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ABSTRACT

Value guides behavior. With knowledge of stimulus values and action consequences,
behaviors that maximize expected reward can be selected. Prior work has identified several
brain structures critical for representing both stimuli and their values. Yet, it remains unclear
how these structures interact with one another and with other regions of the brain to support
the dynamic acquisition of value-related knowledge. Here, we use a network neuroscience
approach to examine how BOLD functional networks change as 20 healthy human subjects
learn the values of novel visual stimuli over the course of four consecutive days. We show
that connections between regions of the visual, frontal, and cingulate cortices become
stronger as learning progresses, with some of these changes being specific to the type of
feedback received during learning. These results demonstrate that functional networks
dynamically track behavioral improvement in value judgments, and that interactions
between network communities form predictive biomarkers of learning.

AUTHOR SUMMARY

Rational human behavior is the pursuit of actions that maximize expected reward.
These rewards can be understood as stimulus-value contingencies, learned by experience
throughout our lives. Various structures have been recognized to participate in these
learning processes. Yet, an understanding of how these structures interact with one another
and with other brain regions remains vastly unexplored. Here, we propose a novel analytical
framework utilizing and extending techniques from the dynamic network neuroscience to
ask “How do our brains change when we learn values?” We find that interactions between
sensory and fronto-cingulate structures grow stronger as learning progresses, bringing
together several isolated findings in the cognitive neuroscience of value-based behavior
and extending our understanding of human learning in general.

INTRODUCTION

The behavior of a human is fundamentally driven by their existing notions of value (Simon,
1955). From a vast repertoire of possible actions, humans tend to choose ones that either
have been reinforced through prior rewards, or have the potential to bring reward in the future
(Montague, King-Casas, & Cohen, 2006; Shizgal, 1997). The concept of value is foundational
to decision-making, allowing for diverse alternatives to be placed on a common scale, thereby
facilitating choices that maximize expected reward. While a notion of value is intrinsic to
many stimuli (e.g., a red apple appears more valuable than a brown apple), in many cases
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The network architecture of value learning

it must be learned through experience (e.g., coffee is more valuable than expected given its
appearance). Such conceptual representations of value can be acquired through trial and error
(good vs. bad), as well as through learning of declarative information (Delgado & Dickerson,
2012; Packard & Knowlton, 2002; Squire, 1992).

The representation of the value of objects requires the engagement of systems that represent
object information and systems that represent value. Visual objects, and their form in partic-
ular, are represented throughout the occipital and temporal lobes, occupying part of what is
known as the visual system (Felleman & Van Essen, 1991; Grill-Spector & Malach, 2004). Stim-Visual network:

A set of brain regions, primarily
located throughout the occipital and
temporal lobes, involved in the
representation of visual objects and
their form.

ulus values, on the other hand, are represented primarily in subcortical and medial prefrontal
areas, in a collection of structures referred to as the valuation system (Bartra, McGuire, & Kable,

Valuation network:
A set of brain regions involved in
the representation of value
information—a useful signal for
decision-making—spanning the
basal ganglia, anterior cingulate,
ventro-medial prefrontal, and
orbito-frontal cortices.

2013). These include primarily regions of the basal ganglia, anterior cingulate, ventro-medial
prefrontal, and orbito-frontal cortices (Bartra et al., 2013). Notably, identifying a stimulus and
retrieving its value requires the concerted engagement of both systems.

Numerous studies have attempted to elucidate the specific functions of each region in these
systems using clever task designs and sophisticated methodological approaches (Bartra et al.,
2013; Cohen, Heller, & Ranganath, 2005; de Beeck et al., 2008; Grill-Spector & Malach, 2004;
Grill-Spector & Weiner, 2014; Vassena, Krebs, Silvetti, Fias, & Verguts, 2014). Indeed, the
success of these studies is evident by the sheer number of compartmentalized structures
identified along with their associated functions. In the valuation system, for example, basal
ganglia structures respond in proportion to reward prediction errors (Abler, Walter, Erk,
Kammerer, & Spitzer, 2006; O’Doherty et al., 2004; Packard & Knowlton, 2002), a crucial sig-
nal in feedback-based learning, while frontal regions of the valuation system tend to respond
in proportion to the actual values of stimuli (Bartra et al., 2013; O’Doherty, 2004; Vassena
et al., 2014), a signal important for value-based decision-making. However, a fundamental
gap in our knowledge lies in delineating how the different cortical and subcortical areas com-
posing the valuation and visual systems interact with one another and with other regions of
the brain to allow effective behavioral choices built on the computations of and comparisons
between stimulus values. Knowledge of these patterns of interaction is an essential step in
moving from a compartmentalized or modular view of brain function, towards a more integra-
tive and dynamic notion of how different regions cooperate to subserve behaviors as complex
as perception and decision-making.

Here we address this gap by taking an explicit network neuroscience perspective. This novel
analytical framework has encountered great success in characterizing how learning modu-
lates the patterns of statistical dependencies between regional activities, bridging and relating
descriptions at the microscale with emerging architectures at the mesoscale (Bassett et al.,
2013; Bassett, Yang, Wymbs, & Grafton, 2015; Mattar, Betzel, & Bassett, 2016). In a cohort
of 20 healthy adult human subjects, we examine how the pattern of functional interactions
between brain regions changes during the learning of monetary values of novel visual stimuli.
With over 1,500 trials completed across four consecutive days of practice, participants learned
the monetary values of 12 rendered three-dimensional shapes through a feedback consisting
either of the value of the shape selected (10 subjects) or whether the selected shape was the
most valuable from the pair (10 subjects).

We hypothesized that learning accompanies gradual changes in the architecture of func-
tional networks,with progressively increased integration between visual and valuation systems

Functional network:
A set of distributed brain regions that
display coherent activity with one
another over the course of a certain
temporal extent.

to allow proficient task performance. We further hypothesized that the recruitment of network
regions and modules varies depending on the type of feedback received in the task, with an
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The network architecture of value learning

increased engagement of basal ganglia structures for participants learning by trial and error and
an increased engagement of visual structures for participants learning declarative information.
Finally, we hypothesized that this effect is strongest in the early stages when learning is more
pronounced and a full representation of the stimulus values is incomplete.

Our results not only confirm these hypotheses, but they also suggest that functional net-
works can almost perfectly distinguish whether a novel subject has already learned the stimu-
lus values, and can significantly classify the type of feedback received in the learning protocol.
These findings demonstrate that behavioral improvements in value judgment are represented
in patterns of functional connectivity that change in a characteristic manner predictive of learn-
ing. Moreover, our study offers a set of novel analytical approaches applicable to the study of
human learning specifically and dynamic networks more broadly.

RESULTS

Experimental Paradigm

Twenty healthy adult human subjects learned the monetary value of 12 novel visual stimuli
over the course of four consecutive days (Figure 1A). On each trial of the experiment, par-
ticipants selected which of two shapes simultaneously present on the screen had the highest
value, after which they received feedback based on their response. Participants were ran-
domly assigned to two groups, determining the type of feedback that they would receive. Ten
participants received relative feedback: a green (red) square surrounding the selected shape,
signaling whether their response was correct or incorrect but not indicating the specific shape
values. The other ten participants received absolute feedback: the value of the selected shape
was presented to the participant, but not the value of the nonselected shape, nor information
about whether the selection was correct (Figure 1B). Although each shape had a true value,
the empirical value used for each trial was drawn from a Gaussian distribution with a fixed
mean (i.e., true value; Figures 1A and 1C) and with a standard deviation of $0.50. We arrived
at this latter choice by performing preliminary behavioral studies to identify a standard devia-
tion value that led to quantitatively similar learning rates in both the relative and the absolute
feedback groups.

We collected blood oxygen level dependent (BOLD) functional MRI data from each partic-
ipant as they performed the task. A total of 12 scan runs over four days were completed by
each person (three scans per session), totaling 1,584 trials (Figure 1D). The average accuracy
in selecting the shape with the highest mean value at each trial gradually improved over the
course of the experiment, increasing from approximately 50% (chance) in the first few trials to
approximately 95% in the final few trials. This behavioral improvement was consistent across
participants and between feedback groups (Figures 1E and 1F). Two participants from each
group were excluded on the basis of head motion and task performance (Figure S1 in the Sup-
plementary Information, Mattar, Thompson-Schill, & Bassett, 2018), with the other 16 subjects
contributing data for the main analyses described in this paper.

Evolution of Functional Networks Throughout Learning

Using this value learning task, we first tested whether global changes in functional connec-
tivity occurred concurrently with changes in behavior (Medaglia, Lynall, & Bassett, 2015).
We created functional networks (or graphs) for each participant by subdividing their gray
matter volume into N = 112 cortical and subcortical areas (nodes) and calculating the sta-
tistical dependency between the BOLD activity time courses from each pair of nodes
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The network architecture of value learning

Figure 1. Experimental paradigm and behavioral results. (A) Stimulus set and corresponding
values. Twelve abstract shapes were computer generated, and an integer value between $1 and
$12 was assigned to each (Figure S2, Mattar et al., 2018). This value remained constant over the
four days of training. (B) Task paradigm. Participants were presented with two shapes side by side
on the screen and asked to choose the shape with the higher monetary value. Once a selection was
made, either the value of the shape selected (absolute feedback) or the correctness of the selection
(relative feedback) was provided as feedback. Each trial lasted 2,750 ms (250 ms interstimulus in-
terval). (C) On each trial, the empirical value of each shape was drawn from a Gaussian distribution
with fixed mean (i.e., the true value), as described in panel (A), and standard deviation of $0.50.
(D) The experiment was conducted over four consecutive days, with three experimental scans
(396 trials) on each day, for a total of 1,584 trials. (E) Participants’ accuracy in selecting the shape
with higher expected value improved steadily over the course of the experiment, increasing from
chance level in the first few trials to approximately 95% in the final few trials (N = 16). (F) Task
accuracy followed a similar profile for all participants in both the absolute feedback (N = 8) and
the relative feedback (N = 8) groups.

(edges; E. T. Bullmore & Bassett, 2011). We defined one such functional network for each
of the 12 scans, and we represented that network as an N × N weighted adjacency matrix.
Then, for each pair of scans, we calculated the Pearson correlation coefficient between their
associated pair of matrices, intuitively measuring the interscan similarity in the pattern of statis-
tical dependencies between regional BOLD time series. We observed that functional networks
were more similar to each other when the corresponding scans were close to one another in
time than when they were far from one another in time (Figure 2A). Interestingly, functional
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The network architecture of value learning

Figure 2. Functional networks underlying task execution evolve slowly over the course of learn-
ing. (A) Lower diagonal: Network similarity (Pearson correlation coefficient) between functional
connectivity matrices corresponding to each pair of task scans. Upper diagonal: Network similarity
(Pearson correlation coefficient) between functional connectivity matrices corresponding to each
pair of rest scans, conducted over the same period of time as the task scans (N = 16). (B) Average
network similarity as a function of temporal separation between corresponding scans. Black line:
task scans; red line: resting-state scans (N = 16).

networks tended to evolve most from the first to the second day (Scans 1–3 and 4–6), which
was also the period that saw the greatest improvement in accuracy (Figure 1E).

We summarized these results by calculating the average functional network similarity
(Pearson correlation between adjacency matrices) as a function of scan separation (Figure 2B).
A repeated-measures analysis of variance indicated that average network similarity signifi-
cantly decreased as scan separation increased, F(10, 150) = 11.43, p < 0.001. As a critical null
model, we considered the baseline resting-state scans acquired prior to each task session, in or-
der to rule out potential effects at the session level that were unspecific to learning. A repeated-
measures analysis of variance did not yield significant results, suggesting that average
functional network similarity at rest did not significantly decrease as rest scan separation in-
creased, F(2, 30) = 0.70, p = 0.51. Similar results were obtained when separately consider-
ing the two feedback groups (absolute: F(10, 70) = 3.46, p = 0.0010 for task vs. F(2, 14) =

0.33, p = 0.73 for rest; relative: F(10, 70) = 10.51, p < 0.001 for task vs. F(2, 14) = 0.48, p =

0.63 for rest; Figure S3, Mattar et al., 2018). Similar results were also obtained when con-
sidering the average functional networks for each day as opposed to each scan, yielding an
equal number of time points for the task and rest data (F(2, 30) = 7.51, p = 0.0023; Figure S3,
Mattar et al., 2018), or with global signal removed (Figure S8, Mattar et al., 2018). These results
indicate that functional networks evolve steadily during task execution, suggesting their sensi-
tivity to the learning of value information. Importantly, a homogeneous change in functional
connectivity in the entire network cannot account for these results (e.g., an overall increase or
decrease in connectivity), given that a correlation measure discounts a mean offset. Therefore,
the pattern of edge weights changes throughout learning, with distinct connections chang-
ing in different ways. We thus turned our attention to changes at a finer scale to effectively
characterize the reconfiguration in network architecture associated with learning.

Relationship Between Behavioral and Network Changes

Having established that functional networks in general evolve steadily over the course of
learning, we next turned to an examination of functional changes at the scales of nodes and
edges. To quantify the degree to which variation in edge weight over time was associated with
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The network architecture of value learning

learning, we calculated the Pearson correlation coefficient between each participant’s task
accuracy and the strength of functional connectivity at each edge in the network, across scans
(Figure 3A). We observed a tendency for correlation values to be positive (M = 0.079, SD =

0.11), suggesting that functional connectivity on average increases as task accuracy increases
(Figure 3B). Relatedly, we confirmed that, across subjects, the global network strength was
significantly correlated with behavior (M = 0.21 ± 0.077 (SEM), one-sample t test on Fisher
normalized correlation values: t(15) = 2.73, p = 0.015). These results suggest that behavioral

Figure 3. Changes in functional connectivity track changes in task accuracy. (A) Approach for
identifying network dynamics associated with behavior. Left inset: The strength of functional con-
nectivity for an example edge connecting nodes i and j. Right inset: Task accuracy for the same par-
ticipant. (B) Histogram of Pearson correlation coefficients between edge weight and task accuracy,
combining data from all subjects (N = 16). Edge weights are, on average, positively correlated with
task accuracy, indicating that edge weights tend to increase as learning progresses. (C) Number of
edges departing from each node whose variation over time correlated significantly with changes in
behavior (N = 16). Significance assessed by contrasting the average (Fisher-Z transformed) Pearson
correlation coefficient between task accuracy and edge weight, across participants, with a null dis-
tribution generated by randomly permuting the order of the scans (Bonferroni corrected at α = 0.05).
Connections associated with learning primarily involved regions in the visual cortex, but to a lesser
degree also regions in cingulate, somato-motor, and dorso-lateral frontal areas. (D) Community
structure. Colors represent sets of regions that displayed coherent activity with one another during
task execution, across all participants and task sessions. Color code is displayed in the legend in the
bottom left of the figure. Subcortical structures are displayed in representative axial slices, shown at
the bottom. (E) Correlation between average edge weight within or between communities and task
accuracy. Notice the overall trend for positive correlation values, similar to the data presented in
panel B. Communities whose interactions were significantly correlated with task accuracy are high-
lighted in the matrix, with significance assessed by contrasting the average (Fisher-Z transformed)
Pearson correlation coefficient between task accuracy and edge weight, across participants, with a
null distribution generated by randomly permuting the order of the scans (Bonferroni corrected at
α = 0.05). Community order is displayed in the legend in the bottom left of the figure.
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improvements in this task are associated with a global increase in the coherence of BOLD
activity.

To rule out the possibility that the increase in global network strength was caused by a
changing pattern of motion in the scanner across sessions, we calculated the Spearman rank-
order correlation between motion and global network strength across sessions. We found that
motion was not significantly correlated with either absolute displacement (RMS displacement
relative to a single reference volume; M = 0.11 ± 0.10 (SEM), one-sample t test on Fisher
normalized correlation values: t(15) = 1.19, p = 0.25) or average relative displacement (RMS
displacement relative to the preceding volume; M = 0.17 ± 0.10 (SEM), one-sample t test on
Fisher normalized correlation values: t(15) = 1.69, p = 0.11).

Despite an overall tendency for functional connectivity values to increase over the course of
learning, this profile was not present in all edges of the network (Figure 3B). Thus, we wished
to distinguish the parts of the network that were related to behavioral changes from those
that did not change or from those that changed in a manner unrelated to behavior. Using a
nonparametric permutation-based approach, we compared the mean correlation coefficient
between task accuracy and edge weight, across participants, with a null distribution generated
by randomly permuting the order of the scans. We then applied a Bonferroni correction forBonferroni correction:

A correction applied to a statistical
test with the goal of adjusting the
false-positive rate when performing
multiple hypothesis tests. The
correction amounts to dividing the
threshold under which the null
hypothesis is rejected by a factor
corresponding to the number of tests
conducted.

multiple comparisons (112 × 111/2 = 6, 216 tests) and counted the number of edges departing
from each node whose changes across time were significantly correlated with improvements
in task accuracy. We observed that regions of the visual cortex—in particular around the
calcarine sulcus, inferior lateral occipital cortex, and posterior fusiform—included the most
edges whose weights tracked learning. Following these strongest hubs of behaviorally linked
connections were additional regions in cingulate, somato-motor, and dorso-lateral frontal
cortices (Figure 3C).

While these results provide information about focal regions from which important edges em-
anate, they do not address the question of which edges specifically change strength in concert
with task accuracy. To examine this finer-scale structure while maintaining interpretability, we
categorized edges grouped by the corresponding cognitive systems recruited by value learning.
We used a data-driven approach built on a network-based clustering method to uncover these
cognitive systems or functional modules. Specifically, we identified groups of brain regions that
displayed coherent activity with one another during task execution, forming network commu-
nities. Using this approach, we obtained subject-specific communities for every trial block,
and obtained a representative consensus partition by identifying the groups of nodes that wereConsensus partition:

A partition of a network that is
representative of a set of other
(potentially distinct) partitions. Here,
we define a consensus partition as
groups of nodes that are consistently
assigned to the same community
across participants and across time.

consistently assigned to the same community across participants and across time. The consen-
sus partition divides the brain into seven distinct communities: a fronto-parietal community
spanning regions of the dorso-lateral, ventro-lateral, and ventro-medial frontal cortices, pos-
terior cingulate, and inferior parietal lobe; a somato-motor community comprised of regions
in the precentral and postcentral gyri and sulci; a cingulo-opercular community covering the
anterior cingulate and frontal operculum; a fronto-temporal community spanning medial tem-
poral areas, the superior and inferior temporal gyri, and medial orbito-frontal cortex; a visual
community composed of the occipital, posterior parietal, and inferior temporal cortices and
thalamus; and two subcortical communities: one formed by bilateral caudate, and one formed
by the nucleus accumbens and globus pallidus (Figure 3D).

We then used this community structure—largely in agreement with known divisions of

Community structure:
A partition of a network into groups
of nodes (overlapping or not) that are
densely connected, with sparser
connections between groups.

the visual and value networks—to summarize groups of network connections that robustly
changed with learning. First, we calculated the average edge weight within each community
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or between each pair of communities, and then we calculated the correlation between these
module-level estimates of functional interactions and task accuracy (Figure 3E). As expected
from the observed increase in connectivity values over the course of learning, these correla-
tion values were generally positive. To assess the significance of these effects, we compared
the average (Fisher-Z transformed) correlation value, across subjects, with a null distribution
of 10,000 correlation values obtained by permuting the order of the scans uniformly at ran-
dom. Two community-level interactions showed significant correlations with task accuracy
(Bonferroni corrected at α = 0.05): as task accuracy increased, connection strength similarly
increased (a) within the visual community (adjusted p value: p = 0.0028); and (b) between
visual and cingulo-opercular communities (adjusted p value: p = 0.011). Similar results were
obtained when analyzing absolute and relative feedback groups separately (Figure S4, Mattar
et al., 2018). Together, these results suggest that interactions between visual and cingulo-
opercular networks change in accordance with task accuracy.

Predicting a Person’s Learning Stage From Their Functional Connectivity Pattern

We next turned to the stricter test of out-of-sample prediction testing whether snapshots of
an unseen participant’s network could be correctly classified as coming from early versus late
stages in the learning process. We used a leave-one-out cross-validation procedure to selectLeave-one-out cross-validation:

A model evaluation method where a
predictive model is derived based on
all the data except for one point (e.g.,
one subject), which is then used to
make a prediction for the remaining
point.

predictive network edges from each set of n − 1 subjects, and we compared their strengths in
the left-out, independent participant’s data. For each cross-validation fold, predictive network

Cross-validation fold:
The subset of the data used to derive
a predictive model.

edges were those in which a one-sample t test across subjects demonstrated a significant cor-
relation with behavior at p < 0.001. The number of edges present in the predictive networks
ranged from 180 to 341 (M = 222.6, SD = 36.6). We then calculated the average strength in
this network for the first three scans (Day 1) and for the last three scans (Day 4) of the left-out
participant, and we classified the dataset with lower (higher) strength as early (late). Using
this approach, we were able to correctly classify 15 out of the 16 participants’ data (accuracy:
93.75% vs. chance: 50%; one-tailed binomial test: p < 0.001). The edges that appeared most
frequently in the predictive network linked the visual community with itself (purple) and with
the fronto-parietal (cyan), cingulo-opercular (blue), and somato-motor (green) communities
(Figure 4A).

For a baseline comparison, using a predictive network composed of all (6,216) possible
edges we were able to correctly classify data from 12 out of the 16 participants (accuracy:
75% vs. chance: 50%; one-tailed binomial test: p = 0.038). The performance of this classifier
is a consequence of the overall increase in the average edge strength of the network and not
due to the exact pattern of edge strengths. In a supplementary set of analyses, we removed
the average network strength at each scan and repeated the classification procedure, forcing
the predictive networks to incorporate only edges whose variation with respect to other edges
(and not with respect to a baseline) predicted learning session. Using this alternative cross-
validation procedure, the number of edges present in the predictive networks ranged from 105
to 154 (M = 132.5, SD = 13.7) and classification was correct in all 16 participants (accuracy:
100% vs. chance: 50%; one-tailed binomial test: p < 0.001; Figure S5, Mattar et al., 2018).
The edges that appeared most frequently in the predictive network linked the visual community
with the fronto-parietal (cyan), cingulo-opercular (blue), and somato-motor (green) communi-
ties, suggesting that these edges can uniquely predict learning stage above and beyond the
overall increase in the average edge strength of the network between the first and last scan
days. These results confirm that the unique pattern of edge strengths is a robust predictor of a
participant’s learning stage.
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Figure 4. Functional connectivity between network modules predicts a person’s learning stage.
(A) Using a cross-validation procedure (N = 16), the subset of edges where a one-sample t test
yielded a test statistic with p value lower than 0.001 was selected as a predictive network. The figure
shows the number of cross-validation folds in which each edge was identified as part of the predic-
tive network. Edges whose strength correlated positively with task accuracy are displayed in red.
Edges whose strength correlated negatively with task accuracy are displayed in blue. (B) The same
procedure repeated separately for each pair of communities (N = 16). Cell colors and numbers
represent classification accuracy in labeling held-out data as coming from scans early or late in the
learning process. Communities whose interactions classified held-out data significantly (Bonferroni
corrected at α = 0.05) are highlighted. Community order is displayed in the bottom right.

To gain insight into the specific modules that enable this classification, we repeated these
analyses separately for each pair of communities, selecting each time the edges connecting
the two communities for which a one-sample t test across subjects demonstrated a significant
correlation with behavior at p < 0.001 (Figure 4B). Using a Bonferroni correction for multi-
ple comparisons (α = 0.05), the data from the left-out participant was significantly classified
above chance (50%) when the predictive network was composed of edges connecting (a) vi-
sual and fronto-parietal modules (accuracy: 93.75%; one-tailed binomial test, adjusted p value:
p = 0.0054); (b) visual and somato-motor modules (accuracy: 87.50%; one-tailed binomial
test, adjusted p value: p = 0.044); and (c) visual and cingulo-opercular modules (accuracy:
87.50%; one-tailed binomial test, adjusted p value: p = 0.044). The same pattern of results was
obtained after removing average network strength (Figure S5, Mattar et al., 2018), demonstrat-
ing that connectivity between these modules can predict learning stage above and beyond the
overall increase in the average edge strength of the network between the first and last scan day.
Together, these results confirm that interactions between visual and fronto-cingulate regions
not only track behavioral improvements, but can also be used to significantly determine the
amount of training that an unseen person has completed.

Predicting Feedback Condition From Functional Connectivity

The results presented above characterize network features that change in concert with learning
of value, broadly defined. Yet, information about stimulus value can be acquired in different
ways, each involving potentially different brain structures (Delgado & Dickerson, 2012). How
might network recruitment and plasticity vary with the type of information used for learning?
We addressed this question by comparing the functional network architecture during learning
between the two feedback groups.
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The feedback manipulation introduced in the task design constrains the specific informa-
tion available for the decision process while maintaining visual stimuli, participants’ behaviors,
and the overall task structure identical across conditions. The required mental operations, in
turn, are expected to differ between groups despite equivalent visual inputs and motor outputs.
Specifically, participants in the absolute feedback group are required to retrieve and compare
stimulus-specific value information, while participants in the relative feedback group retrieve
pairwise, relative relationships between stimuli based on previously reinforced choices. This
is expected particularly early in the learning process, since after extensive training groups may
converge to a state where both absolute and relative value information are available for the de-
cision process. We thus hypothesized that task performance and learning may recruit different
brain structures to the core value judgment network, particularly early in the learning process.
In particular, we hypothesized a relatively greater involvement of basal ganglia structures in
the relative feedback group because learning was driven by reinforcement. To make concrete
network predictions, we expected to observe a greater coupling of basal ganglia structures to
input (sensory) and output (motor) areas in participants of the relative feedback group, with
participants of the absolute feedback group displaying stronger direct coupling between input
(visual) and output (motor) structures.

A direct comparison of the group networks yielded no significant edges when corrected
for multiple comparisons at a significance level of α = 0.05. Yet, we observed a trend for
the overall network strength to be higher in the absolute feedback group than in the rela-
tive feedback group (p < 0.059). In order to identify specific network components that differ
between conditions, we again proceeded with a data-driven classification procedure, identi-
fying a different predictive network at each cross-validation fold and testing whether held-out
data could be correctly labeled according to the type of feedback received by the participant.
Specifically, we calculated the average functional connectivity for each participant in the first
three scans (Day 1). We then conducted a leave-two-out cross-validation, forming a training
set of all participants except for one participant in each group, and conducting a two-sample
t test across subjects for each network edge. A predictive network for the absolute (relative)
feedback group was defined as the set of edges with 1% largest (smallest) t statistic, and the
strength of the predictive network calculated for the two held-out participants.

We then asked, for each of the 64 cross-validation folds, whether the strength of this pre-
dictive network was sufficient to correctly classify the feedback group of the two held-out
participants. Using this procedure, we were able to label the held-out data in 51 of the 64
cross-validation folds, corresponding to 79.69% accuracy (chance: 50%; one-tailed binomial
test: p < 0.0001). To further assess the significance of this result, we performed a nonpara-
metric permutation test in which the edges composing the predictive networks were selectedPermutation test:

A statistical test of significance where
the distribution of the test statistics
under the null hypothesis is
generated by permuting the labels of
the data points.

uniformly at random. This procedure yielded a null distribution of accuracy values centered
at chance level (M = 0.50, SD = 0.062). The observed classification accuracy in the true
data (79.69%) was the largest among all 10,000 permutations (p < 0.0001). The edges that
appeared most frequently in the predictive network for absolute feedback linked the visual
community with the somato-motor, fronto-parietal, and cingulo-opercular communities. In
contrast, the edges that appeared most frequently in the predictive network for relative feed-
back linked fronto-temporal areas to fronto-parietal and basal ganglia structures—in partic-
ular, the nucleus accumbens (Figure 5A). Similar results were obtained when subtracting the
mean connectivity from each adjacency matrix in order to account for possible differences
in overall network strength between conditions (accuracy: 83.81%), as well as when using
a support vector machine to classify feedback condition (accuracy: 80.49%; Figure S6,
Mattar et al., 2018). In supplemental analyses at the community level, we observed that
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Figure 5. Functional connectivity between network modules predicts feedback condition.
(A) Using a cross-validation procedure, the subset of edges with lowest and highest t statistics in a
two-sample t test between absolute and relative feedback were selected as the predictive network
for the absolute and relative feedback groups, respectively (N = 8 per feedback condition). The
figure shows the number of times each edge was part of the corresponding predictive networks
(green: absolute feedback; purple: relative feedback). (B) Average functional connectivity between
somato-motor and visual, and between somato-motor and GP/NAcc modules displayed separately
for each feedback group (N = 8 per feedback condition). We observed a significant interaction,
with the somato-motor module connecting more strongly to the visual module in the absolute
feedback group and to basal ganglia structures in the relative feedback group.

feedback could be significantly classified based on interactions involving somato-motor,
fronto-temporal, and caudate modules (Figure S6, Mattar et al., 2018).

Next, we examined the consistency of these effects across learning stages. We observed that
classification accuracy decreased considerably when data from the final three scans (Day 4)
were used to define the predictive network and to classify held-out data (accuracy: 68.75%,
albeit still significantly greater than expected in the null distribution, as defined by a nonpara-
metric permutation test: p = 0.0017). These results suggest that the networks recruited for the
two feedback conditions are distinct in the early stages of training, but become more similar
to one another as subjects progressed in learning. We wished to confirm this hypothesis by
calculating the similarity between the networks for the two feedback conditions on the first
three scans (Day 1) and on the final three scans (Day 4). We observed that the similarity be-
tween networks of different type increased from r = 0.59 on Day 1 to r = 0.65 on Day 4
(t(14) = 6.82, p < 0.0001). We also observed that the average similarity between the abso-
lute feedback networks for different subjects increased from r = 0.68 on Day 1 to r = 0.73
on Day 4, and that the average similarity between the relative feedback networks for different
subjects increased from r = 0.61 on Day 1 to r = 0.67 on Day 4. Together, these results
confirm that the networks recruited for the two feedback conditions are more distinct in early
stages of training than in the later phases of the experiment.

Finally, we explored whether the recruitment of systems hypothesized to be involved in each
feedback condition would exhibit a double dissociation. We tested our network predictions by
calculating the average strength of connectivity between somato-motor and visual modules,
and between somato-motor and basal ganglia (globus pallidus and nucleus accumbens). We
observed a significant interaction (two-way ANOVA interaction: F(1, 28) = 8.69, p = 0.022),
with connectivity between somato-motor and visual modules being stronger for the absolute
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feedback group (two-sample t test on Fisher normalized correlation values: t(14) = 3.14, p =

0.0073), and connectivity between the somato-motor and basal ganglia modules being not sig-
nificantly different between groups (two-sample t test on Fisher normalized correlation values:
t(14) = 0.51, p = 0.62; Figure 5B). The interaction and differences were not significant
on Day 4 (two-way ANOVA interaction: F(1, 28) = 2.13, p = 0.88; two-sample t tests:
t(14) = 0.86, p = 0.40, t(14) = 1.82, p = 0.09; Figure S6c, Mattar et al., 2018). Once again,
similar results were obtained after subtracting the mean connectivity from each adjacency ma-
trix (two-way ANOVA interaction: F(1, 28) = 10.8, p = 0.0027; Figure S6, Mattar et al., 2018),
which controls for overall differences in network strength between groups. Together, these
results indicate a differential recruitment of brain structures for the two feedback conditions,
especially early on, with output areas (e.g., somato-motor) being more connected to visual
areas or to basal ganglia structures in absolute and relative feedback conditions, respectively.

DISCUSSION

In this study, we investigate the network-level neural markers of human value learning. Using
neuroimaging data collected from a cohort of 20 healthy adults as they learned the mone-
tary value of 12 novel visual stimuli, we demonstrate that functional connectivity—patterns
of statistical dependencies between activity in different brain regions—varies in a manner
that directly tracks changes in behavior. As accuracy increases, functional connectivity within
areas of the visual system and between visual and fronto-cingulate regions also increases. Im-
portantly, these patterns of reconfiguration can be used to predict the learning stage of a single
subject, and also to predict which type of learning feedback a subject has been exposed to.
Collectively, our results provide strong evidence for the notion that functional brain networks
are sensitive to behavioral improvements and task conditions, and offer novel insights into the
cognitive neuroscience of value learning.

Task-Based Network Architecture

Our study begins with a demonstration that functional networks defined during task execution
are sensitive to learning, whereas resting-state networks are not (Figure 2A). While the net-
work architectures of rest and task states certainly display some commonalities (Cole, Bassett,
Power, Braver, & Petersen, 2014), the present work provides evidence for their differences,
complementing a growing set of studies particularly in the context of learning (Bassett et al.,
2013, 2015). Indeed, the community structure observed in our study differs from that observed
in the resting state (Power et al., 2011), being characterized by modules for visual perception,
value comparison, decision-making, and motor responses, as well as a module in which the
fronto-parietal and default mode networks are strongly intertwined (Fornito, Harrison, Zalesky,
& Simons, 2012).

Notably, the cingulo-opercular network, thought to subserve goal-directed behavior through
the stable maintenance of task sets (Dosenbach et al., 2007), played an important role in the
present task. This is likely a consequence of it being predominantly composed of the anterior
cingulate, an area implicated in a variety of functions such as error detection, conflict moni-
toring, reward-based learning, and decision-making (Botvinick, Cohen, & Carter, 2004; Bush,
Luu, & Posner, 2000; Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006). Indeed, this
diversity of functions has been discussed in depth in recent reviews (Holroyd & Yeung, 2012;
Shenhav, Botvinick, & Cohen, 2013). While our data are unable to tease apart the specific
contribution of the anterior cingulate cortex and the cingulo-opercular network more gener-
ally, we speculate that the stable maintenance of a task set involving visual information for
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reward-based learning is broadly in line with our findings of increased connectivity between
this network and visual areas.

Perhaps surprisingly, the network including the medial orbito-frontal cortex (fronto-temporal)
did not exhibit the same pattern of changes with learning, despite its hypothesized role in rep-
resenting the expected rewards of actions. Evidence from neuropsychology, however, seems
to indicate that learning decisions based on value feedback does not require the orbito-frontal
cortex, relying instead on dorso-medial prefrontal areas (Fellows, 2011)—a finding that our
results corroborate.

Finally, the separation of subcortical structures in the basal ganglia into isolated communi-
ties (caudate and nucleus accumbens with globus pallidus) is not characteristic of resting-state
dynamics, and indicates that these structures have a time course of neural responses that are
distinct from other communities, potentially because of signals related to prediction errors
(O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003).

Integration of Visual and Valuation Systems

Models and theory aside, it is important to couch our network-level observations within the
cognitive neuroscience of value. Our task paradigm requires participants to process incoming
visual information, recognize the stimulus pair, and retrieve the relevant value information, be-
fore making a choice and entering a response. With the feedback received, the stored values
of the recently observed stimuli are updated so that future choices are optimized for accuracy.
Conceptually speaking, both at the time of retrieval and at the time of updating, visual and
value-related information must be combined, requiring an intricate interplay between the vi-
sual system (Van Essen, Anderson, & Felleman, 1992) and the valuation system (Bartra et al.,
2013). Our results directly confirm these predictions by demonstrating that visual areas, and
in particular their interactions with areas of the cingulo-opercular module, are strongly mod-
ulated by learning, becoming increasingly connected as task accuracy increases (Figure 3E).
The increased connectivity between these two modules means that their activity becomes in-
creasingly synchronized with learning. A plausible explanation for this finding is that activity
in visual regions becomes increasingly modulated by value—for example, responding more
strongly when currently attended stimuli have higher values—similarly to what is observed in
regions of the valuation system (Bartra et al., 2013). Indeed, it has recently been observed
that visual responses after value learning become modulated by value similarity (Persichetti,
Aguirre, & Thompson-Schill, 2015). While our results do not explicitly test for the emergence
of multivariate representations that are sensitive to value similarity, they are in direct agreement
with this possibility.

Effect of Feedback

Even in a task as simple as a two-alternative forced choice, the selection of the alternative with
highest value may require widely different processes depending on the information previously
encoded and currently available. In our paradigm, subjects in the relative feedback group
learned ordinal information while those in the absolute feedback group learned cardinal infor-
mation, and so the content learned differed between conditions. While most of the research
on feedback-based learning has been successfully formalized within a reinforcement learning
framework, where a positive (or negative) prediction error signal reinforces (weakens) specific
stimulus-response associations, this framework cannot account for all forms of learning. In
particular, learning of declarative information (in our task also received through feedback),
linking a stimulus with a monetary value, is likely to require a different strategy given the lack
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of a clear reinforcement signal (Packard & Knowlton, 2002; Squire, 1992). These two different
learning strategies are thought to recruit distinct memory systems, with basal ganglia regions
mediating learning through trial and error (right vs. wrong), and more posterior regions (in par-
ticular the medial-temporal lobe) mediating declarative learning (Delgado & Dickerson, 2012;
Packard & Knowlton, 2002; Squire, 1992).

Recent evidence suggests that the relationship between these two systems is cooperative
rather than competitive (Cincotta & Seger, 2007; Dickerson, Li, & Delgado, 2011; Voermans
et al., 2004). In particular, some authors suggest that sensory information may pass through
both trial-and-error and declarative memory systems independently (White & McDonald, 2002)
before reaching output, motor systems. Our results provide direct support to theories of multi-
ple learning systems by demonstrating that feedback condition can be robustly classified based
on functional networks. Furthermore, in line with a cooperative interaction view, we show that
the output somato-motor module couples differentially with basal ganglia structures or with a
visual module depending on feedback type (Figure 5B).

Methodological Considerations

It has become increasingly clear that the insights obtained with a network-based approach are
complementary and, for the most part, distinct from those obtained with univariate or multi-
variate activation approaches (Bassett et al., 2015; Siebenhuhner, Weiss, Coppola, Weinberger,
& Bassett, 2013). Activation-based approaches typically rely on the assumption that the regions
that are relevant for a cognitive process respond with different average intensities during that
process in comparison to a baseline (Friston, 2005). In contrast, the assumptions in network-
based approaches are that the pattern of statistical dependencies between regions is what
varies between conditions, requiring neither an overall bulk change in average activity nor the
definition of a baseline to which all conditions are compared (E. T. Bullmore & Bassett, 2011).
While activation-based studies have provided us with many important and meaningful insights
on behavioral and cognitive neuroscience over the course of the last two decades, network
studies in task contexts have flourished more slowly and only recently the tools, statistics,
and diagnostic approaches necessary for their analyses and interpretation have started to be
developed (Medaglia et al., 2015). In this context, the network-based approach presented here
supplements the vast activation-based literature on value learning.

Our study offers important methodological advancements for the network neuroscientist’s
toolkit. First and foremost, a major contribution of our study is the direct relationship between
variables derived from behavior and modulations in functional connectivity. A key advan-
tage of this technique over more conventional neuroimaging approaches is the ability to infer
the specific functional interactions in the brain that are associated with changes in behavior
(Shehzad et al., 2014). Second, our work is also part of a growing set of studies that use
completely data-driven analysis approaches to identify network components relevant for a
cognitive process, and a cross-validated procedure for out-of-sample prediction, which may
reduce the risk of overfitting and improve generalizability (Finn et al., 2015; Rosenberg et al.,
2015; Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012; Turk-Browne, 2013).

Our study used a relatively small sample size (N = 16), and we therefore sought to decrease
the potential for false positives by extending the study longitudinally and collecting data for
each subject over four scan sessions, providing 64 scans in which to study the learning of value.
We note that this approach markedly reduced the within-subject variability, which we comple-
mented with stringent statistical testing using Bonferroni corrections for multiple comparisons.
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This procedure adjusts familywise error rates without requiring any assumptions about depen-
dence among the individual tests (Goeman & Solari, 2014). While network-specific methods
such as the network-based statistic (Zalesky, Fornito, & Bullmore, 2010) could have yielded
a larger number of significant results for edgewise inferences across networks, the more con-
servative (and always valid) Bonferroni approach yielded a reasonable number of structures
amenable to interpretation.

Implications for Cognitive and Clinical Neuroscience

The learning of value is a fundamental prerequisite for healthy adult human behavior. A natural
question that arises from this work is how the network architecture of value learning recon-
figures as children develop from infants through adolescence and into adulthood, a process
that is known to be accompanied by changes in both structural (Betzel et al., 2014) and func-
tional (Gu et al., 2015) brain networks. Moreover, our results motivate the hypothesis that
the normative characteristics of network reconfiguration that we observe in this study will
be fundamentally altered in patients with deficits in reinforcement learning behavior, and in
fronto-cingulate cognitive control systems, including individuals with Parkinson’s disease or
schizophrenia. Finally, given recent evidence (Braun et al., 2016) it could be interesting in
future studies to assess neurotransmitter-level drivers of these reconfiguration dynamics, and
their dependence on cellular-level mechanisms of synaptic plasticity.

METHODS

Participants

Twenty human participants (nine female; ages 19–53 years; mean age = 26.7 years) with nor-
mal or corrected vision and no history of neurological disease or psychiatric disorders were
recruited for this experiment. All participants volunteered and provided informed consent in
writing in accordance with the guidelines of the Institutional Review Board of the University
of Pennsylvania (IRB #801929). Participants had no prior experience with the stimuli or the
behavioral paradigm.

Experimental Setup and Procedure

Participants learned the monetary value of 12 novel visual stimuli in a reinforcement learning
paradigm. Learning occurred over the course of four MRI scan sessions conducted on four
consecutive days. A training protocol for learning of object value lasting four days has been
successfully used previously (Persichetti et al., 2015), and our behavioral pilot results indicated
that this period, with approximately 1,500 trials, was appropriate for most subjects to reach
their individual asymptotic performances.

The novel stimuli were three-dimensional shapes generated with a custom built MATLAB
toolbox (code available at http://github.com/saarela/ShapeToolbox) and rendered with RADI-
ANCE (Ward, 1994). ShapeToolbox allows the generation of three-dimensional radial fre-
quency patterns by modulating basis shapes, such as spheres, with an arbitrary combination
of sinusoidal modulations in different frequencies, phases, amplitudes, and orientations. A
large number of shapes were generated by selecting combinations of parameters at random.
From this set, we selected 12 that were considered to be sufficiently distinct from one another.
A different monetary value, varying from $1.00 to $12.00 in integer steps, was assigned to each
shape. These values were uncorrelated with any parameter of the sinusoidal modulations,
so that visual features were not informative of value.
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On each trial of the experiment, participants were presented with two shapes side by side
on the screen and asked to choose the shape with the higher monetary value in an effort
to maximize the total amount of money in their bank. The shape values on a given trial were
independently drawn from a Gaussian distribution with mean equal to the true monetary value
and the standard deviation equal to $0.50. This variation in the trial-specific value of a shape
was incorporated in order to ensure that participants thought about the shapes as having worth,
as opposed to simply associating a number or label with each shape.

Participants completed 20 min of the main task protocol on each scan session, learning
the values of the 12 shapes through feedback. The sessions were composed of three scans
of 6.6 min each, starting with 16.5 s of a blank gray screen, followed by 132 experimental
trials (2.75 s each), and ending with another period of 16.5 s of a blank gray screen. Stimuli
were back-projected onto a screen viewed by the participant through a mirror mounted on
the head coil and subtended 4◦ of visual angle, with 10◦ separating the center of the two
shapes. Each presentation lasted 2.5 s (250 ms interstimulus interval) and, at any point within
a trial, participants entered their responses on a four-button response pad indicating their shape
selection with a leftmost or rightmost button press. Stimuli were presented in a pseudorandom
sequence with every pair of shapes presented once per scan.

Feedback was provided as soon as a response was entered and lasted until the end of the
stimulus presentation period. Participants were randomly assigned to two groups depending on
the type of feedback received. In the relative feedback case, the selected shape was highlighted
with a green or red square, indicating whether the selected shape was the most valuable of the
pair or not, respectively. In the absolute feedback case, the actual value of the selected shape
(with variation) was displayed in white font. Importantly, no information about the correctness
of the choice was given in the absolute feedback case. Between each run, both groups received
feedback about the total amount of money accumulated up to that point.

In addition to the main learning protocol, we collected fMRI data during a functional lo-
calizer, two scans of a size judgment task, and one scan of a value judgment task. The func-
tional localizer scans consisted of 10 s blocks of faces, scenes, objects, and scrambled objects
(800 ms presentation and 200 ms interstimulus interval) as participants performed a one-back
task on image repetition. The size judgment task scans consisted of consecutive presentations
of shapes drawn from the set and presented with a ± 10% size modulation (1,500 ms pre-
sentation and 250 ms interstimulus interval) as participants indicated whether the shape was
presented in a slightly larger or smaller variation. The value judgment task scans consisted of
consecutive presentations of shapes drawn from the set (1,500 ms presentation and 250 ms
interstimulus interval) as participants indicated whether the shape was one of the six least or
one of the six most valuable shapes. No feedback was given in any of these tasks. Data from
these additional scans were not included in any of the present analyses.

Data collection and analysis were not performed blind to the conditions of the experiment.

Subject Exclusion Criteria

Participants were excluded on the basis of head motion and task performance. From the
set of 20 participants recruited for the experiment, two were excluded because of low task
performance (criterion: average task accuracy at the final scan lower than 80%, Figure S1a,
Mattar et al., 2018), and two were excluded because of excessive head motion (criterion:
average absolute or relative motion greater than three standard deviations away from the
mean, Figure S1b,c, Mattar et al., 2018). Our investigation therefore included 16 participants
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(eight female; ages 19–31 years; mean age = 24.1 years), of which eight remained in each
feedback condition. This sample size is consistent with accepted good practices in this field
(Desmond & Glover, 2002).

MRI Data Collection

Magnetic resonance images were obtained at the Hospital of the University of Pennsylvania
using a 3.0 T Siemens Trio MRI scanner equipped with a 32-channel head coil. T1-weighted
structural images of the whole brain were acquired on the first scan session using a three-
dimensional magnetization-prepared rapid acquisition gradient echo pulse sequence (repeti-
tion time (TR) 1,620 ms; echo time (TE) 3.09 ms; inversion time 950 ms; voxel size 1 mm ×
1 mm × 1 mm; matrix size 190 × 263 × 165). A field map was also acquired at each
scan session (TR 1,200 ms; TE1 4.06 ms; TE2 6.52 ms; flip angle 60; voxel size 3.4 mm ×
3.4 mm × 4.0 mm; field of view 220 mm; matrix size 64 × 64 × 52) to correct geometric
distortion caused by magnetic field inhomogeneity. In all experimental runs with a behavioral
task, T2*-weighted images sensitive to BOLD contrasts were acquired using a slice acceler-
ated multiband echo planar pulse sequence (TR 2,000 ms; TE 25 ms; flip angle 60; voxel size
1.5 mm × 1.5 mm × 1.5 mm; field of view 192 mm; matrix size 128 × 128 × 80). In all
resting-state runs, T2*-weighted images sensitive to BOLD contrasts were acquired using a
slice accelerated multiband echo planar pulse sequence (TR 500 ms; TE 30 ms; flip angle 30;
voxel size 3.0 mm × 3.0 mm × 3.0 mm; field of view 192 mm; matrix size 64 × 64 × 48).

MRI Data Preprocessing

Cortical reconstruction and volumetric segmentation of the structural data was performed with
the FreeSurfer image analysis suite (Dale, Fischl, & Sereno, 1999). Boundary-based registra-
tion between structural and mean functional image was performed with FreeSurfer bbregister
(Greve & Fischl, 2009).

Preprocessing of the resting-state fMRI data was carried out using FEAT (FMRI Expert Anal-
ysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl).
The following prestatistics processing was applied: EPI distortion correction using FUGUE
(Jenkinson, 2004); motion correction using MCFLIRT (Jenkinson, Bannister, Brady, & Smith,
2002); slice-timing correction using Fourier-space time series phase-shifting; nonbrain removal
using BET (Smith, 2002); grand-mean intensity normalization of the entire 4D dataset by a
single multiplicative factor; and highpass temporal filtering (Gaussian-weighted least squares
straight-line fitting, with sigma = 50.0 s).

Nuisance time series were voxelwise regressed from the preprocessed data. Nuisance re-
gressors included (a) three translation (X, Y, Z) and three rotation (pitch, yaw, roll) time series
derived by retrospective head motion correction (R = [X, Y, Z, pitch, yaw, roll]), together with
expansion terms ([R,R2,Rt−1,R2

t−1]), for a total of 24 motion regressors (Friston, Williams,
Howard, Frackowiak, & Turner, 1996); (b) the five first principal components of nonneu-
ral sources of noise, estimated by averaging signals within white matter and cerebrospinal
fluid masks, obtained with FreeSurfer segmentation tools and removed using the anatomical
CompCor method (aCompCor; Behzadi, Restom, Liau, & Liu, 2007); and (c) an estimate of a lo-
cal source of noise, estimated by averaging signals derived from the white matter region located
within a 15 mm radius from each voxel, using the ANATICOR method (Jo, Saad, Simmons,
Milbury, & Cox, 2010). Global signal was not regressed out of voxel time series because of
its controversial application to resting-state fMRI data (Chai, Castañón, Öngür, & Whitfield-
Gabrieli, 2012; Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Saad et al., 2012).
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In particular, the removal of global signal in our data could mask session-to-session variability
in connectivity and potentially affect accurate estimation of long-distance connections, which
are a major focus of our study. We instead follow recent guidelines that suggest that removing
local white matter signal and other nonneural sources are potential reasonable alternatives to
global signal regression (Murphy & Fox, 2016; Power, Schlaggar, & Petersen, 2015).

Network Construction

Network analyses of brain function began with a definition of the interacting units (nodes) and
a quantification of the interactions between those units (edges). Our study follows standard
practices in the field of neuroimaging and defines nodes as a collection of contiguous voxels
given by an atlas or parcellation scheme, and further defines edges as the statistical dependence
between the average activity in the corresponding nodes. Consistent with previous studies of
task-based functional connectivity during learning, we parcellated the brain into 112 cortical
and subcortical regions, separated by hemisphere using the structural Harvard-Oxford atlas of
the FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain) Software
Library (FSL; Version 5.0.4). We warped the MNI152 regions into subject-specific native space
using FSL FNIRT (nonlinear normalization) and nearest neighbor interpolation and calculated
the average BOLD signal across all gray matter voxels within each region. The participant’s
gray matter voxels were defined using the anatomical segmentation provided by FreeSurfer,
projected into subject’s EPI space with bbregister.

We then calculated the edge weights connecting nodes by measuring the wavelet coherence
between the activities of the corresponding regions. Wavelet decompositions of fMRI time
series have been applied extensively to fMRI data (E. Bullmore et al., 2003, 2004), where they
sensitively detect small signal changes in nonstationary time series with noisy backgrounds
(Brammer, 1998). We first extracted the wavelet coefficients of the average signal within each
region using the WMTSA Wavelet Toolkit for MATLAB (Percival & Walden, 2006). Given
our sampling frequency of 2 s, we used scale 2 coefficients (corresponding approximately to
0.06−−0.125 Hz) to calculate the magnitude squared coherence, using the MATLAB function
mscohere. We repeated this procedure for all pairs of regions, forming an adjacency matrix A
for each subject and for each scan.

We note that task-related events were not regressed out or explicitly modeled in our
analyses. The effects of a task with intertrial intervals as short as ours (2.75 s) on measures of
functional connectivity almost completely disappear when filtered through the low-pass hemo-
dynamic response function. Approaches that account for context-dependent psychophysiolog-
ical interactions (or its generalized form; McLaren, Ries, Xu, & Johnson, 2012) are, therefore,
ineffective in our data. At any rate, the removal of these effects is controversial in the network
neuroscience literature, with researchers using either approach depending on specific details
of the experimental design and tested hypotheses.

Multislice Community Detection

Approaches to data clustering in networks are generally based on community detection tech-
niques (Fortunato, 2010; Porter, Onnela, & Mucha, 2009). Here we use a generalized
Louvain method (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) for optimizing modularity
(Newman, 2006) developed specifically for community detection in multislice systems (Mucha,
Richardson, Macon, Porter, & Onnela, 2010): systems in which multiple networks linked by
an ordered or categorical dimension (time in our case) are to be examined at once. We
implemented a categorical multislice modularity maximization (Jutla, Jeub, & Mucha, 2011;
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Mucha et al., 2010) that considers the multiple adjacency matrices as slices of a single net-
work, enforcing consistency in node identity across slices by adding interslice connections
between each node and itself across adjacent slices of the network. We then optimize the
multislice modularity quality function 1, which uses the relative densities of intracommunity
connections versus intercommunity connections to identify a partition of network nodes into
communities or modules (Mucha et al., 2010), defined as

Qmultislice =
1

2μ ∑
ijsr

[(
Aijs − γsVijs

)
δsr + δijωjsr

]
δ(gis, gjr), (1)

where the adjacency matrix of slice s has components Aijs, the element Vijs gives the compo-
nents of the corresponding matrix for a null model, γs is the structural resolution parameter
of slice s, the quantity gis gives the community (i.e., “module”) assignment of node i in slice
s, the quantity gjr gives the community assignment of node j in slice r, the parameter ωjsr is
the connection strength between node j in slice s and node j in slice r, the total edge weight
in the network is μ = 1

2 ∑jr κjr, the strength of node j in slice s is κjs = kjs + cjs, the intraslice
strength of node j in slice s is kjs, and the interslice strength of node j in slice s is cjs = ∑r ωjsr.
We employ the Newman-Girvan null model within each layer by using

Vijs =
kiskjs

2ms
, (2)

where ms =
1
2 ∑ij Aijs is the total edge weight in slice s. The free-parameters are the structural

resolution parameters, γs, and the interslice coupling parameters, ωjsr, here assumed to be
constant (γs = γ, ∀s and ωjsr = ω, ∀j and ∀s �= r, meaning that node j in slice s connects to
node j in every slice r �= s with weight ω). These parameters control the size of communities
within a given layer and the number of communities discovered across layers, respectively.

In order to obtain a single, representative, partition of the brain into network communi-
ties, we performed 100 optimizations of the modularity function for each participant, using
nonoverlapping 60-s windows and the standard parameters of γ = 1.0 and ω = 1.0. We then
calculated the module allegiance matrix (Mattar, Cole, Thompson-Schill, & Bassett, 2015), a
112 × 112 matrix whose i, j elements correspond to the probability that regions i and j belong
to the same community across all optimizations, scans, and participants. By repeating the
procedure of maximizing the modularity function on the module allegiance matrix 100 times
and recalculating a new module allegiance matrix, a consensus partition is considered to
have been obtained when all 100 optimizations of the modularity function are identical. The
structural resolution parameter used in the optimizations of the single-layer module allegiance
matrix can be tuned to yield a different level of the hierarchical organization of the network.
We chose a value of γ = 1.4, which yielded the maximum number of communities present
simultaneously in both hemispheres of the brain.
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