). More recently, asym-

metries in spectral content have become an emerging theme (Arnal & Giraud, 2012; Bastos

et al., 2015; Buffalo et al., 2011; Giraud & Poeppel, 2012; Hovsepyan, Olasagasti, & Giraud,

2018; Self, van Kerkoerle, Goebel, & Roelfsema, 2019; Singer, Sejnowski, & Rakic, 2019;

van Kerkoerle et al., 2014).

In contrast, analyses of functional connectivity have focused on distributed patterns of co-Functional connectivity:
A (undirected) measure of the
statistical dependencies between
spatially remote neurophysiological
events.

herent fluctuations in neuronal activity and phenomenological descriptions of the implicit dy-

namics (Bassett & Sporns, 2017; Biswal, Van Kylen, & Hyde, 1997; Bullmore & Sporns, 2009;

Gilson, Moreno-Bote, Ponce-Alvarez, Ritter, & Deco, 2016; Gu et al., 2018; Lynall et al., 2010;

van den Heuvel & Sporns, 2013). This phenomenology ranges from intrinsic brain networks—

which are conserved over subjects in resting-state functional magnetic resonance imaging—

to the dependence of neuronal dynamics on cortical excitability (Freyer, Roberts, Ritter, &

Breakspear, 2012; Roy et al., 2014). The principles that are brought to bear on this kind of

characterization could be seen as ascribing neuronal dynamics to various universality classes,

such as self-organized criticality (Bak, Tang, & Wiesenfeld, 1988; Breakspear, Heitmann, &

Daffertshofer, 2010; Cocchi, Gollo, Zalesky, & Breakspear, 2017; Deco & Jirsa, 2012;

Haimovici, Tagliazucchi, Balenzuela, & Chialvo, 2013; Kitzbichler, Smith, Christensen, &

Bullmore, 2009; Lopez, Litvak, Espinosa, Friston, & Barnes, 2014; Shin & Kim, 2006). (Note:

Although we have subsumed criticality and dynamic instability under phenomenological ap-

proaches, criticality can refer to the dynamics of neurons and neural assemblies—as opposed

to the statistical properties of data leveraged by functional connectivity. A simple example

of criticality is a branching process, an inherently directed process. Neurobiological models

of these kinds of processes have been derived from causal neural field models with directed

(corticothalamic) interactions [Freyer et al., 2011] and with coupled oscillators [Deco & Jirsa,

2012]. In this setting, criticality acquires a more mechanistic aspect, as we will see below.)

This dual-pronged approach to functional integration invites an obvious question: Is there a

way of linking the two?

Practically, the study of context-sensitive, directed coupling between the nodes of neuronal

networks calls for an estimate of effective connectivity, under some model of how measured

Effective connectivity:
A measure of the directed (causal)
influence of one neural system over
another using a model of neuronal
interactions. brain signals are generated. One then has to resolve the ill-posed problem of recovering the

underlying (connectivity) parameters of the model, usually using Bayesian inference. The best

example here is dynamic causal modeling (K. J. Friston, Harrison, & Penny, 2003; K. J. Friston,
Dynamic causal modeling:
A Bayesian framework that is used to
infer causal interaction between
coupled or distributed neuronal
systems.

Kahan, Biswal, & Razi, 2014; Razi & Friston, 2016). The complementary approach—based

upon functional connectivity—borrows ideas from network science and graph theory. This

entails specifying an adjacency matrix, usually formed by thresholding a functional connec-

tivity matrix summarizing dependencies among nodes, where the nodes are generally defined

in terms of some parcellation scheme (Bassett & Sporns, 2017; Bullmore & Sporns, 2009).

Network Neuroscience 212

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/5/1/211/1889785/netn_a_00175.pdf by guest on 07 Septem
ber 2023



Markov blankets in the brain

In what follows, we will consider a particular parcellation scheme based upon effective

connectivity and ask whether it leads to the same phenomenology seen in network neuro-

science. In doing so, we can, in principle, explain and quantify the emergence of large-scale

intrinsic brain networks and their characteristic dynamics. A crucial aspect of the particular

parcellation or partition—employed in this work—means that it can be applied recursively

in the spirit of the renormalization group (Schwabl, 2002). This means that there is a formal

way of quantifying the dynamics at various spatiotemporal scales. Our hypothesis was that

the spatiotemporal dynamics of coarser scales would evince both the functional anatomy of

intrinsic brain networks and the emergence of (self-organized) criticality—as assessed in terms

of dynamical instability.

Although this work is framed as addressing issues in network neuroscience (Bassett & Sporns,

2017), it was originally conceived as a parcellation scheme for multiscale analyses of neuro-

imaging time series. In other words, it was intended as a first principle approach to dimen-

sion reduction and decomposition, as a prelude for subsequent graph theoretic or dynamic

causal modeling (K. J. Friston, Kahan, et al., 2014; Razi, Kahan, Rees, & Friston, 2015; Razi

et al. 2017; Zhou et al., 2018). However, the theoretical foundations—and uniqueness of the

partition—proved too involved to support a simple and practical procedure. Instead, what

follows is offered as a case study of emergence in coupled dynamical systems, using the brain

as a paradigm example.

This paper comprises five sections. In the first, we review the notion of Markov blankets andMarkov blanket:
A Markov blanket allows one to
distinguish a collection of states that
belong to a particle from states that
do not.

how recursive applications of a partition or parcellation of states into Markov blankets allows

one to express dynamics at increasing scales. We will use the notion of the renormalization

group (RG) to motivate this recursive parcellation because there are some formal constructs (in

terms of RG scaling) that furnish an insight into how dynamics change as we move from one

scale to the next. The second section describes a simple (dynamic causal modeling) analysis

of directed effective connectivity at the finest spatial scale, as summarized with a Jacobian.

This plays the role of a directed adjacency matrix, which is all that is needed for successiveJacobian:
A matrix that contains a first-order
partial derivative for a vector
function.

renormalization to higher scales. The renormalization group is illustrated with an exemplar

dataset, to show what the ensuing parcellation scheme looks like. This section concludes with

a brief consideration of sparse coupling at the finest scale, in terms of excitatory and inhibitory

connections. The subsequent sections consider dynamics at different scales of parcellation, in

terms of intrinsic (within parcel) and extrinsic (between parcel) connectivity. Our focus here

is on the progressive slowing of intrinsic dynamics as we move from one scale to the next—a

slowing that organizes the dynamics at coarser (higher) scales towards critical regimes of in-

stability and slowly fluctuating dynamical modes. The third section illustrates the emergence

of autonomous dynamics, in terms of characteristic frequencies associated with intrinsic con-

nectivity, and in terms of positive Lyapunov exponents that speak to transcritical bifurcationsLyapunov exponent:
It gives the rate of exponential
divergence from perturbed initial
conditions.

at, and only at, coarser scales. The fourth section focuses on extrinsic connectivity and the

coupling between (complex) modes or patterns of activity and how this relates to functional

connectivity and intrinsic brain networks (Fox et al., 2005). The final section reviews the dy-

namical phenomenology at hand from the point of view of statistical physics, with a special

focus on dissipative dynamics and detailed balance at nonequilibrium steady state. We con-

clude with a brief discussion and qualification of this particular (sic) approach to functional

integration.

MARKOV BLANKETS AND THE RENORMALIZATION GROUP

The last section concluded with reference to a particular partition. The use of the word

“particular” has a double entendre here. It is predicated on a more fundamental (or perhaps
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Markov blankets in the brain

foundational) analysis of coupled dynamical systems that consider the emergence of “parti-

cles.” Full details of this treatment can be found in K. Friston (2019). From the current per-

spective, we just need to know how to define Markov blankets (Clark, 2017; Kirchhoff, Parr,

Palacios, Friston, & Kiverstein, 2018; Pearl, 1988; Pellet & Elisseeff, 2008) and how Markov

blankets engender particles and particular partitions (K. Friston, 2019). For readers interested

in Markov blankets for dynamical systems, fairly comprehensive discussions can be found in

K. Friston, Da Costa, and Parr (2020) and Parr, Da Costa, and Friston (2020).

In brief, a Markov blank et allows one to distinguish a collection of vector states (hereafter,

simply states) that belong to a particle from states that do not. This provides an operational

definition of a particle that, in the present setting, can be regarded as a region of interest or

parcel of brain states. This means that a particular partition becomes a parcellation scheme,

in terms of functional anatomy. The particular partition refers to a partition of a (potentially

large) set of states into a smaller number of particles, where each particle is distinguished from

other particles, in virtue of possessing a Markov blanket. A Markov blanket is simply a set of

states that separate or insulate—in a statistical sense—states that are internal to the blanket

and states that are on the outside; namely, external states. Technically, this means that internal

states are conditionally independent of external states, when conditioned upon their blanket

states (Pearl, 2009).

In a particular partition, all external states are assigned to particles, to create an ensemble

of particles that are constituted by their blanket states and the internal states within or be-

neath the blanket. The crucial aspect of this partition is that we only need the blanket states

to understand coupling between particles. This follows from the conditional independence

between internal and external states, where the external states “that matter” are the blanket

states of other particles. In short, the particular partition is a principled way of dividing states

into particles or parcels that is defined in terms of statistical dependencies or coupling among

states. In more complete treatments, one can divide the blanket states into active states and

sensory states, according to the following rules: Sensory states are not influenced by internal

states, while active states are not influenced by external states. Indeed, it is the absence of

these influences that enables us to identify the Markov blanket of any given set of internal

states. Please see the Supporting Information for a formal definition of Markov blankets in this

dynamical context.

As noted above, we are dealing with vector states (not scalar variables). So, what is a vector

state? A vector state is the multidimensional state of a particle, for example, the principal

eigenstates of its Markov blanket. However, we have just said that a particle arises from a

partition of states—and now we are saying that a state is an eigenstate (i.e., a linear mixture) of

the blanket states of a particle. So, is a particle a collection of states or is a state the attribute

of a particle (i.e., its blanket states)? The answer is both, because we have particles at multiple

levels.

This is where the renormalization group comes in, via a recursive application of the par-

ticular partition. In other words, if we start with some states at any level, we can partition

these states into a set of particles, based upon how the states are coupled to each other. We

can then take the principal eigenstates of each particle’s blanket states to form new states at

the scale above, and start again. This recursive application of a grouping or partition opera-

tor (G)—followed by a dimension reduction (R)—leads to the renormalization group based

upon two operators, R and G. In theoretical physics, the renormalization group (RG) refers to

a transformation that characterizes a system when measured at different scales (Cardy, 2015;

Schwabl, 2002). A working definition of renormalization rests on three things (Lin, Tegmark,

& Rolnick, 2017): vectors of random variables, a coarse-graining operation, and a requirement

Network Neuroscience 214

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/5/1/211/1889785/netn_a_00175.pdf by guest on 07 Septem
ber 2023



Markov blankets in the brain

that the operation does not change the functional form of the Lagrangian to within a multiplica-

tive constant. For example, under a transformation of position and velocity variables x and ẋ

given by x → ax and ẋ → bẋ, the corresponding Lagrangian λ transforms (if scale-invariant)

according to λ(x, ẋ) → λ(ax, bẋ) = cλ(x, ẋ), where a, b, and c are constants (Landau &

Lifshitz, 1976). Equivalently, a scale-invariant system’s equation of motion must remain per-

fectly unchanged under the rescaling operation. This can readily be seen by applying the

Euler-Lagrange equation to the scaled Lagrangian:

d

dt

[
∂(cλ)

∂ẋ

]

=
∂(cλ)

∂x
⇒ c

d

dt

[
∂(λ)

∂ẋ

]

= c
∂(λ)

∂x
. (1)

Here, the rescaling constant c cancels, leaving the original equation of motion. (Note: In

what follows, instead of dealing with real positions and velocities, we will deal with complex

variables that have real and complex parts.)

In our case, the random variables are states; the coarse-graining operation corresponds to

the grouping into a particular partition (G) and a dimension reduction (R) inherent in retaining

the principal eigenstates of particular blanket states. The dimension-reduction operator (R) has

two parts. First, we can eliminate the internal states because they do not contribute to cou-

pling between particles. Second, we can eliminate the eigenstates that dissipate very quickly;

namely, those with large negative eigenvalues. These are the fast or stable modes of a dynami-

cal system (Carr, 1981; Haken, 1983). This leaves us with the slow, unstable eigenstates picked

out by the dimension reduction, which we can now see as an adiabatic approximation. Please

note that in quantum mechanics, the adiabatic approximation refers to those solutions to the

Schrödinger equation that make use of a timescale separation between fast and slow degrees

of freedom.

Formally, we can express the coarse-graining or blocking transformation R ◦ G as a com-

position of a particular partition and adiabatic reduction applied to any random dynamical

system (at scale i) that can be characterized as coupled subsets of states. The n-th subset

x
(i)
n ⊂ x(i)constitutes the vector state of a particle, subject to random fluctuations, ω

(i)
n :

ẋ
(i)
n = ∑m

λ
(i)
nmx

(i)
m + ω

(i)
n ⇒ J(x

(i)
n , x

(i)
m ) ,

∂ẋ
(i)
n

∂x
(i)
m

= λ
(i)
nm. (2)

These equations of motion for the states of the n-th particle comprise intrinsic and extrinsic

components, determined by the states of the particle in question and other particles, respec-

tively. In this form, the diagonal elements of the Jacobian or coupling matrix, λ
(i)
nn ∈ C, deter-

mine the frequency and decay of oscillatory responses to extrinsic perturbations and random

fluctuations. The grouping operator (G) groups states into particles, where particles comprise

blanket and internal states: π
(i)
j = {b

(i)
j , µ

(i)
j }. The blocking transformation (R) then reduces

the number of states, by eliminating internal states at the lower level and retaining slow eigen-

states using the principal eigenvectors ξ
(i)
n = eig(J(b

(i)
n , b

(i)
n )) of the Jacobian of blanket states

b
(i)
n . These eigenstates then become the vector states at the next scale:

{

x
(i)
n

}

= R ◦ G ◦
{

x
(i−1)
n

}

{λ
(i)
nm} = β({λ

(i−1)
nm })

{x
(i)
n }

G
−→ {π

(i)
j }: π

(i)
j = {b

(i)
j , µ

(i)
j }

{b
(i)
n }

R
−→ {x

(i+1)
n } = {ξ

(i)−
n b

(i)
n }: ξ

(i)
n = eig(J(b

(i)
n , b

(i)
n ))

{λ
(i)
nm}

β
−→ {λ

(i+1)
nm } = {ξ

(i)−
n J(b

(i)
n , b

(i)
m )ξ

(i)
m }. (3)
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Markov blankets in the brain

Here, the parameters of the Lagrangian are taken to be the coupling parameters λ
(i)
nm, whose

changes are implemented by a beta function that is said to induce a renormalization group flow

(or RG flow). The key aspect of this flow rests upon the adiabatic reduction, which renders

the dynamics progressively slower at successive macroscopic scales. This follows because,

by construction, only slow eigenstates are retained, where the intrinsic coupling among these

eigenstates is a diagonal matrix of (negative) eigenvalues, which determine how quickly the

eigenstates decay:

E[Re(λ
(i)
nn)] ≤ E[Re(λ

(i+1)
nn )] · · · ≤ 0. (4)

The RG flow speaks to a progressive move from dynamics with high amplitude, fast fluctua-

tions (e.g., quantum mechanics) through to deterministic systems that are dominated by slow

dynamics (e.g., classical mechanics). In deterministic systems, the real parts of λ
(i)
nn play the

role of Lyapunov exponents (cf. critical exponents), which quantify the rate of separation of in-

finitesimally close trajectories (Lyapunov & Fuller, 1992; Pyragas, 1997). This suggests that as

we move from one scale to the next, there is a concomitant increase in the tendency to critical

Figure 1. Blankets of blankets. This schematic illustrates the recursive procedure by which suc-
cessively coarser scale (and slower) dynamics arise from subordinate levels. At the bottom of the
figure (lower panel), we start with an ensemble of vector states (here nine). The conditional de-
pendencies among these vector states (i.e., eigenstates) define a particular partition into particles
(upper panels). Crucially, this partition equips each particle with a bipartition into blanket and in-
ternal states, where blanket states comprise active (red) and sensory (magenta) states. The behavior
of each particle can now be summarized in terms of (slow) eigenstates or mixtures of its blanket
states to produce states at the next level or scale. These constitute an ensemble of vector states and
the process starts again. Formally, one can understand this in terms of coarse-graining the dynam-
ics of a system via two operators. The first uses the particular partition to group subsets of states
(G), while the second uses the eigenstates of the resulting blanket states to reduce dimensionality
(R). The upper panels illustrate the bipartition for a single particle (left panel) and an ensemble of
particles, that is, the particular partition per se (right panel). The insets on top illustrate the implicit
self-similarity of particular dependencies pictorially, in moving from one scale to the next. Please
see the main text for a definition of the variables used in this figure.
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Markov blankets in the brain

Figure 2. The particular partition. This schematic illustrates a partition of eigenstates (small col-
ored balls) into particles (comprising nine vectors), where each particle has six blanket states (red
and magenta for active and sensory states, respectively) and three internal states (cyan). The upper
panel summarizes the operators used to create a particular partition. We start by forming an adja-
cency matrix that characterizes the coupling between different vectors’ states. This is based upon the
Jacobian and implicitly the flow of vector states. The resulting adjacency matrix defines a Markov
blanket–forming matrix (B), which identifies the children, parents, and parents of the children. The
same adjacency matrix is used to form a graph Laplacian (G) that is used to define neighboring (i.e.,
coupled) internal states. One first identifies a set of internal states using the graph Laplacian. Here,
the j-th subset of internal states at level i are chosen, based upon dense coupling with the vector
state with the largest graph Laplacian. Coupled internal states are then selected from the columns
of the graph Laplacian that exceed some threshold. In practice, the examples used later specify the
number of internal states desired for each level of the hierarchical decomposition. Having identified
a new set of internal states (that are not members of any particle that has been identified so far), its
Markov blanket is recovered using the Markov blanket–forming matrix. The internal and blanket
states then constitute a new particle, which is added to the list of particles identified. This proce-
dure is repeated until all vector states have been accounted for. Usually, towards the end of this
procedure, candidate internal states are exhausted because all remaining unassigned vector states
belong to the Markov blanket of the particles identified previously. In this instance, the next particle
can be an active or sensory state, depending upon whether there is a subset (of active states) that
is not influenced by another. In the example here, we have already identified four particles and
the procedure adds a fifth (top) particle to the list of particles, thereby accounting for nine of the
remaining vector states.

slowing and dynamic itinerancy (Cessac, Blanchard, & Krüger, 2001; Pavlos, Karakatsanis, &

Xenakis, 2012).

In this (RG) setting, a relevant variable is said to describe the macroscopic behavior of

the system. From our perspective, the relevant variables in question correspond to the slow
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eigenstates. In short, we can reduce many states to a small number of eigenstates that summa-

rize the dynamics “that matter.” These eigenstates are the relevant variables that underwrite

critical slowing. Figures 1 and 2 provide a graphical illustration of this recursive partition-

ing and reduction based upon an adiabatic approximation (i.e., eliminating fast eigenstates

and approximating dynamics with the remaining slow eigenstates). This adiabatic reduction

is commonplace in physics, where it plays a central role in synergetics through the enslaving

principle (Haken, 1983) and, in a related form, in the center manifold theorem (Carr, 1981).

We now have at hand a principled procedure to repeatedly coarse-grain a system of loosely

coupled particles (e.g., nonlinear neuronal oscillators) at successively coarser spatiotemporal

scales. One can see that, by construction, as we ascend scales, things will get coarser and

slower. It is this progressive slowing towards criticality that is the primary focus of the examples

pursued below. However, before we can apply the particular partition to some empirical

data, we first need to quantify the coupling among particles at a suitably fine or small scale.

Having characterized this coupling in terms of some dynamical system or state space model,

we can then use the Jacobian to identify a particular partition, compute the Jacobian of the

blanket states, and then take the ensuing eigenstates to the next level, as described above.

This furnishes a description of dynamics in terms of the intrinsic (within particle) coupling (i.e.,

eigenvalues) of any particle λ
(i)
nn and their extrinsic (between particle) coupling λ

(i)
nm. We will

unpack the meaning of these terms later using numerical examples and analysis. At present,

we will focus on estimating the coupling among a large number of particles at the smallest

scale.

STARTING FROM THE BOTTOM

To use the machinery of Markov blankets, in the setting of loosely coupled dynamical systems,

we need to specify the coupling among vector states (that we can associate with the eigenstates

of the smallest particles under consideration). To do this, one can use a simplified form of

dynamic causal modeling that can be applied to hundreds or thousands of neuronal states.

This is easier than it might sound, provided one commits to low (first) order approximations

(e.g., Frassle et al., 2017). Consider the state space model describing the coupling among a

large number of states, where the flow is subject to random fluctuations (dropping superscripts

for clarity):

ẋ = f (x) + ωx

y = k ∗ x + ωx
(5)

Notice that we have introduced a convolution operator that converts latent (neuronal) states

to some observable measurement (e.g., hemodynamic signals from functional magnetic reso-

nance imaging). Here, y(t) is a linear convolution (with kernel k) of some states x(t) subject to

observation and system noise, respectively. We have also assumed that there is an observation

for each relevant state. Linearizing this state space model, where J = ∂x f (x) and † denotes

conjugate transpose, we have the following:

Dx = xJ† + ωx

y = Kx + ωy

}

⇒

{

KDx = KxJ† + Kωx

Dy = KDx + Dωy

}

⇒

{

Dy = yJ† + ω

ω = Kωx + Dωy − ωy J†
. (6)

Here, the states have been arranged into a matrix, with one row for each point in time and

a column for each dimension. This means we can replace the derivative and convolution

operators in Equation 5 with the matrix operators in Equation 6 that commute, that is, KD =

DK. (Note: This is due to the linearity of the convolution operator and is true regardless of

whether the temporal derivative is in matrix form. Intuitively, a linear combination of velocities
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Markov blankets in the brain

is equivalent to the rate of change of a linear combination of positions.) In turn, this means we

can approximate the system with a general linear model:

Dy = yJ† + ω

cov(ω) = γ1KK† + γ2DD† + γ3 I
(7)

This approximation assumes that J† J ∝ I. This assumption is licensed by the fact that the Jaco-

bian of relevant states will be dominated by large negative leading diagonals (that underwrite

the stability of each state). Equation 7 is a straightforward general linear model, with random

fluctuations that have distinct covariance components, that depends upon the form of the (e.g.,

hemodynamic) convolution kernel and the amplitude of state and observation noise. If K is

specified in terms of the basis set of convolution kernels, then the covariance components of

the linearized system can be expressed as the following:

K = ∑k κkKk ⇒

KK† = ∑ij κiκjKiK
†
j

, (8)

such that κiκj replaces the hyperparameter γ1 above.

This linearized system can now be solved using standard (variational Laplace) schemes

for parametric empirical Bayesian (PEB) models, to provide (approximate) Gaussian poste-

riors over the unknown elements of the Jacobian—and the unknown covariance parame-

ters encoding the amplitude of various random effects (K. Friston, Mattout, Trujillo-Barreto,

Ashburner, & Penny, 2007). This Bayesian model inversion requires priors on the parameters

and hyperparameters (i.e., covariance component parameters), specified as Gaussian shrink-

age priors. For nonnegative hyperparameters, Gaussian shrinkage priors are generally applied

to log-transformedhyperparameters (i.e., a lognormal prior over nonnegative scale parameters).

Equipped with posterior densities over the coupling parameters—or elements of the

Jacobian—we can now use Bayesian model reduction to eliminate redundant parametersBayesian model reduction:
A Bayesian inversion and
comparison of models that are
reduced (or sparsed) forms of a full
(or parent) model.

(K. J. Friston et al., 2016); namely, parameters whose shrinkage to zero increases model evi-

dence by removing redundancy or complexity. As described elsewhere (K. Friston & Penny,

2011), this can be done very efficiently, because we know the form of the posteriors, before

and after reducing the model. Furthermore, we can apply other prior constraints to eliminate

redundant coupling parameters.

In the examples below, we performed Bayesian model reduction to enforce reciprocal cou-

pling among states, given that extrinsic connections in the brain are almost universally re-

current (Felleman & Van Essen, 1991; N. Markov et al., 2013; N. T. Markov et al., 2014).

This was implemented by combining the changes in variational free energy—or log model

evidence—when removing connections between two states in both directions. If model evi-

dence increased by three natural units (i.e., a log odds ratio of exp(3):1 or 20:1), both connec-

tions were removed but not otherwise. In addition, we precluded long-range coupling (beyond

32 mm) and used Bayesian model reduction to identify the most likely upper bound on the

spatial reach of coupling between nonhomologous particles (i.e., particles that did not occupy

homologous positions in each hemisphere). These empirical connectivity priors were based

upon a body of empirical work, suggesting that the density of axonal projections—from one

area to another—declines exponentially as a function of anatomical separation (Ercsey-Ravasz

et al., 2013; Finlay, 2016; Horvát et al., 2016; Wang & Kennedy, 2016). We will later exam-

ine the evidence for this kind of distance rule, based upon coupling among particles at the

finest scale.
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In summary, Equation 7 is used to evaluate the effective connectivity of a dynamic causal

model based upon the Jacobian of a stochastic differential equation under some simplifying

assumptions. In brief, we start with a linear state space model, in which the response variable y

(the multivariate BOLD time series) is a linear convolution (K) of some hidden states x subject

to observation and system noise ωy and ωx, respectively (cf. Equation 5). We can linearize this

state space model (cf. Equation 6) such that it can be written in matrix form as a general linear

model (cf. Equation 7). This linearized system is then solved using standard variational Laplace

for parametric empirical Bayes (PEB) that provides the (Gaussian) posterior estimates for the

system parameters (elements of the Jacobian) and hyperparameters (the unknown covariance

of the observation and system noise). Since this scheme uses PEB for model inversion, it is

automatically protected against becoming trapped in local minima. PEB uses the formal appa-

ratus of variational Laplace, which optimizes a free energy lower bound, which optimizes the

trade-off between model complexity and accuracy. Given the posterior distributions over the

system parameters (and hyperparameters) and the model evidence, one can then use Bayesian

model reduction procedures to prune away any redundant couplings. This constitutes a com-

putationally efficient inversion scheme that can invert very large systems within minutes on a

standard laptop. At the finest scale, the Jacobian had 1,024 by 1,024 elements taking about

45 min to infer the model parameters.

FUNCTIONAL PARCELLATION

Computationally, the benefit of linearizing the system in this way means that one can evaluate

the posterior coupling parameters or elements of the Jacobian region by region (cf. Frassle

et al., 2017). This means that, provided one is prepared to wait long enough, one can invert

large systems with thousands of regions or parcels. On a personal computer, it takes about an

hour to evaluate the Jacobian for coupling among 1,024 states. To illustrate the renormaliza-

tion group procedure practically, we applied it to the fMRI time series from a single subject.

These time series are the same data used to illustrate previous developments in dynamic causal

modeling. Time series data were acquired from a normal subject at 2 Tesla using a Magnetom

VISION (Siemens, Erlangen) whole-body MRI system. Contiguous multislice images were ac-

quired with a gradient echo-planar sequence (TE = 40 ms; TR = 3.22 s; matrix size = 64 ×

64 × 32, voxel size 3 × 3 × 3 mm). Four consecutive 100-scan sessions were acquired, com-

prising a sequence of 10-scan blocks under five conditions. The first was a dummy condition

to allow for magnetic saturation effects. In the second, Fixation, the subject viewed a fixa-

tion point at the center of the screen. In an Attention condition, the subject viewed 250 dots

moving radially from the center at 4.7 degrees per second and was asked to detect changes in

radial velocity. In No attention, the subject was asked to look at the moving dots. In the last

condition, subject viewed stationary dots. The order of the conditions alternated between Fix-

ation and photic stimulation. The subject fixated on the center of the screen in all conditions.

No overt response was required in any condition, and there were no actual speed changes.

In contradistinction to normal procedures in functional connectivity fMRI analyses, the time

series were not smoothed (other than adjusting for ultraslow scanner drifts). This is because

the random fluctuations at all timescales play a material role in the decomposition at hand.

Informed consent from the subject was obtained and the study was approved by the Human

Ethics Review Committee of University College London.

In the exemplar analyses below, we started at a scale where each particle can be plausi-

bly summarized with a single state. This single state was the principal eigenstate following a

principal components analysis of voxels that lay within about 4 mm of each other. This can

be thought of as reducing the dynamics to a single mode of the Markov blanket of this small
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collection of voxels. Practically, this simply involved taking all voxels within a fixed radius

of the voxel showing the largest variance, performing a singular value decomposition, and

recording the first eigenvariate. These voxels were then removed, and the procedure repeated

until the entire multivariate time series was reduced to 1,024 eigenstates, where each eigen-

state corresponds to a simple particle. See Figure 3. Clearly, we could have summarized the

dynamics of each collection of voxels with two or more eigenstates; however, for simplicity

we will assume that the eigenstate with the greatest variance is a sufficient summary of the

slow, non-dissipative, dynamics of this smallest scale. Interestingly, this variance is propor-

tional to the characteristic time constant of systemic dynamics; namely, the negative inverse of

Figure 3. Distributed variance. This figure illustrates the variance explained by particles at the first
level. The upper panel is a maximum intensity projection of the variance of the fMRI time series,
for a single subject over 360 scans (with a repetition time of 3.22 s) in voxel space. One can see
that visual (i.e., striate) and extrastriate regions have been preferentially engaged; however, there is
distributed activity throughout the brain. The upper right panel shows the corresponding variance
in terms of the eigenmodes of 1,024 particles. As in subsequent figures, these projections involve
weighting the absolute value of each eigenmode by the quantity in question; here, the variance.
This maximum intensity projection shows that the particles furnish a reasonably faithful summary
of voxel-specific variance. The lower right panel shows the same variance assigned to the spatial
support of each eigenmode, to illustrate the coarse-graining when assembling particles from voxels.
These characterizations of fluctuations over time have been framed in terms of variance. We will see
later that variance can be interpreted as a dissipative time constant. In other words, in this example,
visual areas show the least dissipation, with dynamics that decay slowly. The lower left panel shows
the Euclidean distance between the centers of pairs of particles. The center of each particle was
defined as the expected anatomical location, where the probability density over location was taken
to be a softmax function of the absolute value of the eigenmode over voxels. In this and subsequent
figures, Euclidean distances are evaluated after projecting centers across the sagittal plane, that is,
superimposing homologous particles in the right and left hemispheres. We calculated the Euclidean
distance after projecting the particle centers across the sagittal plane so that each parcel will be in
close vicinity to the homologous particle in the opposite hemisphere. This reflects our prior beliefs
about interhemispheric coupling—which brings homologous regions close together—in terms of
path lengths.
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Figure 4. Sparse connectivity. This figure illustrates the sparsity of effective connectivity using
Bayesian model reduction. The left panel shows the log evidence for a series of models that pre-
cluded connections beyond a certain distance or radius. This log evidence has been normalized
to the log evidence of the model with the least marginal likelihood (i.e., coupling over less than
10 mm). These results show that a model with local connectivity (about 18 mm) has the greatest
evidence. In other words, effective connections beyond this distance are redundant, in the sense
that they add more complexity to log evidence that is licensed by an increase in accuracy. The
middle panel shows the ensuing sparse coupling (within the upper bound of 32 mm) as an adja-
cency matrix, where particles have been ordered using a nearest neighbor scheme in voxel space.
The blue dots indicate connections that have been removed by Bayesian model reduction. In this
instance, nearly 60% of estimated connections were redundant. The right panel zooms in on the
first 32 particles, to show some local connections that were retained (red) or removed (blue).

the eigenvalues of the underlying Jacobian (see the final section). In other words, as the (nega-

tive) principal eigenvalue of effective connectivity approaches zero from below, the principal

eigenvalue of functional connectivity (i.e., variance) increases; see Equation 9 in Lopez et al.

(2014).

Following Bayesian model reduction, we now have a sparse Jacobian or directed, weighted

adjacency matrix describing the dynamical coupling between univariate states of 1,024 par-

ticles (see Figure 4). This Jacobian can now be subject to a particular partition to identify the

most connected internal states and their Markov blanket, following the procedures summa-

rized in Figure 2. This grouping process (i.e., the G operator) was repeated until all 1,024

states are accounted for: in this example, grouping 1,024 states into 57 particles. For simplic-

ity, and for consistency with the first level, each particle was assigned a single internal state.

The ensuing partition was then subject to an adiabatic reduction (i.e., the R operator) by taking

the eigenvectors of the Jacobian describing the intrinsic dynamics of each particle’s blanket

states.

The eight principal eigenstates were retained if their eigenvalues were less than 1. This is

the adiabatic approximation that dispenses with modes that dissipate quickly, here, within a

second. This reduces the intrinsic coupling to a diagonal matrix λ
(i)
nn, corresponding to the

eigenvalues of the intrinsic Jacobian ∂xn f
(i)
n . The extrinsic coupling λ

(i)
nm contains complex

elements that couple the eigenstates of one particle to the eigenstates of another. We will

return to how these Jacobians manifest in terms of connectivity later.

In short, we now have a summary of dynamics at the scale above in terms of the eigenstates

of a particle that, by construction, have been orthogonalized. These constitute the vector states

for the next application of the RG operator to produce a description of dynamics at subsequent

scales. See Figure 5 through Figure 8. These examples show that by the fourth scale, we have

reduced the dynamics to a single particle, shown in a maximum intensity projection format in

Figure 8. We can project particles onto anatomical space because each state that constitutes a

particle at any scale is a mixture of states that, ultimately, can be associated with a particular
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Markov blankets in the brain

Figure 5. Brain particles. This figure illustrates the partition of states at the first level. The format
of this figure is replicated in subsequent figures that detail a particular decomposition at increasing
scales. The upper left panel shows all the constituent particles as a maximum intensity projection,
where the spatial support of each particle has been color-coded according to the variance explained
by its eigenmode. One can see that nearly the entire brain volume has been effectively tiled by 1,024
particles. The upper middle panel shows the corresponding adjacency matrix or coupling among
particles. The colored circles encode the identity of each particle. In this instance, the particles have
been arranged in order of descending dissipation (i.e., the real part of the eigenvalue of each par-
ticle’s Jacobian). The upper right panel shows these eigenvalues above the corresponding particle
(encoded by colored dots) in terms of rate constants (i.e., the negative inverse of the eigenvalues).
The remaining panels show the first 12 particles as maximum intensity projections. The color of
the background corresponds to the color that designates each particle. In this first level, each parti-
cle has a single eigenstate. The numbers in parentheses above each maximum intensity projection
correspond to the number of internal, active, and sensory states, respectively, where the active and
sensory states comprise blanket states. At this finest level, every eigenstate is a sensory state because
it can influence—and be influenced by—the eigenstates of other particles. At this scale, one can see
that the particles are small, with a standard deviation of about 3 mm (based on the softmax function
of the absolute value of each particle’s eigenmodes). Here, the characteristic time constants of these
particles are about 1 s. This should be compared with the equivalent distribution in the upper right
panel of the next figure.
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Figure 6. Particular partition at the second scale. This figure uses the same format as the previous
figure; however, here, we are looking at particles at the next scale. In other words, aggregates of
the eigenstates of the blankets of first-level particles. Here, there were 1,024 such eigenstates that
have been partitioned into 57 particles. Each particle has one or more eigenstates; here, a total
of 296. At this level, time constants have started to increase, including some particles that evince
slow dynamics of about 10 s. Note that the particles now have a greater spatial scale and have,
in most instances, a symmetric spatial deployment across hemispheres. This reflects the fact that
Jacobian includes transcallosal or interhemispheric coupling. For example, the first particle has one
internal state (by design), 29 active states, and 44 sensory states. These different states are color-
coded with white, light gray, and dark gray, respectively, to illustrate the characteristic “fried egg”
arrangement in which internal states (white) are surrounded by blanket (i.e., active and sensory)
states (in gray). The eigenmodes of this particle cover voxels in primary visual and extrastriate
cortex. The second particle sits across the bilateral superior parietal cortices, while the third particle
encompasses anterior (i.e., polar) temporal regions—and so on. The spatial scale of these particles
corresponds roughly to a cytoarchitectonic parcellation. The ensuing (57) particles collectively
comprise 296 eigenstates that are partitioned into five particles at the next level, corresponding
roughly to lobar neuroanatomy.
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Figure 7. Particular partition at the third level. This follows the same format as the previous figures.
Here, the 57 particles from the previous scale are nowpartitioned into five particles that, collectively,
possess 32 eigenstates. Here, the adjacency matrix is shown in image format, in terms of the real
part of each (complex) Jacobian. At this scale, dynamics of each particle are becoming increasingly
slow, with typical time constants between 5 and 10 s. The negative time constant reflects a positive
eigenvalue that denotes an exponential divergence of trajectories that underwrites stochastic chaos.
The five particles retain a degree of interhemispheric symmetry: the first particle has six internal
states, 71 active states, and 87 sensory states. This particle covers a large dorsal portion of cortex,
including parietal cortex and frontal eye fields. Conversely, the second particle covers large regions
of frontal cortex, with the eight active states located in orbitofrontal regions. The third particle is
located in posterior visual and inferotemporal regions, while the fourth particle subsumes anterior
temporal and ventral regions. Interestingly, there is one small particle (with a single sensory state)
in the anterior medial prefrontal cortex. These five lobe-like particles (with 32 eigenstates) now
contribute to a single particle at the final (fourth) level.
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Figure 8. Particular partition at the fourth scale. The five particles of the previous level have now
been partitioned into a single particle with eight internal states (in rostral regions) and 24 sensory
states (in caudal regions), in white and light gray, respectively. This particle possesses eight eigen-
states, the first of which has a positive eigenvalue—or negative time constant (denoting stochastic
chaos). At this scale, all of the eigenstates have protracted dynamics, with time constants in the
order of 10 s. Note that there is no coupling among the eigenstates in the Jacobian. This means the
dynamics are completely characterized by the leading diagonal terms, that is, the complex eigen-
values of the eight constituent eigenstates.

location in voxel space. In other words, particles inherit a spatial location from the scale

below, enabling one to visualize (and quantify) the spatial scale of particles at successively

higher scales. We will refer to this characterization of an eigenstate as an eigenmode; namely,Eigenmode:
A stable state (i.e., mode) of a
dynamical system in which all parts
of the system oscillate at the same
frequency.

a pattern in voxel space whose amplitude is determined by the corresponding eigenstate. One

can express the eigenmodes in terms of the eigenvectors at each scale as follows:

υ
(i)
nj

= ξ(1)ξ(2) . . . ξ
(i)
nj

, ξ(i) =







ξ
(i)
1

. . .

ξ
(i)
N







. (9)

This gives the eigenmode of the j-th eigenstate of the n-th particle at the i-th scale.
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Note that it would have been possible to reevaluate the Jacobian using another dynamic

causal model of the eigenstates at any particular level and then use Bayesian model reduction

to eliminate redundant coupling parameters. This is an interesting alternative to using the esti-

mates of the Jacobian based upon the first-order approximation at the smallest scale. We will

explore the impact of reevaluating the Jacobian in subsequent work. For the purposes of the

current illustration, we will retain the linear solutions at higher scales—based upon the finest

scale—to illustrate that one can still reproduce the emergent phenomena of interest described

below. These dynamical phenomena are therefore directly attributable to local linear cou-

pling with a particular sparsity structure that is sufficient to produce interesting self-organized

dynamics at higher scales. Before taking a closer look at dynamics over scales, this section

concludes with a brief characterization of coupling at the smallest scale.

SPARSE COUPLING

The Jacobian from the above analysis summarizes the effective connectivity at the smallest

scale, where each node particle has a reasonably precise anatomical designation. This means

that we can interpret the elements of the Jacobian in terms of directed (effective) connectivity.

We had anticipated that this would mirror the exponential distance rule established through

anatomical tracing studies (Finlay, 2016; Horvát et al., 2016; Wang & Kennedy, 2016). How-

ever, it did not. Instead, this (linear) characterization of effective connectivity was better ex-

plained with a power law that, interestingly, was quantitatively distinct for inhibitory (i.e.,

negative) and excitatory (i.e., positive) connections (i.e., elements of the Jacobian).

Figure 9 summarizes the statistical characteristics of coupling among particles at the first

level. The upper left panel shows each connection in terms of the real part of the correspond-

ing Jacobian in hertz, against the distance spanned by the connection (i.e., Euclidean distance

between the centers of the two particles). Two things are evident from this scatterplot: first,

positive (excitatory, red dots) connections dominate in the short range (around 8 mm), while

negative (inhibitory, blue dots) dominate around 16 mm. Although there is variability, the de-

pendency of the coupling strength on distance shows some lawful behavior that is disclosed

by plotting the log-coupling (real part) against log-distance (upper right panel). The circles are

the averages in bins (discrete ranges) of the dots in the upper left panel. A linear regression

suggests a scaling exponent of−1.14 for excitatory coupling and a smaller scaling exponent of

−0.52 for inhibitory coupling. This dissociation is consistent with a Mexican hat–like coupling

kernel, with short-range excitation and an inhibitory penumbra. This kind of architecture pre-

dominates in neural field models of cortical and subcortical coupling (e.g., Coombes, 2005;

Itskov, Curto, Pastalkova, & Buzsaki, 2011; Moran, Pinotsis, & Friston, 2013).

The lower panel plots the strength of reciprocal connections against each other, to illustrate

the relative proportions of recurrent excitatory and inhibitory coupling, here 65% and 31%,

respectively. There are only about 4% of connections that show an antisymmetry, that is,

excitatory in one direction and inhibitory in the other. The rarefied region in the center of this

scatterplot reflects the fact that connections with small coupling strengths have been eliminated

during Bayesian model reduction (see Figure 4). In the next section, we will see how this sparse

local coupling engenders progressively more structured and itinerant dynamics at increasing

spatial and temporal scales.

INTRINSIC DYNAMICS

This section focuses on the intrinsic dynamics of each particle at different scales by asso-

ciating the Jacobian of each particle with Lyapunov exponents. For people not familiar with
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Figure 9. Local connectivity. This figure reports some of the statistics of dynamical coupling
among particles at the first level. The upper left panel plots each connection in terms of the real part
of the Jacobian in hertz, against the distance spanned by the connection. Two things are evident
from this scatterplot: first, positive (excitatory, red dots) connections dominate in the short range
(around 8 mm), while negative (inhibitory, blue dots) dominate around 16 mm. The upper right
panel plots the log-coupling (real part) against log-distance, where circles report the averages in
bins (discrete ranges) of the dots in the left panel. A linear regression gives a scaling exponent of
−1.14 for excitatory coupling and a scaling exponent of the −0.52, for inhibitory coupling. The
lower panel plots the strength of reciprocal connections against each other, to illustrate the relative
proportions of recurrent excitatory and inhibitory coupling; here 65% and 31%, respectively.

dynamical systems theory, the Lyapunov exponents score the average exponential rate of diver-

gence or convergence of trajectories in state space (Lyapunov & Fuller, 1992; Pavlos

et al., 2012; Yuan, Ma, Yuan, & Ao, 2011). Because we are dealing with a linearized system,

the Lyapunov exponents are the same as the eigenvalues of the Jacobian describing intrinsic

coupling. By construction, this is a leading diagonal matrix containing intrinsic eigenvalues

whose real values are close to zero. In terms of a linear stability analysis, the real part of these

eigenvalues (i.e., self-induced decay) corresponds to the rate of decay. This means that as

the eigenvalue approaches zero from below, the pattern of activity encoded by this eigenstate

decays more and more slowly. This is the essence of critical slowing and means that, from

the point of view of dynamical stability, this eigenstate has become unstable (Haken, 1983;

Jirsa, Friedrich, Haken, & Kelso, 1994; Mantegna & Stanley, 1995; Pavlos et al., 2012). The
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complement of critical instability is a stable fast eigenstate that decays very quickly, that is, an

eigenstate whose eigenvalue has a large negative real part.

The imaginary part of the eigenvalue describes the characteristic frequency at which this

decay is manifest. If the imaginary part is zero, the system decays monotonically. However,

complex values mean that the intrinsic dynamics acquire a sinusoidal aspect. Because each

Figure 10. Transfer functions. This figure characterizes the dynamics at successive scales in terms
of transfer functions, as quantified by the complex eigenvalues (cf. a pole-zero map). The left
column shows the transfer functions of frequency for all particles with a complex eigenvalue (at
successive scales). These eigenvalues are shown in the right column in the complex number plane.
As we ascend from one scale to the next, the real part of the eigenvalue approaches zero from the
left—and the number of eigenvalues (i.e., number of particles) falls with the coarse-graining. The
complex part of an eigenvalue corresponds to the peak frequency of the associated transfer function,
while the dispersion around this peak decreases as the real part approaches zero. The emergence
of spectral peaks in the transfer functions inherit from the complex part of the eigenvalues, which
emerge under asymmetric coupling with solenoidal flow. The next figure addresses the following
question: Do these solenoidal dynamics vary in a systematic way over the brain?
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particle has a number of eigenstates, an ensemble of particles can be construed as loosely

coupled phase oscillators (Breakspear & Stam, 2005; De Monte, d’Ovidio, & Mosekilde, 2003;

Kaluza & Meyer-Ortmanns, 2010; Kayser & Ermentrout, 2010), featuring multiple frequencies.

The associated dynamics of a single particle can be visualized by plotting its eigenvalues in the

complex number plane. The closer the eigenvalue to the vertical axis, the slower the dynamics,

such that as the real eigenvalue approaches zero (i.e., from the left), the particle approaches a

transcritical bifurcation (at zero) and displays a simple form of critical slowing.

This characterization of intrinsic dynamics—at different scales—is illustrated in the right

panels of Figure 10. Note that the complex values are symmetrically paired (dots of the same

color). The key thing to observe here is that when we look at the eigenvalues of particles at

higher scales, there are some eigenstates that approach criticality and start to show intrinsic

oscillatory behavior. This is one of the key observations from the current renormalization

scheme; namely, there is a necessary slowing as one progresses from one scale to the scale

above. Furthermore, at higher scales intrinsic dynamics start to appear with progressively

slower frequencies.

Another way of characterizing temporal dynamics is to use linear systems theory to map the

eigenvalues to the spectral density of the time series that would be measured empirically. This

rests upon standard transforms and the convolution theorem that enables us to express the sys-

tems’ first-order kernels as a function of the Jacobian (Lopez et al., 2014). In frequency space,

these kernels correspond to transfer functions and describe the spectral power that is transferred

from the random fluctuations to the macroscopic dynamics of each eigenstate. The left panels

of Figure 10 show the transfer functions of the eigenstates of each particle at different scales.

At the finest scale, power is spread over a large range of frequencies. At progressively higher

scales, the power becomes more concentrated in the lower frequencies with a transfer func-

tion that has a characteristic Lorentzian form. Crucially, the frequencies at the highest scale

correspond to the characteristic ultraslow frequencies studied in resting-state fMRI; namely,

< 0.01 Hz. This is an interesting observation, which suggests that one can explain ultraslow

fluctuations in resting-state fMRI purely in terms of local directed coupling among small par-

ticles of brain tissue. Note that this explanation does not involve any hemodynamics because

the Jacobian that gives rise to these slow oscillations pertains to the neuronal states (prior to

hemodynamic convolution). In other words, this is not an artefact of removing fast frequencies

from the measured fMRI signals.

One might ask whether there is any systematic variation of these ultraslow frequencies

across the brain. Figure 11 reports the implicit intrinsic timescales at intermediate scales (sec-

ond scale, upper rows; third scale, lower rows). The left column shows the eigenmodes in

terms of their principal frequency, that is, the largest complex eigenvalue (divided by 2π). The

right column shows the corresponding eigenmodes in terms of their principal time constants,

that is, the reciprocal of the largest negative real part. These two characterizations—principal

frequency and time constant—speak to different aspects of intrinsic timescales, both of which

contribute to the shape of an eigenstate’s transfer function. The first quantifies the frequency of

solenoidal flow, while the second reflects the rate of decay associated with the dissipative flow.

We will unpack solenoidal and dissipative flows in the last section, in terms of density dynam-

ics. In brief, the flows of a random dynamical system, at nonequilibrium steady state, can be

decomposed into two orthogonal components. The first (dissipative) component is a gradient

flow, in the direction of increasing density. This flow counters the dispersive effect of random

fluctuations. The solenoidal (non-dissipative) component circulates on the isoprobability con-

tours, thereby having no effect on the nonequilibrium steady-state density. Heuristically, if
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Markov blankets in the brain

Figure 11. Intrinsic timescales in the brain. This figure reports intrinsic timescales at intermediate
scales (second scale, upper rows; third scale, lower rows). The left column shows the eigenmodes
in terms of their principal frequency, that is, the largest complex eigenvalue (divided by 2π). The
right column shows the corresponding eigenmodes in terms of their principal time constants, that
is, the reciprocal of the largest negative real part.

one imagines water flowing down a plughole, the dissipative part is the flow out of the basin,

while the solenoidal part accounts for the circular motion of water. Generally speaking, when

the random fluctuations are small, the gradient flows disappear (at steady state), leaving the

solenoidal flow, that is, the classical mechanics that would apply to heavenly bodies. How-

ever, when random fluctuations are in play, both solenoidal and dissipative flows characterize

the dynamics at steady state.

It is clear from these results that caudal (i.e., posterior) regions have faster intrinsic frequen-

cies, relative to rostral (i.e., anterior) regions. Interestingly, in this example, the inferotemporal

and ventral eigenmodes also show a relatively high frequency. At the third scale, this caudal-

rostral gradient is more evident, suggesting that faster solenoidal dynamics dominate in poste-

rior parts of the brain. This is consistent with both theoretical and empirical findings suggestive

of a gradient of timescales—as onemoves from the back to the front of the brain and, implicitly,

from hierarchically lower areas to higher areas (Cocchi et al., 2016; Hasson, Yang, Vallines,

Heeger, & Rubin, 2008; Kiebel, Daunizeau, & Friston, 2008; Liegeois et al., 2019; Murray

et al., 2014; Wang & Kennedy, 2016). Note that the frequencies in question here are very slow;

namely, about 0.01 Hz or below. These are the ultraslow frequencies typically characterized

in resting-state fMRI (Liegeois et al., 2019). In the present setting, these ultraslow frequencies

are an emergent property of scale-invariant behavior, when one moves from spatial temporal

scales suitable for describing lobar dynamics or large intrinsic brain networks.

The eigenvalues in Figure 10 take positive real values at higher (second and third) scales.

This means that they have crossed the zero threshold to engender a transcritical bifurcation.

Strictly speaking, these produce solutions that cannot be realized because of an exponen-

tial divergence of trajectories. This reflects the first-order approximation that we are using

to summarize the dynamics. Although this linear approximation precludes stochastic chaos,
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positive real values speak to the notion that some particles at higher scales become excitable

for short periods of time. This means that we are moving away from a loosely coupled oscilla-

tor model—that has a fixed point or limit cycle attractor—towards what physicists call active

or excitable matter (Keber et al., 2014; Ramaswamy, 2010). This is a nice metaphor for the

brain and means that if the particles that constitute active (gray) matter are considered in iso-

lation, they can show autonomous dynamics that can be characterized as stochastic chaos or

itinerancy.

At this point we can return to the renormalization group and RG scaling behavior. This

scaling behavior depends upon the link between various parameters of the systems Lagrangian

(or equivalent characterization of dynamics) between successively higher levels. Consider the

following RG flow or beta function as an instance of Equation 4:

σ
(i+1)
τ = eβτ σ

(i)
τ

σ
(i)
τ = E[−Re(λ

(i)
nnj

)]

This says as we move from one scale to the next, the timescale increases by eβτ ≥ 1. Invoking

the same beta function for spatial scale induces a relationship between temporal and spatial

scales in the form of a power law with a scaling exponent α. This exponent corresponds to the

ratio of the time and spatial exponents of the beta functions:
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(10)

The last quality in the first line follows by eliminating the scale i from the pair of beta functions.

Intuitively, this scaling behavior means that as we move from one scale to the next, things get

slower and bigger—but at different geometric rates. This difference gives rise to a scaling

exponent that links the increases in spatial scale to increases in temporal scale. We evaluated

the characteristic time and spatial constants for each scale by taking the mean of the real

eigenvalues and the spatial dispersion of the corresponding eigenmodes associated with all

particles at each scale:

σ
(i)
τ = E[−Re(λ

(i)
nnj

)]

σ
(i)
ℓ

= E[|ν
(i)
nj
|1/3]

(11)

Plotting the logarithms of these values against each other allows one to estimate the scaling

exponent using linear regression. Figure 12 shows the results of this analysis across all scales.

The scaling exponent here was 1.14. This is not dissimilar to the value of 1.47 obtained with

a similar analysis of murine calcium imaging data (Fagerholm et al., 2019), where coarse-

graining was implemented by averaging over spatial blocks. To put this value into perspective,

the scaling exponent for Kepler’s laws of motion is 1.5. This scaling exponent reflects the

disparity in spatial and temporal constants, where the temporal constant increases by a factor

of 2.37 from one scale the next, while the spatial support increases by 2.13.

This scale-free behavior means that we can evaluate the time constants at scales that we

have not characterized empirically. Table 1 lists these extrapolated or projected timescales

right down to the nanoscale and up to higher scales that would be appropriate to talk about

networks of brains or social communities or institutions. Note that the extrapolation of scaling
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Figure 12. Scale invariance. This figure illustrates scaling behavior across the scales of the partic-
ular decomposition. The upper panel plots the real part of the eigenvalues of each particle against
its spatial scale; namely the caliper width of each particle’s eigenmode. This is replicated for each
of the four scales, denoted by the different colors (green, pink, cyan, and puce, respectively). The
expected values are shown as encircled large dots. The lower left panel plots the logarithms of these
temporal and spatial expectations against each other. The resulting regression slope corresponds to
the scaling exponent; here, 1.14. The light gray circles correspond to what would have been seen
at higher and lower scales. The lower right plot shows the same regression in terms of the implicit
time constant, as a function of spatial scale expressed in millimeters. The red lines correspond to the
coarse scales (of i = 6 and i = 8) depicted in the left panel—suggesting characteristic time constants
in the order of 60 and 360 s. This scaling behavior suggests that as we increase the spatial scale or
coarse-graining, dynamics become slower, as the real parts of particular eigenvalues approach zero
from below.

to conferences (Table 1) should not be taken too seriously. There would be good reason to

estimate the scaling exponent from a larger database, since small errors in the estimation of

scaling exponents can amplify quickly in extrapolation.

It may help to distinguish between scalable and scale-free systems. A scalable system is one

in which performing a scale transformation to a system’s state gives a new state, but crucially,

one that is also a solution of the governing equation of motion. This is what Landau refers to as

“mechanical similarity” in the context of Lagrangian mechanics. For example, orbital trajec-

tories are scalable, seeing as increasing the scale of the system gives new (larger) orbits with

different (slower) periods. Crucially however, these new orbits also follow Newton’s second
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Table 1. Spatiotemporal scales and examples

Scale Spatial scale Timescale Example

−8 4.38 µm 380 µs Dendritic spines occur at a density of up to 5 spines per µm of

dendrite. Spines contain fast voltage-gated ion channels with time

constants in the order of 1 ms.

−4 89.3 µm 11.9 ms A cortical minicolumn: A minicolumn measures of the order of

40–50 µm in transverse diameter 80 µm spacing (Peters & Yilmaz,

1993). The membrane time constant of a typical cat layer III pyra-

midal cell is about 20 ms.

0 1.82 mm 374 ms A cortical hypercolumn (e.g., a 1-mm expense of V1 containing

ocular dominance and orientation columns for a particular region

in visual space; Mountcastle, 1997). Typical duration of evoked

responses in the order of 1 to 300 ms (cf. the cognitive moment).

4 37.2 mm 11.8 s The cerebellum is about 50 mm in diameter, corresponding to the

size of cortical lobes. Sympathetic unit activity associated with

Mayer waves within frequency of 0.1 Hz (wavelength of 10 s).

8 758 mm 6.15 min A dyadic interaction (e.g., a visit to your doctor).

12 15.5 m 3.22 hr A dinner party for six guests, lasting for several hours.

16 0.31 km 4.21 days An international scientific conference (pre-coronavirus).

law regardless of size—hence qualifying as “scalable.” On the other hand, a scale-free sys-

tem has no characteristic-length scale and images taken at different resolutions are statistically

unchanging.

This completes our discussion of scale invariance and associated dynamics, where we have

taken a special interest in the temporal scaling behavior that emerges from local connectivity

at smaller scales of analysis. In the next section, we turn to the coupling between particles and

see what this has to say in terms of how intrinsic brain networks influence each other.

EXTRINSIC DYNAMICS

In this section, we consider the off-diagonal elements of the Jacobian at the successive scales

afforded by the renormalization group. By construction, these terms couple different particles.

The ij-th element of the nm-th block of the Jacobian couples the j-th eigenstate of the m-th

particle to the i-th eigenstate of the n-th particle.
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. (12)

This directed coupling is generally complex. The complex part can be thought of as inducing

a phase shift or delay in the influence of one eigenstate on another. The real part is of more
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interest here and corresponds to a rate constant, much like the real part of the Lyapunov ex-

ponents of the intrinsic coupling describe the rate of decay. However, here, we are talking

about the rate at which an eigenstate of one particle responds to the eigenstate of another. This

means that large positive or negative real extrinsic coupling becomes interesting (previously,

we have been discarding eigenstates with large negative intrinsic eigenvalues because they

dissipate almost immediately). Figure 13 illustrates this extrinsic (between particle) coupling

at the penultimate scale (scale three) in the form of a connectogram.

The implicationsof complex extrinsic coupling can be understood in terms of cross-covariance

functions of time that characterize delayed or lagged dependencies. Please note that the cross-

covariance functions can be evaluated in a straightforward manner from the complex transfer

functions, shown in Figure 10. In other words, they can be derived directly from the Jacobian,

under first-order assumptions. For example, Figure 14 characterizes these dependencies be-

tween the two eigenstates with the strongest coupling at this (third) scale. The implicit coupling

Figure 13. Extrinsic connectivity. This figure illustrates asymmetric extrinsic (between particle)
coupling at the penultimate scale (scale three). The upper panels reproduce the results in Figure 7,
while the lower panel is a connectogram illustrating the coupling among the (32) eigenstates that
constitute the five particles at this scale. The width of each connector reflects the strength of the
coupling, after dividing the strength into five bins and eliminating the lowest bin. The color of the
dots corresponds to the color of the particle in the upper right panel. The color of the connectors
corresponds to the source of the strongest (reciprocal) connection. In this example, the largest
afferent connection is from eigenstate 24 to eigenstate 3. This corresponds to an influence of the
first eigenstate of the fourth (cyan) particle on the third eigenstate of the first (green) particle. The
coupling strength corresponds to the real part of the Jacobian, in hertz. The fact that coupling is
mediated by complex coupling coefficients means that the influence of one eigenstate on another
can show profound asymmetries in time. This is illustrated in the next figure, which examines the
largest connection above in more detail.
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Figure 14. Dynamic coupling. This figure characterizes the coupling between the two eigenstates
of the previous figure with the strongest coupling at the third scale. This coupling is mediated by
the corresponding element of the (complex) Jacobian, circled in red in the upper middle panel.
The flanking panels on the left and right show the corresponding eigenmodes in voxel space. The
middle row shows the autocovariance functions of the two eigenstates, illustrating serial correlations
that can last for many seconds. The lower two panels report the cross-covariance function between
the two eigenstates, over 256 s (lower left panel) and 32 s (lower right panel). The red line indicates
the peak cross covariance at about 8-s lag.

is mediated by the corresponding element of the (complex) Jacobian—circled in red in the up-

per middle panel. The flanking panels on the left and right show the associated eigenmodes

in voxel space. The middle row shows the autocovariance functions of the two eigenstates,

illustrating serial correlations that can last for many seconds. The interesting part of this figure

is in the lower panels: These report the cross-covariance function between the two eigenstates,

over 256 s (lower left panel) and 32 s (lower right panel), respectively. The key thing to ob-

serve here is that the peak cross-covariance emerges at an 8-s lag from the 24th to the third

eigenstate. This asymmetrical cross-covariance (and implicitly cross-correlation) function re-

flects the solenoidal coupling and implicit breaking of detailed balance accommodated by the

particular decomposition (see the next section). Note that the (zero lag) correlation is almost

zero. This speaks to the potential importance of using cross-covariance functions (or complex

cross spectral in frequency space), when characterizing functional connectivity in distributed

brain responses (K. J. Friston, Bastos, et al., 2014; Mohanty, Sethares, Nair, & Prabhakaran,

2020). This brief treatment of extrinsic coupling has made much of the complex nature of
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dynamical coupling and how it manifests in terms of functional connectivity. In the final sec-

tion, we revisit this kind of coupling in terms of nonequilibrium steady states.

DYNAMICS AND STATISTICAL PHYSICS

Above, we have referred to solenoidal and dissipative flows, in relation to the complex and real

parts of intrinsic eigenvalues—and how they manifest in terms of intrinsic brain networks. This

section unpacks this relationship by applying the statistical physics of nonequilibrium steady

states to neuronal fluctuations. Our focus will be on the relationship between conventional

characterizations of functional connectivity and the more general formulation afforded by a

particular decomposition. Specifically, we will see that conventional formulations assume a

special case that discounts solenoidal flow—and implicitly assumes neuronal dynamics attain

steady state at statistical equilibrium.

In the previous section, we examined extrinsic coupling among particles in terms of their co-

variance. Here, we return to coupling and dynamics that are intrinsic to a particle; namely, the

final particle at the last level. In this example, the particle has eight eigenstates, whose complex

eigenvalues imply a loss of detailed balance and implicit steady state that is far from equilib-

rium. To understand the link between detailed balance and equilibria versus nonequilibrium

steady states, it is useful to consider the eigen-decomposition of the final particle in relation to

standard analyses of functional connectivity (e.g., singular value decomposition or principal

component analysis of covariance matrices). In what follows, we first rehearse the relationship

between flow and steady-state distributions over states afforded by the Helmholtz decompo-

sition. We then look at what this implies under the assumption of symmetric coupling—and

how this leads to equilibrium mechanics and a simple relationship between the Jacobian and

covariances among their respective eigenstates. We then revisit these relationships but replac-

ing solenoidal flow, to clarify the differences between summarizing dynamics in terms of the

eigenvectors of the Jacobian and the eigenvectors of the functional connectivity matrix.

In general, one can express the flow at steady state in terms of a Helmholtz decomposition

of the solution to density dynamics (as described by the Fokker-Planck equation). This is an im-

portant expression that underwrites much of physics and related treatments of self-organization

in the biological sciences. (Note: It is also known known as the fundamental theorem of vec-

tor calculus. This decomposition is at the heart of most formulations of nonequilibrium steady

state in nonlinear systems, ranging from molecular interactions to evolution. See Ao, 2004,

2005; Qian & Beard, 2005; Zhang, Xu, Zhang, Wang, & Wang, 2012. For a concise deriva-

tion of Equation 13, under simplifying assumptions, please see Lemma D.1 in K. Friston & Ao,

2012.) Starting with a Langevin formulation of neuronal dynamics, we can express the flow of

states in Equation 2 as follows:

ẋ = f (x) + ω

f (x) = (Q − Γ)∇ℑ(x)
(13)

Here, ℑ(x) = −ln p (x) is a potential energy that quantifies the surprise at finding the brain

in any state. The positive definite matrix Γ ∝ I plays the role of a diffusion tensor describing

the amplitude of random fluctuations, ω (assumed to be a Wiener process), while the anti-

symmetric matrix Q = −Q†mediates solenoidal flow. Equation 13 says that the expected flow

at any point in state space has two components: a dissipative gradient flow, −Γ∇ℑ, on the

logarithm of the steady-state density, and a solenoidal flow, Q∇ℑ, that circulates on the iso-

contours of this density. In brief, the gradient flow counters the dispersive effects of random

fluctuations, thereby rendering the probability density stationary. Please note here that we
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have omitted (correction) terms that generalize this (Helmholtz) decomposition, because we

are assuming that the amplitude of random fluctuations and the solenoidal terms change slowly

over state space. We have also dropped the scale superscripts for clarity. On differentiating

the Helmholtz decomposition, with respect to systemic states we have, ∀x:

f (x) = (Q − Γ)∇ℑ(x) ⇒ J(x) = (Q − Γ)Π(x). (14)

Here, the Jacobian J = ∇ f (x) and Hessian Π(x) = ∇2ℑ(x) are functions of states. Because

the Hessian matrix is symmetrical, there are linear constraints on the solenoidal coupling (Qian

& Beard, 2005):

(Q − Γ)−1 J(x) = Π(x) = Π(x)T = J(x)T(Q − Γ)−T

⇒

QJ(x)T + J(x)Q = Γ J(x)T − J(x)Γ.

These constraints mean that in the absence of solenoidal coupling—when random fluctuations

have the same amplitude everywhere—the Jacobian has to be symmetric Q = 0 ⇒ Γ J(x)T =

J(x)Γ. In other words, symmetric coupling guarantees detailed balance (i.e., an absence of

solenoidal flow).

DETAILED BALANCE AND HEISENBERG’S UNCERTAINTY PRINCIPLE

So how does this help us connect conventional analyses of functional connectivity to the eigen-

vectors of the Jacobian? First, if we make the simplifying assumption that effective connectivity

is symmetric, we can ignore solenoidal flow. If we make the further assumption that the steady

state is Gaussian, the Hessian can be interpreted as a precision matrix (i.e., inverse covariance

or functional connectivity matrix). Note that this Gaussian assumption is usually motivated in

terms of a first-order approximation to the flow (in terms of the Jacobian) around the maxima

of the steady-state density. To the extent that the steady-state density approximates a Gaussian,

then this local linear approximation becomes global. Under these simplifying assumptions,

the Jacobian becomes a scaled version of the precision: setting Q = 0 in Equation 14 gives

the following:

J(x) = −ΓΠ(x). (15)

This means that the eigenvalues of the Jacobian, which reflect the rate of dissipation of each

mode, are inversely related to the eigenvalues of the precision matrix. In other words, if we

were to perform a principal component analysis of the covariance matrix Σ = Π−1, the prin-

cipal eigenvalues would be interpreted as explaining the most variance in the eigenstates.

However, this is exactly the same as identifying the eigenstates whose flow has the smallest

rate constant. In other words, the principal components are just the slow, unstable modes that

do not dissipate quickly.

ξ− Jξ = λ

ξ−Σξ = −Γλ−1
(16)

One can quantify the dissipative aspect of the eigenmodes in terms of the expected dispersion

of the flow:
E[ f × f ] = JΣJT = ΓΠΓ ⇒ E[ f × f ]E[x × x] = Γ2

Σ = E[x × x] = Π−1

f = Jx

(17)
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This expression shows that the uncertainty about the flow—over state space at steady state—is

inversely proportional to the corresponding uncertainty about the state (i.e., variance). This is

Heisenberg’s uncertainty principle. The connection to the uncertainty principle can be made

explicit by associating the amplitude of random fluctuations with inverse mass (K. Friston,

2019), where the constant of proportionality is Planck’s constant. Equation 17 can then be

expressed as the following:

E[m f × m f ]E[x × x] =
(

h̄
2

)2

2Γ = h̄
m

ℑ(x) = 1
2

x · Π · x

f (x) = − h̄
2m∇ℑ = − h̄

2m∇2ℑ · x

Π = ∇2
ℑ

(18)

This can be interpreted as follows: If we are fairly certain about the state of a system, we

will be very unsure about its flow – and vice versa. This follows from the fact that, at steady

state, systems with predictable, slow flows become dispersed over state space, in virtue of the

random fluctuations. Conversely, if a system can “gather it states up” and locate them in a

small regime of state space, the requisite flows must be fast and varied.

In summary, if we assume detailed balance (i.e., discount solenoidal flow), we are assuming

an equilibrium steady state of the sort studied in quantum and statistical mechanics. In this

special case, there is a direct relationship between the (eigenvectors of) the Jacobian and the

Hessian matrix (i.e., precision, or inverse functional connectivity) matrix. Furthermore, there

is also a direct relationship between the Jacobian and the variance of the expected flow or

dynamics. The assumption of detailed balance is licensed in many situations; in particular, if

we are dealing with ensembles of states or particles that are exchangeable (e.g., an idealized

gas). This renders the Jacobian symmetrical and ensures detailed balance. The Jacobian is

symmetrical because the influence of one particle on a second is the same as the influence

of the second on the first. However, this symmetry cannot be assumed in biological systems

that break detailed balance, especially the brain. We now rehearse the above analysis by

retaining the symmetry breaking, solenoidal flow that underwrites nonequilibrium steady-state

dynamics.

NONEQUILIBRIUM STEADY STATES AND SOLENOIDAL FLOW

In the presence of solenoidal flow, the eigenvectors of the Jacobian and Hessian are no longer

the same. So, which is the best summary of dynamics? Clearly, there is no definitive answer to

this question; however, if we are interested in relevant quantities “that matter,” we are specifi-

cally interested in non-dissipative, slow, unstable dynamics. By construction, this is what the

particular decomposition “picks out,” by discarding fast fluctuations at each successive scale.

This means that the eigenstates of the final particle should have identified slow, unstable, or

critical dynamics. In contrast, had we just taken the principal components of the covariance

matrix of the data (i.e., functional connectivity), we may not have identified the slow modes.

This begs the question, to what extent do solenoidal dynamics contribute to the intrinsic

dynamics of the final particle? One can evaluate the relative contribution of dissipative gradient
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flows and non-dissipative solenoidal flow in terms of their expected dispersion:

E[ f × f ] = JΣJT = (Q − Γ)Π(Q − Γ)T

= ΓΠΓ + QΠQT − ΓΠQT − QΠΓ
︸ ︷︷ ︸

non-dissipative

. (19)

Clearly, to do this, we need estimates of the amplitude of intrinsic fluctuations and the solenoidal

term. However, under local linear (i.e., Gaussian) assumptions, these two quantities must sat-

isfy JQ+QJT = JT Γ− Γ J, or in terms of eigenstates, λQ+Qλ† = λ†Γ − Γλ. We can use this

constraint to decompose the kinetic energy of the flow in terms of, and only of, the eigenvalues

of the Jacobian, where κ = −Re(λ):

m
h̄ E[ f × f †] =

dissipative
︷ ︸︸ ︷

Re(λ)2 +

non-disspative
︷ ︸︸ ︷

Im(λ)2

−2Re(λ)
︸ ︷︷ ︸

kinetic energy

=
λ†λ

2κ

λ = ξ− Jξ

Γ = ξ−Γξ = h̄
2m

Q = −i
Im(λ)

Re(λ)
Γ ⇒ λQ + Qλ† = λ†Γ − Γλ

Π = 1
Γ

Re(λ) ⇒ λ = (Q − Γ)Π

(20)

The first equality follows from substituting the subsequent equalities in Equation 19. The use of

kinetic energy here appeals to Equation 18, in which the amplitude of random fluctuations is

associated with inverse mass. This equality says that the dissipative part of flow is determined

by the real part of an eigenstate’s eigenvalue, while the solenoidal contribution is the imaginary

part squared, divided by the real part. Intuitively, this would be like decomposing the kinetic

energy of the Earth into a solenoidal component corresponding to its orbital velocity—and a

dissipative component, as it is drawn towards the sun. This speaks to an increase in kinetic

energy with the frequency of (e.g., neuronal) oscillations, which is not unrelated to the Plank-

Einstein and de Broglie relations in physics.

Note that when working with eigenstates, the solenoidal terms are encoded by Q, which

is a leading diagonal matrix of imaginary values. Similarly, the dissipative terms are encoded

by Γ, which is a leading diagonal matrix of real values. In other words, nonequilibrium steady

state—as defined by the prevalence of solenoidal flow—manifests as the imaginary parts of the

Helmholtz decomposition, when the system is projected onto the eigenvectors of the Jacobian.

Figure 15 shows the dissipative and solenoidal (kinetic) energy of the eigenstates at the

final scale. (Note: Kinetic energy is normally positive because it involves a squared quantity—

momentum—usually assumed to be purely real; see Equation 20. However, when we relax

this assumption and allow complex momenta-like quantities, squaring no longer guarantees

positivity. Hence kinetic energy can take negative values [see Figure 15, top left panel] in this

complex state space.) The corresponding eigenmodes are shown in the subsequent panels as

maximum intensity projections (of their absolute values). In terms of dissipative dynamics, the

first eigenmode has the smallest dissipative energy. In other words, it features the slowest, most

unstable mode macroscopic (intrinsic) dynamics. Eigenmodes 2 and 3 are a conjugate pair,

with complex parts—and, implicitly, a solenoidal contribution to their (kinetic) energy. These

nodes are most pronounced in dorsal mid-prefrontal regions. Note that the kinetic energy
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Figure 15. Dissipative and solenoidal dynamics. This figure unpacks the intrinsic coupling at the
final (fourth, single particle) level. At this level, there can be no coupling between particles and—by
construction—the dynamics are completely characterized in terms of the eigenstates that comprise
the particle. In turn, these are completely characterized by their complex eigenvalues; namely, the
intrinsic complex coupling. The upper panels show the dissipative and solenoidal (kinetic) energy
of the eight eigenstates that comprise the particle. The corresponding eigenmodes are shown in
the subsequent panels as maximum intensity projections (of their absolute values). In terms of
dissipative dynamics, the first eigenmode has the smallest dissipative energy. In other words, it is
the slowest, most unstable mode of this particle. Eigenmodes 2 and 3 are a conjugate pair, with
complex parts—and, implicitly, a solenoidal contribution to their (kinetic) energy. These nodes
are most pronounced in dorsal mid-prefrontal regions, with some expression in posterior parietal
regions. The dissipative energy is, effectively, driven by intrinsic fluctuations that, at the finest level,
include the fluctuations in active states, which play the role of experimental or sensory inputs.

of the first eigenstate is negative. This may seem counterintuitive; however, it is a simple

reflection of the fact that the principal eigenvalue has a real part that is greater than zero.

Clearly, the implicit exponential divergence of trajectories cannot persist globally. In a more

complete analysis, the (stochastic) trajectory would quickly enter regimes of dissipation, such

that the average real part (cf. Lyapunov exponent) was less than zero. One might ask where the

dissipative energy comes from. It is effectively driven by intrinsic fluctuations that, at the finest

level, include the fluctuations in active states, which play the role of experimental or sensory

inputs. This raises an interesting question: At what scale do experimental inputs manifest?
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DISSIPATIVE BRAIN RESPONSES

An intuitive way of thinking about the distinction between dissipative and solenoidal dynam-

ics is in terms of the fluctuations in bath water when perturbed (e.g., when the tap or faucet

is running), as opposed to the ripples and waves that persist after the perturbation is removed

(e.g., when the tap or faucet is turned off). In one case, the water is trying to find its free

Figure 16. Induced responses. This figure illustrates the expression of experimental or condition-
specific effects at different scales of the particular decomposition. The top panel is an unusual form
of statistical parametric map; namely, an image of the F statistic, testing for the significance of an
effect of any of the three exogenous inputs (i.e., visual, motion, and attention). Each row of the
F-statistic map corresponds to a scale—and comprises the F statistic for each successive particle
at that scale. This map shows that the effect of (some linear mixture of) exogenous inputs can be
detected at all scales, as evidenced by the dark bars in all four rows. For example, at the third
scale, eigenmode 17 shows an extremely significant effect of inputs with an F statistic of over 150
and an exceedingly small p value of less than 0.0001. This eigenmode is shown on the lower
left in voxel space. Its expression over time—in terms of its real value—is depicted in the middle
panel (blue line), with the best fitting prediction based upon exogenous input (green line). This
prediction is a contrast (i.e., linear mixture) of the input functions shown in the design matrix on the
lower right. The coefficients of this contrast are shown below the design matrix, demonstrating that
the largest contribution is from the second (motion) input. The last column of the design matrix is
simply a column of ones. The associated eigenmode picks out primary visual cortex and extrastriate
areas, encroaching upon motion-sensitive regions in its lateral extremity. The next figure provides a
complementary perspective on the effects of inputs, in terms of their first-order kernels or impulse
response functions throughout the brain, and over extended periods of time.
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Figure 17. Induced responses over space and time. This figure characterizes induced responses
in terms of first-order Volterra kernels—that is, impulse response functions—of particles at the first
(finest) scale of coarse-graining. Each row corresponds to the three inputs considered (i.e., visual,
motion, and attention effects). The left column shows the expression of these inputs over parti-
cles (weighted by the absolute value of their eigenmodes). This effect is the variance attributable
to each input (i.e., square of the corresponding kernel, summed over time), shown in the left row.
These kernels are shown for the 32 particles with the greatest (absolute) magnitude. The key thing
to take from these results is that motion influences the dynamics of visual and extrastriate (presum-
ably, motion-sensitive regions), while attention has protracted influences on parietal, prefrontal,
and medial temporal regions, including the frontal eye fields and intraparietal sulcus. Interestingly,
visual input per se seems to be expressed preferentially in subcortical systems, including the lateral
geniculate but also other subcortical and medial temporal regions. In addition, visual input appears
to selectively engage posterior superior temporal regions in the left hemisphere—often associated
with biological motion processing. The more telling aspect of this characterization is the protracted
nature of the kernels, which decay to small values after 100 s or so. Notice that these dynamics are
supposedly neuronal in nature because we have accommodated hemodynamic convolution at the
point of estimating the Jacobian.

energy minimum, while in the second case solenoidal, divergence free flow is more like the

complicated swinging of a frictionless pendulum that neither consumes nor creates energy. In

this view, it becomes interesting to characterize the response of the system to perturbation—

here, the exogenous inputs provided by the experimental design. Conceptually, we can regard
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experimental inputs (such as visual afferents to the lateral geniculate) as (active states of) exter-

nal particles that influence (but are not influenced by) the sensory states of particles at the finest

level. Practically, these experimental inputs were included in the estimation of the coupling

parameters that subtend the Jacobian at the finest scale.

Figure 16 characterizes the influence of exogenous, condition-specific effects at different

scales in terms of correlations between fluctuations in the eigenstates that can be explained by

any of the three experimental inputs (i.e., visual, motion, and attention). This analysis suggests

that the effect of exogenous inputs can be detected at all scales. For example, at the third

scale, eigenmode 17 shows an extremely significant effect of sensory perturbation, dominated

by visual motion. The associated eigenmode picks out primary visual cortex and extrastriate

areas, encroaching uponmotion-sensitive regions. Note that eigenmode 17 has a negative time

constant, and hence the real part of its eigenvalue is positive. This suggests that during part of

its orbit, it becomes transiently unstable, while following the temporal structure of exogenous

fluctuations.

Figure 17 provides a complementary and revealing perspective on the effects of sensory per-

turbation. This figure characterizes induced responses in terms of first-order Volterra kernels—

that is, impulse response functions—of particles at the first (finest) scale of coarse-graining.

These kernels are based upon the Jacobian and quantify the effects of changing an input on

each eigenmode over time (based on the parameters mediating the influence of experimental

inputs on motion of states at the first scale). The maximum intensity projections on the left

report the variance attributable to each input, based upon the sum of squared kernels over

time (i.e., the autocovariance function at zero lag under each input). Note that this is a fun-

damentally different characterization of brain “activation” because it is modeling the variance

induced by an input that is distributed in space and time through recurrent coupling among

brain regions.

In this example, motion induces responses in visual and extrastriate—presumably, motion-

sensitive eigenmodes—while attention has protracted influences on parietal, prefrontal, and

medial temporal regions, including the frontal eye fields and intraparietal sulcus. Visual in-

put per se seems to be expressed preferentially in subcortical systems, including the lateral

geniculate but also other subcortical and medial temporal regions. In addition, it appears to

selectively engage posterior superior temporal regions in the left hemisphere, often associated

with biological motion processing. The interesting aspect of this characterization is the pro-

tracted nature of the kernels, which decay to small values after 100 s or so. In effect, this means

that although induced responses may be expressed in a regionally specific way almost instan-

taneously, there are enduring effects that can last for a minute or so, following any exogenous

perturbation. Clearly, these effects will be overwritten by ongoing sensory input; however,

this suggests that brain systems—and accompanying distributed neuronal responses—have a

greater memory than might have been anticipated. Heuristically, this means that I should be

able to tell you whether you have “seen something” in the past minute or so by examining

your brain activity at this moment in time.

CONCLUSION

In summary, we have introduced a particular partition that plays the role of a functional par-

cellation scheme for a system of loosely coupled nonlinear oscillators, such as neuronal pop-

ulations in the brain. The key aspect of this parcellation scheme is that it can be applied

recursively in the spirit of the renormalization group. This enables one to examine the scale-

invariant behavior of the ensuing spatiotemporal dynamics in a principled way. The numerical
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analyses above confirm the analytic intuitions that as we move from one scale to the next,

there is a progressive slowing and loss of stability of eigenstates associated with each parcel

or particle. This manifests as a form of self-organized criticality, in the sense that slow un-

stable (non-dissipative) eigenmodes supervene on lower scales. Quantitatively speaking, the

spatial scale of a particle, its characteristic frequencies and Lyapunov exponents, all fit nicely

with empirical observations of (dynamic) functional connectivity within and among large-scale

intrinsic brain networks (Liegeois et al., 2019; Northoff, Wainio-Theberge, & Evers, 2019).

The use of an eigen-decomposition of this sort is particularly interesting in relation to recent

eigenmode-decompositions of structural connectivity (Atasoy, Donnelly, & Pearson, 2016),

cortical geometry (Tokariev et al., 2019), and spatially embedded neural fields (Robinson

et al., 2016). These related applications are slightly simpler than the current analysis because

they can assume symmetric coupling—of one sort or another—and therefore need only deal

with real variables and symmetric modes. For a complementary approach to coarse-graining

fMRI data, and then plotting cross-scale covariance functions (including time-asymmetric de-

compositions), please see Breakspear, Bullmore, Aquino, Das, and Williams (2006), espe-

cially Figures 10 and 11. It is also worth noting that our use of the graph Laplacian (G) toGraph Laplacian:
A matrix representation of graph that
combines node adjacency and node
degree in mathematical formulation
and belongs to spectral graph theory.

define neighboring (i.e., coupled) internal states bears a similarity to the graph signal process-

ing (GSP) scheme (Huang et al., 2018). GSP is used to analyze and integrate structural and

functional connectomes, where the (functional) brain activity at the graph nodes is studied on

the underlying graph’s (anatomical) structure. In the GSP framework, the eigen-decomposition

of graph Laplacian (constructed from structural connectome) is used to identify eigenmodes of

low and high frequency (together they define graph Fourier transform).

Because this paper is a technical (foundational) description of the procedures entailed by the

existence of Markov blankets, we have focused on the simplest implementation. This means

that we started off with linearization assumptions, and propagated this approximation to higher

levels. Clearly, it would be nice to revisit the particular partition using higher order approx-

imations that retain nonlinearity in the equations of motion; for example, Equation 14. This

would require a more careful analysis of the Lyapunov exponents, which would involve inte-

grating the system and averaging the eigenvalues over the ensuing state-dependent Jacobian:

The Jacobian becomes a function of states when one includes nonlinearities in the equations

of motion. This raises the interesting issue of how to identify the adjacency matrix used to de-

fine the Markov blankets. In other words, we need to establish the conditional independences

in terms of a zero entry in the Jacobian. However, if the Jacobian is fluctuating over time,

over an orbit in state space, then there may be times when the Jacobian element is zero (i.e.,

zero coupling) and nonzero at other times. Related numerical analyses of nonlinear systems

(K. Friston, 2013) usually require that the Jacobian is zero over a suitably long period of time,

when forming the adjacency matrix in Figure 2. Clearly, this would involve evaluating the

Jacobian over all the solutions to the trajectory in state space. This may be a time-consuming

but otherwise interesting exercise.

We have already mentioned some limitations and extensions. These include starting off with

multivariate characterizations of intrinsic dynamics at the finest level. As noted above, this is

easy to implement by using the first few principal eigenstates, following a singular decompo-

sition of the smallest particles. Another extension is repeating the dynamic causal modeling at

each scale, to reevaluate the Jacobian with suitable high-order (i.e., nonlinear) approximations

to the equations of motion.

The nonuniqueness of the particular partition is a key practical issue. There is no pretense

that there is any unique particular partition. There are a vast number of particular partitions for
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any given coupled dynamical system. In other words, by simply starting with different internal

states —or indeed the number of internal states per particle—we would get a different particu-

lar partition. Furthermore, the thresholds used in the elimination of fast dissipative eigenmodes

will also change the nature of the partition, leading to more or less inclusive dynamics at the

scales above. This latter aspect is probably more defensible in terms of summarizing multi-

scale behavior, in the sense that we can easily motivate the adiabatic approximation in terms

of the relative stability of eigenmodes at a particular level. However, the number of internal

states to consider—and how to pick them—introduces a more severe form of nonuniqueness.

In this paper, we used the state that was maximally coupled to other states as the internal state

of the next particle. This was based upon the graph Laplacian of the adjacency matrix at the

appropriate scale. This is a sensible but somewhat arbitrary definition of an internal state and

speaks to the point that there are a multitude of particular partitions—and implicit Markov

blankets—that could be used. There are two ways that one could handle this nonuniqueness.

(Note: As noted by one of our reviewers, it might be useful to fix the [initial] centroids of the

particles to the centroids of brain atlases [for example, Glasser et al., 2016; Schaefer et al.,

2018]. This might ease the interpretation of the findings, as well as comparisons between the

current and complementary brain network studies.) One would be to embrace it and focus

on the statistics of characterizations over different particular partitions and look for scaling be-

haviors that are conserved over partitions. The alternative is to think about a unique particular

partition and how this would be identified. This as an outstanding issue; namely, what is the

“best” particular partition and, indeed, is the notion of the best partition appropriate?

Another important caveat is the fact that we have predicated the illustrative analyses in

this paper on a single-subject dataset acquired under an experimental activation paradigm.

We chose this dataset because it has been used to illustrate previous developments of dy-

namic causal modeling. Conceptually, this means that the particular partition is specific to

this subject and the subject’s responses to the attentional paradigm (summarized in Figure 17).

Because this paradigm introduced context-sensitive or condition-specific changes in effective

connectivity, it was designed to change the Jacobian over different periods of stimulation (e.g.,

attentional modulation of coupling between visual motion areas and early visual cortex). We

did not attempt to model these effects here; this would require the nonlinear modeling men-

tioned above. If this modeling was to second order, we would end up with a bilinear form

for Equation 2, which is the basis of most DCM analyses of fMRI data. This speaks to the fact

that the parcellation scheme may not produce the same results when applied to a different

paradigm. In turn, this means that there is further work to be done in terms of finding a par-

ticular partition that accommodates variability in functional anatomy. In theory, this would

probably be best addressed using a generative model; in other words, assuming one under-Generative model:
A model for randomly generating
observable data values, typically
given some hidden parameters.

lying sparse Jacobian at any given scale and then adding random effects, so that it could be

used to explain multiple paradigms or subjects. Having said this, the current analyses can be

taken as proof of principle that this sort of multiscale decomposition can be applied to empir-

ical neuroimaging time series and leads to the same phenomenology reported in functional

connectivity literature.

SOFTWARE NOTE

The software producing the figures in this figure are available as part of the academic software

SPM. They can be accessed by invoking DEM graphical user interface and selecting the DCM

and blankets button (DEMO_DCM_MB.m). Please see https://www.fil.ion.ucl.ac.uk/spm/.

SUPPORTING INFORMATION

Supporting information for this article is available at https://doi.org/10.1162/netn_a_00175.
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