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ABSTRACT

The unique architecture of the human connectome is defined initially by genetics and
subsequently sculpted over time with experience. Thus, similarities in predisposition and
experience that lead to similarities in social, biological, and cognitive attributes should
also be reflected in the local architecture of white matter fascicles. Here we employ a
method known as local connectome fingerprinting that uses diffusion MRI to measure the
fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This
fingerprinting approach was applied to a large sample (N = 841) of subjects from the
Human Connectome Project, revealing a reliable degree of between-subject correlation in
the local connectome fingerprints, with a relatively complex, low-dimensional substructure.
Using a cross-validated, high-dimensional regression analysis approach, we derived local
connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes
measured, including demographic, health, and cognitive measures. These LCP maps were
highly specific to the attribute being predicted but also sensitive to correlations between
attributes. Collectively, these results indicate that the local architecture of white matter
fascicles reflects a meaningful portion of the variability shared between subjects along
several dimensions.

AUTHOR SUMMARY

The local connectome is the pattern of fiber systems (i.e., number of fibers, orientation, and
size) within a voxel, and it reflects the proximal characteristics of white matter fascicles
distributed throughout the brain. Here we show how variability in the local connectome is
correlated in a principled way across individuals. This intersubject correlation is reliable
enough that unique phenotype maps can be learned to predict between-subject variability in
a range of social, health, and cognitive attributes. This work shows, for the first time, how the
local connectome has both the sensitivity and the specificity to be used as a phenotypic
marker for subject-specific attributes.
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Local connectome phenotypes

INTRODUCTION

The unique pattern of connections among the billions of neurons in the brain is termed the con-
nectome (Sporns, Tononi, & Kotter, 2005), and this pattern encapsulates a fundamental con-Connectome:

The complete set of connections
between neurons in the brain.

straint on neural computation and cognition (Gu et al., 2015; Thivierge & Marcus, 2007). This
connective architecture is initially structured by genetics and then sculpted by experience over
time (Kochunov, Fu, et al., 2016; Kochunov, Thompson, et al., 2016; Yeh, Vettel, et al., 2016).
Recent advancements in neuroimaging techniques, particularly diffusion MRI (dMRI), haveDiffusion MRI (dMRI):

An MRI technique that indirectly
measures voxel-wise white matter
architecture by quantifying the
diffusion patterns of water molecules
trapped within cells.

opened the door to mapping the macroscopic-level properties of the structural connectome in
vivo (Le Bihan & Johansen-Berg, 2012). As a result, a growing body of research has focused on
quantifying how variability in structural connectivity associates with individual differences in
functional properties of brain networks (Muldoon et al., 2016; Passingham, Stephan, & Kötter,
2002), as well as associating with differences in social (Gianaros, Marsland, Sheu, Erickson,
& Verstynen, 2013; Molesworth, Sheu, Cohen, Gianaros, & Verstynen, 2015), biological
(Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013), and cognitive (Muraskin
et al., 2016; Muraskin et al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes.

DMRI works by measuring the microscopic diffusion pattern of water trapped in cellular
tissues, allowing for a full characterization of white matter pathways, such as axonal fiberWhite matter:

The bundles of myelinated axons that
facilitate long-range communication
between distal brain regions.

direction and integrity (for a review see Jbabdi, Sotiropoulos, Haber, Van Essen, & Behrens,
2015; Le Bihan & Johansen-Berg, 2012). Previous studies have used dMRI to map the global
properties of the macroscopic connectome by determining end-to-end connectivity between
brain regions (Hagmann et al., 2010; Hagmann et al., 2008, 2010; Sporns, 2014). The re-
sulting connectivity estimates can then be summarized, often using graph theoretic tech-
niques that are then associated with variability across individuals (Bullmore & Sporns, 2009;
Rubinov & Sporns, 2010). While dMRI acquisition and reconstruction approaches have
improved substantially in recent years (Fan et al., 2016; Van Essen et al., 2012), the reli-
ability and validity of many popular fiber tractography algorithms have come into question
(Daducci, Dal Palú, Descoteaux, & Thiran, 2016; Reveley et al., 2015; Thomas et al., 2014).
As a result, the reliability of subsequent interregional connectivity estimates may be negatively
impacted.

Instead of mapping end-to-end connectivity between regions, we recently introduced the
concept of the local connectome as an alternative measure of structural connectivity that
does not rely on fiber tracking (Yeh, Badre, & Verstynen, 2016). The local connectome is
defined as the pattern of fiber systems (i.e., number of fibers, orientation, and size) within
a voxel, as well as immediate connectivity between adjacent voxels, and can be quanti-Voxel:

Short for “volumetric pixel,” defines
the spatial resolution of MRI data.

fied by measuring the fiber-wise density of microscopic water diffusion within a voxel. This
voxel-wise measure shares many similarities with the concept of a “fixel” proposed by others
(Raffelt et al., 2015). The complete collection of these multifiber diffusion density measure-
ments within all white matter voxels, termed the local connectome fingerprint, provides aLocal connectome fingerprint:

The complete pattern of resolved
white matter fibers within all voxels
and between adjacent voxels.

high-dimensional feature vector that can describe the unique configuration of the structural
connectome (Yeh, Vettel, et al., 2016). In this way, the local connectome fingerprint provides
a diffusion-informed measure along the fascicles that supports interregional communication,
rather than determining the start and end positions of a particular fiber bundle.

We recently showed that the local connectome fingerprint is highly specific to an indi-
vidual, affording near-perfect accuracy on within- versus between-subject classification tests
among hundreds of participants (Yeh, Badre, et al., 2016). Importantly, this demonstrated that
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Local connectome phenotypes

a large portion of an individual’s local connectome is driven by experience. Whole-fingerprint
distance tests revealed only a 12.51% similarity between monozygotic twins, relative to almost
no similarity between genetically unrelated individuals. In addition, within-subject uniqueness
showed substantial plasticity, changing at a rate of approximately 12.79% every 100 days
(Yeh, Vettel, et al., 2016). Thus, the unique architecture of the local connectome appears to
be initially defined by genetics and then subsequently sculpted over time with experience.

The plasticity of the local white matter architecture suggests that it is important to consider
how whole-fingerprint uniqueness may mask more subtle similarities arising from common
experiences. If experience, including common social or environmental factors, is a major force
impacting the structural connectome, then common experiences between individuals may also
lead to increased similarity in their local connectomes. In addition, since the white matter
is a fundamental constraint on cognition, similarities in local connectomes are expected to
associate with similarities in cognitive function. Thus, we hypothesized that shared variability
in certain social, biological, or cognitive attributes can be predicted from the local connectome
fingerprints.

To test this, we reconstructed multishell dMRI data from the Human Connectome Project
(HCP) to produce individual local connectome fingerprints from 841 subjects. A set of 32
subject-level attributes were used for predictive modeling, including many social, biological,
and cognitive factors. A model between each fiber in the local connectome fingerprint and
a target attribute was learned using a cross-validated, sparse version of principal component
regression. The predictive utility of each attribute map, termed a local connectome phenotype

Principal component
regression (PCR):
A regression approach that relies on
using principal component analysis
(PCA) to reduce the dimensionality of
a model before analysis.

(LCP), was evaluated by predicting a given attribute using cross validation. Our results show

Local connectome phenotype:
A unique pattern of the local
connectome that reliably predicts
between-individual variability in a
particular feature.

that specific characteristics of the local connectome are sensitive to shared variability across
individuals, as well as being highly reliable within an individual (Yeh, Vettel, et al., 2016),
confirming its utility for understanding how network organization reflects genetic and experi-
ential factors.

MATERIALS AND METHODS

Participants

We used publicly available dMRI data from the S900 (2015) release of the Human Connectome
Project (HCP; Van Essen et al., 2013), acquired by Washington University in St. Louis and the
University of Minnesota. Out of the 900 participants released, 841 participants (370 male,
ages 22–37, mean age 28.76) had viable dMRI datasets. Our analysis was restricted to this
subsample. All data collection procedures were approved by the institutional review boards at
Washington University in St. Louis and the University of Minnesota. The post hoc data analysis
was approved as exempt by the institutional review board at Carnegie Mellon University, in
accordance with 45 CFR 46.101(b)(4) (IRB Protocol Number: HS14-139).

Diffusion MRI Acquisition

The dMRI data were acquired on a Siemens 3T Skyra scanner using a two-dimensional spin-
echo single-shot multiband EPI sequence with a multiband factor of 3 and monopolar gradient
pulse. The spatial resolution was 1.25 mm isotropic (TR = 5,500 ms, TE = 89.50 ms). The
b-values were 1,000, 2,000, and 3,000 s/mm2. The total number of diffusion sampling direc-
tions was 90 for each of the three shells in addition to six b0 images. The total scanning time
was approximately 55 min.
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Local connectome phenotypes

Local Connectome Fingerprint Reconstruction

An outline of the pipeline for generating local connectome fingerprints is shown in the top
panel of Figure 1. The dMRI data for each subject were reconstructed in a common stereotaxic
space using q-space diffeomorphic reconstruction (QSDR; Yeh & Tseng, 2011), a nonlinear
registration approach that directly reconstructs water diffusion density patterns into a common
stereotaxic space at 1 mm3 resolution.

Using the HCP dataset, we derived an atlas of axonal direction in each voxel (publicly
available at http://dsi-studio.labsolver.org). A spin distribution function (SDF)
sampling framework was used to provide a consistent set of directions û to sample the mag-
nitude of SDFs along axonal directions in the cerebral white matter. Since each voxel may
have more than one fiber direction, multiple measurements were extracted from the SDF for
voxels that contained crossing fibers, while a single measurement was extracted for voxels with
fibers in a single direction. The appropriate number of density measurements from each voxel
was sampled by the left-posterior-superior voxel order and compiled into a sequence of scalar
values. Gray matter was excluded using the ICBM-152 white matter mask (MacConnell Brain
Imaging Centre, McGill University, Canada). The cerebellum was also excluded because of
different slice coverage in the cerebellum across participants. Since the density measurement
has arbitrary units, the local connectome fingerprint was scaled to make the variance equal to 1
(Yeh, Vettel, et al., 2016). The resulting local connectome fingerprint is thus a one-dimensional

Figure 1. Data analysis pipeline. dMRI from the HCP dataset were preprocessed consistent with
previous research investigating the local connectome fingerprint (top panel) and included registra-
tion via QSDR and estimation of SDF using an axonal directional atlas derived from the HCP dataset.
Once fingerprints were estimated for each individual, the pipeline for analysis of the continuous
response variables consisted of four major steps: (1) a PCA-based dimensionality reduction, (2) a
LASSO model based on the lower-dimensional components of the local connectome fingerprint,
(3) local connectome phenotype estimation from projection of the contributing components of the
LASSO model, and (4) prediction on the held-out dataset. A similar pipeline was used for categori-
cal response variables with the exception that a logistic LASSO model was used in the LASSO-PCR
step and prediction accuracy was assessed as percentage correct rather than as a predicted versus
observed correlation.
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Local connectome phenotypes

vector where each entry represents the density estimate of restricted water diffusion in a specific
direction along an average fiber. The magnitude of this value reflects the average signal across
a large number of coherently oriented axons, as well as support tissue like myelin and other
glia.

The local connectome fingerprint construction was conducted using DSI Studio (http://dsi-
studio.labsolver.org), an open-source diffusion MRI analysis tool for connectome analysis. The
source code, documentation, and local connectome fingerprint data are publicly available on
the same website.

Response Variables

A total of 32 response variables across social, health, and cognitive factors were selected
from the public and restricted datasets released as part of the HCP. Each variable is
summarized in Table 1, but additional details can be found in the HCP Data Dictionary
(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+500
+Subject+Release). Table 1 provides a description of relevant distributional parameters of
all of the continuous variables tested. Descriptions of distributional properties of categori-
cal variables are provided in the descriptions below. Supplementary Table 1 Powell, Garcia,
Yeh, Vettel, & Verstynen, 2017 shows the correlation between all continuous variables tested.

Demographic and social factors included age (years), gender (56% female, 44% male),
race (82% white and 18% black in a reduced subset of the total population), ethnicity (91.4%
Hispanic, 8.6% non-Hispanic), handedness, income (from the Semi-Structured Assessment
for the Genetics of Alcoholism, SSAGA, scale), education (SSAGA), and relationship status
(SSAGA, 44.3% in a “married or live-in relationship” and 55.7% not in such a relationship).

Health factors included body mass index, mean hematocrit, blood pressure (diastolic and
systolic), hemoglobin A1c, and sleep quality (Pittsburgh Sleep Quality Index).

Cognitive measures included 11 tests that sampled a broad spectrum of domains: (a) the
NIH Picture Sequence Memory Test assessed episodic memory performance; (b) NIH Dimen-
sional Change Card Sort tested executive function and cognitive flexibility; (c) NIH Flanker
Inhibitory Control and Attention Test evaluated executive function and inhibition control; (d)
Penn Progressive Matrices examined fluid intelligence and was measured using three perfor-
mance metrics (number of correct responses, total skipped items, and median reaction time
for correct responses); (e) NIH Oral Reading Recognition Test assessed language and reading
performance; (f) NIH Picture Vocabulary Test examined language skills indexed by vocabu-
lary comprehension; (g) NIH Pattern Comparison Processing Speed Test evaluated processing
speed; (h) Delay Discounting tested self-regulation and impulsivity control using two different
financial incentives (Area Under the Curve, AUC, for discounting of $200, AUC for discounting
of $40,000); (i) Variable Short Penn Line Orientation assessed spatial orientation performance
and was measured using three metrics (total number correct, median reaction time divided
by expected number of clicks for correct, total positions off for all trials); (j) Penn Word
Memory Test evaluated verbal episodic memory using two performance metrics (total number
of correct responses, median reaction time for correct responses); and (k) NIH List Sorting Task
tested working memory performance.

Least absolute shrinkage and
selection operator (LASSO):
A sparse regression approach for
dealing with high-dimensional
datasets.

LASSO Principal Components Regression (LASSO-PCR)

The primary goal of our analysis pipeline was to identify specific patterns of variability in the lo-
cal connectome that reliably predict individual differences in a specific attribute. These unique
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Table 1. Summary statistics for 28 continuous HCP attributes used in the modeling analysis

Sample % Mild % Extreme 95% CI for mean
Measured quantity size Mean Median Skewness outliers1 outliers2 Lower Upper
Age (in years) 841 28.76 29.00 −0.08 0.00 0.00 28.51 29.01
Handedness3 [−100,100] 841 65.36 80.00 −2.18 0.10 0.07 62.33 68.40
Total household income 836 5.01 5.00 −0.28 0.00 0.00 4.87 5.16
(binned; 5 ∼ $40,000–49,999)
Years of education completed 840 14.92 16.00 −0.74 0.00 0.00 14.80 15.04
Body mass index 840 26.51 25.42 0.95 0.03 0.00 26.15 26.86
Mean hematocrit sample 740 43.39 43.50 −0.68 0.02 0.00 43.05 43.73
Diastolic blood pressure 830 76.77 76.00 0.33 0.02 0.00 76.06 77.49
Systolic blood pressure 830 123.76 123.00 0.51 0.01 0.00 122.80 124.71
Systolic-diastolic blood 830 1.63 1.61 0.97 0.03 0.00 1.61 1.64
pressure ratio
Hemoglobin A1C 566 5.26 5.30 0.12 0.05 0.01 5.22 5.29
Pittsburgh Sleep Quality Index 841 5.18 5.00 0.91 0.01 0.00 4.98 5.39
NIH Picture Sequence Memory Test 840 111.83 110.70 0.11 0.00 0.00 110.92 112.73
NIH Dimensional Change 839 115.28 115.07 0.18 0.02 0.00 114.59 115.97
Card Sort Test
NIH Flanker Inhibitory Control 841 112.52 112.21 0.25 0.01 0.00 111.84 113.20
and Attention Test
Penn Progressive Matrices: 838 16.76 18.00 −0.55 0.00 0.00 16.44 17.09
Number of correct responses
Penn Progressive Matrices: 838 3.12 1.00 1.01 0.00 0.00 2.86 3.39
Total skipped items
Penn Progressive Matrices: 838 15.61 14.65 0.91 0.01 0.00 14.99 16.23
Median reaction time for
correct responses (sec)
NIH Oral Reading Recognition Test 841 116.96 117.59 −0.14 0.01 0.00 116.24 117.67
NIH Picture Vocabulary Test 841 116.76 117.03 0.09 0.01 0.00 116.12 117.40
NIH Toolbox Pattern Comparison 841 114.15 113.16 0.22 0.03 0.00 113.14 115.16
Processing Speed Test
Delay Discounting: Area under the 838 0.25 0.20 1.39 0.05 0.00 0.24 0.27
curve for discounting of $200
Delay Discounting: Area under the 838 0.50 0.49 0.05 0.00 0.00 0.48 0.52
curve for discounting of $40,000
Variable Short Penn Line Orientation: 838 14.80 15.00 −0.23 0.00 0.00 14.51 15.10
Total number correct
Variable Short Penn Line Orientation: 838 1.15 1.10 1.31 0.03 0.00 1.13 1.17
Median reaction time divided by expected
number of clicks for correct (sec)
Variable Short Penn Line Orientation: 838 24.34 21.00 3.16 0.05 0.02 23.33 25.35
Total positions off for all trials
Penn Word Memory Test: 838 35.64 36.00 −0.82 0.01 0.00 35.44 35.84
Total number of correct responses
Penn Word Memory Test: Median 838 1.56 1.51 1.85 0.03 0.01 1.54 1.58
reaction time for correct responses (sec)
NIH List Sorting Working Memory Test 841 111.21 108.06 0.16 0.02 0.00 110.45 111.97

1 Using the interquartile range (IQR: 75th percentile minus 25th percentile), we define a mild outlier to be any point greater than the 75th percentile or
less than the 25th percentile by an amount at least 1.5 times the IQR.

2 Using the interquartile range (IQR: 75th percentile minus 25th percentile), we define an extreme outlier to be any point greater than the 75th percentile or
less than the 25th percentile by an amount at least 3 times the IQR.

3 Handedness is a bimodal distribution with a strong preference for right-handedness in the HCP cohort, thus labeling as extreme outliers a large number of
individuals with strong left-hand dominance.

patterns would reflect a local connectome phenotype for that attribute. The LASSO-PCR
pipeline used to generate local connectome phenotype (LCP) maps is illustrated in the lower
panel of Figure 1. This process relied on a fivefold cross-validation scheme in which a unique
20% of the participants were assigned to each of five subsamples. For each cross-validation
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fold, we trained models using 80% of the participants in order to make predictions on the held-
out 20% of participants. The large number of HCP participants and the infrequent occurrence
of outliers in the continuous response variables (see Table 1) justified random fold assignments
with little concern about a higher density of outliers existing in any one fold. The random
assignment of subjects to folds could pose issues for any infrequent categories in the binary
response variables, but the removal of insufficiently represented categories and a verification
of near-even class distributions in each fold alleviated these concerns. The analysis pipeline
consisted of four major steps.

Step 1: Dimensionality reduction. The matrix of local connectome fingerprints (841 partic-
ipants × 433,386 features) contains many more features than participants (p >> n), thereby
posing a problem for fitting virtually any type of model. To efficiently develop and evaluate
predictive models in a cross-validation framework, on each fold we first performed an econom-
ical singular value decomposition (SVD) on the matrix of training subjects’ local connectome
fingerprints (Wall, Rechtsteiner, & Rocha, 2003):

X = USVT , (1)

where X is an n × p matrix containing local connectome fingerprints for n participants in the
cross-validation fold (∼673 subjects × 433,386 elements per fingerprint), VT is an n× p matrix
with row vectors representing the orthogonal principal axes of X, and the matrix product US
is an n× n matrix with rows corresponding to the principal components required to reproduce
the original matrix X when multiplied by the principal axes matrix VT.

Step 2: LASSO model. To reduce the chance of overfitting and improve the generalizability
of the model for a novel test set, we employed LASSO regression, a technique that penalizes
the multivariate linear model for excessive complexity (i.e., number and magnitude of nonzero
coefficients; Tibshirani, 2011). The penalty in this approach arises from the L1 sparsity con-
straint in the fitting process, and this combined method, known as LASSO-PCR, has been
used successfully in similar high-dimensional prediction models from neuroimaging datasets
(Wager, Atlas, Leotti, & Rilling, 2011; Wager et al., 2013). In short, the LASSO-PCR approach
identifies a sparse set of components that reliably associate individual response variables (see
Figure 1) and takes the following form:

β̂ = arg minβ{||y − Zβ||2 + λ||β||}, (2)

where Z = US as defined above. Using a cross-validation approach, we estimated the optimal
λ parameter and associated β̂ coefficients using the “glmnet” package in R (Friedman, Hastie, &
Tibshirani, 2010; see https://cran.r-project.org/web/packages/glmnet/glmnet.pdf for documen-
tation). For each response-specific regression model, the model inputs included the principal
components estimated from Equation 1, that is, US (see Figure 2), and intracranial volume
(ICV). For continuous variables (e.g., reaction times), a linear regression LASSO was used.
For binarized categorical variables (e.g., gender), a logistic regression variant of LASSO was
used. In order to assess the value of the local connectome fingerprint components in modeling
continuous response variables, the LASSO-produced β̂ vector was truncated ( β̂∗) to exclude
ICV and thereby restrict interpretation to the relationship between the response variables and
the principal components.

The inclusion of ICV while building a model allows for the isolation of any predictive power
present in the local connectome fingerprint and not to head size, which is a common adjust-
ment used when attempting to understand structural differences between individuals or groups
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to reduce the possibility of type-I errors (O’Brien et al., 2011). Our LASSO-PCR procedure
considers ICV in every model, and in some cases, ICV is deemed a significant contributor
to variance in the response variable. In other cases, ICV is assigned a regression coefficient
of zero. We observe empirically that the correlation of ICV to local connectome fingerprint
principal component scores is quite small. This is to be expected considering the orthogo-
nality of the principal components and small chance that ICV would align meaningfully with
one or more components. Combining the observation that ICV has small, nonmeaningful cor-
relations with the local connectome fingerprint principal components with the knowledge
that the local connectome fingerprint components are themselves orthogonal, we mitigate a
common result of regression modeling in which the inclusion of a highly correlated feature
may drastically alter other features’ regression coefficients. Regardless of the coefficient as-
signed to ICV, we ultimately want to make predictions for the continuous response variables
without any knowledge of ICV by excluding the ICV coefficient and associated participant
measurements from the model prediction step. While the quality of the resulting predictions
(Step 4 below) may be negatively impacted by removing ICV as a potentially significant pre-
dictor in a model, controlling for ICV in this manner ensures that any observed correlation is
not related to intracranial volume.

While truncating the LASSO-produced β̂ vector allows for the calculation of ICV-ignorant
predictions for the continuous response variables, the same procedure cannot be adopted for
categorical response variables. Such an approach to our binary responses results in undesired
artifacts due to the nonlinear nature of logistic regression. An alternate approach to assess the
value of the local connectome fingerprint in a binary prediction is described in Step 4.

Step 3: Local connectome phenotype map. For each response variable, we expect β̂∗ to
contain nonzero weights on a subset of the orthogonal principal components (US, or equiv-
alently, XV), and these weights were used to construct a local connectome phenotype map,
defined as the weighted influence of each fiber in the local connectome on the modeled re-
sponse variable. To convert the regression coefficients into the dimensions of the local con-
nectome, the sparse vector of regression coefficients β̂∗ was multiplied by the principal axes
matrix V to produce a weighted linear combination of the principal axes deemed relevant to
a particular subject attribute.

�̂w = V β̂∗ (3)

This linear combination of principal axes, �̂w, represents a p × 1 vector reflecting the white
matter substructure of the local connectome fingerprint vector relevant to a particular observed
response. We refer to the vector �̂w as the local connectome phenotype for the associated
response variable.

Step 4: Prediction. Finally, we use the reconstructed local connectome phenotype map to
predict a variety of continuous social, biological, and cognitive responses for participants in the
test set. Ultimately, we sought a model that predicted a response variable ŷi for subject i in the
test set such that ŷi = �xi �̂w where �̂w is the response-related local connectome phenotype and
�xi is the individual participant’s local connectome fingerprint. A prediction was generated for
all participants in the holdout set on each validation fold. Once predictions for all participants
were generated for a given response variable, the performance of the model was evaluated
using the correlation between predicted and observed values (continuous variables only).

While LCP maps were still constructed for categorical response variables, the utility of these
LCP maps for prediction was estimated by comparing the classification accuracy of an ICV-
only model with that of a model incorporating ICV and the local connectome fingerprint. In
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the case where the fingerprint-informed model outperforms the ICV-only model, the increase
in classification accuracy can be attributed to information contained in the local connectome
fingerprint map.

The estimated significance of each continuous prediction model stems from a 10,000-trial
nonparametric permutation test. In each trial, the response values were permuted prior to
executing the LASSO model-fitting procedure while ensuring that the fingerprint PC-ICV mea-
surements were still paired as same-subject inputs to the models. After permuting the response
values, the LASSO model-fitting procedure was used to construct a response-specific model
from the randomly permuted data. Correctly mapped fingerprint and ICV information was then
used to predict subjects’ response values using the permutation test models. Correlation was
computed for each set of model predictions and true observations to build a null distribution
of the chance performance of a LASSO model for the given response. The proportion of trials
in the permutation test in which the magnitude of the computed correlation met or exceeded
the magnitude of the observed versus prediction correlation in Table 3 is reported as the cor-
relation p value. In creating a LASSO model with permuted response values, we observed
many cases in which no principal components (PCs) were retained as significant predictors of
variance. A resulting intercept-only model yields a constant, thus having a standard deviation
of 0. Correlation between the prediction and observation in this case is undefined and was
not included in the calculation of the associated p value.

RESULTS

Covariance Structure and Dimensionality of Local Connectome Fingerprints

Intervoxel white matter architecture, reflected in the local connectome fingerprint, has been
shown to be unique to an individual and sculpted by both genetic predisposition and experi-
ence (Yeh, Vettel, et al., 2016); however, it is not yet clear whether the local connectome also
exhibits reliable patterns of shared variability across individuals. To illustrate this, Figure 2A
shows three exemplar fingerprints from separate subjects in the sample. These exemplars re-
veal the sensitivity of the method to capture both common and unique patterns of variability.
For example, the highest peaks in the three fingerprints are similar in terms of their size and
location. This pattern appears to exist across subjects and is generally expressed in the mean
fingerprint (Figure 2C). However, there are also clear differences between participants. For
example, consider the sharpness and location of the rightmost peaks in the three exemplar
fingerprints in Figure 2A. This uniqueness supports our previous work highlighting single
subject classification from the fingerprint across varying temporal intervals (Yeh, Vettel, et al.,
2016).

In order to explicitly test for covariance across participants, we looked at the distribution of
pairwise correlations between fingerprints. The histogram in Figure 3 shows the total distribu-
tion of pairwise intersubject correlations, revealing a tight spread of correlations such that the
middle 95% of the distribution lies between 0.32 and 0.50. This confirms that intersubject cor-
relations are substantially lower, averaging a correlation of 0.42 across all pairs of 841 HCP
participants, than intrasubject correlations, found to be well above 0.90 (Yeh, Vettel, et al.,
2016). Thus, the local connectome fingerprint exhibits a moderate but reliable covariance
structure across participants, indicating its utility to examine shared structural variability across
subjects that capture similarity in social, health, and cognitive factors.

The dimensionality of the fingerprint itself (841 participants × 433,386 elements) poses a
major challenge when examining the predictive value of the local connectome for group
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Figure 2. Lower dimensional structure of the local connectome fingerprints. (A) Three individual
local connectome fingerprints, from three separate subjects, show coarse commonalities and unique
patterns of variability. (B) Cumulative summation of variance explained from each component,
sorted by the amount of variance explained by each component. Dotted lines indicate the number
of components (697) needed to explain 90% of the variability in the fingerprint dataset. (C) Mean
fingerprint across participants (blue, left) and linear summation of principal components that explain
90% of the variance (red, right).

similarity. The group fingerprint contains many more features than subjects (p >> n), leading
to a strong risk of overfitting. We employed a dimensionality reduction routine that isolates
independent principal components from the entire local connectome fingerprint matrix to de-
compose the variance within the set of fingerprints. This analysis found that the dimensionality
of the local connectome fingerprint matrix was still relatively high and complex, requiring 697
of 841 components to explain 90% of the variance (Figure 2B). While it appears that many
components are required to meaningfully explain fingerprint variance, the pattern of the mean
fingerprint could be successfully recovered by a linear combination of the principal compo-
nents (Figure 2C), confirming that this lower dimensional projection is adequate to represent
the much larger dimensional fingerprint.
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Figure 3. Correlations between fingerprints. The matrix of between-subject correlations in local
connectome fingerprints, sorted by participant index, is shown on the right. The distribution (inset)
is the histogram of the upper triangle of the correlation matrix and the best fit kernel density estimate
(red line).

Predicting Intersubject Variability

After identifying a covariance structure in the group fingerprint matrix, we fit regression models
to test how well the fingerprints could predict participant attributes, including social, biologi-
cal, and cognitive factors. Although we used the principal components as predictor variables,
the underlying dimensionality of the local connectome fingerprint matrix (697 components for
90% variance) is still quite high relative to the sample size (841 participants). Therefore, we
applied an L1 sparsity constraint (i.e., LASSO) in the fitting process of a principal components
regression (LASSO-PCR), as this approach identifies a sparse set of components that reliably
predict individual response variables (see Figure 1).

Table 2 shows the logistic LASSO-PCR results for the four binary categorical participant
attributes: gender, race, ethnicity, and relationship status. An examination of the test accura-
cies in Table 2 reveals that both gender and race predictions are significantly improved with
the inclusion of local connectome fingerprint information in the associated logistic regression
models. The 95% confidence intervals for prediction accuracy (ICV and local connectome
fingerprints) arise from bootstrapping prediction-observation pairs and reporting the appropri-
ate percentiles from a distribution of 10,000 bootstrapped classification accuracy calculations
(see Methods). The p values associated with the reported classification accuracy arise from
a nonparametric permutation test performed for each response variable. The test began by
permuting response values prior to the model-fitting step in order to establish a null distribu-
tion for chance accuracy achievable by a LASSO logistic regression model (see Methods). The
provided p values reflect the proportion of 10,000 trials in which the accuracy achieved in the
permutation test met or exceeded the accuracy achieved in the cross-validation (CV) predic-
tion of the indicated response. The models for ethnicity and relationship status revealed no
relationships and perform at exactly the base rate for their respective categories.
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Table 2. Logistic LASSO-PCR results for four categorical HCP attributes

Model response Significant correlation Training accuracy CV prediction CV prediction Confidence interval
(significant CV Sample with intracranial (measure of accuracy accuracy [lower, upper] Accuracy
results italicized) size intracranial volume model fit) (ICV only) (ICV and LCF PCs) (ICV and LCF PCs) ppp value
Gender1∗ 840 Yes 0.9405 0.8071 0.8691 0.8452 0.8905 0
Race2∗ 760 Yes 0.9632 0.8276 0.9053 0.8842 0.9263 0
Ethnicity3 833 No 0.9136 0.9136 0.9136 0.8944 0.9316 1.0000
Relationship status4 840 No 0.6679 0.5571 0.5571 0.5226 0.5917 0.7620

* The prediction accuracy was statistically significant after applying the false discovery rate (FDR) correction for multiple comparisons.
1 The female-male split in the 840 subjects was 56%-44%, respectively.
2 The white and black subpopulations made up 82% and 18%, respectively, of the 760 subjects reported here.
3 The Not Hispanic/Latino and Hispanic split in the 833 subjects was 91.4%-8.6%, respectively.
4 Relationship status included 44.3% of the population in a “married or live-in relationship” and 55.7% not in such a relationship.

In addition to the binary participant attributes, we observed many reliable prediction
models with the continuous variables. Table 3 (third column) shows the training results for the
corresponding linear models. As expected, nearly all models were statistically significant in
the training evaluation, even after adjusting for multiple comparisons. Only two variables, the
Pittsburgh Sleep Quality Index and systolic blood pressure, were not significant when consid-
ering this segment of the data, largely because the LASSO model did not contain any nonzero
coefficients. The LASSO form of penalized regression can drive coefficients to be exactly zero
when their effects are sufficiently weak. This results in an intercept-only model that produces
a uniform set of predictions, and the observation-prediction correlation cannot be calculated
when there is no variability in the set of predictions.

To complement the model training results, we examined the predictive performance of the
models using five-fold cross validation. This was done by projecting the regression weights
in component space back into local connectome space in order to provide a weight map for
each fiber in the local connectome to the target response variable. These maps reflect the local
connectome phenotype for that attribute and were multiplied against a full local connectome
fingerprint for each participant in the validation fold to generate a prediction for that participant
(see bottom panel, Figure 1).

We assessed the generalizability of 28 continuous response models in a cross-validation
paradigm and, as shown in Table 3 (fourth column), 10 of these attributes were significant
predictors after applying the false discovery rate (FDR) correction for multiple comparisons.
These factors included years of education, measures of body type (body mass index), physiol-
ogy (hematocrit sample, blood pressure measures), and several cognitive measures including
episodic memory (NIH Picture Sequence Memory Test), fluid intelligence (Penn Progressive
Matrices: number of correct responses and total skipped items), self-regulation (delay dis-
counting: area under the curve for discounting of $40,000), spatial orientation (Variable Short
Penn Line Orientation: total number correct), and working memory (NIH List Sorting Working
Memory Test).

Specificity of Phenotypes to Response Variables

In our final analysis, we examined the specificity of a local connectome phenotype map by
considering whether the predictive maps were unique for each participant attribute being pre-
dicted. In other words, we tested whether a single map could capture a generalized predictive
relationship for multiple response variables, indicating that the models themselves may lack
specificity. If so, any given model may perform suitably well at predicting any participant at-
tribute (e.g., body mass index), even if derived from training on a different participant factor
(e.g., years of education completed).
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Table 3. Linear LASSO-PCR results for 28 continuous HCP attributes
Model response Significant Observed vs.
(Significant CV Sample correlation with Training correlation CV prediction Confidence interval Correlation
results italicized) size intracranial volume (measure of model fit) correlation [lower, upper] ppp value
Age (in years) 841 Yes 0.1430* 0.0311 −0.0378 0.1007 0.1776
Handedness 841 No 0.5581* −0.0594 −0.1208 0.0017 0.9475
Total household income 836 Yes 0.1604* −0.0029 −0.0753 0.0632 0.5181
Years of education completed 840 No 0.4377* 0.0729* 0.0127 0.1343 <10E-4
Body mass index 840 No 0.4976* 0.2736* 0.2067 0.3421 <10E-4
Mean hematocrit sample 740 Yes 0.4348* 0.1324* 0.0654 0.1939 <10E-4
Diastolic blood pressure 830 No 0.2058* 0.0615 −0.0154 0.1378 0.0331
Systolic blood pressure 830 Yes 0.3596* 0.1396* 0.0745 0.2076 <10E-4
Systolic-diastolic blood
pressure ratio 830 Yes NA** −0.0240 −0.0926 0.0474 0.7457
Hemoglobin A1C 566 No 0.2130* 0.0098 −0.0794 0.1071 0.4165
Pittsburgh Sleep Quality Index 841 No NA** −0.0314 −0.0966 0.0415 0.8277
NIH Picture Sequence
Memory Test 840 No 0.5964* 0.0977* 0.0290 0.1618 <10E-4
NIH Dimensional Change
Card Sort Test 839 No 0.2381* −0.0299 −0.0945 0.0379 0.8071
NIH Flanker Inhibitory Control
and Attention Test 841 Yes 0.1285* −0.0001 −0.0706 0.0651 0.5161
Penn Progressive Matrices:
Number of correct responses 838 Yes 0.2027* 0.0849* 0.0187 0.1502 <10E-4
Penn Progressive Matrices:
Total skipped items 838 Yes 0.2090* 0.0733* 0.0120 0.1383 <10E-4
Penn Progressive Matrices:
Median reaction time for
correct responses 838 Yes 0.1078* 0.0086 −0.0619 0.0754 0.4075
NIH Oral Reading Recognition Test 841 Yes 0.1665* 0.0008 −0.0702 0.0660 0.4748
NIH Picture Vocabulary Test 841 Yes 0.5206* 0.0481 −0.0187 0.1142 0.0781
NIH Toolbox Pattern Comparison
Processing Speed Test 841 No 0.1814* −0.0569 −0.1260 0.0061 0.9390
Delay Discounting:
Area under the curve for 838 Yes 0.3010* 0.0275 −0.0311 0.0891 0.2202
discounting of $200
Delay Discounting:
Area under the curve for 838 No 0.2056* 0.0802* 0.0132 0.1527 <10E-4
discounting of $40,000
Variable Short Penn Line Orientation:
Total number correct 838 Yes 0.4490* 0.0951* 0.0279 0.1589 <10E-4
Variable Short Penn Line Orientation:
Median reaction time divided by 838 Yes 0.4449* −0.0572 −0.1302 0.0141 0.9520
expected number of clicks for correct
Variable Short Penn Line Orientation:
Total positions off for all trials 838 Yes 0.4695* 0.0014 −0.0621 0.0735 0.4741
Penn Word Memory Test:
Total number of correct responses 838 No 0.2382* 0.0474 −0.0228 0.1189 0.0764
Penn Word Memory Test:
Median reaction time for correct responses 838 No 0.2354* −0.0391 −0.0965 0.0191 0.9034
NIH List Sorting Working Memory Test 841 Yes 0.4140* 0.0793* 0.0097 0.1540 <10E-4

* The observed-predicted correlation was statistically significant after applying the FDR correction for multiple comparisons.
** Training correlation could not be computed when the full HCP training set yielded no nonzero LASSO coefficients for ICV or LCF PCs.

To explicitly test this, we looked at the correlation between the 10 significant pheno-
type maps from the cross-validation tests shown in Table 3. This correlation is shown in
Figure 4. With the exception of the correlation between the phenotypes for the Variable
Short Penn Line Orientation task and the NIH List Sorting Working Memory Test, which was
expected given the moderate association between performance in these two tasks (Supple-
mentary Table 1; Powell et al., 2017), most of the phenotype maps were uncorrelated. We
visualized the uniqueness of these phenotype maps by projecting the local connectome pheno-
types into voxel space, where the average weight of multiple fibers within a voxel is depicted
as a color map on the brain. A subset of these maps is shown in Figure 4. Visual inspection
of these example phenotype maps reveals large heterogeneity between models. For instance,
strong positive loadings are observed in portions of the splenium of the corpus callosum and
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Figure 4. Local connectome phenotypes. Matrix inset is a correlation matrix displaying the
similarity between phenotypes of the local connectome to the continuous response variables.
Example phenotype maps are shown around the correlation matrix, and the color scale for each
has been adjusted to reveal the areas of the local connectome that are most predictive of the
labeled response variable.

frontal association fiber systems for the Picture Sequence Memory Task, while these same re-
gions load negatively for the Variable Short Penn Line Orientation Test and NIH List Sorting
Working Memory Test. Bilateral corona radiata pathways appear to negatively load for the
Penn Progressive Matrices and Variable Short Penn Line Orientation Test, but not for any of the
other attributes. These qualitative comparisons, along with the direct correlation tests, con-
firm that the phenotype maps for predicting intersubject variability are highly specific to the
variable being modeled.

DISCUSSION

Our analysis revealed that the local connectome fingerprint exhibits a moderate, but reliable,
correlation between participants that can be leveraged to predict, at the level of the individ-
ual, along dimensions of social, biological, and cognitive attributes. Although the between-
subject correlation is much smaller than the within-participant correlation reported previously
(Yeh, Vettel, et al., 2016), it was robust enough to capture intersubject similarities. Much to
our surprise, the lower dimensional structure of this intersubject covariance was still relatively
complex, with hundreds of principal components required to explain most of the variance
in the sample. Using a cross-validation regression approach that is optimized for ultra-high-
dimensional datasets, we show how patterns of variability in the local connectome not only
correlated with nearly all participant-level social, health, and cognitive attributes (i.e., strong
and significant training accuracy), but could also independently predict variability in many of
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the features tested (i.e., holdout test accuracy via cross validation). Finally, we were able to
show how the local connectome phenotype maps for individual attributes were highly spe-
cific to the variable being modeled. This suggests that there is not some unique, generalizable
feature of local white matter that predicts intersubject variability, but instead there are highly
specific patterns that predict variance in specific intersubject attributes. Taken together, the
current results confirm our hypothesis that shared variability across participants is reflected
in the local connectome itself. This opens the door for leveraging the local connectome fin-
gerprint, along with functional measures of connectomic architecture (Shen et al., 2017), as a
reliable marker for individual differences in behavior.

The current findings clearly show how it is possible to recover a portion of variability in so-
cial, biological, or cognitive attributes from local white matter architecture. This complements
recent reports that global functional connectome properties can reliably predict cognitive
ability (Ferguson, Anderson, & Spreng, 2017; Finn et al., 2015; Hearne, Mattingley, & Cocchi,
2016) by providing a putative structural basis for these previous associations. For example,
in our study, structural similarity in the local connectome fingerprint reliably predicted six
of the tested cognitive performance measurements, including a list sorting task that captures
individual variability in working memory performance (Gur et al., 2001; Gur et al., 2010).
The associated local connectome phenotype for working memory identified portions of what
appear to be frontoparietal pathways (Figure 4). Our results nicely complement a recent
study of working memory that focused on direct and indirect connectivity in the frontoparietal
networks (Ekman, Fiebach, Melzer, Tittgemeyer, & Derrfuss, 2016). In their work, the authors
found that the network centrality of focal structural connections in the frontal, temporal, and
parietal cortices could predict individual differences in working memory capacity using lin-
ear regression. When considered in the context of the current study, our findings augment
previous correlative findings between frontoparietal regions and working memory capacity
(Bender, Prindle, Brandmaier, & Raz, 2016; Klingberg, 2006; Nagy, Westerberg, & Klingberg,
2004; Takeuchi et al., 2010) by showing that the integrity of the pathway of these white matter
fascicles reliably predicts working memory performance.

The existence of reliable and predictive intersubject covariance patterns in the white matter
fascicles of the human brain begs the question of mechanism: Are these similarities genetically
determined, experientially sculpted, or developed through gene-by-environment interactions?
Emergent findings in genetics are suggesting that at least a portion of macroscopic white matter
structure is guided by genetics (Kochunov et al., 2016a, 2016b; Yeh, Vettel, et al., 2016). For
example, recent work by Kochunov, Thomson, and colleagues (2016b) examined a heritability
relationship between whole-brain fractional anisotropy (FA) and information processing speed
in two interesting participant populations, the HCP twins cohort and an Old Order Amish
cohort. The cohorts both had well-characterized genetic properties, but they differed in the
amount of experiential variability since the Amish have higher environmental homogeneity
compared with the urban/suburban HCP cohort. Later, Kochunov, Fu, and colleagues (2016b)
argued that the replication of the genetic contribution to processing speed and FA of cerebral
white matter despite the experiential variability in the cohorts suggested a strong phenotypic
association for the trait. Our analysis would be able to pick up such genetically mediated
brain-behavior phenotypes.

While genetics may contribute to white matter architecture, overwhelming evidence sug-
gests that experience sculpts these pathways over time. For example, variability in the white
matter signal has been shown to covary with several social (Gianaros et al., 2013; Molesworth
et al., 2015), biological (Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013),
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and cognitive (Muraskin et al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes. In many
cases, it is difficult to extract or identify specific pathways or systems that link white matter path-
ways to these shared experiential factors. However, several intervention studies have targeted
more specific experience–white matter associations. For example, prolonged training on a va-
riety of tasks has been shown to induce changes in the diffusion MRI signal (Blumenfeld-Katzir,
Pasternak, Dagan, & Assaf, 2011; Sampaio-Baptista et al., 2013; Scholz, Klein, Behrens, &
Johansen-Berg, 2009; Steele, Scholz, Douaud, Johansen Berg, & Penhune, 2012). In some
cases, the particular change in the diffusion signal is consistent with alterations in the un-
derlying myelin (Sampaio-Baptista et al., 2013), for which there is emerging support from
validation studies in nonhuman animal models (Budde, Janes, Gold, Turtzo, & Frank, 2011;
Budde, Xie, Cross, & Song, 2009; Klawiter et al., 2011). One consistency in these reports of
training-induced plasticity in white matter pathways is that the effects are task-specific (i.e.,
training in a specific task appears to impact specific white matter fascicles). This specificity of
experiential factors on white matter pathways is necessary in order to be able to build reliable
prediction models from the diffusion MRI signal.

Our previous work showed that the local connectome fingerprint reflects both genetic and
experiential factors that contribute to between-subject variability in white matter architecture
(Yeh, Vettel, et al., 2016). We found that monozygotic twins expressed a modest degree of
similarity in their local connectome fingerprints, with ∼12% of the local connectome pattern
being similar between monozygotic twins. This similarity was much higher than what was
detected in siblings or dizygotic twins; however, genetic similarities overall seemed to con-
tribute very little to similarities in the local connectome. In contrast, most of the structure in
the local connectome fingerprint appeared to be driven by experience. By comparing changes
in the fingerprint over time, average intrasubject similarity changed linearly with time. While
it can be argued that part of this change simply reflects aspects of the normal aging process
(Simmonds, Hallquist, Asato, & Luna, 2014; Westlye et al., 2010), we should point out that
the intrasubject changes seen in our previous study happen at a much faster rate than typical
age-related changes in white matter pathways (i.e., days and weeks versus years, respectively).
Thus, we expect that much of this plasticity is likely due to experiential factors.

One of the strengths of the local connectome fingerprint approach used here is that it does
not rely on fiber tracking algorithms. Recent evidence indicates a false-positive bias when
mapping white matter pathways (Daducci et al., 2016; Reveley et al., 2015; Thomas et al.,
2014). This is due in large part to the difficulty that tracking algorithms have when distin-
guishing between a crossing and turning fiber pathway. Our approach does not rely on a
deterministic or probabilistic tracking algorithm; instead, we analyze the entire set of recon-
structed fibers throughout the brain as a unitary data object. This eliminates the false-positive
identification of white matter fascicles by not attempting fascicular classification at all. How-
ever, without tracking along pathways we cannot say whether specific pathways positively or
negatively predict a specific response variable. In the future, exploration of the local connec-
tome phenotype maps with careful pathway labeling (e.g., expert-vetted fiber labeling) can
identify general regions that positively or negatively contribute to the prediction.

Another limitation of the approach used here arises from the fact that, by necessity, the local
connectome fingerprints must be computed from a common, atlas-defined space. The non-
linear transformations required in order to transform brains of various shapes and sizes into
a stereotaxic space through the QSDR procedure invariably introduce a degree of noise in
the SDFs. The number and orientation of fibers in each voxel determine the local connectome
fingerprint, and these measurements could possibly be distorted during QSDR. Such a
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transformation is unavoidable because the dimensionality of each fingerprint must be iden-
tical, and each element of a fingerprint must represent the same brain microregion as the
corresponding element in any other fingerprint. Only with this common, atlas-aligned repre-
sentation of the local connectome fingerprint can we apply LASSO-PCR to explore common
substructures. The potential price for this convenience is an introduction of noise in the lo-
cal connectome fingerprint itself, likely increasing the possibility of a false-negative error (i.e.,
failing to recognize a true phenotypic relationship). In addition, the sampling of the local
connectome comes from identifying the peaks from the average SDF for this particular sample
of healthy young adults. While it is believed that this approach gives a reasonable estimate
of normative fiber structure (Yeh, Vettel, et al., 2016), it is possible that an atlas defined from
another population, with consistent differences in local white matter architecture (e.g., older
adults), could result in slightly different local connectome fingerprints and thus slightly differ-
ent phenotypic associations.

Our analytical design was constructed to examine the generalizability of associations be-
tween local white matter architecture and demographic, health, and cognitive attributes rather
than to investigate simple descriptive correlations. Although training accuracies themselves
do not evaluate how well the model generalizes to unseen data, we included training model
performance results in Tables 2 and 3 to highlight two important points. First, in some cases,
test model performance is poor because the training model is also poor. This reflects cases
where the model-fitting procedure simply failed to identify meaningful patterns, as opposed
to cases where the fitting procedure was highly biased to the training set, but exhibits low
flexibility (i.e., sensitive to meaningful, but not generalizable, associations). Second, and more
importantly, many traditional neuroimaging approaches only report training model results
that often overestimate the strength of the relationship. Results in Tables 2 and 3 reveal that
nearly all training models show strong, significant associations; however, only a small sub-
set retain significance on the independent holdout set, where the effect size is much smaller.
We should note that the effect sizes of the significant models in the holdout test validation,
particularly the cognitive measures, are substantially smaller than previously reported effect
sizes of functional connectome phenotypes (Ferguson, Anderson, & Spreng, 2017; Finn et al.,
2015; Hearne, Mattingley, & Cocchi, 2016). This may be because variability in structural con-
nections may serve as a moderator of global network dynamics that drive behavior, but the
functional dynamics themselves are a more direct reflection of immediate brain function. This
suggests that multimodal analysis accounting for both structural and functional connectomic
architecture may provide a stronger prediction of individual variability in cognitive function.

The current work reveals that the local connectome fingerprint reliably reflects shared vari-
ance between individuals in the macroscopic white matter pathways of the brain. For the first
time, we not only show how global white matter structure associates with different participant
features, but we also show how the entire local connectome itself can predict a portion of the
variability in independent samples. While the overall variance explained by the local con-
nectome fingerprint may at first seem small, it is consistent or even stronger than effect sizes
of genetic risk scores used in behavioral medicine (Plomin, DeFries, Knopik, & Neiderhiser,
2016). Thus, our local connectome phenotyping approach may also be predictive of not only
normal, but also pathological, variability (see also Yeh, Tang, & Tseng, 2013). Future work in
clinical populations should focus on applying this approach to generate diagnostic local con-
nectome phenotypes for neurological and psychiatric disorders, thereby leveraging the full
potential of this approach.
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