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ABSTRACT

While numerous studies of ephaptic interactions have focused on either axons of peripheral

nerves or on cortical structures, no attention has been given to the possibility of ephaptic

interactions in white matter tracts. Inspired by the highly organized, tightly packed geometry

of axons in fiber pathways, we aim to investigate the potential effects of ephaptic interactions

along these structures that are resilient to experimental probing. We use axonal cable theory

to derive a minimal model of a sheet of N ephaptically coupled axons. Numerical solutions

of the proposed model are explored as ephaptic coupling is varied. We demonstrate that

ephaptic interactions can lead to local phase locking between adjacent traveling impulses

and that, as coupling is increased, traveling impulses trigger new impulses along adjacent

axons, resulting in finite size traveling fronts. For strong enough coupling, impulses

propagate laterally and backwards, resulting in complex spatiotemporal patterns. While

common large-scale brain network models often model fiber pathways as simple relays of

signals between different brain regions, our work calls for a closer reexamination of the

validity of such a view. The results suggest that in the presence of significant ephaptic

interactions, the brain fiber tracts can act as a dynamic active medium.

AUTHOR SUMMARY

Starting from the FitzHugh-Nagumo cable model, we derive a system of nonlinear coupled

partial differential equations (PDEs) to model a sheet of N ephaptically coupled axons. We

also present a continuous limit approximation transforming the model into a two-dimensional

field equation. We numerically solve the equations exploring the dynamics as coupling

strength is varied. We observe phase locking of adjacent impulses and coordination of

subthreshold dynamics. Strong enough coupling generates complex spatiotemporal patterns

as new impulses form traveling fronts propagating laterally and backwards. The transition

between different dynamic regimes happens abruptly at critical values of parameter. The

results put into question the validity of assuming the role of fiber pathways to be that of mere

interneuronal transmission and call for further investigation of the matter.

INTRODUCTION

It has long been thought that signals exchanged between different brain regions are faithfully

transmitted along the white matter tracts through axons that can be modeled as passive electric

cables (Hodgkin & Huxley, 1952). This has led many large-scale network models to assume
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A mathematical model of ephaptic interactions in neuronal fiber pathways

that signals communicated between different brain regions are relayed along the axons of fiber

pathways with a finite speed without any interaction occurring between the traveling signals

along the way (Bassett, Zurn, & Gold, 2018; Breakspear, 2017; Sanz-Leon, Knock, Spiegler, &

Jirsa, 2015). The aim of this work is to motivate a reexamination of this latter highly consequen-

tial assumption. In 1940, Katz and Schmitt investigated the nonsynaptic electrical interaction

between adjacent nerve fibers (Katz & Schmitt, 1940). In their work, two large parallel non-

myelinated axons were isolated from the crab limb nerve. They succeeded in demonstrating

that (a) the passage of an action potential (impulse) in one fiber causes subthreshold excitabil-

ity changes in the adjacent fiber and (b) when impulses are set up simultaneously along both

fibers, amutual interaction occurs that can lead to speeding up or slowing down of the impulses

and also possibly to synchronization between the two impulses, depending on the initial phase

relationship. The effect was observed to be amplified when the resistance of the extracellular

space surrounding the axons was increased. In the next year, a similar study was presented by

Arvanitaki (1942) on giant axons of Sepia officinalis (common cuttlefish). In that study, Arvanitaki

coined the term “ephapse" to denote “the locus of contact or close vicinity of two active func-

tional surfaces” (p. 90). The term is derived from the Greek term signifying the act of touching,

as opposed to “synapse" which is derived from the Greek term signifying the act of joining or

linking. Since then, the term ephaptic interaction has been used to refer to communication be-Ephaptic interaction:
A form of indirect communication
between cells through the exchange
of ions via the shared extracellular
space.

tween neuronal cells via electrical conduction through the surrounding extracellular space, as

opposed to communication mediated by chemical synapses or gap-junctions. In 1980, ephap-

tic transmission was observed between spontaneously active single nerve fibers in the spinal

nerve roots of dystrophic mice (Rasminsky, 1980). Shortly after, ephaptic interactions were ob-

served to contribute to neuronal synchrony in rat hippocampal slices (Taylor & Dudek, 1982).

Then in 1984, experiments suggested a role for ephaptic transmission in hemifacial spasm

pathophysiology by causing “cross-talk” between facial nerve fibers (Nielsen, 1984). More

recently, hallmarks of ephaptic interaction were observed in rat cortical pyramidal neurons in

slices, and supported the idea that this interaction facilitates the coordination and possibly the

synchrony of neighboring neurons in the gray matter (Anastassiou, Perin, Markram, & Koch,

2011). In addition, there have been numerous other experimental and modeling investiga-

tions of ephaptic interaction (Anastassiou & Koch, 2015; Barr & Plonsey, 1992; Bell, 1981;

Bokil, Laaris, Blinder, Ennis, & Keller, 2001; Goldwyn & Rinzel, 2016; Grindrod & Sleeman,

1984; Holt & Koch, 1999; Ramón & Moore, 1978; Stacey, Hilbert, & Quail, 2015). However,

it can be seen that all these previous studies focused on one of two contexts: (a) cortical ar-

eas, particularly interactions between neighboring neurons through the resulting local field

potential (Anastassiou & Koch, 2015; Anastassiou et al., 2011; Blot & Barbour, 2014; Fröhlich

& McCormick, 2010; Goldwyn & Rinzel, 2016; Holt & Koch, 1999; Taylor & Dudek, 1982)

or (b) peripheral nerves, particularly interactions between myelinated axons in a nerve bun-

dle and inquiries into effects of demyelination (Binczak, Eilbeck, & Scott, 2001; J. W. Clark &

Plonsey, 1970; Marrazzi & Lorente, 1944; Nielsen, 1984; Ramón & Moore, 1978; Rasminsky,

1980; Reutskiy, Rossoni, & Tirozzi, 2003). To our knowledge, there has been no discussion on

ephaptic interaction between axons of the whitematter tracts. While the predominant myelina-

tion in white matter axons might be presumed to be preventing ephaptic interference, studies

of myelinated axons in nerves suggest otherwise (Binczak et al., 2001; Marrazzi & Lorente,

1944; Rosenblueth, 1941). Moreover, some fiber pathways can have a considerably high pro-

portion of unmyelinated axons, such as 30% (in regions of the corpus callosum of the adult

rhesus monkey; Lamantia & Rakic, 1990) and 45% (in the splenium of the corpus callosum

of the adult rabbit; Waxman & Swadlow, 1977). It is known that fiber pathways in the brain

are constituted of densely packed long axons running in parallel. In Wedeen et al. (2012),

diffusion magnetic resonance imaging results were presented to illustrate that “cerebral path
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A mathematical model of ephaptic interactions in neuronal fiber pathways

crossings formed well-defined 2D sheets” (p. 1631) and that “this sheet structure was found

throughout cerebral white matter and in all species, orientations, and curvatures. Moreover,

no brain pathways were observed without sheet structure” (Wedeen et al., 2012, p. 1632).

In addition, electron micrograph images show that neighboring axons in fiber pathways are

often separated by distances as small as 20 nm (Waxman & Swadlow, 1977), which would sug-

gest a relatively high extracellular space resistance. These latter geometric characteristics set

favorable conditions for ephaptic exchanges to be at play in white matter fiber pathways. Ide-

ally, direct experimental examination of the activity of axons in the white matter would serve

to accurately quantify ephaptic interactions there. However, probing into the inner workings

of the white matter remains a challenging endeavor, mainly because of technical limitations

on the temporal and spatial resolution of current noninvasive imaging techniques (He, Yang,

Wilke, & Yuan, 2011). Inspired by these facts, we wish to investigate the matter by putting

forward a simple but realistic mathematical model of excitable axons arranged in a sheetlike

geometry and coupled through a resistive extracellular space.

In the Materials and Methods, we start from local circuit theory and the cable model of an

axon to derive a model for a sheet of N ephaptically coupled axons. We then make a contin-

uous limit approximation to transform the resulting model of N coupled 1D partial differential

equations (PDEs) into a 2D PDE that can be seen as a field equation governing the dynamics

of a sheet of coupled axons. In the Results section, we numerically solve the equations and

explore the different possible dynamical regimes along with examining the equivalence of the

two proposed models. In the Discussion section, we discuss the potential ramifications of the

results along with future work directions that this work motivates.

MATERIALS AND METHODS

The Mathematical Model

Our goal here is to put forward a minimal model that possesses the key elements that allow

the study of the effects of ephaptic interactions on action potential transmission along fiber

pathways. Given the densely packed parallel geometric arrangement of axons in the white

matter, we assume that currents generated during action potential propagation are mainly

axial in direction, both inside the axons and in the surrounding extracellular space ( J. Clark

& Plonsey, 1968; Plonsey, 1977). Then the axons can be represented by what is known as

the cable equation, while the extracellular space between axons can be represented by anCable equation:
A partial differential equation
describing the evolution of cell
membrane voltage and currents as
functions of distance and time.

effective longitudinal resistance per unit length (Rall, 1962; Scott, 2002). Such a model for two

ephaptically coupled axons is derived in Bell (1981). Figure 1 depicts the equivalent circuit

model used to derive the cable equations for two ephaptically coupled axons. The following

notation is used here:

ia: axial (axoplasmic) current inside the axon per unit length

ie: axial current in the extracellular space surrounding the axons per unit length

im: axonal transmembrane current per unit area

ra: axoplasmic resistance per unit length

re: extracellular space resistance per unit length

c: axonal membrane capacitance per unit length

jion: active ionic current flowing across the axonal membrane per unit length

g: membrane conductance per unit length

z: distance along the axon

vm: transmembrane potential of an axon

Network Neuroscience 597

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/4/3/595/1867328/netn_a_00134.pdf by guest on 07 Septem
ber 2023



A mathematical model of ephaptic interactions in neuronal fiber pathways

Figure 1. Schematic of the equivalent circuit model for two ephaptically coupled axons.

va: axoplasmic potential inside an axon

ve: electric potential in the extracellular space

I: external applied current per unit length

a, b: parameters of the FitzHugh-Nagumo model

Here, all currents and potential variables are varying functions of time and axial location z.

In the limit of ∆z → 0, Kirchoff’s current law gives the following relationships between theKirchoff’s law:
The law of conservation of electric
charge.

transmembrane, axial, and extracellular currents; subscripts 1 and 2 each refer to one of the

two identical axons:

im
1 = −

∂ia
1

∂z
, im

2 = −
∂ia

2

∂z
; (1)

∂ie

∂z
= im

1 + im
2 . (2)

In addition, Ohm’s law relates the currents to the electric potentials as follows:Ohm’s law:
The law of proportionality between
the electric current and voltage
across a conductor.

∂va
1

∂z
= −raia

1 ,
∂va

2

∂z
= −raia

2 ,
∂ve

∂z
= −rei

e. (3)

Furthermore, the transmembrane current for each axon can be expressed as

im = c
∂vm

∂t
+ jion − I, where vm = va − ve. (4)

The term jion represents the active transmembrane currents due to ion channel activity that is

nonlinearly dependent on the transmembrane voltage. Detailed mathematical representation

of the dependence of jion on vm was described in the seminal work by Hodgkin and Huxley

(1952), which utilized three variables to represent the kinetics of ion channel activation. In

1961, FitzHugh proposed a simplification of that model that utilizes only one recovery variable

(FitzHugh, 1961):

jion = gf (v
m, w) , where f(v, w) = −

(

v − v3

3
− w

)

(5)

with
∂w

∂t
= ε (v + a − bw) .

Here, w is a slow recovery variable. To arrive at the cable equation model, we need to combine

all the above relationships to eliminate the current variables. We start by differentiating the
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expression for vm with respect to z and substituting Equation 3 in it:

∂vm
1

∂z
= −raia

1 + rei
e ,

∂vm
2

∂z
= −raia

2 + rei
e.

Differentiating again and substituting Equation 1, we obtain the following:

∂2vm
1

∂z2
= (ra + re) im

1 + rei
m
2 , (6)

∂2vm
2

∂z2
= (ra + re) im

2 + rei
m
1 .

Solving the above system of two equations for an expression for im
1
and im

2 , then combining the

result with Equation 4, we arrive at the cable equations for two ephaptically coupled axons:

γ
∂2vm

1

∂z2
− α

∂2vm
2

∂z2
= c

∂vm
1

∂t
+ jion,1 − I1, (7)

γ
∂2vm

2

∂z2
− α

∂2vm
1

∂z2
= c

∂vm
2

∂t
+ jion,2 − I2,

where γ =

(

ra + re

2rare + r2
a

)

, α =

(

re

2rare + r2
a

)

.

We can see that for zero extracellular resistance, the two cable equations are uncoupled such

that any current exiting one axon will immediately dissipate in the extracellular space and no

exchange between the axons can occur. The resulting single FitzHugh-Nagumo cable was first

put forward by Nagumo in Nagumo, Arimoto, and Yoshizawa (1962). It can be seen that the

cable equation is the classical 1D diffusion equation with an added term, jion. The presence of

the nonlinear active currents renders the cable excitable, such that, if the membrane potential

is perturbed from its resting value, it will return to that value unless the perturbation is strong

enough to elicit the large action potential response that will then be propagated along the

axon, away from the location of perturbation, with the signal’s shape preserved.

We wish to extend the model to a sheet of ephaptically coupled axons, that is, an N number

of axons coupled through the extracellular space. Figure 2 shows a schematic of a cross-

sectional view of such an arrangement where we represent the cross sections of axonal cables

as nodes on a line, interspaced with nodes representing extracellular space.

A model of such a configuration of N number of coupled axons was presented in Grindrod

and Sleeman (1984). The main assumption made in this latter work is that each axon is only

coupled to the two axons that are positioned directly next to it. While this later assumption

is common in network models, the authors offered no physiological justification for it in the

context of ephaptically coupled axons. Instead, we will start from the more physical assump-

tion that transmembrane currents are radially uniform, such that we can reasonably consider

im for each cable to be equally partitioned into two parts feeding into the extracellular space

(represented as nodes) adjacent to it. Consequently, while the previously presented model

Figure 2. Schematic of a cross-sectional view of the sheet of N axons model.
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restricts ephaptic interactions to nearest neighbor axons (Grindrod & Sleeman, 1984), our

model allows each axon to interact with all other axons through the shared extracellular space

with the coupling strength decaying with distance between interacting axons. To arrive at that,

we take the potential in the extracellular space for an axon positioned at a node q to be the

average of the potential at its adjacent extracellular nodes such that

vm
q = va

q −
1

2

(

ve
q−1 + ve

q+1

)

. (8)

Note that the index q refers to the node number on the line, so for N axons, q takes values

between 1 and 2N + 1, such that va
q is defined on nodes q = 2, 4, . . . , N and ve

q on nodes

q = 1, 3, . . . , N + 1. Differentiating Equation 8 with respect to z, and making use of Ohm’s

law, we obtain

∂vm
q

∂z
= −raia

q +
1

2
re

(

ie
q−1 + ie

q+1

)

. (9)

From Kirchoff’s first law of current, we have the following:

∂ia
q

∂z
= −im

q ,

∂ie
q−1

∂z
=

1

2

(

im
q−2 + im

q

)

,

∂ie
q+1

∂z
=

1

2

(

im
q+2 + im

q

)

.

These latter equations are a generalization of Equations 1 and 2. Differentiating Equation 9

again and plugging in the above current relationships, we arrive at

∂2vm
q

∂z2
=

(

ra +
1

2
re

)

im
q +

1

4
re

(

im
q−2 + im

q+2

)

. (10)

For the cables that are at the two ends of the line, the corresponding relationship would be

the following:

∂2vm
2

∂z2
=

(

ra +
1

2
re

)

im
2 +

1

4
re (i

m
4 ) ,

∂2vm
N

∂z2
=

(

ra +
1

2
re

)

im
N +

1

4
re

(

im
N−2

)

.

We have obtained a system of N equations relating im and vm of all the axons. This is the

equivalent of Equation 6 for the two-axon system. The linear system of N equations can be

solved, such that we can express each im explicitly in terms of vm of all the axons. The solution

takes the form

im
p =

4

re

N

∑
s=1

αps
∂2vm

s

∂z2
; (11)

p = 1, 2, . . . , N referring to the N axons. The α’s represent coupling strength between each

pair of axons and are obtained as the elements of the inverse matrix A−1 =
[

αij

]

, where A is

the tridiagonal matrix:
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A =



































D 1

1 D 1

1 D 1

. . .
. . .

. . .

. . .
. . .

. . .

1 D 1

1 D 1

1 D



































with D = 4

(

R +
1

2

)

and R =
ra

re
.

Explicit algebraic expressions for the elements of the inverse of such a tridiagonal matrix are

presented in Usmani (1987) and indicate that the ephaptic effect increases as the ratio R de-

creases and that α for two axons on the line decreases as the distance between them increases.

However, for the numerical solutions presented in the sections to follow, we found it simpler

to numerically compute the inverse of A instead of the individual α′s.

Combining Equations 11, 5, and 4, we obtain the model for a sheet of N ephaptically

coupled FitzHugh-Nagumo cables:

4

re

N

∑
s=1

αps
∂2vm

s

∂z2
= c

∂vm
p

∂t
+ gf

(

vm
p , wp

)

− Ip, (12)

∂wp

∂t
= ε

(

vm
p + a − bwp

)

.

We nondimensionalize the space and time variables as follows:

z̃ =

(

√

g (ra + re)

)

z , t̃ =
g

c
t.

The system becomes

4 (R + 1)
N

∑
s=1

αps
∂2vm

s

∂z̃2
=

∂vm
p

∂t̃
+ f

(

vm
p

)

− Îp,

∂wp

∂t̃
= ε̂

(

vm
p + a − bwp

)

,

where Îp =
I

g
, ε̂ = ε

c

g
.

From now on, we drop the superscript of the transmembrane voltage along with the tilde and

hat. The final equations take the following form:

4 (R + 1)
N

∑
s=1

αps
∂2vs

∂z2
=

∂vp

∂t
+ f

(

vp , wp

)

− Ip, (13)

∂wp

∂t
= ε

(

vp + a − bwp

)

.

For the results that will follow, we choose the following values for the FitzHugh-Nagumo re-

covery variable: a = 0.7, b = 0.5, and ǫ = 0.1. Then, we are left with one free parameter R

that reflects the strength of the ephaptic interaction. The goal is to investigate the dynamics

of the system as this parameter is varied. We note here that the resulting emergent network
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behavior is robust against variations of the FitzHugh-Nagumo parameters within a reasonable

range that preserves the relevant dynamic features of the neuron model (planar, class 1 in terms

of excitability, existence of refractory period, and slow manifold). Multiple parameters were

tried, and only one example is presented here for brevity.

Estimation of the Coupling Strength Parameter

To estimate the physically plausible range of values for parameter R, we start from the definition

R =
ra

re
=

1

ρ

Ae

Aa
,

where Ae and Aa are the cross-sectional areas of the extracellular space and the axon, respec-

tively. ρ is the ratio of extracellular to intracellular resistivity, and is typically assumed to be in

the range of 1 to 4 (Goldwyn & Rinzel, 2016). Given that axons of the fiber pathways are very

tightly packed, we consider that the cross-sectional area of the space between adjacent axons

can range from a tenth to several multiples of the cross-sectional area of the axon. Based on

that, we consider R to vary between 0 and 1.

Continuous Limit Approximation

Our model is a system of N coupled nonlinear PDEs, each representing one distinct cable

and accompanied by an ordinary differential equation for the corresponding slow recovery

variable. However, neighboring axons in fiber pathways are often very densely packed, such

as the distances separating two adjacent axons are considerably small relative to the axonal

diameter (Waxman & Swadlow, 1977). For this reason, we will make the approximation that

the variables vm and im, while being only physically defined for the axonal space, can be

abstractly represented by continuous field variables v and i. If we go back to Equation 10, we

notice that the last two terms can be rewritten by using the following discrete approximation

of a second partial derivative (Abramowitz & Stegun, 2012):

∂2im

∂x2
≈

im
q−2 − 2im

q + im
q+2

4δ2
,

then

im
q−2 + im

q−2 ≈ 4δ2 ∂2im

∂x2
+ 2im

q ,

where δ is the small separation between adjacent axons. Using this latter finite difference

stencil, Equation 10 is transformed to

∂2vm

∂z2
= (ra + re) im + δ2re

∂2im

∂x2
. (14)

This equation relates the transmembrane voltage and current approximate field variables.

The second relationship between the two is given by the balance of currents Equation 4. The

approximate continuous system then takes the following form:

∂2v

∂z2
= (ra + re) i + δ2re

∂2i

∂x2
, i = c

∂v

∂t
+ gf (v, w)− I,

with
∂w

∂t
= ε (v + a − bw) ,
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where the superscripts were dropped for brevity. Next, we nondimensionalize the equations

using the following rescaling:

z̃ =

(

√

g (ra + re)

)

z , t̃ =
g

c
t , x̃ =

x

λ
.

Here, λ is a characteristic lateral length scale of the same order of magnitude as the average

axonal diameter (µm). The resulting system becomes

∂2v

∂z̃2
= i + K

∂2i

∂x̃2
, i =

∂v

∂t̃
+ f (v, w)− Î;

∂w

∂t̃
= ε̂ (v + a − bw) , with K =

δ2

λ2

1

R + 1
.

Dropping the tilde and hat for brevity, we obtain the final form of the approximate continuous

field equations for a sheet of ephaptically coupled axons:

∂2v

∂z2
= i + K

∂2i

∂x2
, i =

∂v

∂t
+ f (v, w)− I; (15)

∂w

∂t
= ε (v + a − bw) .

We note here that the latter equations governing v and i can be transformed into a more

compact form of one partial integro-differential equation using Green’s function and contourGreen’s function:
An integral transform that aids
in reformulating and solving
differential equations.

integration, such that the system becomes the following:

∂v (x, z, t)

∂t
= −F (v, w) + I +

∫

g
(

x, x′
) ∂2v (x′, z, t)

∂z2
dx′,

∂w (x, z, t)

∂t
= ε (v + a − bw) ,

where g
(

x, x′
)

= g
(

x − x′
)

=
1√
K

sin

(

1√
K

(

x − x′
)

)

.

In the results that follow, we take δ2

λ2 ≈ 0.01, to be consistent with the assumption that the

interaxonal spacing is very small compared with the characteristic length. Hence, we consider

values of K in the range of 0 to 0.1 to be in line with the above choice of R being between 0

and 1.

We also note that the model can be extended to the 3D case by considering axons on a

two-dimensional grid (x, y) instead of a 1D line (x). While deriving theN coupled PDE system

will be more tedious in this case, the continuous limit approximation leads to Equation 15 with

one added term on the right-hand side of the first equation:

∂2v

∂z2
= i + K

(

∂2i

∂x2
+

∂2i

∂y2

)

, i =
∂v

∂t
+ f (v, w)− I; (16)

∂w

∂t
= ε (v + a − bw) .

Numerical Implementation

Numerical solutions of the two model systems were obtained using the Crank-Nicolson fi-

nite difference method. After numerical experiments were performed with smaller values and

Network Neuroscience 603

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/4/3/595/1867328/netn_a_00134.pdf by guest on 07 Septem
ber 2023



A mathematical model of ephaptic interactions in neuronal fiber pathways

confidence in the stability of the solution was established, we chose a time step of 0.05 and a

spatial step of 0.5 and 1 for the z and x directions, respectively. Zero flux boundary conditions

were enforced, such that the first spatial derivative of v remains 0 at the boundaries for all time.

To investigate the response of the system, impulses were initiated at the inlet of axons using

a brief and localized input current I = 2 applied to the axon for t ∈ [0, 2] and z ∈ [0, 4]. All

numerical computation was implemented using Python.

RESULTS

Numerical simulations were performed to investigate the dynamics of the system as the ephap-

tic interaction strength was varied. In addition, we compared the dynamics of the continuous

limit system (Equation 15) to that of the original discrete model (Equation 13).

Phase Interactions

In Figure 3, two adjacent axons are stimulated such that an action potential is initiated along

each of them and travels from left to right. The timing of the stimulation is such that one

impulse lags behind the other. The shape of the action potentials and their propagation along

the z-direction can be seen in the Supporting Information (SI Figure 1). In Figure 3A, where we

set R = 0.8 corresponding to weak ephaptic coupling, the two impulses travel independently

without influencing each other. In Figure 3B and C, for the same value of R but with the

stimulated axons directly adjacent to each other, ephaptic interaction causes the two impulses

to attract/repel each other such that the lag between them decreases/increases, after which

they remain locked together, depending on the initial time lag between them. This type of

interaction has been experimentally observed in Katz and Schmitt (1940).

Figure 3. Numerical simulation of Equation 13. The color bar indicates the value of v, the x
variable indicates the axon number. Each column corresponds to a simulation with a specific value
of the parameter; snapshots show progress of time from top to bottom. (A) R = 0.8, axons number
30 and 20 are stimulated at t = 0 and t = 10, respectively, and the panel rows from top to bottom
correspond to t = 500, 1100, 1700, 2300, 2900. (B) Same as in A but with axons number 25 and
24 stimulated. (C) Same as in B but with stimulation at t = 0 and t = 11. (D) same as in A but with
R = 0.4, and panels show t = 500, 1400, 2300, 3200, 4100.
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Spatial Patterns Generation

Next, we increase the coupling strength by decreasing R, and observe that a transition occurs

where each traveling impulse triggers new action potentials in its two immediately adjacent

axons and the three neighboring impulses move together as a finite size traveling front, as

shown in Figure 3D. Further increase in coupling strength leads to the next two adjacent axons

being activated (Figure 4A). Because of the presence of the scaling factor δ2

λ2 in the expression

for K, we do not expect Equation 15 to be equivalent to Equation 13 for the same values

of R. Nonetheless, it can be seen in Supporting Information Figure 2 that the same behavior

described so far also occurs in Equation 15 as the coupling strength K is increased. In addition,

as coupling strength is further increased, more and more impulses are triggered as the traveling

front of impulses diffuses laterally and widens (Figure 5A and B). Even further increase in

Figure 4. (A, B) same as in Figure 3A but with R = 0.33 and R = 0.191, respectively. (C, D) same
as in Figure 3D but with R = 0.19 and R = 0.15, respectively.

Figure 5. Same as in Figure 3 but for Equation 15, with different values of K and for t = 500,

1300, 2200, 3100, 3999. (A) K = 0.0255. (B) K = 0.026. (C) K = 0.038. (D) K = 0.04.
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K (Figure 5C and D) leads to new fronts of impulses being induced in the forward but also

backward direction, resulting in dynamic spatiotemporal patterns.

Figure 4B, C, and D show that the same transitions also occur in Equation 13 as R is de-

creased, albeit the resulting patterns are more discrete and irregular. To better compare the

responses of the two systems in this regime, we compare the discrete Fourier transform of the

spatial patterns of the two systems at several time instants (Supporting Information Figure 3).

It can be seen that the spatial modal decomposition of the two is rather close, as quantified

by the cosine similarity between the discrete Fourier transforms at every time step (SupportingCosine similarity:
The cosine of the angle between two
vectors; computed as the dot product
between the two vectors divided by
the product of their magnitudes.

Information Figure 4). The mean value over time was ≈ 0.96 ± 0.006, which indicates close

similarity. However, for Equation 15, these spatiotemporal patterns persist only for a small

range of the parameter, as a further increase in K causes the system to revert back to the later-

ally diffusing traveling front (Figure 6, right column). This is unlike Equation 13 in which the

complex spatio-temporal patterns persist as R is further decreased (Figure 6, left column).

Spike Trains Interactions

Next, we stimulate all of the 50 axons and observe the collective dynamics. Each axon is

stimulated by a finite train of 10 impulses. The intervals between impulses are generated by

a Poisson process with a specified mean interval. (The mean interval is the mean value ofPoisson process:
A series of independent stochastically
occurring events with a constant
average time interval between events.

the intervals between consecutive impulses.) The evolution of the resulting action potentials

for the case of negligible ephaptic coupling is shown in Figure 7A. When ephaptic coupling

becomes significant, as in Figure 7B, the impulses self-organize into phase-locked traveling

fronts. A similar effect also occurs for Equation 15 (compare Figure 7C and D).

It has been stated that “in theory, whereas the pattern of Poisson-like impulse codes was

modified during long-distance propagation, their mean rate was conserved” (Moradmand &

Goldfinger, 1995, p. 2415). On the contrary, here in the presence of ephaptic interactions, the

mean interspike interval (mISI), which is the inverse of the mean rate, decreases with increasing

z location (Supporting Information Figure 5 and Supporting Information Figure 6). The effect is

clearly seen when the mISI is averaged over the 50 axons at downstream z locations (Figure 8).

Figure 6. Numerical simulation of Equation 13 for R = 0.05 (left) and of Equation 15 for K = 0.05

(right). The panels from top to bottom correspond to t = 500, 1100, 1700, 2300, 2900.
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Figure 7. Numerical simulation of Equation 13 (A, B) and Equation 15 (C, D). spike trains of an
average of 10 impulses are triggered along each axon, with a mean interimpulse interval of 10. The
panels from top to bottom correspond to t = 2499, 4999, 7499, 9999.

Figure 8. Mean interspike interval (mISI) averaged over the 50 axons for downstream z locations
for the simulations in Figure 7A (red), 7B (light red), 7C (blue), and 7D (light blue) (low coupling
in dark colors and high coupling in light colors).

Note that Figure 7 shows only a portion of the simulation; in order to compute the mISI values

shown in Supporting Information Figure 5 and Supporting Information Figure 6, we let the

simulation run long enough until all the impulses that were initiated at one end of the axon

reach the other end, such that the total simulation time was 18,000.

DISCUSSION

We presented a minimal model for a sheet or volume of ephaptically coupled axons and

explored its dynamics for a physically plausible range of parameters. We found that the

model captures the experimentally observed attraction/repulsion effect between neighboring
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impulses. For strong enough coupling, the model predicts that action potentials traveling down

an axon can trigger new action potentials in adjacent axons to be initiated and carried along

with it, forming a finite size traveling front. These fronts increase in size as more axons are

recruited at higher coupling strength. Simulations with even higher coupling strength result

in recurrence of impulses and backward propagation such that a pair of individual impulses

initiated on two nonadjacent axons evolve into trains of impulses that diffuse laterally in the x

direction as well as in both +ve and -ve z directions along the axons. We have also observed

that ephaptic coupling can lead to self-organization among trains of impulses and significant

alteration in the timing of action potentials, which is known to be a key element in neuronal

coding (Debanne, 2004). This suggests that ephaptic interactions along fiber pathways can

theoretically play an active role in neuronal signal processing in the brain. The numerical

simulations showed that the continuous limit approximation system mimics the qualitative be-

havior of the original model for a specific range of parameters. This continuous limit model

offers the advantage of being mathematically more compact, more analytically tractable, and

less numerically expensive to solve, and it allows for easy extension of the model to full 3D

geometry. It furthermore allows for a more intuitive interpretation of the ephaptic coupling

terms and, in its integro-differential form, makes it intuitive that the ephaptic coupling creates

a modulation of the diffusion in the axial direction with an alternating positive and negative

diffusion term on a spatial length scale favoring structures on the scale of
√

K.

In conclusion, we propose that the various nontrivial responses observed in our numeri-

cal exploration of ephaptic interaction might play an important and complex active role in

interarea neuronal signal transmission and processing in the brain. We hope these results will

motivate a critical examination of the validity of the common assumption that neuronal fiber

pathways merely act as transmission cables relaying signals between different brain regions.

In contrast to that latter viewpoint, this theoretical investigation suggests that ephaptic inter-

actions enhanced by the orientations and bundling of neuronal tracts in three-dimensional

space can render the fiber pathways an active axonal medium that can give rise to complex

spatiotemporal dynamics. If this emergent dynamics occurs under physiologically realistic

conditions, then it would be a major so far unknown contributor to information processing

in neural systems. We see various directions that this work can take in the future, including

further exploration of the rich repertoire of responses for different types of stimuli, account-

ing for variability in axonal diameters that will add spatial heterogeneity in the parameters.

In addition, a natural extension to a more biophysically detailed treatment of the matter is

possible through incorporating the effect of myelination into the cable equation used in the

model. Finally, we hope that our work will inspire experimental work that can provide precise

quantification and characterization of the elusive effects of ephaptic interactions in the axonal

tracts of the brain.
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